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1. I n t r o d u c t i o n  

Carath6odory [3] introduced the concept of a prime end, which enabled him to 

establish in a satisfactory way the correspondence of the boundaries under a 

conformal mapping between the unit disk and a bounded simply connected plane 

domain. Subsequently, 2-dimensional prime ends have been extensively studied 

from various points of view by several authors. In higher dimensions there are 

prime end theories by Kaufmann [15], Mazurkiewicz [21], and Freudenthal [8], but 

only Zori6 [36]-[38] studied prime ends from the point of view of mapping theory, 

the original motivation for Carath6odory's work. Zori(: established the 

Carath6odory theorem on the correspondence of boundaries for quasiconformal 

mappings of a ball. 

In this paper we investigate prime ends in n-space, n _-> 2, and, in Section 4, 

obtain the Carath6odory Correspondence theorem for quasiconformal mappings of 

collared domains. In contrast with the definition of Zori(:, we define prime ends in 

terms of quasiconformally invariant concepts. In Section 5 we give a metric 

characterization of prime ends, an n-dimensional analogue of the characterization 

used by Collingwood and Piranian [6] in the plane. A third approach to prime ends 

will be examined in Section 6. This is via the well-known Cantor-Meray-Hausdorff  

completion of a domain. The idea of using this approach for obtaining prime ends is 

due to Mazurkiewicz [20]. We generalize his methods to n dimensions. In Sections 

7 and 8 we study the impression of a prime end, that is, the set of boundary points 

which is naturally associated with the prime end. We prove a quasiconformal 

analogue of Koebe's theorem concerning arcwise limits and give a simple normal 

family argument for Gehring's quasiconformal version of Lindel6f's theorem 

concerning angular limits [9]. We also give a form of Lindel6f's theorem expressed 

in terms of boundary cluster sets and show that the boundary cluster set and the 

cluster set coincide for quasiconformal mappings of collared domains. An extension 
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of Lindel6f's theorem, due to Hall [13] in 2-space, will be proved for quasiconfor- 

mal mappings in n-space. An analogue of Tsuji's theorem on the correspondence 

of boundary sets of capacity zero will also be established. Carath6odory's  question 

whether every prime end of a domain can be accessible and nondegenerate will be 

answered negatively in n-space. In 2-space this was first proved by Weniaminott 

[34] and Urysohn [31]. In Section 9 this result will be combined with the fact that 

the boundary homeomorphisms of quasiconformal self-mappings of a collared 

domain act doubly transitively on each boundary component  to show that a 

quasiconformal mapping of a collared domain has a continuous boundary extension 

if and only if all arcwise limits exist for every quasiconformal self-mapping of the 

image domain. As a consequence we observe that a quasiconformal mapping of a 

collared domain has a homeomorphic boundary extension if and only if every 

quasiconformal self-mapping of the image domain has a continuous boundary 

extension. In Section 10 we briefly discuss difficulties arising in attempts to develop 

prime end theories for domains that are not quasiconformally equivalent to 

collared domains. 

2. P r e l i m i n a r i e s  

2.1. Notation. We consider sets in /~", n => 2, the M6bius space obtained by 

adding the point ~ to Euclidean n-space R". Stereographic projection from the 

n-sphere induces a natural metric q on/~",  the spherical metric, and all topological 

considerations in this paper refer to /~" and the topology induced on it by q. We 

also use the Euclidean metric d in R"  and the relative spherical metric qo in _R". 

The latter is needed only for domains D and it is defined by setting for Xm, x2 E D, 

qo (Xl, x2) = inf q ([ y [), 

where the infimum is taken over the spherical diameters of the loci of all paths y in 

D joining xl and x:. By a path we mean a continuous nonconstant mapping of a 

closed line interval into D, and A(E, F:  D)  will denote the family of all paths in D 

joining the set E to the set F. The modulus of a family A of paths is designated by 

M(A). Given a number  r > 0  and a point b E R", we let B"(b, r) denote the open 

(Euclidean) ball of radius r with center at b and we let S" ~(b,r) denote the 

boundary of B"(b, r). We write B"(r) for B"(0,  r), B" for B"(1)  and S"-l(r) for 

S" '(0, r). Let f be a mapping of a domain D and let b E 0D. The cluster set of f at 

b is defined as 

C(f,b)= n f ( U A D ) ,  
u 
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where U ranges over all neighborhoods of b. The cluster set C(fi E)  of f on a 

nonempty set E COD is defined as the union of the sets C(f,b), b ~ E. A 

homeomorphism f of a domain D is said to be K-quasiconformal, 1 5 K < 0% if 

1 M(A) <= M(fA)  <= KM(d~) 
K 

for each family A of paths in D. A homeomorphism is quasiconformal if it is 

K-quasiconformal for some K. 

