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Abstract. The system of differential equations for polymonogenic functions 
of several quaternionic variables is an analogue of the cS-equation in complex 
analysis. We give a representation of polymonogenic functions by means of 
integration of a family of a-holomorphic functions as cr runs over the variety 
of all complex structures N - C 2 which are consistent with the metric and an 
orientation in H. The variety ~2 is isomorphic to the manifold of all proper right 
ideals in the complexified quaternionic algebra and has a natural complex analytic 
structure We construct a 0-complex on E that provides a resolvent for the sheaf 
of polymonogenic functions. 

1 I n t r o d u c t i o n  

Hamil ton ' s  algebra N o f  quaternions can be supplied with complex  coordi- 

nates by  means  o f  a R-linear bijection H ~ C 2 . This approach was systematical ly 

exploited for study o f  the Yang-Mil ls  equations, which intrinsically relate to quater- 

nions [3]. There is no distinguished complex structure in H, but a family. Fix a 

Euclidean structure and an orientation in H and consider a linear isometry N ---, C 2 

which is consistent with the orientation. It defines a complex structure cr in IHL The 

variety E o f  all such complex  structures in N is equivalent to the sphere S 2 ([3]). 

We show here that these structures are indispensable for the study o f  monogenic  

functions o f  a quaternionic variable, which play the role o f  holomorphic  func- 

tions in quaternionic analysis. Indeed, there is a bijection o f  the variety E to the 

set o f  proper  right ideals R o f  the complexif ied quatemion algebra ~ such that 

for any structure or E E, any a-holomorphic  function h and any element r o f  the 

corresponding ideal R, the product  hr is a monogenic  function. The linear span 

Q(U, R) of  functions o f  this form is in fact an algebra (Section 2). We show that 

the space o f  all monogenic  functions in a convex open set U c N is equal to the 

integral over  ~ o f  the family o f  algebras Q(U, R). For a po lymonogenic  function 

o f n  quaternionic variables we get a similar representation by  means  o f  a family  o f  
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holomorphic functions of  2n complex variables. Unlike holomorphic functions of  

several variables, polymonogenic functions are not generated by tensor products 

o f  monogenic functions. The reason, of  course, is the noncommutativity of  the 

Hamilton algebra. 

Recall that the algebra IHI of  quaternions is an extension of the field IR by the 

imaginary units i, j, k. We henceforth denote the generators by el = i, e2 = j, e3 = 

k and the unit element of  H by e0 for convenience. Recall the multiplication table in 

H: ele2 = ea, ezea = el, eael = e2; ejei  = - e i e j ,  i # j ,  i j  > O; e~ = e~ = e~ = - 1 .  

The complex i f ied  quaternion algebra is the tensor product 

Nc = H | C, 

whereas the algebras C, H are considered as independent extensions of  the field 

R. Hamilton called an element q ~ Hc a biquaternion  ([5]), since it can be written 

in the form q = q' + v/-Z-fq '', where vZ2-i denotes the imaginary unit in the centre 

C of  the algebra Hc and q', q" are in H. The equation 

(1.1) Ou = f  

for the quaternion-valued functions u = uo + u l e l  + uee2 + uaea, f = ~ 4  f ie i ,  is a 

formal analogue of  the Cauchy-Riemann system, where 

O 0 0 O O 
o0 - Oxo + elbTx + e2b-7 + e'ox-S 

is the quatemionic 0-operator. Here the partial derivatives commute with the 

imaginary units el, e2, ea; and the quatemionic coefficients of  this operator act 

by left multiplication. Equation (1.1) was studied first by R. Fueter in several 

papers beginning with [4]. We extend it for Hc-valued functions. Equation (1.1) 

is equivalent to the following system for C-valued functions: 

(1.2) 

OUo CQttl OU2 OU3 
--fro 

Oxo OXl Ox2 Oza 
Ou~ Ou2 Oua Ouo + - -  + = f l , 
&o Oza 

Ouo + OUl Ou2 Oua 
OX-"~ ~ + OX~ OX 1 = f2, 

Ouo 3u l  Ou2 Oua 

We call both systems (1.1), (1.2) the Cauchy-Fueter system. A solution of  this 

system with f = 0 is called a left monogen ic  (or regular) function of  the quaternionic 
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variable q. Any monogenic function is an analytic function of  four real variables 

since the Cauchy-Fueter  system is o f  elliptic type. See [11] for a survey of  the 

theory of  regular functions. 

E x a m p l e .  The function u = q = xo - x l e l  - xzez - xaea is not monogenic 

since 00/00 = 4, whereas the functions ejO, j = 1, 2, 3 are monogenic. Thus the 

set of  all monogenic functions is not a left N-module and is not an algebra. On the 

other hand, it is always a right ~ - m o d u l e .  

For an arbitrary natural number n, consider the following system of  equations 

with quaternionic variables ql,.,,, q~: 

Ou Ou 
( t . 3 )  of---; . . . . .  - 0 .  

This is an analogue of  the 0-system in complex analysis. Here u is a function in an 

open set U C H n - N 4n with values in I ~ ;  thus (1.3) is a system of  4n first-order 

equations with 4 unknown C-valued functions. This system was studied in [1], 

[ 10], [2]. We call a solution of  (1.3) a polymonogenic function. 

A right (or left) ideal R in the algebra ~ is called proper, i f  {0} # R # It~. 

Consider the variety of  all proper right ideals R in Hc. We denote this variety 

by R(N) for short. This variety is a 2-sphere with a canonical complex algebraic 

structure (Proposition 3.6). Consider the subbundle r : ~ ~ 7~(H) of  ~r such that 

the fibre of  r over R E 7~(H) is equal to the ideal R C IHlc (tautological bundle). 

Take the trivial bundle re : lee x 7~(IHI) --, 7~(IHI). For an open set U c It~, we 

denote by Q(U) the space of  all polymonogenic functions in U and by Q the sheaf  

of  germs of  generalized functions u : H n x 7~(H) --, ~ which are polymonogenic 

in fibres o f  the bundle ~r. Take an open set U C H n and consider the restriction o f  

this sheaf  to U x 7~(IHI). We denote Q(U) = zr,(QIU • R(H)); this is the sheaf o f  

germs on 7Z(H) of  generalized function with values in Q(U). Set 

Q(u)*,* = Q(u) | E*,*, 

where gP'q denotes the sheaf of  germs ofsmoothp,  q-forms on 7~(H) -~ P1 (C), p, q = 

0, 1, with values in C, s = go,0. There is a trivial connection V in the bundle 7r. 

The operator O in the complex g*'* induces a sheaf morphism 

v(0):   a(u) - ,  Q(u) 

Let R ~ R(IE); we denote by Q(U, R) the space of  R-valued polymonogenic 

functions in U. This is an algebra with respect to pointwise multiplication (unlike 

the space Q(U), which is not an algebra). The family of  algebras Q(U, R), R E 
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R(N), is a fibre bundle on R(/HI). Denote by Q(U, ~)  the subsheaf o f  Q(U) of  

germs of  generalized sections of  this bundle. Consider the sheaf o f  Q(U, ~)-  

valued differential forms Q(U, Tr = Q(U, Tr | g*'*. This subsheaf is invariant 

under the operator V(c~), since ~ is an analytic fibre bundle. The section space 

F(7~(IHI), Q(U, ~)*,*) is the space of  forms on 7~(IHI) with values in the bundle with 

fibres Q(U, R). Hence the following sequence is well-defined: 

(1.4) o --, F(~(H), Q(u, n) 1,~ v~) r (~(~) ,  Q(U, 7e) 1'~ ) Z Q(U) -~ O; 

here f denotes the integration operator 

02 ~ [ 02 1'1. 
J n  

Our main result is 

T h e o r e m  1.1. The sequence (1.4) is exact for  any convex open U c I~ ~. 

We see that f V(cS) = 0 since 7~(N) is compact. To see that the first mapping 

is an injection, let a: E Q(U, TZ) ~'~ be a solution of  the equation V(0)~ = 0. This 

means the equation c~w(.;ql .... ,q,J = 0 for any qx,...,qn E H ~, from whence it 

follows that w(.; ql,--., q,,) is a holomorphic form on PI (C). This form vanishes, 

which shows that ,: = 0. In Sections 7-10 we shall prove exactness of  (1.4) in the 

third and second terms. 

