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Abstract. We consider solutions of the initial-Neumann problem for the heat 
equation on bounded Lipschitz domains in IR N and classify the solutions whose 
spatial level surfaces are invariant with respect to the time variable. (Of course, 
the values of each solution on its spatial level surfaces vary with time.) The pro- 
totype of such classification is a result of Alessandrini, which proved a conjecture 
of Klamkin. He considered the initiaI-Dirichlet problem for the heat equation on 
bounded domains and showed that if all the spatial level surfaces of the solution 
are invariant with respect to the time variable under the homogeneous Dirichlet 
boundary condition, then either the initial data is an eigenfunction or the domain 
is a ball and the solution is radially symmetric with respect to the space variable. 
His proof is restricted to the initial-Dirichlet problem for the heat equation. In the 
present paper, in order to deal with the initiaI-Neumann problem, we overcome 
this obstruction by using the invariance condition of spatial level surfaces more 
intensively with the help of the classification theorem of isoparametric hypersur- 
fi~ces in Euclidean space of Levi-Civita and Segre. Furthermore, we can deal with 
nonlinear diffusion equations, such as the porous medium equation. 

1 I n t r o d u c t i o n  

Alessandr in i  proved a n u m b e r  of  s y m m e t r y  resul ts  [1, 2] which  sett led a 

conjec ture  of  K l a m k i n  [16] (see also [29]). We quote a theorem from [2] (see 

[2, T h e o r e m  1.3, p. 254]). 

T h e o r e m  A (Alessandr in i ) .  Let f~ be a bounded domain in R ~ (N  >= 2) all o f  

whose boundary points are regular with respect to the Laplacian. Let  q) E LZ(f~) 

satisfy ~ ~ 0 and let u = u(z,  t) be the unique solution o f  

[ Otu = Au  in f~ x (O, vo), 

(1.1) ~u(x,O) = ~(x) in a, 
i 
( u  = 0 on Of~ x (0, e~). 
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I f  there exists -r > 0 such that, f o r  every t > r, u(.,t) is constant on every level 

sulfaee {x E f~ : u(x,~') = const.} o f  u( . , r )  in f~, then one o f  the fo l lowing  two 

c a s e s  o c c u r s .  

(i) ~ is an eigenfunction o f - A  under the homogeneous Dirichlet boundary 

condition. 

(ii) ft is a ball, u(., t) is radially symmetric fo r  each t > O, and u never vanishes 

in f2 • [-r, oo ). 

Klamkin's conjecture [ 16] was that if all the spatial level surfaces o f  the solution u 
o f  (1.1) are invariant with respect to the time variable t for positive constant initial 

data, then the domain must be a ball. Therefore Theorem A proved Klarnkin's 

conjecture [16]. 

In the present paper we consider the analogous problem under the homogeneous 
Neumann boundary condition and the problems for nonlinear diffusion equations 

such as the porous medium equation. Our first result is 

T h e o r e m  1. Let  ft be a bounded Lipschitz domain in ~N (N  > 2) with 

boundary Of~, and let ~ E L2(ft) satisfy ~ ~ 0 and fa  ~ dx = O. Let  u = u(x, t) be 

the unique solution o f  the fo l lowing initial-Neumann problem." 

I 
'Otu = Au  in ft x (0, cx~), 

(1.2) u(x,O) = ~(x) in ~2, 

t =o" o .  • (o, oo),  

where u denotes the exterior normal unit vector to Oft. I f  there exists ~- > 0 such that, 

f o r  every t > r, u(., t) is constant on every level surface {x E ft : u(x, r) = const. } 

o f  u(., "r) in ft, then one o f  the fo l lowing two cases occurs. 

(i) ~ is an eigenfunction o f  - A  under the homogeneous Neumann boundary 

condition. 

(ii) By a rotation and a translation o f  coordinates we have one o f  the fol lowing:  

(a) There exists a finite interval (a, b) such that u extends as a funct ion o f  x l  

and t only, say u = U(Xl, t) ((Xl, t) E [a, b] x (0, co)), where x = (xl , . . . ,  xu ) ,  and 

there exist an integer n > 1 and a finite sequence {sj }3=0 satisfying 

b - a  
s o = a ,  s ,  = b, and sj+l - sj = ~ forO =< j =< n - 1 ,  

n 

n - 1  
such that Ou / OX l does not vanish on LJj=o (s j ,  s j + l ) • (T, c~) but vanishes identically 

on {s j}~  o • (0, c~). When n >= 2, u is symmetric with respect to the hyperplane 
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{x E m iv : x l  = sj } f o r  each I < j < n -  1. Furthermore, the boundary Of~ consists 

o f  at most  the fol lowing:  

(a-l) a part  o f  the hyperplane ( z  E m y : x l  = b}, 

(a-2) a p a r t  o f  the hyperplane {x E ]~U : Xl  = a}, 

(a-3) a p a r t  o f  the hyperplane {x E ~N :Xl = s j}  f o r  each 1 < j < n -  1 when 

n >>_2, 

(a-4) a collection o f  straight line segments g given by 

e = {x E IR N : x = ( x l , y )  and sj <=:cl <= s~+l }, 

where y is a point  in •N-1 and O < j < n - 1. 

Here (a-l), (a-2), and (a-4) are nonempty and there is a case in which (a-3) is 

empty. 

(b) There exist a f ini te  interval (a, b) with a > 0 and a natural number k with 
2 ! 2 < k < N such that u extends as a funct ion o f t  = (x 2 + . . .  + xk)2 and t only, 

say u = u(r , t )  ((r , t)  E [a,b] • (0,c~)), whose derivative ~ , t)  does not vanish 

on ( a, b) x ( r, oo) but vanishes identicially on { a, b} • (0, ~ ). Furthermore, when 

2 <_ k <__ N - 1, the boundary Of~ consists o f  the fol lowing:  

(b-l) a par t  o f  the hypersurface {x E ~U ; r = b}, 

(b-2) a par t  o f  the hypersurfaee {x E ~ U  . ?. = a}  when a > O, 

(b-3) a collection o f  straight line segments g given by 

g = {X E I~ N : (Xl ,  . . . ,  Xk) -~- Tea), a ~ r ~ b, and (xk+l,. . . ,  XN)  = Y},  

where y is a point  in R g - k  and w is a point  in the (k - 1)-dimensional unit 

sphere S k-1 in R k. 

When k = N, there exists a Lipschitz domain S in S g -1  (S can be the whole sphere 

S N - l )  such that ~ = {rw E m y : r E (a,b) a n d w  E S} when a > O, and either 

= {rw E ~N : r  E (O,b) a n d w  E S}  with S r S N-1 or~2 = {x E R u : r < b} 

when a = O. 

In particular, in ease (ii), tfOgt is C a, then ~ must  be either a ball or an annulus. 

We refer the reader to [ 10] for existence and uniqueness of solutions of the initial- 
Neumann problem in Lipschitz cylinders. Since any constant function is a trivial 
solution of  the initial-Neumann problem (1.2) with constant initial data, and since 
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adding any constant function to the solution u in Theorem 1 does not have any 

influence on the invariance condition of spatial level surfaces of  u, we have assumed 

for simplicity that ~ ~ 0 and fa  ~ dz = 0 for the initial data ~. 

Alessandrini used an eigenfunction expansion and a special case of a well- 

known theorem of symmetry for elliptic equations of Serrin [27, Theorem 2, 

pp. 311-312] in order to prove Theorem A. 