2.2. Collared domains. Prime ends will be defined in Section 4 for domains that 

are quasiconformally equivalent to collared domains. A domain is said to be 

quasiconformally collared, or briefly, collared if each boundary point of the domain 

has an arbitrarily small neighborhood such that the part of the neighborhood inside 

the domain is quasiconformally equivalent to a ball. Collared domains have only 

finitely many boundary components, each of which is a compact ( n - 1 ) -  

dimensional manifold. Conversely, if a domain has only finitely many boundary 

components, each of which is an (n - 1)-dimensional C~-manifold, then the domain 

is collared. In particular, a ball is collared. A plane domain is collared if and only if 

its boundary consists of a finite number of disjoint Jordan curves. For proofs of 

these remarks and for further discussion of collaredness, the reader is referred to 

[24] and V~iis/il/i [32, w 17]. 

We list three extremal length results needed in subsequent sections, 

2 .3 .  L e m m a .  Let D be a collared domain and let F and F* be nondegenerate 

connected subsets of D. Then 

(1) M(dI(F,F*: D ) ) = ~  if and only if q(F,F*)=O. 
(2) For each r > 0  there is a 6 > 0  such that M(A(F,F*:D))>=8 whenever 

q (F)~  r and q(F*)>~ r. 

Let D be quasiconformally equivalent to a collared domain and let F and F* be 

nondegenerate connected subsets of D. Then 

(3) M(A(F, F*:  D))  = ~ if and only if qv(F, F*) = O. 

Condition (1) was proved by V~isfilfi [32, w 17] (see also [24]), while conditions (2) 

and (3) were proved in [25] and [24], respectively. 

3. C h a i n s  

3.1. Cross-set. A connected set E in a domain D is called a cross-set of D if E 

is closed in D, if /~ intersects aD, and if D - E consists of two components,  the 

boundary of each meeting 0D. 
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3.2. Chain. A sequence  (Ek) = El,  E2, - - - of cross-sets of  a domain  D is called 

a chain if Ek+~ separates  Ek and E~+2 in D for each k. Given a chain (Ek) in D, we 

denote  by Dk the componen t  of D - Ek containing Ek,~. The set 

l(Ek) = 0 /Sk 

is called the impression of the chain (Ek). As  an intersection of a decreasing 

sequence of cont inua,  I(E~) is either a con t inuum or a point. 

3.3. Prime chain. 

for each k and 

A chain (Ek) in a domain D is called a prime chain if 

M(A(Ek, Ek,,: D)) < 

lira M(A(A,  E~ : D) )  = 0 

for some (each, cf. [25]) cont inuum A in D. 

3 .4 .  R e m a r k .  Let f be a h o m e o m o r p h i s m  of a domain D on to  a domain D '  

and let (ilk) be a chain in D. Then (fEk) is a chain in D ' .  I f f  is quas iconformal  and 

if (E~) is a prime chain, then ([E~) is a prime chain. 

3 .5 .  L e m m a .  A chain (Ek) in a collared domain D is a prime chain if and 

only if q(Ek, Ek .d>O for each k and I(E~) reduces to a single boundary point. 

Moreover, for each boundary point b of D there is a prime chain (Ek) in D with 
{b} = I(Ek). 

Proof .  The first part follows immediately  from condit ions (1) and (2) in 2.3. 

For  the second part,  we may,  by [24, 2.3], choose  a ne ighborhood  U of b so that 

there is a h o m e o m o r p h i s m  g of U N / 5  on to  {x E B" : x, _-> 0} which is quasiconfor-  

mal in U VI D and maps b to the origin. Setting 

Ek = g- ' (R '2 71S~ 

k = 1,2, �9 �9 where R 7_ is the upper  half-space {x E R"  : x, > 0}, we obtain a prime 

chain (E~) in D with {b} = I(Ek). 

4. Pr ime  ends .  Q u a s i e o n f o r m a l l y  invar iant  def in i t ion  

Let D be a domain  which can be mapped  quasiconformally  on to  some collared 

domain.  Two chains (Ek) and (E~) in D, with (Dk) and (D~) the corresponding 
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sequences of subdomains of D, are equivalent if each domain Dk contains all but a 

finite number  of the cross-sets E;< and each domain D;~ contains all but a finite 

number  of the cross-sets Ek. An equivalence class P in the collection of all prime 

chains in D is called a prime end of D. (By Remark  3.4 and Lemma 3.5, there are 

prime chains in D.) The impression I (P)  of P is defined as the common impression 

of all chains belonging to P. A sequence of points bj (or sets Fi) in D is said to 

converge to a prime end P of D if, given a chain (Ek) belonging to P with (Dk) the 

corresponding sequence of subdomains of D, each Dk contains all but a finite 

number  of the points b, (or the sets ~ ) .  (Note that (hi) or ( ~ )  need not converge to 

any point in the ordinary sense.) 