E x a m p l e .  The function 

1 ? 
E(q} = 27r~q2 0 = 27r2(q~) 2 

is a fundamental solution of  the Cauchy-Fueter  operator, since it satisfies the 

equation 

OE 
- -  = t S 0 ,  
00 

where 50 is the delta-function in N. This is a monogenic function in an arbitrary 

open halfspace H c E. According to Theorem 1.1, there exists a form a~H 6 

F(R(IHI), Q(H,R))  o f  type (1,1) such that f w H  = E in H. Suppose that this 

representation is unique; then we have WH = o:a for arbitrary halfspaces H and G. 

It follows that the family o f  forms defines a form w in the domain ~ - IHI \ {0}. 

By Proposition 2.1, the space Q(No, R) is for any R 6 R isomorphic to the space 

o f  a-holomorphic functions h : No ---, C ~ for the corresponding complex structure 

or. These are holomorphic functions o f  two variables and hence have holomorphic 
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extensions to the whole space H. Therefore w would have an extension to H as 

well. But this is impossible since the function E = f ~ has a singularity at the 

origin. This shows how sizeable is the kernel of  the mapping f in (1.4). 

Note that the substitution Xo ~ v/-L-lct transforms the Cauchy-Fueter system 

(1.1) into the hyperbolic system 

c ot + ~lb-~ + ~ b - ~  + ~  ~:f 

in the space-time I1~ 4, which has several physical interpretations. One of these is 

the basic system of  the relativistic mechanics in the absence of electromagnetic 

forces; another is Maxwell's system. It can be treated as well as the Dirac-Weyl 

operator acting on spinors in space-time. The algebraic structure of the hyperbolic 

system (1,5) is equivalent to that of the system (1.1); but its analysis is, of course, 

different. Nevertheless, the system (1.5) can be studied along lines parallel to the 

forthcoming analysis of (1.1). We do not touch on the hyperbolic counterpart of 

the theory, which is beyond the framework of the present paper. 

I thank Prof. L.Avramov and Prof. D.Struppa for stimulating discussions. 

2 C o m p l e x  s t r u c t u r e s  i n  t h e  q u a t e r n i o n i c  l i n e  

Endow the algebra H with the Euclidean structure Iqt 2 - zg + x] + :~ + z~, 

where q = ~ z kek ,  and with the orientation by means of the basis et, e2, ca, e0. We 

now construct a mapping from the variety E of all complex structures defined by 

positively oriented isometries H ~ C 2 to the variety 7~(H) of all proper right ideals 

in He. Let S 2 be the unit sphere in the Euclidean subspace Im H = {q E N, z0 = 0}. 

Given a point s = (st, s2, s3) E S 2, consider the quaternion 

(2.1) q(s)=x/-~q-slel+s2e2+s3e3 E~q~. 

Take the right ideal R ( q ( s ) )  = q(s) �9 He generated by this quatemion. It is proper, 

since the quaternion q(s)  is not invertible. On the other hand, there is a complex 

structure c~ with complex coordinates 

(2.2) z~ = xo + 4 - ~ ( s ,  x), w~ -- (t, ~) - 4 - ~ ( v ,  x) 

in H, where t, v are vectors in Im ]HI such that the triple s, t, v is a positively oriented 

orthonormal frame. These coordinates define a complex structure a which is 

consistent with the orientations and with the metrics, since ]ql2 = iz" (q)12 + [w~ (q)]2. 

The complex coordinates do not depend on the choice of t, v up to a rotation in 
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the w~-plane; hence the complex structure c~ depends only on s. Thus we have the 

mapping E = S z ~ ~(H) .  We show in the next section that this is a bijection. 

For arbitrary n, we endow H '~ with the analytic structure ~ = C 2n by  means 

o f  coordinates z,,j ,  wo,j; j = 1, ..., n, which are related for each j to the real 

coordinates xjk, k = 0, 1, 2, 3 as in (2.2). 

P r o p o s i t i o n  2.1.  Given a complex structure a E E, two arbitrary C-indepen- 

dent elements r l, r2 o f  the corresponding right ideal R = R(  q( s ) ) and an arbitrary 

nonempty open set U c H n, the functions h i ,  h2 : U ~ C are ~r-holomorphic i f  and 

only i f  the sum u = h l r l  "% h2re is polymonogenic. 

P r o o f .  Choose an orthogonal matrix A = {aij} E SO(3,I~), whose first row 

coincides with s, and apply it to the imaginary units in IHI and simultaneously to 

the real coordinates in IHI n. We get new units and coordinates: 

' E ' E e i ~ a i j 6 j  ~ x o ~ Xko~  X k i  ~-- a i j x k j ~  ]g ~- 1 ~ ...~ n .  

J 

The ficlds O/Ox~ transform by the conjugated representation o f  the orthogonal 

group. Therefore,  

0 0 + e" 0 i  0 ~ 0 0 
- -  _ _  - -  + e 3  ~--ffST-- - -  , 

Ox o + 

i.e., the system (1.3) keeps its form. Now we have q(s) = v/S-f+ el. By  Proposit ion 

3.2, we can set r l  = q(s), re = q(s)e~ = v/-S-fe~ + e~ since this is a basis in R. 

Then we have u = ~ ukek, where uo = v / -~h l ,  ul = hi,  uz = v/-L--fh2, u3 = he. 

Substituting the function u in (1.2) with x 5 = xkj,  k = 1, ..., n yields 

(2.3) 0 + h =  0 2 

for h = ha, he. Conversely, (1.3) follows from (2.3). A function h is a-holomorphic  

if  and only i f  it satisfies (2.3). [] 

For an open set U c IE n we denote by H~(U) the space o f  a-holomorphic  

functions in U, i.e., o f  solutions to (2.3). 

C o r o l l a r y  2.2. For any a E E, any C-basis rl , rz o f  the corresponding ideal 

R and any open U c H n, the mapping 

H~(U) 2 ---* Q(U,R) ,  (h~, h2) ~ hlr~ + h2r2 

is a bijeetion. 
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In fact, we can write any function u E Q(U, R) in a form hlrl + h2r2 with some 

C-valued coefficients ha,2. They are a-holomorphic by Proposition 2.1. 

C o r o l l a r y  2.3. Q(U, R) is an algebra for any proper right ideal R. 

P r oo f .  Indeed, the product o f  holomorphic functions is again a holomorphic 

function and fir j C R. [] 

E x a m p l e .  For s = (1,0,0), the ideal R has the basis rl = ~ -b e l ,  7"2 = 

vcL-ie z + ca; hence the function zrl +wr2 is monogenic for the cr-holomorphic coor- 

dinates z = x0 + v / -~x l ,  w = x2 - v/-Z-fz3. For the opposite point - s ,  the complex 

conjugated quaternions rl ,  r2 form a basis in the ideal R(q(-s))  and the conjugated 

functions z, z~ are a-holomorphic coordinates. Hence 2eaq = zr2 +wrl + zr2 + wrl, 

which gives a representation of  the monogenic function e3q by means of  holomor- 

phic functions. This is in fact a particular case of  the representation in Theorem 

1.1 with a distribution u 1,1 supported by two points (+1, 0, 0) in the sphere. 

3 Ideals in Hc 

We can write an arbitrary element ff of  the complexified quatemion algebra He 

in the form ~ = ~ i e i ,  (i E C. The notations Rer = r = file1 + ~2e2 + Gea 

are related to the quaternionic structure in Ek:. The numbers Re (, Im ( are called the 

scalar and vector parts of  ( and ( = Re ( - I m  ~ is called the conjugated quaternion. 

On the other hand, the operations N, ~ and-  relate to the C-structure. Consider the 

following quadratic cone in C 4 ~- He: 

v =  { r  cg = = = o } .  

Proposition 3.1. The cone V is the set o f  all quaternions ( E Hc that have 

no inverse. 

P roo f .  For any ( E Hc, the product ( (  belongs to the subfield C, which is the 

centre o f  the algebra IHIc. I f (  E EIc \ V, the quaternion ~7 = ((~)-1( is its two-sided 

inverse. On the other hand, if  ( E V, then for any rl E He, the products r/( and Q] 

are in V as well, since (r/f)r/( = r l ( ~  = O. Therefore, rK r 1, ~ r 1, which means 

that ( has no inverse. [] 

The operation ( ~ ~ is an involution in Hc, i.e., (7 = r~(. It transforms an 

arbitrary left ideal L to the right ideal R = L and vice versa. Therefore, one can 

change right ideals to left ones in the following statements. 
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Proposition 3.2. Any proper right (or left) ideal R is contained in V and 

dime R = 2. 