T h e o r e m  S (Serrin). Let D be a bounded domain with C 2 boundary OD and 

let v E C~(-D) satisfy 

Av = f ( v )  and v > 0 in D, 

v = 0 and Ov/Ou -= e on OD, 

where f = f ( s )  is a C 1 function o f  s, c is a constant, and v denotes the exterior 

normal unit vector to OD. Then D is a ball, and v is radially symmetric and 

decreasing in D. 

Under the hypothesis that case (i) of Theorem A does not hold, Alessandrini showed 

that there exists a level set D = {x 6 f~ : r > s} with s > 0 of an eigenfunction 

= r of - A  under the homogeneous Dirichlet boundary condition such that 

the function v = ~p - s satisfies the overdetermined boundary conditions as in 

Theorem S. Applying Theorem S to v then implies that D is a ball and that v is 

radially symmetric and decreasing in D. A little more reasoning yields the case 

(ii) of Theorem A. In this proof, essential use is made of the fact that the boundary 

of D does not touch the boundary 0~2. This fact arises from the homogeneous 

Dirichlet boundary condition of  the eigenfunction ~. Therefore, in our problem 

(1.2) we cannot use Theorem S because of the homogeneous Neumann boundary 

condition. We overcome this obstruction by using the invariance condition of  

spatial level surfaces more intensively with the help of  the classification theorem 

of  isoparametric hypersurfaces in Euclidean space of Levi-Civita and Segre (see 

[ 18, 26]). Besides, we can give another proof of Theorem A which does not depend 

on Theorem S. 

In fact, the introduction of isoparametric surfaces was motivated by Somigliana 

[28] and Segre [25] in terms of similar questions of the geometry of  solutions of  

partial differential equations. 

Next we want to consider nonlinear diffusion equations. For the porous medium 

equation under the homogeneous Neumann boundary condition we have 
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T h e o r e m  2. Let f~ be a bounded domain in R N (N  >_ 2) with smooth boundary 

Of~, and let u = u(x , t )  E Coo(f~ • (0, oo)) satisfy 

~ Od3(u) = A u  in ~ • (0, oo), 

(1.3) ~ u  > 0 in f~ x (0, ~ ) ,  

[ Ou/Ou = 0 on 0~2 • (0, oo), 

where 3(s) = s 1/'' (m > 0, m r 1) and u denotes the exterior normal unit vector 

to 0~. l f  there exists -r > 0 such that, f o r  every t > r, u(-, t) is constant on every 

level surface {x E {2 : u(X,T) = const.} o f  u(-,'r) in ~, then one o f  the fol lowing 

two cases occurs. 

(i) u is a positive constant. 

(ii) f~ is either a ball or an annulus; for  each t > T, U(-,t) is radially symmetric 

with respect to the center; and, fo r  t > ~-, the derivative with respect to the 

radial direction, say Ou/Or, vanishes in ~ only at the center o f  the ball. 

For the generalized porous medium equation under the homogeneous  Dirichlet 

boundary condit ion we have 

T h e o r e m  3. Let f~ be a bounded domain in ~N ( N ~ 2) with smooth boundary 

Of 2, a n d l e t u  = u(x , t )  c C (~  x (0,T)) N C~ x (0, T)) satisfy 

"Otj3(u) = Au  and u > 0 in 9t x (0,T), 
(1.4) 

u = 0 on 0f~ x (0, T), 

where 13 is a continuous function on [0, oo) such that 

(1) 3 is real analytic on (0, oa), 

(2) /3(0) = 0 and/3'(s) > O for  any s > O. 

I f  there exists r 6 (0, T)  such that, f o r  every t > T, u(., t) is constant on every level 

surface {x E ~2 : u(x,'r) = const.} o f  u( . , r )  in ~, then one o f  the fol lowing two 

cases occurs. 

(i) There exists a positive C ~ function )~ -- )~(t) on [~', T)  such that u(x, t) --- 

A(t)u(x, z) f o r  any (z , t )  6 E x [~-,T). 

(ii) ~ is a ball," f o r  each t E [~', T),  u(., t) is radially symmetric with respect to 

the center; and, f o r  each t E (z, T), the derivative with respect to the radial 

direction, say Ou / Or, is negative in ~2 except at the center o f  ~. 
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See [9, 24, 3] for the existence and uniqueness o f  weak solutions of  the initial- 

boundary value problems for O~(u) = Au,  and [23] for the continuity o f  bounded 

weak solutions. When/3(s)  = s ~/m with 0 < m < 1, if the initial data u(x, O) E 

L ~ (~2) for the initial-Dirichlet problem, there exists a finite extinction time T* such 

that u = 0 for t > T* (see, for example, [7, p. 176]). Therefore, in Theorem 3 we 

consider the finite time interval (0, T). Concerning case (i), see [6, 8] for separable 

solutions of (1 .4)  when/3(s) = 8 1 I r a  with m > 0. 

In Section 2, we prove Theorems 1, 2, and 3 simultaneously. Section 3 is 

devoted to some remarks concerning these theorems. 

2 P r o o f s  o f  t h e o r e m s  

First o f  all, let us quote the classification theorem ofisoparametric hypersurfaces 

in Euclidean space It~ n ,  which was proved by Levi-Civita [18] for N = 3, and by 

Segre [26] for arbitrary N. See [20, 21] for a survey of  isoparametric surfaces, 

T h e o r e m  L e S  (Levi-Civita and Segre). Let D be a bounded domain in 

~N (N > 2) and let f be a real-valued smooth function on D satisfying V f r 0 on 

D. Suppose that there exist two real-valued functions g = g(') and h = h(.) o f  a 

real variable such that 

(2.1) IVft 2 = 9(f )  and A f  : h( f )  on D. 

Then the family  o f  level surfaces {x E D : f ( z )  = s} (s E f (D) )  o f f  must be 

either parallel hyperplanes, concentric spheres, or concentric spherical cylinders. 

In particular, by a rotation and a translation o f  coordinates one o f  the fol lowing 

holds." 

(a) 

(b) 

There exists a finite interval (a i ,b l )  such that f extends as a function 

o f  xl  only, say f = f ( x l )  (xl E (al ,bl)) ,  and D C (a l ,b l )  x ~N-1 with 

OD N ({aa} x ]~N-1) # 0 andOD n ({bl} x ~I~ N-1 ) # 0. 

There exist a finite interval (al, bl) with al >= 0 and a natural number k with 
2 1 

2 <_ k < N such that f extends as a function o f r  = (x~ + . . .  + xk)~ only, say 

f = f ( r )  (r E (al, bl)), and furthermore, when al > O, D C {(xt, . . . ,xk) E 
~k : a l  < r < bl} x]~ N-k wi thODn( { ( x l , . , , , x k )  E ~k : r  = a l } x R  N-k)  • 0 

and OD M ({(Xl,...,xk) E ~k : r = bl) x ]~N-k) y~ 0, and when al = O, 

D C {(xl, ...,xk) E II~ k : 0 < r < ba} x ~N-k  with -DN ({0} x R u - k )  r 0 and 

ODN ({(xa,.. . ,xk) E •k :r  = bl} x ~ N - k )  r 0. Here, when k = N, ~lv-k is 

disregarded. 
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In this theorem, the function f is called an isoparametricfunction and the level 

surfaces of  f are called isoparametric surfaces. For our application, we have 

assumed that the domain D is bounded. 