Since we have defined the prime ends in a quasiconformally invariant fashion, an 

n-dimensional analogue of Carath6odory 's  prime end theorem is easily verified: 

4.1.  T h e o r e m .  Under a quasiconformal mapping f of a collared domain Do 

onto a domain D, there exists a one-to-one correspondence between the boundary 

points of Do and the prime ends of D. Moreover, the cluster set C(f, b), b ~ c~Do, 

coincides with the impression I(P)  of the corresponding prime end P of D. 

P r o o f .  We need only show that the boundary points and the prime ends of Do 

are in one-to-one correspondence.  Let ~ be the collection of all prime ends of D,,. 

In view of Lemma 3.5, we can define a surjective mapping g of ~ onto c~D, by 

setting 

g(P) = I(P)  

for each P E ~. We claim that g is bijective. If not, there is a point b in c?D(, and a 

prime chain (Ek) in Do, with (Dk) the corresponding sequence of subdomains of Do, 

such that O D k  = b = limbs, where (bj) is a sequence of points belonging to D o -  Dk 

for some fixed k. But since Do is collared, this implies that b E/~i for i _-> k. Thus 

q(Ek, E~) = 0, contrary to Lemma 3.5. 

In Theorem 4.1, we may consider D *  = D t) ~, the set obtained by adding to D 

all the prime ends of D, as a compact  Hausdorff space by extending the ordinary 

topology in D to D,* as follows: Let P be a prime end of D, let (Ek) be a chain 

determining P, and let (Dk) be the corresponding sequence of subdomains of D. 

Each Dk shall be a neighborhood of P and of each prime end of D that contains a 

chain whose elements all lie in Dk. This defines a Hausdorff topology on D* and, if 

D is collared, the inclusion mapping of /~ onto D*  is a continuous bijection. 

Theorem 4.1 may accordingly be stated in the following form: 

4 .2 .  T h e o r e m .  A quasiconformal mapping between a collared domain Do and 

a domain D can be extended to a homeomorphism between 1Do and the prime end 

compactification D *. 
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The set ~g of prime ends of D can be made into a metric space by choosing a 

quasiconformat mapping f of a collared domain D,, onto D and by adopting as the 

metric on ~e the spherical distance between the pair of points on OD,, corresponding 

to a given pair of prime ends of ~g. Under  this metric we have: 

4.3.  T h e o r e m .  ~ is a complete metric space and thus of the second category. 

P r o o f .  By Theorem 4.2, ~ is a complete metric space. By Baire's theorem, ~' 

is of the second category. 

The metric employed above depends on the mapping f. In Section 10 we will 

define an intrinsic metric on ~ without the introduction of an auxiliary mapping. 

For a simply connected domain D another  such metric will be presented in 

Section 6. 

As consequences of Theorem 4.1 we have: 

4.4.  C o r o l l a r y .  Every sequence (Fj ) of connected sets in D tending to OD with 

q(Fj)--*O has a subsequence converging to a prime end. 

P r o o f .  Let f be a quasiconformal mapping of a collared domain Do onto D 

and let A be a continuum in D. Then 

lim M(A(A,  F~: D))  = O. 

By the quasiconformality of f, 

lim M(A(f-mA, f-lFj: Do)) = 0. 

The modulus condition (2) in 2.3 implies 

lim q (f-lFj)  = 0. 

Hence a subsequence of (f-~Fj) converges to a boundary point of Do. Theorem 4.1 

concludes the proof. 

4 .5 .  C o r o l l a r y .  Every sequence of points in D tending to 3D contains a 

subsequence converging to a prime end. 

4.6 .  R e m a r k .  In 2-space, a somewhat different (quasi-) conformally invariant 

definition of prime ends, also given in terms of extremal length, was exhibited by 

Schlesinger [29] (cf. Ahlfors [1, 4-6]). 
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5. M e t r i c  c h a r a c t e r i z a t i o n  of p r i m e  e n d s  

We next give a metric characterization of prime ends. This is an n-dimensional 

analogue of the definition used by Collingwood and Piranian [6] for prime ends in 

the plane. It shows, in particular, that our theory, restricted to the case of a ball, is 

equivalent to the theory of Zori(:. (See [38, theorem 1].) Let D again be a domain 

which can be mapped quasiconformally onto a collared domain. 

5.1.  T h e o r e m .  Each prime end of D contains a chain (Ek) such that 

q(Ek)-~O and qD(Ek, Ek~) >O for all k. Conversely, a chain (E~) in D with these 

properties is a prime chain and thus determines a prime end of D. 