P roo f .  Any element r E R is noninvertible; hence r E V. This implies the 

inclusion R C V. Since dim V = 3, the dimension o f  the linear subspace R is _< 2. 

Suppose that dim R(() = 1. Then, for an arbitrary ( E R, the vectors (, r r (e3 

are collinear. This is not possible unless ( = 0. [] 

For an arbitrary ( E V, we denote by L(r = ~ �9 ( the left ideal and by 

R(() = ( -  ~ the right ideal in He. 

Proposition 3.3. For distinctproper right ideals R, R ~ in ~ we have R M R' = 

{0}. Each proper right ideal R is principal, i.e., R = R( ( ) for  some r E V \ {0). 

P roo f .  Take an arbitrary element ( c R \ {0} and consider the principal 

right ideal R(r It is proper and is contained in R. On the other hand, we 

have dim R = dim R((),  hence R = R(r If  ( E R', then the three right ideals 

coincide. [] 

Proposition 3.4. For an arbitrary r E V \ {0}, the ideal R(r coincides with 

the set of  quaternions a such that ~a = O. 

Proof .  The equation ~a = 0 obviously holds for any a c R(r For the inverse 

statement, we use the equation (9+~7( = 1, where ~7 = (/21~12, which follows from 

the identity ( (  + (~ = 21(] 2. Multiply it by a to the right to get o~ = r C R. [] 

Proposition 3.5. There is a holomorphic fibre bundle R : V \ {0} ~ C, whose 

fibres are planes R(() \ {0} and whose base C is a nonsingular conic in P2(C). 

P roof i  Let P4(C) be a projective closure of  IHIc = C 4 and P be an arbitrary 

projective 2-subspace that does not contain the vertex o f  V and is not tangent to 

V. The intersection of  P with the projective closure of  V is a non-singular conic 

C. Any proper right ideal R is a subspace o f  C 4 of  dimension 2 and has at least 

one common point with P. The intersection P N R cannot contain more than a 

single point since otherwise it would be a line in C. This is not possible since C 

is non-singular. It follows that the curve C parameterizes the variety R(H) o f  all 

proper right ideals. [] 

Proposition 3.6. The mapping 

(3.1) s : ( s l , s 2 ,  s3)~-*R(q(s)), q ( s ) = x / - ~ + s l e a + s 2 e z + s 3 e 3  

defines a diffeomorphism S z ~ R(H), 
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P r o o f .  The ideal R(q(s)) is proper since ~(s)q(s) = 0. This ideal does not 

contain another quaternion q with Re q = x/Z-l, ~ Im q = 0. Indeed, if  q were such 

a quaternion, then the equation ~(s)q = 0 would imply Imq(s ) Im q = 1. This 

would mean that the vector Im q belongs to the tangent plane to S 2 at the point 

Im q(s). This implies q = q(s), since ] Im I = 1. Thus the mapping S 2 -~ C is an 

injection. We show that it is a surjection, as well. Take an ideal R E 7~(H) and 

choose an element q E R, Re q = x/-Z-'~. Write Im q = u + x/-Z--lv, u, v E Im H. From 

the equation 0 = qO = - 1  + lul 2 - Ivl 2 + 2 v ~ < u ,  v) it follows that u is orthogonal 

to v and [u[ 2 - Ivl 2 = 1. Setting r = (1 + Ivl2)-1(1 - v), a = qr, we have a E R and 

Re a = v/-Z--f, ~ Im a = 0, because v x v = 0. [] 

R e m a r k  3.7.  By means o f  the isomorphism S 2 --- C ~ Pl  (C) we get a structure 

o f  the Riemann sphere in S 2. Compare the coordinates in the sphere with complex 

algebraic coordinates in the curve C. For a point s E S 2, we consider a right ideal 

R = R(q(s)), where q(s) is given by (3.1). The intersection of R(q(s)) with the plane 

= 1 + ~lel Jr- ~2e2 is a point with the coordinates ~1 = (8283 - ~ " ~ S l ) ( S l  2 -t- s2) - 1 ,  

~2 = ( - s183 - ~ / - ' ~82 ) (82  + $ 2 ) -  1 and the curve e is given by  the equation ~2 + ~  + 1 = 

0. The function A = { t  1 (G + v/S-f) is a projective coordinate in the curve. It relates 

to coordinates in the sphere S 2 c Im]HI by the formula A = (sl + v/-Z-gsa)/(1 + s2), 

which is a standard stereographic projection from the sphere to a complex plane. 

The C-bundle R is o f  rank 2, consequently, it is a direct sum of  two line bundles. 

P r o p o s i t i o n  3.8.  Any holomorphic isomorphism r : TC(IEI) ---+ PI(C) induces 

a sheaf  isomorphism 7~ ~ e*(O(-1)  @ 0 ( - 1 ) ) .  

P r o o f .  Consider the family o fqua temions  

ql(A) = v/"Z--1 + el + Ae2 + v/-Z-1Ae3, A �9 PI(C). 

In a neighbourhood o f  the point A = oc, we normalize this family as follows: 

01(/~) = /~ - lq l ( /~  ) = V/"~/~ - 1  -~- ) ~ - l e l  -1- e2 q- V/ -~E3 ,  where 01(c~) = e2 + x/'Z'fe3. 

This family belongs to V and meets each proper right ideal R. Therefore it generates 

over Nc the bundle 7~. Consider the holomorphic line subbundle 7~1 generated 

by the same family over the field C. It is isomorphic to O ( -1 ) .  Similarly, the 

subbundle 7~2 generated by  the family 

generates over C a line subbundle N2 of  T~, which is isomorphic to 69(-1) as well. 

For any A, we have 02 (A)ql (A) = 0; hence the quaternions ql (/~) and q2 (A) generate 

the same right ideal according to Proposition 3.4. They are independent over C. 

Therefore,  7~ = ~1 + Tr ~ a * ( O ( - 1 )  �9 O( -1 ) ) .  [] 



186 V. P. PALAMODOV 

4 Characteris t ic  variety for the C a u c h y - F u e t e r  sys tem 

Put qi = ~ xijej,  i = 1, ..., n and write (1.3) as 

p (O/ Oz l o ,  ..., O /Ozn~)u  = o, 

where p is a 4n x 4-matrix of  first order differential operators with constant coef- 

ficients in the space IR 4~ with coordinates xij, j = O, 1, 2, 3; i = 1,..., n. Consider 

the dual complexified space C 4'~ with complex coordinates (~j such that the pairing 

IR 4n x C 4n --* C is given by a bilinear form (x, ()  ~ x (  - ~ zij~i3. We have 

(O/Ox.ij) exp(x() = Cij exp(x(), whence the symbol matrix p(() o f  the system (1.3) 

is of  size 4n x 4 and consists o f n  blocks 

(4.1) 

CkO --r 

~k2 r 
(k3 -(k2 

-(k2 -(k3 
-(k3 (k2 
(ko -(k~ 
(kl Cko 

, k = 1 , . . . , n .  

The characteristic variety of  (1.3) is by definition the algebraic variety N C C 4n 

given by the condition rankp(()  < 4. For the case n = 1, we have detp(()  = 
2 2. ((0 z + (12 + (~ + (~) , hence the characteristic variety is equal to V. For the general 

case, we identify the space C 4'~ with ~ by means o f  the coordinates ~1, ..., ~,~. 

Denote by s the variety o f  all proper left ideals in IH/c. The following 

statement was essentially proved in [ 10], [2]. 

P r o p o s i t i o n  4.1. The cone N E ~ coincides with the set o f  points  ((~, ..., (n) 

such that the quaternions ~1, ..., ~,~ belong to the same proper  left ideal in No. It  

fo l lows  that there exists a f ibre bundle 

(4.2) ~: X \ {0} ~ C(M) ~ C, ~(~,... ,  ~n) = ~ : .  (~,. . . ,  r 

whose fibres are C-linear subspaees o f  C 4n o f  dimension 2n. We have dimc N = 

2 n + 1 .  