Let us put u(x, T) = ~b(x) for x E fL  By the common assumption of  Theorems 

1, 2, and 3 (the invariance condition of  spatial level surfaces) as in [1, (2.2), p. 

231 ] we have 

(2.2) u(x, t) = #(r  t) for any (x, t) E ~ x [T, co) ([~-, T) in Theorem 3) 

for some function p = #(s, t) : R x [7-, oo) --. R satisfying 

(2.3) #(s, ~-) = s for any s E II~. 

Although the time interval is [r, T) in Theorem 3, for simplicity let us use the time 

interval [% oo). In Theorems 1 and 3, ~b is not constant; and in Theorem 2, if  r 

is constant, then u is constant for t _> ~- and moreover by the uniqueness theorem 

[12, Chapter 6, Theorem 7, p. 178] for linear backward parabolic equations we 

have case (i). Therefore, we may assume that ~b is not constant. Hence there exist 

a point xo E f~ and an open ball B in ]R N centered at zo such that 

(2.4) V~b :/: 0 on B(C fl). 

Then, by a standard difference quotient argument (see [1, Lemma 1, p.232] and 

[2, Lemma 2.1, p. 255]), we have 

L e m m a  2.1. There exists 6 > 0 such that for  I = [r - 6, r + 6] we 

have I c r  and ~ E C~176 x IT, OC)). 

Proof .  For the reader's convenience, we give a proof. The partial differentia- 

bility of  ~t with respect to t is a straightforward consequence of  (2.2). It follows 

from (2.4) that there exists an interval I = [r - 6, ~b(x0) + 6] with some 6 > 0 

such that I c ~(B).  Let s E I. Then there exists a point y E B such that ~(y) = s 

and Vr r 0. For h E R with Ihl sufficiently small, put x(h) = y + hV~(y) E B. 

Hence ~O(x(h)) = s + hiVr 2 + O(h 2) as h --. 0. Thus for every k E IR with 

[k / sufficiently small there exists a unique h E R such that ~b(x(h)) --- s + k, and 

h = klV~(y)l -z + O(k 2) as k --* 0. Consequently, we have for each t E [r, e~) 

( 2 . 5 )  + k ,  t )  - t )  = t )  - t )  

= r e ( y )  

IVr 
+ O(k 2) as k -~ 0. 
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This means that there exists a partial derivative #s (= O#/Os) given by 

(2.6) its(s, t) = #s(~b(y), t) = Vu(y, t). Vr 
IVr 2 

On the other hand, we have from (2.2) 

(2.7) tz~(s, t) = #t(r t) = Otu(y, t). 

In view of  (2.4), since the right-hand sides of  both (2.6) and (2.7) are bounded on 

• [T, t] for each { > 7, by using the mean value theorem we get # E C~ • [7, oo)). 
Because of  (2.4), the right-hand side of  (2.6) is smooth in B • [7-, oo). Therefore, 

we can repeat the same process from (2.6) to prove the existence o f  the partial 

derivatives #~s and #st; and we get #8 E C~ x [7, c~)) with the help of  the 

mean value theorem. Similarly, we can start the same process from (2.7) and get 

ttt E C~ • [v, oo)). Consequently, by repeating the process as many times as we 

want, we obtain/z E C ~ ( I  • [T, OO)). [] 

In view of  Lemma 2.1, we can substitute (2.2) into the differential equation and 

get 

(2.8) 3'(tz)~t = div (#8Vr = #sASh + #~IVr 2 on • -1(1)  • [7-, (x)), 

where ~9-1(I) = {x E fl : r E I} and in Theorem 1 we recognize that 3(s) = s. 

Differentiating (2.8) with respect to t yields 

(2.9) /3"(#)(~) z + j3'(#)#tt = pst/xr + #~tlVr z on r  x [T, ~ ) .  

Let us introduce the function 9 by 

(2.10) " = det ( #s.st I.Zsst]#ss~ =psPsst_t~ssPst. 
We distinguish two cases: 

( 1 ) 9  = 0 o n  I x [r, oo), 

(2) 9 ~ 0 on I x [7-, oo). 
Note that these cases are slightly different from the cases in the paper [ 1 ], where 

the time is fixed, that is, t = 7-. This modification is useful in dealing with nonlinear 

diffusion equations (Theorems 2 and 3). 

Case (1). In this case, let us show that the solution u must be a separable 

solution, which implies case (i) of  Theorems 1 and 3. It follows from (2.3) that 

~8(s, r) - 1. Therefore, there exists a time Ta > 7- such that 

(2.1 l) #~ > 0 on I x [7-, T1]. 
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Hence we have 

(2.12) (log#s),t  = ~ / (Us)  2 = 0 on I x It, T,]. 

Solving this equation with p.,(s, T) = 1 yields 

(2.13) ~(s,t) =.~(t)s  + rl(t) for any (s,t) C I x  [r, T1] 

for some C ~ functions A = A(t) - ~ > 0 and 77 = rt(t) on It, 7'1] satisfying 

(2.14) A(r) = 1 and r/(T) = 0. 

On the other hand, we know that for each time t > 0, u(-, t) is analytic in x (see 

Friedman [ 1 3]). Therefore,  by (2.13) and (2.2), we see that 

(2.15) u(x,t) = A(t)~(x) +r / ( t  ) for any (x,t)  E a x [% T1]. 

Now we distinguish Theorems 1,2, and 3. Let us consider Theorem 3 first. The 

homogeneous  Dirichlet boundary condition implies that r / -  0 on IT, T1]. Namely, 

we have 

(2.16) 

Let T* = sup{T1 

u(x, t) = A(t)r for any (x, t) e f / x  [7-, T1]. 

E (T,T) : # s  > 0 o n  I • IT, T1]}. Suppose that T* < T. 

u > 0 in f~ • (0, T),  in view of  (2.13) and (2.16) we have by continuity 

Since 

(2.17) #s(s, T*) = lim A(t) = u(xo, T*)/~(Xo) > 0 for any s E I. 
t iT* 

This contradicts the definition o f  T* and the continuity o f  #s. Therefore,  we get 

T* = T and have case (i) o f  Theorem 3. 

Next we consider Theorem 1. Since fa  ~ dz = 0, we have fa  u(x, t) dx = 0 for 

any t > 0. Therefore,  by integrating (2.15), we see that 77 -= 0 on [T, Tx]. Hence we 

get (2.1 6). By  substituting (2.1 6) into the heat equation and letting t = T, we get 

from (2.1 4) 

(2.18) /X~ = A'(T)r 

Since r is not constant and satisfies the 

condition, by separating variables we have 

This implies case (i) o f  Theorem 1. 

in fl. 

homogeneous Neumann boundary 

for any (x, t) E f t  x [0, cr 
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Finally, let us consider Theorem 2. Substituting (2.15) into the diffusion 
equation yields 

1 1_ 1 (2.19) - - ( A ( t ) r  + v ( t ) ) ~  (A'(t)r + r/(t)) = A(t)Ae(x). 
m 

Dividing this by A(t) and differentiating the resulting equation with respect to t 
give 

(2.20) ( 1  _ 1)(A'(t)r + v'(t)) 2 + ( A ( t ) r  + ~ ( t ) ) ( A " ( t ) r  + V"(t))  

' " ~  (A(t)r + r~(t))(A'( t)r  + ~'( t))  = O. 