P r o o f .  The second part of the theorem is obvious. For the first part, let f be a 

quasiconformal mapping of D onto a collared domain D,,, let P be a prime end of 

D, and let b be the point of c)D,, corresponding to P under f. As in the proof of 

Lemma 3.5, we may choose a neighborhood U of b and a homeomorphism g of 

U A/),,  onto {x E B"  : x, _-> 0} so that g is quasiconformal in U N D,, and maps b to 

the origin. A well-known lemma of Gehring [9, p. 18] implies that there is a 

decreasing sequence of numbers rk ~ (0, 1) such that rk -->0 and 

q(Ek )--*O, 

where EL = ( g ~  '& with Sk = R ' l t ~ S " - ' ( r k ) .  For each k, q(g ' S ~ , g - ' & . , ) > 0  

and therefore 

M(A(fEk, fEk+,: Do)) < 2. 

By the quasiconformality of f, 

M(A(Ek, Ek ~,: D ) ) < ~  

and by condition (3) in 2.3, 

qD(Ek, Ek .,) > O. 

Since (EL) obviously belongs to P, the proof is complete. 

6. T h e  M a z u r k i e w i c z  de f in i t ion  for  p r i m e  e n d s  

In this section we generalize Mazurkiewicz' paper [20] to n dimensions. We 

obtain prime ends by completion of a metric space, where the definition of the 

metric is based on the intrinsic properties of the domain. 
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Let D be a simply connected domain which can be mapped  quasiconformally 

onto a collared domain.  Fix a closed ball B in D and for x . x 2 ~ D - B  let 

m (x,, x2) = inf {q (F): F ~ ~(x l ,  x2)}, 

where ~(Xl, x2) is the collection of all connected, relatively closed sets F in D 

separating B from {xl, x2} in D so that xj and x2 lie in one component  of D - F. 

6 .1.  L e m m a .  m defines a metric in D - B .  

P r o o f .  Obviously m assumes nonnegative finite values, m (x,, x2)= m (x2, x,), 

and m ( x , , x 2 ) =  0 if and only if Xl = x2. Thus it remains to prove the triangle 

inequality. For this, let x., x2, x3 E D - B and let r / >  0. Choose F, E o~(Xl, x2) and 

F2 E ,~(x2, x.0 so that 

q(F1)<=m(xl, X2)+n/2, q(Fz)<=m(x2, x3)+rl/2. 

Let Gj be the component  of D - F ,  containing xl and x2, and let G2 be the 

component  of D - F 2  containing x2 and x3. Then G = G1U G2 is a domain 

containing xl, x2, and x3. Let H be the component  of D - t~ containing the ball B 

and let F3 = D A OH. Since D is simply connected, F3 is connected and closed in D 

by the Pbragm6n-Brouwer  theorem. Therefore  F3 ~ ,~(x,, x3). Since F3 CF,  U F2, 

we see that 

m (x,, x3) ----< q(F3) =< q(F1) + q(b%) <= m (xl, x2) + m (x2, x3) + 7. 

Thus m defines a metric in D -  B. 

6.2. Equivalence of the metrics q and m. Since each point x E D - B has a 

neighborhood U such that q (Xl, x2) = m (xl, x2) for Xl, x2 E U, the metrics q and m 

are equivalent in D - B ,  i.e. q(xo, xk)---~O if and only if m(xo, x~)---~O, 

Xo, Xk E D -  B. 

6.3. Extension of m to D. Given any neighborhood V of B, V C D ,  we can 

extend, by a method of Hausdorff [14], the restriction m [ (D - V) to all of D so 

that it remains equivalent to q. (Since we are interested in the behavior  of m only 

near aD, the extension of m to all of D has nothing but technical relevance.) The 

domain D with metric m is denoted by Dr,. 

6.4. Completion olD,, .  The metric space D,, is not complete.  We complete  it by 

using the well-known Can to r -Meray-Hausdor f f  method. For this, we divide the 
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fundamental  sequences of Dr, into equivalence classes by regarding two such 

sequences (xk) and (yk) as equivalent if 

l im m (x~, y~) = O. 

It is easy to see that all sequences of the same equivalence class either converge to a 

certain point of D, or do not converge at all. In the second case the class of 

sequences is said to determine a boundary element of D. The sequences determin- 

ing a boundary element are said to converge to this boundary element.  

Let D*  be the set obtained by adding to D all the boundary elements  of D and 

for xT, x2*ED* let 

m *(x *, x *) = lira m (xik, x2k ), 

where (x~) and (x~k) are sequences in D converging to x* and x*, respectively. 

Then m* defines a metric in D*,  D is contained isometrically in D*,  i.e. 

m (x~, x~) = m *(x~, x2) for xj, x2 E D, D is dense in D *, and D * is complete.  The set 

D*  with metric m * will be called the Mazurkiewicz completion of D and denoted 

by D*.  