P roo f .  Multiply the columns of  the matrix p(() by e0, el, ez, ea respectively 

and take the sum. We get the column of  quaternions 

(4.3) ~1, ~lel, ~1r ~1e3;~2, (2e l ,  ..., (-he2, ~ne3. 

Suppose that ((~, ..., (~) E N. This means that the quatemions (1,---, r belong 

to the same proper left ideal L. This ideal has dimension 2. Therefore, any 

three quaternions in (4.3) are C-dependent. It follows that rankp(~) < 3; hence 
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( = ((1,..., (,~) E N. N o w  take an arbitrary point ( = ((1, ..., ~n) E N \ {0} and show 

that the quaternions (1,-.., (n belong to the same left ideal. We may suppose that 

(1 r 0. The condition rankp(r < 4 implies a C-linear relation between any four 

quaternions in (4.3). This implies that the quaternion (1 is not invertible and there 

are two independent quaternions out o f  the four (lek, k = 0, 1, 2, 3 (Proposition 

3.2). Take these quatemions and any two of  the quaternions (jek, k = 0, 1, 2, 3 

for arbitrary j > 1 such that (j r 0. These four quaternions are C-dependent, 

which implies a linear equation ( l a  = (3~ r 0 for some a,/3 E IHIc. The equation 

&~l = r r 0 shows that the ideals L((1) and L(G) have a common nonzero 

element. B y  Proposition 3.3, they must coincide. [] 

Proposition 4.2. The cone N coincides with the set o f  solutions o f  equations 

(4.4) ( i~ j  = O, i , j  = 1,...,n. 

P r o o f .  Let ( = ((a, ..., 6~) e N and (i r 0 for some i. Any coordinate (j 

belongs to the ideal L((i),  i.e., (j = a(i .  Therefore, (i~3 = ( i ( i5  = 0. Con- 

versely, suppose that (4.4) is valid and (~ r 0 for some i. These equations imply 

(a(i + 3(k)(a('-'~ + 3('---s = 0 for any k and c~,3 E IHIc. Hence the left ideal 

L = {a(i  +/3(k,  c~,3 E ItS} is contained in V and contains both ideals L((i) 

and L((k). The ideal L is proper and consequently coincides with L((i). Therefore 

L(~k) C L((i) for any k. [] 

P r o p o s i t i o n  4.3. The cone N, - N \ {0} is nonsingular and irreducible. 

Moreover, for  an arbitrary point A E N,, there are 2n + 1 independent forms 

among 
Re(ekd(~i(j)), i , j = l , . . . , n ,  k = 0 , 1 , 2 , 3 .  

P r o o f .  Let A = (A1, ..., An) and A1 r O. Consider IHLc-valued forms 

(4.5) d((l~i) = d(~l)~i -t- (ld(~i), i = 2,. . . ,n. 

By Proposition 3.2, there are two C-independent vectors out o f  ej/kl, j = 0, 1, 2, 3, 

say, A1 and elA1. Multiplying (4.5) by el and taking scalar parts, we get 2n - 2 

forms at the point A: 

Re(d((1(1)) =- Re(Aid(i), Re(eld(r  = Re(elAld~i) (mod Z1), 

for i = 2, ..., n, where Z1 is the C-linear span of  the forms dffl0, dff11, d(12, d(la. 

These are linearly independent modulo Z1. The form d(r = d(1~1 + Aid(1 is 

yet another independent form. The total number is thus 2n - 1 which proves our 
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assertion. This shows that the cone iV. is nonsingular. The variety N. is connected, 

since the base C in (4.2) and the fibre ~ C 2n \ {0} are connected. Therefore, the 

variety N is irreducible. [] 

5 N 6 t h e r  o p e r a t o r  for the  charac ter i s t i c  m o d u l e  

Let A = C[(] be the algebra of  complex-valued polynomials in C 4T~. The 

transpose tp of  the matrix p defines a morphism of  A-modules 

tp : A4n ~ A 4, a ~ tpa, 

where we take elements o f A  4n and o f A  4 as columns. Set A ( N )  = A / I ( N ) ,  where 

I ( N )  is the ideal in A of  polynomials that vanish on N. Consider the morphism 

p~ : A 4 --, A ( N )  4n that is equal to the composition o f  multiplication by the matrix 

p and of  the natural projection 7r : A 4n ~ A(N) 4n. 

T h e o r e m  5.1. The sequence  

(5.1) A4n *p A 4 p~ --~ --~ A ( N )  4n 

is exact.  

Proof .  To simplify calculations, we multiply the rows of  the matrix tp and the 

columns of  the matrix p by ej, j = 0, 1, 2, 3 respectively and sum them. We get 

from tp the row of  quaternions ~-/, ~iel, (-ie2, ~e3, i = 1, ..., n; and the matrix p gives 

the column of  the same quantities. An entry of  the product p tp is an inner product 

o f  a column o f t p  and of  a row of  p, i.e., 

~ 

p t p =  {Re(~iek~je t ) ,  i , j  = 1,...,n; k , l  = 0, 1,2,3}. 

We find that (iek ~jet = ~kr = 0 in N by virtue of  (4.2). This implies the 

equation pb tp = O. 

Now we show that the equation p~a = 0 for a polynomial a E A 4 implies the 

inclusion a E tpA4n. The above equation is equivalent to the system Re(ek(ia) = 0 

in N for k = 0, 1, 2, 3, i = 1, ..., n for the Hc-valued polynomial o~ = ~ akek. The 

latter is equivalent to the quaternionic equation (ic~ = 0 in N for i = 1, ...,n. We 

prove that this equation implies that a = ~]j ~jflj for some IHIc-valued polynomials 

/31, ..., fl,~. We localize this problem, considering the affine scheme (Spec A, A) o f  

the algebra A. Denote by m the maximal ideal of  the point ~ = 0 in A and set 

A ( N )  = A/I(N)A. 
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L e m m a  5.2. The sequence o f  sheaf  morphisms 

(5.2) A A _,  _, 

is exact in Spec A \ {m}. 

Proof .  We check first the inclusion 

(5.3) I (N) f i  C tpA4'~ in Spec A \ {m}. 

According to Proposition 4.3, the sheaf is generated over Spec A \ {m} by the 

polynomials Re (ek~ j ) ,  k = 0, I, 2, 3, i = 1, ..., n. We show that each of them can 

be written in the form ~ ~jbj. This follows from the identities 

By (5.3), the homology of  the complex (5.2) coincides with the homology of  the 

complex 

(5.4) A ( N )  4n A ( N )  4 A(N)  

of free A(N)-sheaves. The sequence of  sheaves (5.4) is generated by free C-vector 

bundles on the algebraic manifold N,. The middle term is the bundle with the 

fibre No. The kernel of the mapping p~ of  the corresponding vector bundles is a 

subbundle whose fibre at an arbitrary point ~ is the proper right ideal R = u((). 
Indeed, if, for example, ffl r 0, then the equation p~a = 0 is equivalent to the 

equation ~xa = 0 for a quaternion a E 1Flit. The set of solutions coincides with 

the ideal R(~I). This follows from Proposition 3.4. The ideal R(~I) is equal to 

the image of the linear mapping tp at ~ since (3 6 R(~I) for all j. Therefore, the 

sequence (5.4) is exact as a complex of  vector bundles. Consequently, it is exact 

as a complex of algebraic sheaves. [] 

Lemma 5.2 implies that 
(i) the cone N is associated with the A-module M = Cok tp, 
(ii) the morphism p~ is a I(N)-N6ther operator for M (see the next section), 

(iii) no other simple ideal p ~ m is associated with M. In fact, the ideal m is 

not associated with M either, since the depth of  the module M is positive. [] 

T h e o r e m  5.3. The sequence (5.1) can be extended to an exact sequence 

(5.5) A 4 v~--~ A(N) 4"~ ~ A(N) m. 
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ProoL Arguing as in the proof of Lemma 5.2, we see that the image of  the 

mapping p~ restricted to iV, is the sheaf of sections of  the locally free vector bundle 

u*(R(~)). Therefore, the associated set of  the module Q -2 Cokp ~ consists of  the 

ideal I ( N )  and possibly of  the maximal ideal m of the origin. We show that the 

latter is, in fact, not associated with Q. Indeed, we have an exact sequence 

0 ~ M ~ A ( N )  4n --* Q ~ O, 

which induces another exact sequence 

0 = Horn(A/m, A ( N ) )  4'~ --* Horn(A/m, Q) --~ Ext I ( A / m ,  M ) .  