A further calculation gives 

I ( t ) r  + I I ( t ) r  + I l l ( t )  = O, (2.21) 

where 

f z( t )  -- ~<L - 2} ( ; ( t ) )  2 "  + ~(t);'(t), 
\ 

m / A ' t  2 

t z/,~+>: (~-+)(+,,(+>I~ + +~+>,-,,,(+>- ~+(tl,+,(+>. 
Therefore, by (2.2 l), we have 

(2.23) I ( t )  =_ I I ( t )  = I l l ( t )  - O. 

Solving I ( t )  =_ 0 with A(T) = 1 gives 

(2.24) A'(t) = A 2- ~- (t)k'(r). 

By solving I I ( t )  = 0 with respect to r/'(t), we get 

(_2 ) ~  ,(Z(t>~'~(t) ] (2.25) +"(t)  = - ~ m  - a ~' ( t )  - ~ ( t )  

Substituting this into I l l ( t )  - 0 gives 

,?.~6> (~-- i)(+,,~+>>~- ~ (~ - , )  ~,-,~+~,+'~- +"+~'(+~ ~ ' ACt) ] ++(t)  = o. 

Here, by using (2 .24) ,  w e  have 

(2.27) { ~ = AI-~(t)'V(~-)' 

(~ ' ! t ) ] '  = (1 - L ~ / ~ 2 ( 1 - ~ ) ( t ) ( , ' V ( T ) ) 2  
\ ,~(t) ] \ m ] 
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By substituting these into (2.26) we get 

(2.28) (r/(t) - AI -~  (t)A'(r)rl(t)) 2 = O. 

Therefore, by using the first equation of  (2.27) once more, we conclude that 

(2.29) ( rl(t)'~ ' = 0 

Since r/(r) = 0 (see (2.14)), this implies 

(2.30) r/(t) --- 0 on [r, 7"1]. 

1 
Namely, we get (2.16). Since fa  u a ( x , t )  dx = f e  r  dx > 0 for any t > 0, we 

have from (2.16) 

A(t) - 1 for any t E [r, T1]. 

Then the diffusion equation implies that Ar  = 0 in ft. In view of  the homogeneous 

Neumann boundary condition, we see that r is a positive constant. This contradicts 

(2.4), that is, we cannot have case (1) in the situation of  Theorem 2. 

Case (2). In this case, by supposing that each case (i) o f  Theorems l, 2, and 3 

does not hold, we show that each case (ii) of  the theorems holds. It follows from 

the continuity of  D that there exist a nonempty open subinterval J c I and a time 

to > r such that ~ # 0 on 7 x {to}. Hence we can solve equations (2.8) and (2.9) 

with respect to IVr 2 and A~b for (x, to) E r  (7) x {to}. Specifically, there exists 

a nonempty bounded domain D C r  (7) (c  f~) in R N such that 

(2.31) IV~b[ 2 = g(r and Ar  = h(r  on D 

for some functions g and h as in (2.1). Then it follows from Theorem LcS that, after 

a rotation and translation o f  coordinates, there exists a finite interval (al, bl) such 

that either (a) or (b) of  Theorem LcS holds for f = r and (al, bl). Consequently, 

since r is analytic in f/, by (2.2), we have one of  the following two possibilities. 

(a) There exists a finite interval (a, b) D (al, bl) such that u extends as a function 

of  xl and t only, say u = U(Xl, t) ((zl, t) E [a, b] x [r, oc)). Furthermore, 
f2 C (a, b) x ]]~N-I with 0f~ N ({a} x ]I~ N - l )  ~ {~ and 0f~ N ({b} x ]1~ N - 1  ) ~ ~. 

(b) There exist a finite interval (a, b) D (al, bl) with a _-> 0 and a natural number 
2 1 

k with 2 _-< k < N such that u extends as a function o f t  = (Xl 2 + ..- + xk)~ 

and t only, say u = u(r, t) ((r, t) E [a, b] x Jr, co)). Furthermore, when a > 0, 

f~ C {(Xl .... ,xk)  E ~k : a < r < b} x/R N-k with0f~N({(Xl,. . . ,xk) E R k : r = 
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a} x R N-k ) r (~ and 0D (7 ({(xl, ..., xk) �9 R k : r = b} x R N-k)  r 0, and when 

a = 0, ft c {(xl,  ...,xk) �9 R k : 0 < 7" < b} x R N-k with ~ n  ({0} x R N-k)  r 

and Oft n ({(Xl, ,..,xk) �9 R k : r ---- b} x R N-k)  r ~. Here, when k = N, R N-~ 

is disregarded. 

L e m m a  2,2. In case (b). u(r, ~-)(= r  is monotone on [a, b] (provided each 

case (i) o f  Theorems 1, 2, and 3 does not hold). 

P r o o f .  Suppose that ~p is not monotone. Then ~b has either a local maximum 

point or a local minimum point. So suppose that ~ has a local maximum point. 

Since r is analytic and not constant, there exist three numbers in (a, b), say r~ < 

r2 < ?'3, such that 

and r / > 0 ifr~ < r < r2, 
(2.32) ~(?'1) r ( < 0 i f  r2 < r ~ ?'3. 

Hence, using Lemma 2.1 once more and putting I = [~b(rl), �89 + ~(r2))], we 

have i C r  b)) and # �9 C~176 x [T, co)). Therefore,  we get (2.8) and (2.9), 

where I is replaced by/~. I f  ~ - 0 on /~ • [~-, ec), we have already proved that 

cases (i) o f  both Theorem 1 and Theorem 3 hold as in Case (1); and in Theorem 

2 this leads to a contradiction. Therefore,  we see that ~ ~ 0 on I x [% ec). By 

proceeding as in the beginning o f  Case (2), we see that there exist a nonempty  

open subinterval J c I and a time to ->_ 7- such that ~ ~ 0 on J • {to}. By  solving 

equations (2.8) and (2.9) with respect to 1~7r 2 and Ar for (x, to) �9 ~b-l(~) • {to}, 

we have in particular that 

(2.33) ( r  2 - g(r  on r  N [rl,r3] 

for some function g = g(') o f  a real variable as in (2.31). In view of  (2.32), we see 

that 

(2.34) l ~ - l ( J )  n [?'1, r3] --- [?'4, r5] u [?'6, 7"711 

where rl < r4 < r5 < r2 < r6 < r7 < r3. Since r  = r  and 0(r5)  = ~P(r6), 

by using (2.33) we see that rs - r4 = r7 - r6 = f~(~,) (g(s)) �89 ds and 

(2.35) ~P(r) = r  - r) for any r �9 Jr4, rs] U [r6, r~], 

where r .  = �89 + rT). Furthermore,  by  (2.2), 

(2.36) u(r, t) = u(2r,  - r, t) for any (r, t) �9 @4, rs] U [r~, rT]) x [~-, ee). 
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On the other hand, since u satisfies the diffusion equation, we have 

(2.37) Ot13(u) =02u+ k -  l & u  in(a,b)  • [T,~). 
r 

Since k > 2, it follows from (2.36) and (2.37) that 

(2.38) O,.u = 0 in ([r4,/'5] U [~'6,T7]) • [T, OO). 

In particular, this implies that ~' = 0 on [r4,1"5] U [/'6, r7], which contradicts (2.32). 