6.5.  R e m a r k .  The above completion method applied to the domain D with 

metric q would lead to the ordinary boundary aD, while the metric qo would give 

the accessible boundary points of D. The following theorem shows that D *  - D, the 

Mazurkiewicz boundary of the simply connected domain D, can be identified with 

the set of prime ends of D. 

6.6.  T h e o r e m .  The prime end completion D* of D and the Mazurkiewicz 

completion D* of D are equivalent, i.e. there exists a homeomorphism of D * onto D* 
which reduces to the identity in D. 

P r o o f .  Let D,, be a collared domain equivalent to D and let f be a 

quasiconformal mapping of Do onto D. By Theorem 4.2, f can be extended to a 

homeomorphism f* o f / )o  onto D *. Thus we need only show that f can be extended 

to a homeomorphism fZ of/50 onto D~*. For this, let xoE ODo, let (xs) and (Ys) be 

two sequences of points in Do converging to xo, and let P be the prime end of D for 

which f*(x,)= P. By Theorem 5.1, P contains a chain (Ek), with (Dk) the 

corresponding sequence of subdomains of D, such that q(Ek)--->O. Since 

f(xs), f(Yi) E Dk for all j greater  than some j (k), it follows from the definition of the 

metric m that (f(xs)) and (f(yj)) are equivalent fundamental  sequences in D*.  Thus 

they converge in DZ to an element x* E D * - D  and, consequently, f can be 

extended to a continuous mapping f~ of /3o onto D* .  
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If f*  is not a homeomorphism,  there exist sequences (xk) and (yk) in D 

converging in D *  to an element x * ~  D * , -  D so that 

l imf  ' ( x k ) / l i m f  '(yk). 

Fix a continuum A in D. Since 

lim m (xk, yk) = 0, 

there exists, by the definition of the metric m, a sequence (Dk) of subdomains of D 

such that xk, yk E Dk and 

M(a(A,  Dk: D))--->O. 

But since f-~A and each f 'Dk are connected sets in f ' D  = Do with q(f-~A)>= r 

and q(f  'Dk)>= r for some r > 0 ,  

M ( A ( f - ' A ,  f - ' D k  : D0))-/4 0, 

by condition (2) in 2.3. This contradiction to the quasiconformality of f shows that 

f*  is a homeomorphism.  The proof is complete.  

7. T h e o r e m s  of Koebe ,  Lindel6f ,  and Tsuji  

7.1. Accessible prime ends. Koebe's Theorem. Let D again be a domain 

quasiconformally equivalent to a collared domain. A point b E OD is accessible 

from D if there is a closed Jordan arc lying in D except for one endpoint,  b. Such 

an arc is called an end-cut of D from b. The point b is accessible relative to a prime 

end P of D if b belongs to the impression I(P)  of P and there is an end-cut 

Y: [0, 1]---~D tA{b} with 3,(1)= b such that 3' converges to P, i.e. y~--~P where 

yk = 3,[1 - 1/k, 1). A prime end is called accessible if its impression contains an 

accessible point relative to the prime end. By Corollary 4.4, every end-cut 

converges to an accessible prime end. Let f be a mapping of D into/~".  The cluster 

set o f f  at b along an end-cut 3' from b is denoted by C~(f, b). If C~(f, b) = {b'}, then 

b '  is called an asymptotic value or arcwise limit of f at b. 

A well-known theorem of Koebe [16] states that a conformal mapping of a simply 

connected plane domain D onto the unit disk has arcwise limits along all end-cuts 

of D. An analogous result holds for quasiconformal mappings in n-space. 

7.2.  T h e o r e m .  A quasiconformal mapping f of a domain D onto a collared 

domain has arcwise limits along all end-cuts of D. 
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P r o o f .  Let y be an end-cut of D from a point b E OD. Choose a continuum A 

in D and a sequence of neighborhoods Uk of b so that A U k  = {b} and 

yk = Uk f3 D f3 y is connected. Then 

lira M(A(A, yk : D)) = O. 

By the quasiconformality of f, 

l imM(A(fA, fyk: fD))= O. 

The modulus condition (2) in 2.3 implies 

limq(fTk) = 0, 

i.e. f has a limit along Y. 

The proof shows, in fact, that a quasiconformal mapping of D onto any domain 

D '  satisfying the modulus condition (2) in 2.3 has arcwise limits along all end-cuts of 
D. Such domains D '  were studied in [25] and Paika [26]. 