The last term vanishes because Prof(M) = 2n + 1 > 1 ([2, Theorem 2.4]). There- 

fore, the middle term is equal to zero, which implies our assertion. 

Consider the A(N)-sheaf Horn(Q, .~(N)). It is an algebraic sheaf on the affine 

variety N and is generated by its sections. Choose a finite set of  sections, say 
ql, ..., q,,~, that generate this sheaf at each point. These sections can be lifted 

to mappings qi : A ( N )  4'~ ---' A ( N ) ,  i = 1, ..., m .  The direct sum is a mapping 
q~ = ~ql  : A ( N )  4n -"* A ( N )  m which vanishes on the image of  the mapping p~ and 

hence defines a morphism q~ : Q ~ A ( N )  m. By construction, this mapping is 

locally injective at each point of  iV.. Therefore, q~ is injective, since the ideal m is 

not associated with the module Q. [] 

6 Exponential  representation of solutions 

Recall the representation theorem proved in [7], [8]. Let 

(6.1) p(o/o~l , . . . ,  o / o x , ) ~  = 0 

be an arbitrary system o f t  linear differential equations with constant coefficients in 

R~ with s unknown functions u = (ul, ..., us). Consider the dual complex space C "~ 

with the dual coordinates (1,..., ~ and the polynomial algebra A = C[~1, ...., ~,~]. 

The symbol p(() of  the differential operator (6.1) defines an A-morphism tp : 

A r ~ A ~, a ~ tpa, where tp means the transposed matrix. Consider the A-module 

M = Cok tp and the associated set Ass(M) C Spec A. Recall that a simple ideal p 

in the algebra A is associated with M if there exists an element m E M such that 

a m  = 0, a E A, if and only if a E p. According to [7], [8], there exists for each 

E Ass(M) a differential operator ~5~ : A ~ -~ ( A / ~ )  r(p) for some natural r(p) such 

that Ker 6p is a submodule of A ~ and Ap Ker 6p = tpAT,  T h e  mapping 6p is called 

a l~-NOther o p e r a t o r  for M or the Z(l~)-N6ther operator, where Z(p) denotes the 
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corresponding irreducible variety. It can be represented as the composition o f  the 

mappings 

dp(~, O/O~): A ~ --+ A r('), 7r: A ~(~) ---+ (A/p) ~(p), 

where 7r is the natural projection and the entries of  the matrix dp are polynomials 

in r and 0/0r  Denote by tdp the transpose matrix. 

For an arbitrary compact set K C R n, we define the pseudonorm r ~ 1g = 

max {~(~x), x E K} in the dual space C '~. This is a real convex positively homo- 

geneous function which need not to be positive. 

T h e o r e m  6.1. Let U be an arbitrary convex open set in R n. Any distribution- 

solution o]'(6.1) can be written in the form 

(6.2) u(x) = fz exp(ffx) tdp(~,x)#p(~), 
pEAss(M) (P) 

where #p is a C ~(p) -valued density in Z(p) such that 

for any compact set K C U; here ] �9 [ denotes a norm in the space C ~(p) . 

Moreover, given for  each p E Ass(M) an arbitrary proper algebraic subvariety 

W o f  Z(p) that contains the singularpart o f  Z(p), there exist a positivepolynomial 

p in IR 2n such that the density as above can be chosen to satisfy the following 

additional conditions: 

(6.4) supp Up c Z(p) \ Wp, 

and 

(6.5) 

Wp --- {~ E C ~, p(~)dist(~, W) < 1}, 

f z  exp(I ~lg)lL(v)kjzpl < oc, k = 0 , 1 , 2 . . .  
(p) 

for  an arbitrary regular algebraic tangent field v in the variety Z(p) \ W. 

P roo f .  A representation satisfying (6.2), (6.3) and (6.4) was constructed in 

[7], [8]. To fulfill the condition (6.5) we choose a linear projector 7r : C '~ ~ II 

to a subspace H in C '~ such that the restriction 7rz : Z(p) --* H is surjective and 

finite. We can suppose that the subvariety W in (6.4) contains the critical set o f  the 

mapping 7rz. Choose a smooth even density g in II such that supp 9 belongs to the 

unit ball B and f g ( w ) h ( w )  = h(0) for an arbitrary harmonic function h in B. For 

an arbitrary ~ E H and positive r, we have 

f - ,1) = (6.6) 
J 
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for any harmonic function h in the ball ~ + rB, where g,.(rl) = g(r-lrl). Therefore, 

for an arbitrary compactly supported density # in I1 and for an arbitrary variable 

parameter r, the convolution 9,. * ~ is smooth and defines the same functional on 

hoiomorphic functions as does u. We can apply this convolution to the density 

#p supported by Z(p) \ W o by means of the pull-down operation with respect to 

the projection lrz. The property (6.6) is preserved since the mapping rrz is locally 

conformal. We need only ensure that the support of  the convolution does not touch 

the set Wp, for a positive polynomial p' in R zn. This is the case if we choose the 

parameter r to be a "- 2p(p(~)). Thus we get a smooth density g~ * #p, which can 

be substituted for pp in (6.2), since the kernel satisfies (6,6). To prove inequalities 

(6.5), we note that any ~ rt-derivative of the kernel g,,(rt) is of polynomial growth 

Hence, for an arbitrary tangent field v as above and arbitrary k, we in Zp \ Wp. 

have 

(6.7) /exp(t5lK)lL(v)k(g~*m)l<_ f exp(P5lK)Pk(~)lP, I, 
where Pk is a real polynomial in R 2'~ . Now apply the estimate 

(6.8) exp([ ~ 1K)I~I '~ = O(exp(t { 1L)) in N, 

which follows from ellipticity of the cone N, where m is an arbitrary inte- 

ger. It implies that the right hand side of (6.7) is bounded by the integral 

Ck f exp(r ~ ]r)]#~], which is finite because of (6.3); and (6.5) follows. [] 

7 S u r j e c t i v i t y  

Now we prove surjectivity in (1.4) in a stronger form. 

T h e o r e m  7,1, Let U be an arbitrary open convex set in N' .  For any poly- 

monogenic function u in U, there exists a smooth (1, 1)-form u 1'1 in T?.(]i-II) - PI(C) 

with values in the sheaf Q(U, R) such that 

(7.1) u = f 
ul,  1" 

dR (•) 

This statement can be rephrased as follows: there exists a smooth family of  

polymonogenic functions un : U ---. R, R E R(II-II) such that u = f~ (~)  uR f~, where 

f~ is the Kahler (1, 1)-form in PI(C). 

L e m m a  7 .2 .  We have 

u(x) = [ exp(~x) E (jwj, (7.2) 
, I N  
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where w j, j = 1, ...n are He-valued densities in N satisfying the condition 

(7.3) Usuppwi  c S ,  - '  N \ {0} 
i 

and the inequalities (6.5). 

P r o o f  o f  L e m m a  7.2. According to Theorem 5.1 the set Ass(M) for the 

module M = Aa/tpA 4n consists only of  the ideal p = I (N) ,  and the mapping 6 = p~ 

is a N6ther operator. Hence we can take d((, 0 /0( )  = p(() and td -- ~p (see 4.1). 

Fix an affine complex coordinate ~ in R(H) -- P:(C) and set 

w = {0} u = 0, oo}).  