Similarly, if  we suppose that r has a local minimum point, we also get a 

contradiction. Consequently, we have proved that u(r, T)(= ~h(r)) is monotone on 

[a, hi. [] 

We now distinguish Theorems 1, 2, and 3. Since 0~ is only Lipschitz continuous 

in Theorem 1, careful consideration is required to prove Theorem 1. 

Completion of the proof o f  T h e o r e m  1. Especially in Theorem 1, 

since problem (1.2) is solved by an eigenfunction expansion, we see that u = 

u(Xl, t)((Xl, t) ~ [a, b] x [0, co)) in case (a) and u = u(r, t)((r, t) E [a, b] x [0, oc)) in 

case (b). 
Let us consider case (b) first. Lemma 2.2 implies that either r > 0 or r =< O. 

Consider the case where r  >__ O. Since ~ is analytic and not constant, there exists 

a sequence of  positive numbers {ej}~= 1 with ~j ~ 0 as j ]" oo such that 

~/,'(a + ej) > 0 and ~'(b - ej) > 0 for any j _-> 1. 

By continuity, we see that for each j ->_ 1 there exists ~-j > ~- satisfying 

&u > 0 on {a + ej, b - ej} • [~-, ~-j]. 

Hence, since ~'  > 0, it follows from the strong maximum principle (see [12, 

Chapter 2] or [22, Chapter 4.4, pp. 121-124] for the maximum principle) that for 

each j > 1, Oru > 0 in [a + ej, b - ej] x (r,'rj]. By dealing with the case where 

~' < 0 similarly, we conclude that there exist two sequences {ej}~_ 1 and {rj}~_ 1 

with ej I 0 as j ]" oc and -rj > r such that for each j __> 1 

(2.39) Oru r 0 in [a + ej, b - ej] x (T, ~'j]. 

Since u satisfies the homogeneous Neumann boundary condition, this will deter- 

mine the boundary Oft as in case (ii) (b) o f  Theorem 1. If  

a~tn{xER N :r=(x~ +.. .+x~) �89 E(a,b)}--O, 
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then k = N and ft must be either a ball or an annulus in I~ N . So let us consider the 

case in which Oft N {x �9 1~ N : r �9 (a, b)} ~ (~. Take sufficiently large j __> 1 and an 

arbitrary point x* �9 Oft with 

1 

* ~ ~ (a b -  e j ) .  r = ((:~)~ +... + ( z ~ ) )  �9 +~j, 

Since f~ is a bounded Lipschitz domain, we can find an orthogonal matrix 9l = (ri#) 

and a neighborhood V of  x* in I~ N with 

2 t y c { ~  �9 R N : ~ = (x~ + . . .  + ~ ) ~  �9 (~ + ~ j , b -  ~ j ) }  

such that by introducing the rotation of  coordinates z = 91x, we have in z- 

coordinates 

(2.40) 
Oal"l V = {z = ( z , , r  �9 ]l~ N : z, = (Zl , . . . ,ZN_I) �9 J~}, 

[ 2 r T Y = { z = ( 5 ,  z y ) � 9  y : c <  ZN <r  a n d S � 9  

v = t )  x (~, d),  

where /) is an open ball in R N- l ,  (c, d) is a bounded open interval, and r is 

a Lipschitz continuous function on B. Then, by Rademacher 's  theorem on the 

almost everywhere total differentiability of  Lipschitz functions (see [30, Theorem 

2.21, p. 50] for example), we see that the exterior unit normal vector u to Oft is 

given by 

~ 2 1 ~ (2.41) u(~,r = (1 + [Vsr ) -~( -V~r  1) for almost every 5 � 9  

where Vs4~ = (Ozlr162 Therefore, it follows from the homogeneous 

Neumann boundary condition that for any t �9 (T, Tj] 

(2.42) (-V~r 1). Vz (u(91*z, t)) = 0 for almost every 5 � 9  

where z = (5, ~b(i)) and 9t* denotes the transposed matrix o f  91. Since u = u(r,t)  
2 x with r = (Xl 2 + . - .  +xk )~ ,  

(2.43) V~u -- OrU(r' t) ( X l ,  . . . ,  Xk, O, ..., 0). 
r 

Then, using Vz = 91V~ we get 

(2.44) Vz (u(91*z, t)) - - -  

k N k N 

0 r ~ ( r '  t )  ( Z Z "r Z Z "fNc~'CJaZJ) " 
r 

~ = 1  j = l  c ~ = l j = l  

Since O~u(r, t ) /r  r 0 for any t �9 (r, ~'j] and r �9 (a + e#, b - ej), we have from (2.42) 

(2.45) (-V~r 1). d(;~, r = 0 for almost every ~ E / ) ,  
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where we put 

a(z ,  r  = ( a l ( z ) ,  ..., aN(Z))  

= Z 
\~=1 j=l ,~=1 j=l 

with Z N = O(Z.). 

Equality (2.45) is regarded as a first-order quasilinear partial differential equation 

for the function r We can solve this by the method of  characteristics (see [ 11, pp. 
2 _1 

343-344], for example). For each x E R N with r = (x~ + . . .  + xk)~ E (a,b), let 

z = z(s) (s E R) be the curve satisfying 

(2.46) 
d z ( s ) = g ( z ( s ) )  f o r s E R ,  

z(O)=~tx 

This curve is called a characteristic curve. By putting z(s) = 9~x(s), we get 

d 
"~X(8)  -~- (X 1 (8),. . . ,  X k (8), O, ..., 0). 

Solving this yields 

(2 .47)  ~ * z ( s )  = x($) = (Xl(O)e s, . . . ,Xk(O)eS,Xk+l(O),  . . . , xN(O)) .  

Namely, z = z(s) (s E R) is a straight half-line through a point z(0) E ~N with 
2 1_ 

direction 19~(x1(0), ..., xk(0), 0, ..., 0), where r0 = (x~(0) + . - .  + xk(0)) 2 E (a, b). 
We call such a line a characteristic line. Let E be the set of  all characteristic 

lines intersecting V. Since V is convex, for each g E s the intersection g n V 

is a line segment. By introducing polar coordinates for the first k coordinates 

(xl, ..., xk) in x-coordinates and using Fubini 's theorem, we see that for almost 

( l ( x l ( O ) , . . . , z k ( O ) ) , ( Z k T l ( O ) , . . . , X N ( O ) ) )  E S k-1 X ]l~ N - k  , ~9 has a total every 
differential\'~ r a t  almost every point z(s) on the intersection of  V and the line z = z(s) 
with z(0) = ~z(0) ,  provided that the intersection is nonempty. Let ~ be the set of  

such lines intersecting V and let/3 = E \ 9. We call an element o f  G a good line 
and that of/3 a bad line, respectively. Almost all elements of  E are good lines. 

First, let us show that i f  g is a good line intersecting 0f~ N V, then g N V is 

contained in 09t. Let g be a good line, given by z = z(s) (s E II~), intersecting 

0f~ n V. Set 

(2 .48)  w ( 8 ) : Z N ( 8  ) -- r  
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Then w(so) = 0 for some so E R, and for almost every s E I~ with z(s) E V we have 

d d d 2 ( s )  
-"~8W( 8) --~ -"~sZN( S) -- V~,q~(Z(S))  �9 

= aU(Z(8) )  -- V Z , ~ ( Z ( 8 ) ) '  (a z ( z ( s ) ) ,  . . . , a N - I ( Z ( S ) ) )  

: (-V~C(2(s)) ,  1 ) -~  (~,(s), r + w(s)). 