7.3. Principal and subsidiary points. Lindel6f's Theorem. A point b E I(P) is 

called a principal point (relative to the prime end P)  if every neighborhood of b 

contains a cross-set of a chain belonging to P. Thus b is the limit of a convergent 

chain in P. The set of principal points of I(P) is denoted by II(P). Other  points of 

I(P) are called subsidiary points. By Theorem 5.1, I(P) always contains at least one 

principal point. Obviously 

II(P) C C(y, 1) 

for every half-open path 3': [0, 1)---~ D converging to P. If H(P)  = C(y, 1), then 3' is 

called a principal path. The following analogue of Lindel6f's theorem [I 9] concern- 

ing angular cluster values guarantees the existence of principal paths. An end-cut of 

B"  from b @ OB" is called angular if it is contained in a cone {x E R"  : (b I b - x) > 

I b - x I cos q~ } for some q~ E (0, "rr/2), where (. ] �9 ) denotes the usual inner product. 

7.4.  T h e o r e m .  Under a quasiconformal mapping f of the ball B", the cluster 
set C~(f, b) on any angular end-cut y of B" from b E cgB" is the set H(P)  of principal 
points of the prime end P of fB" corresponding to b under f. 

P r o o f .  This result follows from the proof of a similar theorem of Gehring [9, p. 

19]. However,  we give here a slightly different proof using normal families. 
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By performing a preliminary M6bius transformation, we may replace the ball B" 

by the upper half-space R 7- and assume that b is the origin. Let K~ denote the cone 

{x E R~: Ix I< ad(x, c~R2)}, where a > 0  is chosen so that y lies entirely in K~. 

Since II(P) C C~ (f, 0), it suffices to show that given a sequence (bk) on 3/with bt ~ 0 

and f(bk)--~ b', the point b' is a principal point of I(P). For this, let Ak denote the 

closed spherical annulus t bk I/2 =< Ix I -----< ] bk I and let Ht = At N R 7-. For each k let 

Sk CAk be a sphere centered at the origin chosen so that 

q(fS;)--~O, 

where S ; =  St fqR7 (Gehring [9, p. 18]). For x ~ R7 let 

g~(x): ~ jb, tX, ft = f o g ~ .  

Then fk assumes the same values in H~ that f assumes in Hk. Since each fk omits 

two fixed values, (ft) is a normal family (V/iis/il~i, [32, w 20]). Hence there is a 

subsequence (ftj) of (fk) converging to a constant or to a homeomorphism 

uniformly on H 1 0 / ~  (V~iis~il/i [32, w 21]). Since C(f, 0) C OfR ~, the limit mapping 

must be constant, and since f(bk)---~ b', we have fkj(H~ tq F,~)---~ b'. This, together 

with the facts that q(fSt*,)-~,O and fS~j meets fk,(H~ f3 F,,.), implies 

fSk+--) b '. 

Hence b' is a principal point of I(P), as desired. 

Theorem 7.4, combined with 7.3, gives 

7.5. C o r o l l a r y .  Let f be a quasiconformal mapping of B" and let b' be an 

arcwise limit of f at a point b E cgB". Then b' is the angular limit of f at b. 

In the case of a collared domain, we obtain from Theorem 7.4 

7.6. C o r o l l a r y .  Let f be a quasiconformal mapping of a collared domain D 

and let P be the prime end of fD corresponding to a given point b of 3D under f. Then 

ri(P) = n c~(f, b), 
V 

where y ranges over all end-cuts of D from b. Moreover, there are end-cuts 3/of D 

from b such that I I (P)=  C~(f, b). 
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7.7.  C o r o l l a r y .  The set of principal points of a prime end is either a point or a 

continuum, while the set of subsidiary points is either empty or has the cardinality of 

the continuum. 

Corollary 7.6, together  with the fact that an end-cut converging to a prime end 

meets  all but a finite number  of the cross-sets of any chain in the prime end, gives 

7.8.  C o r o l l a r y .  A prime end is accessible if and only if its impression contains 

only one principal point. 

7.9.  C o r o l l a r y .  The impression of a prime end contains at most one accessible 
point relative to the prime end, which, if it exists, is the sole principal point of the prime 

end. 

7.10. Correspondence of sets of capacity zero. Tsuji's Theorem. Let F be a 

compact  proper  subset of /~" .  Then M(A(F, aU:/~"))  > 0  either for each or for no 

neighborhood U of F, 0 g / ~ " .  (See e.g. [25, 3.2].) The set F is said to be of positive 

(conformal) capacity in the first case and of (conformal) capacity zero in the second 

case. An arbitrary set A is of capacity zero, denoted c a p A  = 0, if each of its 

compact  subsets is of capacity zero. 