This is an algebraic subvariety in N. Now apply Theorem 6.1 to u and W. To 

represent the function (6.2) in the quaternionic form u -- ~2 ukek, we multiply the 

columns of  (4.1) by ek, k = 0, 1, 2, 3, respectively. Then the matrix td turns into 

the row of  1Hie-valued polynomials td(() = {~iek, i = 1, ..., n, k = 0, 1, 2, 3}. The 

product tdp with a C4n-valued density #r(u) can be written in the form 

i j 

where pik are components of  #, and aJi = ~ k  tlikek a r e  ]HI C - v a l u e d  densities, i.e., 

(2n + 1, 2n + 1)-forms in N.. They satisfy (6.5) for any compact K c U. Now 

(6.2) implies the representation (7.2). [] 

P r o o f  o f  T h e o r e m  7.1. The density e - exp(~x) ~ ~jwj is a (2n+ 1, 2n+ 1)- 

form in N and its direct image under the projection (4.2) is equal to u. The image 

is a (1, 1)-form u 1': in the base R(N) since the general fibre is a complex manifold 

of  dimension n. It satisfies (7.1) in view of  Fubini's Theorem and can be explicitly 

calculated as follows. Divide the densities w:, ...,wn by the K/ihler fbrm f~ and 

integrate along fibres of  the projection (4.2): 

(7.4) wR(x) -- fN exp((x) ~ (j wj ~- ,  NR = u-l(/~). 
k 

The function WR(') is polymonogenic as 

"-0--0 iN exp(~x)Z ~'wJ----- iN Zexp(~x)~i(JWJ =0 
0~i R ~ j 

according to (4.4). The function wR takes values in R. Indeed, the quaternions 

(: , . . . ,  (,, specified in (7.4) belong to the left ideal L = / ~ ;  hence the quaternions 



194 V. E PALAMODOV 

~1,..-, ~n reside in the right ideal R = L. By the construction we have U 1'1 : W~-~, 

where w(R, .) = wR('). 
To prove that the coefficient w is smooth in PI(C), take the tangent field 

r0 = 0/0A in C. The bundle N \ v-1(oo) --* PI(C) \ oo is algebraically trivial; 

consequently, the field "r0 can be lifted to an algebraic regular field t in N \ W. Take 

the Lie derivative L(ro) of  the form u 1'1 and evaluate it on an arbitrary function 

e D(PI(C)): 

L,(c) L(To)Ul'Ir f uI'170r fNexp((x)iwU*(TOr 

where we write ~w for ~ ~jw 5. Since the field t is regular algebraic we have 

t(exp((x)() = T(x, () exp(ffx), where T(x, () is a linear function of  x whose coef- 

ficients are rational functions which are regular in N \ W. They are of  polynomial 

growth in N \ Wp, where p is a real polynomial as in Theorem 6.1. When x runs 

over a compact set K ,  the right hand side is bounded by Cexp([  ( ~)z for an 

arbitrary compact L such that K ~ L. This follows from (6.8). Consequently, the 

first integral in the fight hand side of  (7.5) converges and is bounded by C[[~b[IL 1 . 

The second term in (7.5) is estimated similarly by means of  (6.5). As a result, we 

obtain the inequality 

L LO'o)ul'l~ b <_ ClliblIL,, 
, (c) 

which implies that the form fP,(C) L( To)ul'~ is essentially bounded in K x Pt(C). 

Repeating these arguments, we show that L('r0)ku ~'~ is bounded for arbitrary field 

T and k = 2, 3, .... This implies that the coefficient u is infinitely differentiable at 

least in the affine plane A # oo. To cover the point 0% we consider the tangent field 

Too = A20/OA extended to infinity. It is nonsingular in the plane A # 0. Arguing as 

above, we show that w is infinitely differentiable in this plane as well. [] 

8 T h e  m i d d l e  t e r m  

Now we prove that the sequence (1.4) is exact at the middle term. 

T h e o r e m  8.1. Any current u m 6 F(R(H), Q(U, R)m ) such that 

i"R. U 1'1 ~ 0 
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can be represented in the form 

(8.1) u x't = V(c~)u L~ u ~,~ �9 F(~(IE), Q(V,n)f ,~  

P r o o f i  For an arbitrary compact set K C H '~, consider the space EK of  smooth 
forms ~ in C 4n such that 

( ~ )  k qo~(() = O(exp(I ~ ] K)) f o ranyk=(k l , . . . , k4~) .  

Here ~ denotes an arbitrary coefficient of  the form p with respect to the basis 

generated by  the forms d~ij, d~ij, where the bar denotes complex conjugation. 

This space has a natural Fr~chet topology. Let H ~  be the subspace ofholomorphic  

functions with the norm t]f]lg = sup If(()] exp(-- I ( ] g ) .  

L e m m a  8.2. The current as above admits the representation 

u 1'1 = f~ exp(r Z ~J~J' (8.2) 

where wj, 3" = 1, ...,n are (2n + 1,2n + 1)-currents in N with support in N \ {0}, 

which are continuous functionals on Eg  for  any K ~ U. 

The symbol f ,  ~o means the direct image of  the current w with respect to the 

mapping u. We prove this Lemma in the last section. 

By the condition o f  Theorem 8.1, we have 

(8.3) O= /n u~'~ = /Nexp(~x)~j*oj. 
(~) 

L e m m a  8.3. For any compact set K C U, we have 

(8.4) ~j~oj = E QOpj + tqv 
J 

for some (2n + 1, 2n)-currents Pi and a Cm-valued (2n + 1, 2n + 1)-current v in N 

which are continuous functionals on EK. Here q is the polynomial mapping from 

Lemma 5.3. 

For the proof  we  require additional technique. For an arbitrary holomorphic 

subvariety W c C 4'~, denote by  H ( W )  the space ofholomorphic  functions W ---, C 

which are traces of  holomorphic functions in a neighbourhood of  W. Let Uz(e) be 

the closed ball in C 4n with the centre z and radius e. Denote by  U(e) the covering of  

N by the balls Uz(e), z E N. Let H~(N, ld), r = 0, 1, ... be the space of r -cocha ins  

with values in the spaces H(Nz o ..... z,), where Nzo ..... ~ --" N f3 U~o(e ) n . . .  n U~.(e). 
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For any compact set K c H n, we denote by H~(N,b/) the normed subspace of  

H" (N,///) of cochains with finite norm given by 

IFzo ....... (C)[ 
(8.5) [[FIIK, U =  sup sup . 

z0 ....... <~N, o ....... exp(t r 1K) 

Consider the (~ech complex 

0 --~ HK(N) ~-~ H ~  bl) ~ H~.(N,14) - ~ . . .  , 

where 6, 60 .... are coboundary mappings. Choose a sequence of convex compact 

sets K1 @ 1(2  �9 " ' "  C U such that I,.JKj = U. Replace each term of  (8.5) by 

the direct spectrum of  the corresponding normed space with K running over the 

sequence Kj as above and b/running over the sequence b/(2-Q, j -- 1, 2 . . . .  with 

the obvious continuous injections H~% (N,/,/(2-J) ~ H~%+, (N,b/(2 - j - l ) ) .  We get 

the sequence of direct spectra 

(8.6) 0 -~ H{K}(N)  6_. H~K}(N, lg ) ~ H~K}(N, Lt) - . . . . .  

According to [7], we say that a sequence of  direct spectra is strictly exact if it is 

exact and each mapping is a topological homomorphism in the category of direct 

spectra (cf. [9]). 

L e m m a  8.4. The sequence o f  spectra (8.6) is strictly exact. 

Proof .  This assertion is contained in [7] (proof of  Theorem 2 of  Ch. IV, 

Section 5). [] 

Any polynomial a E A defines a mapping of holomorphic cochains F ~ aF. 
For any b/and compact sets K ~ L this mapping generates a continuous operator 

a : HK(N,  lg) ~ HL(N,  lg). This follows from (6.8). Therefore, the algebraic 

mappings (5.5) generate the following commutative diagram of spectra: 

(H{K}) 4 v 

( H~g}(  N ,  bt) ) 4'~ 

l,o 

T' 

T 
0 
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This gives rise to the sequence 

(8.7) (H{K}) 4 ~ (H~ bl)) 4~' ~ (H~K}(N)) 4n G (H~K)(N, Lt)) m, 

where A = 5p, Ao --- 50 | q. 

L e m m a  8.5. Let L be an arbitrary convex compact set in H n and K ~ L. 

Then for  sufficiently small e the quotient norm in the space 

(H~(N,/4(~))) 4'~ 
A(HL)4 

is majorized by the norm 

(8.8) f ~ IleS0fllK, u + I[qfllK, u,  

where we denote b/=/ , / (1) .  