Observe that 

) a(Ts(8) ,r  Jr-w(s))  = a(fi-.(s),r @ r.lo~r.No~,...,Er.NcffgNc ~ W(S).  
old1 o~1 

Therefore,  it follows from (2.45) that for almost every s E II~ with z(s) E V 

(2.49) ~ss w(s) = (-Vsr 1). ~l~[N~ E ~gN~ W(S). 

Hence, since the Lipschitz continuity o f  r implies that the absolute value o f  the 

right-hand side of  this equality is bounded from above by KIw(s){ for some constant 

K > 0, by integrating this equality from so to s, we get from w(so) = 0 

(2.50) 

This implies that 

f s  s d8 t Iw(s)l < K [w(s')l 
o 

w(s) = 0 for all s E R with z(s) E V. 

In view of  the definition o f  w (see (2.48)), we see that g n V is contained in Oft. 

Next, let us show that Oft n V consists o f  characteristic lines z = z(s) in V. 

Suppose that there exists a line g E /2 intersecting Oft n V such that g n V is not 

contained in Oft. Then g is a bad line. Let g be given by z = z(s) (s E R). I f  

necessary, by choosing another characteristic line sufficiently close to g, we may 

assume that there exist two numbers Sl and s2 satisfying 

I z(si) E V f o r / =  1,2, 

(2.51) [ZN(Sl) < 0(~(sl)),  and ZN(S2) > r 

Since almost all elements o f s  are good lines, from the continuity o f r  we can find a 

good line sufficiently close to g which still satisfies (2.51). Therefore,  by  continuity, 

this good line must intersect 09t M V. This is a contradiction. Consequently, we 

see that Oft n V consists o f  characteristic lines z = z(s) in V. 

On the other hand, we know that in the original x-coordinates these charac- 

teristic lines are given by (2.47) globally. Therefore,  since ej I 0 as j T o e  and 
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1 

x* was  an a rb i t ra ry  point  in 0[2 wi th  r = ((x~) 2 + . . .  + (x ; )  z) ~ e (a + ej,  b - e j) ,  

we  see that  0f~ n {x E R N : a < r < b} consis ts  o f  character is t ic  lines z = z(s) 
in {a: E IR N : a < r < b}. Consequent ly ,  it fo l lows  that  the bounda ry  Oft consis ts  

o f  at mos t  ( b - l ) ,  (b-2) ,  and (b-3)  in (ii) (b) o f  T h e o r e m  1. W h e n  k = N ,  there  is 

a case  in wh ich  (b-3)  is empty .  To be precise ,  f~ is e i ther  a ball  or  an annulus  in 

R iv i f  and on ly  i f  (b-3)  is empty .  (Note  that ffl ~ dx = C( f~) f :  qo(r)r k-1  dr for  

some  pos i t ive  cons tant  C(f~) depend ing  on ly  on ft. Then  fn ~ dx = 0 i f  and on ly  

if  fb  ~ ( r ) r k _ l  dr = 0.) Since the character is t ic  lines in (b-3)  are paral le l  to the 

no rma l  d i rec t ion o f  both  hyper su r faces  {x E R N : r = b} and {x �9 IR N : r = a} 

w h e n  a > 0, then ( b - l )  has  pos i t ive  area  and (b-2)  does  w h e n  a > 0. Hence ,  f rom 

the h o m o g e n e o u s  N e u m a n n  b o u n d a r y  condi t ion  we  get 

(2.52) &u(b, t) = 0 for  any  t E (0, oo), 

(2,53) O,.u(a, t) = 0 for  any  t E (0, oo) when  a > 0. 

W h e n  a = O, let fi = ~2(r, t) be  the unique  solut ion 

{ Ot~z -- Ag, 

o) - -  

O~zlOu -= o 

o f  the p r o b l e m  

in B' x (0, ~ ) ,  

in B',  

on OB' x (0, oc), 

where  B '  = {(x~ ....  , a:k) E R k : r < b} and ~, denotes  the exter ior  n o r m a l  unit  

vec tor  to OB' .  Then  z2 satisfies (1.2),  and b y  un iqueness  u = ~2. Since o f  course  

O~t;(0, t) = 0 for  any  t > 0, w e  get 

(2.54) 0~u(0, t) = 0 for  any  t E (0, oo). 

There fo re ,  in v i ew  o f  L e m m a  2.2, (2.52),  (2.53), and (2.54), we  have  f r o m  the 

s t rong m a x i m u m  pr inciple  

(2.55) O,u r 0 in (a,b)  x (r,  oc). 

Consequen t ly ,  w e  obta in  conc lus ion  (ii) (b) o f  T h e o r e m  1. 

Nex t  let us  cons ider  case  (a). For  u = U(Xl, t) cons ider  the set 3 g iven  b y  

(2.56) 3 = {Xl E ( a , b ) :  Oxlu(xl,t) = 0 for  all t => 7-}. 

Since 3 is con ta ined  in {s E (a, b) : r  = 0} and  ~ is an analyt ic  non-cons t an t  

funct ion,  so 3 n (a + e, b - e) is at mos t  finite for  each  e > 0. Suppose  that  there  

exists  a point  s E 3 M (~@,  b). Then,  b y  setting, for  any  t >__ 7-, 

V(Xl ' t )  = t I/,(2--q -- a;'l,t) i f x l  E [S,2S - a), 
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we see that v also satisfies the one-dimensional heat equation on (a, 2s - a) x ('r, oo). 

Since 2s - a > b and u - v in (a,s)  x [T, OC), by ana ly t i c i t ywe  get u - v in 

(a, b) x [T, co). In particular, u is symmetric with respect to X 1 = 8. Also, by  

supposing that there exists a point s E 3 N (a, a+b --5-,, we get the same conclusion. 

These observations imply that 3 is i tself at most finite, and its elements are located 

at regular intervals i f  3 r 0. Let 

Smax = if  3 = 0. 

Then 8max < b. Take an arbitrary point x* E Oft with x T E (8max ,b ) .  Then by  the 

continuity o f  Oxi u and the definition o f  8max, there exist a time t* > ~- and 6 > 0 

such that 

(2.57) OXlU(Xl,t *) r 0 for any xl E (x*~ -6 ,x~  +6). 

Since u satisfies the homogeneous  Neumann boundary condition, this will de- 

termine 0f~ n {x E ~ U  : 8max < Xl < b ) .  AS in the proof  o f  case (b), by  the 

method o f  characteristics we can determine a part o f  the boundary Oft N {x E ]1~ N : 

x7 - (5 < xl < x~ + 6}. Observe that the characteristic curves are lines parallel to 

the x~-axis. Then, since x* E Of~ is an arbitrary point with x7 E (8max, b), we see 

that Oft n {x E ]I~ N : Smax < X l  < b }  consists o f  lines parallel to the xl-axis  such 

that xz varies from 8max to b. Since these lines are parallel to the normal direction 

o f  hyperplane {x E I~ u : ~gl = b},  0 ~  n { x  E I~ N : Xl  ~--- b} has positive area. 

Therefore,  it follows from the homogeneous Neumann boundary condition that 

( 2 . 5 8 )  OXl 'a(b  , t )  = 0 

By the same argument, we get 

(2.59) O~lu(a, t) = 0 

for any t E (0, ~ ) .  

for any t E (0, oo). 