Regetnjak [28] uses capacities of condensers for classifying compact  sets of 

positive capacity and compact  sets of capacity zero. Both methods lead to the same 

classification, because M(A(F, aU:  /~")) = cap (F, U)  by Ziemer  [35]. By a result of 

Re~etnjak [28], the c~-dimensional Hausdort t  measure of a compact  set of capacity 

zero is zero for every ~ > 0. 

A well-known theorem of Tsuji [30] states that, under a conformal mapping of 

the unit disk B 2 onto a domain D ' ,  cap A = 0 whenever A C a B  2 corresponds to a 

compact set A '  of accessible boundary points of D '  with cap A '  = 0. An analogous 

result holds for quasiconformal mappings in n-space. To prove this, we introduce 

7.11. Asymptotic extension. For a quasiconformal mapping f of a collared 

domain D and for the set A t of points in aD where f has an asymptotic value, we 

let t denote the asymptotic extension o f f  to D U At. That is, f ( x )  = f ( x )  for x E D, 

while f (x )  equals the asymptotic value of f for x E A t. By Corollary 7.9, )~ is 

well-defined. 

7 . 1 2 .  T h e o r e m .  Let  f be a quasiconformal mapping of B" and let A '  be a 

compact set of asymptotic values o f f  with c a p A ' - -  0. Then cap / -1A  ' =  0. 

P r o o f .  Choose a closed arc F '  in D '  = fB" and let A' be the family of all open 

paths in D '  that have endpoints in A '  and F ' .  Then M(A') = 0, because cap A '  = 0. 
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Let A = f- 'A' .  By the quasiconformality of f, 

m ( a )  = o. 

By Theorem 7.2, each path in A has two endpoints, one in A = t IA' and the other 

in F = [-'F'. Let Ao be the family of all open paths in B", not belonging to A but 

having two endpoints, one in A and the other in F. Then each path in fAo is 

nonrectifiable, because /A = A' .  Hence M ~ A o ) =  0 by V~iis~il/i [32, 6.11]. The 

quasiconformality of f implies 

M ( a , , )  = 0. 

By V~iis~il~i [32, 7.10], M(AoUA) is equal to the modulus of the corresponding 

family A(A, F: B" )  of closed paths. Hence 

M(A(A, F: R"))/2 =< M(A(A, F: B") )  < M(Ao) + M(A) = 0 

by the symmetry principle of the modulus. (See Gehring [10].) Therefore  cap A = 

0. 

7 .13.  C o r o l l a r y .  Let f be a continuous mapping of B" such that f maps B" 

quasiconformally onto a domain D and let A be a set in OD with cap A = 0. Then 

c a p f - ' A  = 0. 

A quasiconformal analogue, due to Zori~ [39], of Beurling's theorem [2] 

concerning angular limits of a conformal mapping follows easily: 

7 .14.  C o r o l l a r y .  Let f be a quasiconformal mapping of B" onto a domain D 

and let A be the set of all points in OB" where f has an angular limit. Then 

cap (OB" - A )  = 0 and the set of angular limits coincides with the set of accessible 

boundary points of D. 

P r o o L  By Corollary 7.5, the set of asymptotic values of,f in OB" - A is empty. 

If Ao is the family of all end-cuts of B"  with one endpoint in aB" - A, then each 

path in ]'Ao is nonrectifiable and, therefore, M(Ao) = M(fAo)= 0. This implies that 

cap ( O B " - A ) =  0. The second assertion follows from Theorem 7.2. 

7.15. Extensions of Lindel6f's Theorem, Hall's Theorem. Given a set F and a 

point b #  0% let A = {r > 0: F f3 S"-~(b, r) # QS}. If A is measurable with respect to 

Lebesgue 1-measure mr, we define the lower radial density of F at b as 
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rad dens (F, b) = l iminf m ' (A n (0, r)) 
r ~ 0  r 

In terms of radial density, theorem 6 of Gehring [9] and Theorem 7.4 in this paper 

can be strengthened as follows: 

7 .16.  T h e o r e m .  Let f be a quasiconformal mapping of B", let P be the prime 

end of ]:B" corresponding to a given point b of OB" under ]:, and let ] be the asymptotic 

extension of ]: to B" U A I. Then 

II(P) = n cv(], b), 
F 

where the intersection is taken over the cluster sets o f t  at b along all sets F in B" U A I 

]:or which raddens(F,  b) >0 .  