P r o o f .  In terms of  direct spectra, the assertion means that the sequence (8.7) 

is strictly exact. To prove this, we use the diagram chase method ([7] Ch. I) and 

the strict exactness o f  the bottom row and columns. For the columns, this follows 

from [7] (Ch. IV, w Th. 2). For the bottom row, this follows from [7] applied to 

the sequence (5.5). [] 

P r o o f  o f  L e m m a  8.3. For an arbitrary open set W ~ N,  let E(W)  be 

the space o f  smooth functions F in W \ {0} with bounded derivatives t-1 --- {k(F), 

where t l , . . . ,  t~ are arbitrary algebraic tangent fields in N. It has a natural Fr6chet 

topology. Any current v in N with support supp v ~ W defines a continuous 

functional on E(W).  For a covering U = L/(e), we define the spaces o f  smooth 

cochains E ) ( N , 5 / ) ,  r = 0, 1, ... by means o f  the sequence of  seminorms F 

l i t 1 "  tk(F)tIK, U, where the fields tl ..... tk are as above and the norm II" llK,u is 

defined in (8.5). 

Choose a bounded family of  functions {hz, z E N} C 79(U0(1)) such that the 

family o f  sets supp r/z is locally finite and ~ r/~ = I in N,  where z/z(() = h~(~ - z) 

for z 6 N. Take the currents wj found in Lemma 8.2 and consider w = (,;1, ...,w~) 

as a IH~-valued current. For any z E N, the current r/zw is supported by  N~ and 

defines a continuous functional &z on the space E(N, )  | It~. Together they define 

a functional on the space of  smooth 0-cochains: 

= Z [ .  
Z z 

d / V  

The sum is a continuous functional on the space (H~ Lt) | IHIc) '~ for any L ~ U 

because wj are continuous on EL. 
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L e m m a  8.6. The functional ~o vanishes on the image o f  A (see(8.7)). 

P r o o f  o f  L e m m a  8.6. Write an arbitrary element f = (f0, fa, f~, f3) C 

(/arK) 4 in the quaternionic form f = f + fie1 + f~e2 + f3e3. We have A f  = 

6((l f  ..... (n f)  and 

(8.9) m~ ~ iN Re(f(,zl.m,)-- iN Re(f~jw)= )-'~ Re(~k S, fk(,m,), 
z z k 

where the summation is over j = 1, ..., n. An arbitrary function 9 ~ H~: can be 

written in the form 9 = gN + ~), where 

(8.1 O) r162 = / exp(r162 

is the Fourier-Laplace transformation o f  a function r E 73(U) 4 and the function 

gN �9 (HL) 4 vanishes in N. This follows from [7] (Ch. IV, w We apply 

this decomposit ion to the functions 9 = fk in (8.9) The term with gY obviously 

vanishes. Substitute the absolutely convergent integral (8.10) for fk in (8.9). The 

integral is equal to zero because of  (8.3). [] 

We resume the p roof  o f  Theorem 8.1. Fix an arbitrary compact set K C U. 

By  Le m ma  8.2, the functional ~b ~ is bounded on the space HL(N, bl) | I~  for any 

L C U. Therefore,  according to Lemmas 8.6 and 8.5, it is bounded with respect 

to the norm II6ofllK, U q- []qfllK, lg as well. There exists a bounded functional w' 
on the image o f  the mapping A0 such that ~o = A ; ( j )  (where A;  means the 

dual operator). By  means of  the Hahn-Banach  theorem, ~o' can be extended to a 

bounded functional pl ~ O.0 E (Hk(N, /g)*)  4n | (H~ LI))*)'L As a result, we 

have 

(8.11) &~ = pl(6oF) + a~ F) 

for an arbitrary F E H~ lg) 4n . Write 

pl(F) = Zpz,~,(Fz,~o), 
Z ~ qtJ 

where pz,~o is for each z, w a continuous functional in the space H(Nz,~) and 

pz,~, = 0 except for a countable number o f  pairs z, w. Again by means o f  the 

Hahn--Banach theorem, we can extend this functional to a (2n + 1, 2n + 1)-density 

~.,~ E E(Nz,~o) which allows the integral representation 

P~'~(f) = fN fPz,~ 
z , w  
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such that ~5~,~ = -~,,~o and 

(8.12) ~ / e x p ( I  ~ ]K)lPz,~o] < Oe. 

Proceeding with a ~ in the same way, we get a sequence of  (2n + 1, 2n + 1)-densities 

~ in Nz, z E N which satisfy similar conditions. For any z we set 

(8.13) v~ - W~ - ~-~ tSz,~ - qez. 

This is again a current in N~; it vanishes on the space H(Nz) | ~ :  by virtue o f  

(8.1 1), and the series ~ ~)~ converges strongly in the dual space to EK. 

L e m m a  8.7. The above construction can be specified so that 

(8.14) 0 ~ U s u p p v z .  
Z 

Proof .  The support of  r/~co does not contain the origin because of  (7.3). The 

selection of  the currents &z can be subjected to a condition like (8.14), i f  we pass 

from b/to the covering/g'  = / / (3 ) .  Indeed, take the inverse image of  the density ~ 

with respect to the restriction mapping E~ ') ---* E ~  bl). Define modified 

densities #t as follows: if  [zl > 2, we set #~ = 6-z. I f  Iz[ <_ 2, we take the density 

or" with support in ONe; N~' = N n Uz(3) such that f fgr' z = f f6~ for any function 

f E H ( N  n Uz(3)) and II~'Jl = LI6"I] on the space of  continuous functions in N' .  

The modified density can be found by means of  the Hahn--Banach theorem and of  

the following inequality, which holds for functions f E H(N~): 

(8.15) sup If[ = sup If[. 
N.' olv, 

The set N is a union of  2r~-subspaces in C "4~ . Therefore, (8.15) is a corollary of  

the maximum principle for harmonic functions. We modify the family of  densities 

tS~,~ in a similar way. By means o f  (8.13), we obtain a cochain v which is defined 

on the covering/d' and satisfies (8.14). [] 

L e m m a  8.8. For any z, the equation ~ = O~b~ has a solution ~ which is a 

(2n + 1, 2n)-current with compact support in N~ \ {0} such that the series ~ ~ 

converges in E~. 

P r o o f o f L e m m a  8.8. I f  [zl > 4, the support ofv~ is contained in H \ (70(1); 

and a solution ~ with the same property can be constructed by standard methods. 

The convergence of  the series ~ ~ is easy to control, since the variety N is a cone. 
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Now we pass to the covering/,/(7) and take the sum v/~ of  currents vz for Izl < 4. 

The series converges on the space E ( N  n U0(7)), and 0 r suppv6. To solve the 

equation v~ = c5r in the singular space N rq Uo(7)), we apply Theorem 9.1. [] 

Set #0 = {#z} and similarly for/51 and r We have by Lemma 8.8 

~o = 6*& ~ = 6"q'6 ~ + 6"0~, ~ 

Setting ~b -- 5*~b ~ = (r Cn), we have 

(8.16) ~w = ~0r 

since ~tq = p ,q ,  = (qp), = 0. (Here we mean ~,~ = ~ 6 w j  and so on.) We put 

uk'0 ---- f exp(r 

where the integral again means the pull-down of a current by the mapping u. This 

is, in fact, a (1,0)-current in PI(C) with values in the sheaf Q(intK, R), which 

means that its local coefficient satisfies (1.3) in intK. Indeed, we have 

OOj u~:~ f exp(~x)~j E ~kek = 0  
k 

for j = 1,.. ,  n by Proposition 4.2. Now we check the equation 

(8.17) V(0)u~ ~ = u 1'1. 

Evaluating the left hand side on a function r E D(PI(C)), we have 

/. ~',,~-~ -/'(<')/' u~-~ - 1'(r S oxp(<-)r i(c) 

f~r v*(Or exp(~x)$~ ---- -- .lw cO(u*(r exp(~x)$~b 

/ ~(~*(+)~ o~v(c~l~+)+ I ~'(~I ~ exp(C~)~+. 
The commutation relation u*(Or = O(u*r which was used above, is a corollary 
of the fact that u is holomorphic. The first integral in the right hand side vanishes 

since the integrand equals dx  for a current X. The second one equals 

/,.<< + L oxp/<,,)r = / +,,1.' 
because of  (8.16), and (8.17) follows. For a larger compact L C U, we have 

- 1,0 1,0 1 0 1,0 V(O)(u  K - u L ) = 0 in intK; hence the difference u-s - u  g is a holomorphic form 

on the projective line, evaluated in the space of  continuous functions int K ---, IHIc. 