In view of(2 .58)  and (2.59), by using the above reflection argument for u which was 

used to show that 3 is at most finite, we see that elements o f  3 U {a, b} are located at 

regular intervals. Hence,  there exist an integer n _-> 1 and a finite sequence {s~ }j~0 

satisfying 

b - a  
(2.60) s 0 = a ,  s n = b ,  and s j + l - s 3 =  f o r 0 < j < n - 1 ,  

n 

where 3 U { a , b }  = { s j } ~  0. Note that 3 = ~ when n = 1. Then, by  using 

an eigenfunction expansion for u = U(Xl,t), we have furthermore for any j = 

1, ...,  n --  1 

(2.61) Oxlu(s3,t) = 0 for any t E (0, oo). 
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Hence, it follows from the above reflection argument for u that u is symmetric with 

respect to the hyperplane {x E R n : Zl = sj} for each 1 _<_ j < n - 1, when n > 2. 

Instead of  Lemma 2.2 we have 

L e m m a  2.3. u(xl ,  ~-)(= ~b(xl)) is monotone on each interval [sj, sj+ l]for any 

j = 0,..., n - 1 (provided case (i) of  Theorem 1 does not hold). 

Proof.  By the symmetry of  u, it suffices to show that ~b is monotone on 

[So, sl]. Suppose that r is not monotone on [so, Sl]. Then it follows from the same 

argument as in the p r o o f o f L e m m a  2.2 that there exist four points (8o <)r4 < r5 < 

'r6 < r r (<  .sl) with r5 - " r 4  = r 7  - r 6  such that 

(2.62) U(Xl,t) = u ( 2 r . - x l , t )  for any (xl, t) C ([r4,rs]U[r6,rT]) x [~-,oo), 

1 where r ,  = 7(r4 + rT) C (so, sl) (see (2.36)). Therefore, by analyticity, 

u(xl,  t) = u(2r. - Xl, t) for any (Xl, t) e It4, rT] • It, oo). 

This implies that O~lu(r.,t) = 0 for any t E IT, oo). Namely, r .  C 3 (see (2.56)), 

which contradicts the fact that 3 tJ {a, b} = {sj}~= 0. This completes the proof. [] 

In view of  Lemma 2.3, (2.58), (2.59), and (2.61), by using the strong 
n- -1  

maximum principle we see that Ou/Oxl never vanishes in Uj=0 (s~, Sj+l) x (r, oc). 

Finally, by the method o f  characteristics, we see that for each j = 0, ..., n - 1, 

OCt n {2g E ]~N : 8j < X 1 < 8j+1} consists of  lines parallel to the xl-axis such that 

xt varies from sj to 8j+1. This implies that the boundary OCt consists o f  at most 

(a-l), (a-2), (a-3), and (a-4) in the conclusion (ii) (a) of  Theorem 1. (Then we note 

that f~ ~ dx = 0 if  and only i f  f~So~ ~(Xl ) dx] = 0.) The proof of  Theorem l is now 

completed. 

Comple t ion  o f  the proof  o f  Theorem 2. Next we consider Theorem 2. 
Since u E C~ x (0, o~)) and 0f~ is smooth, by using the boundary condition o f  

(1.3), Lemma 2.2, and the strong maximum principle, we immediately have (2.55), 

as in case (b) o f  Theorem 1. Furthermore, since 0f~ is smooth, in view of  (a) and 

(b) we see that (ii) of  Theorem 2 holds, which completes the proof o f  Theorem 2. 

Comple t ion  o f  the proof  o f  Theorem 3. Finally, let us consider Theorem 

3. In view of  (a) and (b), it follows from Lemma 2.2 combined with the boundary 

condition of  (1.4) that the domain ~2 must be a ball. Let Ct = {x E N N : r < b}, 
2 _l where r = Ix[ = (x~ + . . .  + XN) 2 for x -- (x],..., xu) .  It remains to show that O~u is 

negative in (0, b) x (% T). Note that the equation O~(u) = Au may be degenerate 

or singular parabolic depending on the behaviour o f  ~'(s) as s I 0, and therefore 

it is not clear whether the classical derivative O~u exists on 09t x (0, T) because 
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u = 0 there. We can overcome this obstruction by using a standard approximation 

technique. More precisely, for each e �9 (0, �89 take a function X~ �9 C~([0,  oo)) 

satisfying 

' < 0 on  [0, co) ,  

Consider the problem 

and 
{~  i f 0 _ < r _ < b - 2 e ,  

x~(r) = i f r  => b -  e. 

Ot/3(v) = Av in f~ x (r, oc), 

(2.63) V(X,T)=U(X,T)X,(FZl +e i n a ,  

v = e on Oa x (~-, ~ ) .  

(This problem is useful for showing the existence o f  solutions of  the initial-Dirichlet 

problems for the degenerate or singular parabolic equation Ot/3(u) = Au.) Then 

by the theory of  quasilinear uniformly parabolic equations (see [17]), there exists 

a unique bounded classical solution v = v, �9 C ~ ( ~  x [r, oo)) o f  (2.63) satisfying 

e __ v~ = max u(x, T) + e in a x [T, CO). 
xcf~ 

It follows from this inequality combined with the regularity result o f  [23] that the 

family {v~}0<~< �89 is equicontinuous on each compact subset o f  f~ x (r, ~ ) .  By  a 

diagonalization argument, the Arzela-Ascoli theorem, and the uniqueness o f  the 

solution u, we see that 

v~ ---, u as e ~ 0 uniformly on each compact subset o f  f t x  (T, T). 

Furthermore, since u �9 C ( ~  x [T, T)) and u > 0 in f t x  (T, T), by  the theory of  

uniformly parabolic equations ([ 17]) this convergence implies in particular that 

(2.64) O~v~ ~ &u  as e ---, 0 uniformly on each compact  subset o f  f t x  (r, T). 

Observe that for v~ = vr t) 

O~v~(O, t) = 0 and &v~(b, t) <= 0 for any t => r. 

It follows from Lemma 2.2 and the maximum principle that 

OrVe = "( 0 

Therefore, we get from (2.64) 

(2.65) &u <= 0 

in [0, b] • oo). 

in (0, b) x (7, T). 

Since u > 0 in f t x  (r, T), we can apply the strong maximum principle to Oru; and 

we see that &u < 0 in (0, b) x (r, T). This completes the proof  of  Theorem 3. 
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3 C o n c l u d i n g  r e m a r k s  

We offer three remarks in this final section. 

R e m a r k  1. In case (ii) (a) o f  Theorem 1, u = u(x~, t) need not be monotone 

with respect to X 1 E [a, b], nor is the domain ~ necessarily o f  the form (a, b) x ~ for 

some bounded Lipschitz domain ~ in R N- i  . Namely, we give an example where 

n = 2 and (a-3) is nonempty. For simplicity, let N = 2. Let u = u(xi,t) be the 

unique solution o f  

(3.1) ~8~,~, =o on {0,1) x (0, oo), 
l 
[ u ( ~ , 0 ) = ~ o ( ~ )  i~ (0,i), 

where u0 = Uo(Xl ) is an arbitrary C 1 function on [0, 1] satisfying 

/o (3.2) O~uo(O)=O~,uo(1)=O, uo(xi)dxl=O, and O~lUO < 0 i n ( 0 , 1 ) .  

Then it follows from the maximum principle that Ox~U(Xl, t) < 0 in (0, 1) x (0, oo). 

By putting 

0 3 )  u(z l , t )=u(2-x l , t )  and u o ( x L ) = u a ( 2 - x i )  f o r a n y x i  E [1,21 , 

we see ~bat 

( ~  ~ OX21'~ 

Ox,u = 0 

(3,4) u ( x l ,  O) ~-- uO(Xl) 

< 0 in (0,1) x (O, oc), 
(~Xl ~ / > 0 in (1, 2) x (O~oc). 

Let f~ be the bounded Lipschitz domain m ~e defined by 

(3.2) 

in (0, 2) x (0, oo), 

on {0, 1, 2} • (0, oo), 

in (0, 2), 

Then (a,b) = (0,2}. Put u(:c,t) = u (a i , t )  and ~(x) = uo(xx) for any (~:,t) = 

(x l ,x2 , t )  E ~ x [0, oo). Then u solves (1.2), ~ ~ 0, and f a ~  dx = 0. Here we see 

that u is not monotone in z l  on (0, 2); ~ is not a rectangle; all the spatial level curves 

of  u are invariant with respect to t E (0, oo); and, o f  course, u is not necessarily a 

separable solution. 

a = ( ( o , l ]  • (o , t ) )u  ((1,2) x (0,2)). 
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R e m a r k  2. In case (ii) (b) o f  Theorem 1, when 2 < k < N - 1, [2 is not 

necessarily o f  the form {x E IR N : x = (rw,y),  w E S, a < r < b, y e f2}, where  

S is a domain in S k-1 and ~ is a bounded domain in R N-k .  Furthermore,  f~ is not 

necessari ly a finite union o f  such sets. We give an example  where N = 3, k = 2, 

a n d 0 < a < b .  Let 

f~ = {x E R 3 : x = (rcosO, rsinO, y), a < r < b, 0 < y < 7r/3, y < 0 < 7r/2}. 

Then 0f~ consists o f  the parts (b- l ) ,  (b-2), (b-3). In particular, 0f~ contains a part  

o f  a helicoid 

x = x(O,r) = (rcosO, rsinO, O) ( a _ < r - < b ,  0_<0-<~r/3) .  

Therefore,  this domain D is not o f  the above form. 

R e m a r k  3. In Theorems 1, 2, and 3, it is natural to have r > 0. Namely,  

in case (ii) o f  the theorems we may have a case where the solution u becomes  

a monotone function with respect to r after a finite t ime r > 0 for some non- 

monotone  initial data. In such a case, the invariance condition of  spatial level 

surfaces o f  u holds after a finite time. Ni and Sacks [19] deal with such problems.  

Denote by BR(O) an open ball in I~ u centered at the origin with radius R > 0. In 

particular in Theorem 3, i f  the domain f~ equals BR(0) for some R > 0 and the 

initial data ~ ( x ) ( =  u(x, 0)) is radially symmetr ic  and nonnegative,  and if/3(s) ==_ s, 

then there exists a t ime ~- > 0 such that & u  < 0 in (0, R] x [r, oe). 

Here let f / =  BR(O) for some R > 0 and let us consider Theorem 1. Suppose 

that ~ is radially symmetr ic ,  ~o c C~ fa q# dx = 0, and 

(3.6) ~(r)  { 

for some ro C (0, R). Let u = u(r, 

> 0 i f0  _< r < r0 

< 0 if  v0 < r < R 

t) be the unique solution of (1 .2) .  Then we have 

P r o p o s i t i o n  3.1.  There exists a time "r > 0 such that 

0,u < 0 in (0, n)  • 

P r o o f .  Let z = z(t) be the number  o f  zeros o f  the function r ~ u(r, t) in 

the interval [0, R] for each t > 0. Then, in view o f  the homogeneous  Neumann  

boundary  condition, since z(0) = 1, and using the results o f  Angenent  concerning 

the zero sets o f  solutions o f  one-dimensional  parabolic equations (see [4] and [5, 
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Sections 3 and 4, pp. 342-346],  and also [14, Proposition 3.2(A), p. 580]), we see 

that 

(3.7) z(t) = 1, u(r(t) , t)  - 0, and &u(r( t ) , t )  < 0 for any t > 0 

for some smooth function r = r(t) with 0 < r(t) < R. Take an arbitrary small 

number T0 > 0. Then from (3.7) we can define 

(3.8) 6 = min{lu(r, 7-0)] :O~u(r , ' ro)=OandO<-r<-R}>O.  

Since fa ~ dx = 0 and problem (1.2) is solved by an eigenfunction expansion, 

u -~ 0 as t --+ oo uniformly in ft. Therefore,  we can choose "r > ~'o sufficiently 

large to get 

(3.9) [u(r,r)[ < ~ for any r E [0, R]. 

Let us suppose that there exists a point (r . ,  t , )  E Ut>,[o, r(t))  x {t} such that 

(3.10) O~u(r.,t .) = 0 and 02~u(r.,t.) > O. 

Since we have precise information on the zero set of  & u  by using the results 

of  Angenent  once more, we can trace a path along the bottom of  the valley of  the 

graph o f  the function u back to the past. (Precise information on the zero set o f  

O,.u near r = 0 is in [5, Sections 3 and 4, pp. 342-346],  and the information for 

0 < r < R is in [4].) Therefore,  as in [15, Lemma 3.2, p. 822] (see also [19, 

Proposition 3, p. 462]), in view o f  the homogeneous Neumann boundary condition 

we see that there exists a continuous function rl : [To, t,] ~ [0, R] satisfying 

(1) iT(t.) = r . ,  and 0 < 77(t) < r(t)  for any t E [T0,t.], 

(2) O~u(77(t), t) = 0 and 02~u(~7(t), t) > 0 for any t E [too, t.], 

(3) if ~7(t0) = 0 for some to E [to, t.], then 77(t) = 0 for any t E [to, t.], 

(4) rt is smooth except at most at finitely many points. 

Then, as long as ~7(t) > 0, except at most at finitely many points 

d 
(3.11) d~ (u(~(t), t)) = Otu(rl(t), t) + O~u(rl(t ), t)r/ (t) 

= t )  o. 

On the other hand, i f  rt(to) = 0 for some to E [~0, t . ) ,  then by (3), r/(t) = 0 for any 

t E [t0, t . ) .  Hence we have for t E [t0, t . )  

d 
(3.12) d~ (u(rl(t),t)) = Au(0, t)  > 0. 
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Therefore, in view of  (3.8) and (3.9), we get from (3.11) and (3.12) 

> u(~(7-),7-) __> u(o(7-o), 7.o) > ~. 

This is a contradiction. It follows that i f  O~u(r, t) = 0 for some point (r, t) E 

[.J~>~[O,r(t)) • {t}, then O~u(r,t) < O. Therefore, since O~u(O,t) = 0 for any 

t > O, O,.u < 0 i f t  __> 7- and 0 < r < r(t). Similarly, i f  we suppose that there exists 

a point ( r . , t . )  E [.Jt>_~(r(t),R] x {t} such that 

O~u(r., t . )  -- 0 and 02u(r.,  t . )  < O, 

then we can get a contradiction and see that O.u < 0 i f  t > 7. and r(t) < r < R. 

This completes the proof of  Proposition 3.1. [] 
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