It equals zero; consequently, the form u~ '~ is an extension of  u~ 1 to a larger 

compact. Taking a sequence of  successive extensions, we get a form u ~ which 

gives a solution to (8.1) in U. [] 
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9 O-equation in an analyt ic  set 

T h e o r e m  9.1. Let U be a Stein manifold and A a closed complex analytic 

subset o f  U o f  pure dimension m > 1 which has only a finite set S o f  singular 
points. For an arbitrary (m, m)-current a in A \ S with compact support such that 

1) f f a  = 0 (9. 

for any holomorphic function f in U, the equation c~ = OA/3 has a solution that is 
a (m, m - 1)-current in A with compact support in A \ S. 

Proof .  Let (9 be the structure sheaf of  U and (9(A) = (9/:T.(A), where :Z-(A) is 

the sheafofholomorphic  functions in U that vanish in A. Take a Stein submanifold 

U' ~ U containing supp c~ and such that the holomorphic functions in U are dense 

in I'(U', (9). The sheaf (9(A) has a resolvent (L*, d) in U', where all z;q, q = 0, 1,... 

are free (9-modules o f  finite rank and L ~ = (9. Let s be the 0-complex in U 

of  sheaves o f  smooth forms of  type (0, .) .  This is a flat (9-module according to 

[6]. Take the tensor product B - Z;* Go g*. This is a bicomplex, with the first 

degree and differential coming from (s d) and the second degree and differential 

inherited from (g*, c~). We have for the first differential 

Hq(13, d)=O, q > 0 ;  H ~ 1 7 4  *. 

For the second differential, we have Hk(B,O) = 0, k > 0 and H~ = s 
Comparing two spectral sequences, we find that the complex (9(A) | g* is acyclic 

in positive degree. Taking into account that the functor I'(U', .) is exact with respect 

to the bicomplex B, we conclude that the following sequence o f  Fr~chet spaces is 

exact: 

0 r(U',(9(A)) --, r(U',(9(A)| ~ L r(u',(9(A)| L . . .  

Each mapping in this sequence is continuous and open. Hence the sequence of  

dual spaces is exact as well: 

(9.2) 0 ~- F(U', (9(A))* ~- F(U', (9(A) N g~ * ~ F(U', (9(A) N s ~ . . .  . 

The current a defines a continuous functional a ~ on the space F(U', O(A) |176 The 

latter can be written by means of  local generators gl, ...,gn 1 = n - ra, n = dimU 

of  the sheaf Z(A) as 

a ~ = a6(gl)...~(gt)dgl A . . .  A dgl A dO1 A . . .  A d~t. 
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By assumption, the functional a ~ vanishes on the space o f  holomorphic functions 

in U, which is dense in 1-'(U', O(A)). Therefore, a ~ vanishes on the space F(U', O), 

which by means o f  (9.2) implies the existence o f  a solution/31 ~ F (U', O (A) | g 1). 

to the equation a~ = 0/3~. Take the pull-back/3~ o f  this solution with respect to 

the surjection F(U', O | g l )  ~ F(U', O(A) | g~). The functional/31 is a current in 

U' o f  type (n, n - 1) with compact  support which vanishes on any form 9e, where 

a ~ r ( U ' , Z ( A ) ) ,  ~ ~ r(u',gl). Consequently, supp/3 ~ c A; and the condition 

o f  the theorem implies that 0/3~ = 0 in a small Stein neighbourhood W c U' 

o f  S. Now we seek a solution to the equation c53,~ = /3 ~ in W with a current 

7 ~ E r~(w,  O(A) | g2)). of  the type (n, n - 2). To solve this equation, we argue as 

above with the functor F(U', .) replaced by r~ (W, .) using exactness o f  the sequence 

r c ( w  ~ O(A) | E 1) L rc(W ~ O(A) | C 2) ~ r~(w,  O(A) | g3). 

Set/3' =/31 -cS(h,,/~) for a function h E D(W) which is equal to 1 in a neighbourhood 

o f  S. We now have c~/3' = a ~ for a current/3' with compact  support in U' \ S, which 

vanishes on forms 9e as above. We transform the solution/3'  to a current in the 

manifold A. First we take the representation/3'  = ~k /3 ' ,  where {hk} is a finite 

partition o f  unity in U' with sufficiently small supports. Now we write each term 

with the help o f  a local coordinate system that includes the generators 91,--,  9z o f  

z(v): 

hk3'  = E ( o ~ ) J / 3 k j ~ ( g l ) . . . ~ ( g l ) d g l  A -." A dgl A dgl  A . "  A dot,  

J 

where the sum is finite and/3kj are compactly supported (m, m - 1)-currents in 

A \ S and (cg0)J = (001) j l . . .  (0g,)J', j = (jl ,  ..., Jr). It is easy to see that the current 

/3 = ~ 3 k 0  in A is a solution o f  the equation OA3 = a. [] 

10 E x p o n e n t i a l  r epresenta t ion  for a f a m i l y  o f  s y s t e m s  

We prove here Lemma 8.2. Let ~l(r) be the delta-function in Im 1HI = IRa 

supported by  the unit sphere S 2. Consider the tensor product  u = u 1'1 | 61 (r)dr. 
This is a distribution in U x Im N with values in the bundle ~ supported by  U x S 2. 

For any point s E S ~, the fibre R 0 f t h e  bundle is equal to R(q(s)), where q(s) is 

given by (2.1). We have (t(s)R = 0; hence (t(s)u(s) = 0, i.e., 

(lO.1) (4-:7-  y ~  - y=~= - y ~ ) ~ ( ~ , y ) = o ,  
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where yj, j = 1, 2, 3, are coordinates in ImH. Apply the Fourier transformation 

with respect to these coordinates: 

*2(x; 41,42,4a) = f y). 
J im  H 

The He-valued function ~2 is defined in U • (Im I/-1I)*. It is bounded in K x (Ira 1/,11)* 

for any compact  set K C U and satisfies the equation 

0 0 0 ~ ^ / 
( 1 0 . 2 )  ~ l  --  e l ~  1 --  e 2 04--- 2 --  e3--~3)U ~- O, 

which follows from (10.1). The equation 

(10.3) A~2 + ,2 = 0 

is a corollary o f  (y~ + y2 + y2 _ 1)61 (r) = 0. The function ~2 is polymonogenic with 

respect to the coordinates qj = ~-~xjkek, j = 1, ...,n. Thus fi is a solution o f  the 

large system (1.3), (10.2), (10.3) o fdifferential  equations with constant coefficients. 

It belongs to the space o f  distributions in U x (Irn IHI)* o f  moderate growth with 

respect to the coordinates 4. Now we write an exponential representation in this 

space like that o f  Theorem 6.1. We get 

~ ( , , e )  = s z4y ) Z ~jAj(~,y), (10.4) 

where .~" is the characteristic variety o f  the large system and Aj, j = 1, ..., n are 

He-valued currents in N that are defined on the space of  continuous functions 

: C 4n X Im 1/.11 ---+ Hc such that 

~ ~ = O ( e x p ( [ ( ] g ) ) ,  foreachi=(i l , i~ , ia)  a n d s o m e K e U .  

The set N is a subbundle o f  S 2 x C 4~ , and the fibre N'~ over a point s E S ~ is equal 

to the fibre NL of  the cone N over the corresponding left ideal L = L(gl(s)), i.e., N 

is the blow-up o f  the cone N with centre at the origin. The representation (10.4) 

can be proved by  methods o f  [7]. Now by (10.4), we have for an arbitrary function 

~O E D(Im II-1I) 

U(X~ ")(~3) 

where ~ denotes the inverse Fourier transform o f  ~b. The interior integral equals 

r  whence 

(10.5) .)(r = s v)r 
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Both sides vanish on functions o f  the form (Vl 2 + 2 2 V2 + V 3  - 1)r consequently, (10.5) 

can be extended to the space D(S2): 

This equation is equivalent to (8.2), and we need only specify the choice o f  the 

currents )~j to satisfy the condition supp ~j c N \ {0}. We choose a function 

e 6 79(U0) such that e = 1 in a neighbourhood of  the origin (Uo is the unit ball) 

and set ~ = (1 - e))~j + #j, where t~j is a current supported by ON n Uo which 

coincides with e)~j as a functional on the space H ( N  n Uo). We produce #3 by 

"sweeping away" h.~j from a neighbourhood of  the origin, i.e., by applying (8.15) 

and succeeding arguments. [] 
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