Proof .  It suffices to show that H(P)  is a subset of n Cv(j, b) (Theorem 7.4). By 

performing a preliminary MSbius transformation, we may replace the ball B"  by 

the upper half-space R7 and assume that b is the origin and that f (B"  n R+) is 

bounded. Let F be a set in R 7 U Ai for which rad dens (F, 0) > 0. Choose c E (0, 1) 

and r,, > 0 so that 

m,(A n (0, r)) ~ cr 

for r E (0, r,,), where A = {r > 0: F N S"-'(r) # 0}. Fix a point b' in H(P).  Since b' 

is a principal point of the prime end P, there is a sequence (b~) of points in 

R7 n B'(ro) converging to the origin angularly so that f(bk)---, b'. Let Ak denote 

the closed spherical annulus c I bk I =< Ix l --<lb~ I, let Hk = Ak n RT_, let Lk denote the 

closed line interval [c I bk [/2, I bk I], and let Io be the set of all r > 0 such that ]: fails to 

have an asymptotic value for at least one point of OR+ n S'-l(r).  From Corollary 

7.14 it follows, by Fubini's theorem, that m,(Io)= O. 

Next let 

Ek = A  n L k - I o  

and for r E (0, 1) let 

o s c ( f , r ) =  sup I f ( x ) - f ( y ) l ,  
x,y~S(r) 

where S(r )= R 2 A  S"-l(r). An n-dimensional analogue of a well-known lemma 

due to Gehring [9, p. 18] implies 
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f [osc(f, r)]" dr< f [osc(f, r)] "dr<- Cm.(H'~), 
r = r - -  

Ek Lk 

where H~ = fHk and C is a positive constant depending only on n and the maximal 

dilatation of f. Since m,(A  0 (0, I bk I)) >-- c[ bk I, it follows that 

Therefore 

m,(Ek) = > clbk I/2. 

osc (f, r~ ) <= (2Cm. (H'k)/c )l'" 

for some rk E Ek. Since m,(H'k)---~O as k ---~ oo, we conclude that 

q(fS(rk))----~O. 

The normal family argument of Theorem 7.4 shows that 

~S(r~,)---~ b' 

for a subsequence (rk,) of (rk). Since/~ 7 71 S "-'(r~j) meets F and since )/is defined in 

/~7- A S" ~(rkj), we conclude that b ' E  C ~ ,  b), as desired. 

As a consequence we have a quasiconformal analogue in n-space of a theorem 

due to Hall [13]. (For additional results in this direction, see Vuorinen [33].) 

7 .17.  C o r o l l a r y .  Let f be a quasiconformal mapping of B" and let the 
asymptotic extension o f f  to B" U A I have a limit b' at a point b E OB" along a set F 
in B" tO A I with rad dens (F, b ) >  0. Then b' is the angular limit of f at b. 

A well-known theorem of Tsuji states that under a conformal mapping f of the 

unit disk B ~, there exists for each point b E OB 2 a sequence of circular arcs 

y k = B 2 N S ' ( b ,  rk) such that rk----~0, q(fyk)----~0, and f has angular limits at 

endpoints of yk. The proof of Theorem 7.16 shows that an analogous result holds 

for quasiconformal mappings in n-space, thus providing a slightly strengthened 

version of a result of Gehring [9, p. 18]: 

7.18.  C o r o l l a r y .  Let f be a quasiconformal mapping of B", let b E dB", and 
let P be the prime end of fB ~ corresponding to b under[. Then for each point b' ~ II(P) 

there exists a sequence of numbers rk --+0 such that f ( B  ~ 71S"-~(b, rk ))---~ b' and[has  
angular limits at all points of OB ~ Cl S"-~(b, rk ). 
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7.19. Boundary cluster sets. Let f be a mapping of a collared domain D and let 

b E 0D. The boundary cluster set of f at b is defined as 

CoD(f,b)= n C(f, U N O D - { b } ) ,  
u 

where U ranges over all neighborhoods of b. The boundary cluster set of f at b 

along a set F C a D  is defined as 

Obviously, 

Coo.,~(f, b) = n C(f, u n F - {b}). 
u 

Coo, v(f, b) C CoD (f, b) C C(f, b). 

Corollary 7.18 implies the following form of Lindel6f's theorem in terms of 

boundary cluster sets: 

7 .20.  C o r o l l a r y .  Let f be a quasiconformal mapping of a collared domain D 

and let P be the prime end of fD  corresponding to a given point b of aD under f. Then 

ri(P) c q~.~ff, b) 

for each arc 3' in cgD terminating at b. 

It is known that C(f, b) may differ from Coo (f, b) even i f / i s  analytic and D is the 

unit disk. (See, for example, Collingwood-Piranian [6].) The following theorem 

shows that this cannot happen if f is quasiconformal. 

7 .21.  T h e o r e m .  Let f be a quasiconformal mapping of a collared domain D, 
let b E cgD, and let f be the asymptotic extension of f to D U A t. Then 

C(f, b) = CoD(f, b) = C ( f  l At, b). 

P r o o f .  Obviously C( f ,b )  D Coo(f,b) D C ( f l A ~ , b  ). Let b ' E  C(f ,b) ,  let P be 

the prime end of D '  = fD corresponding to b under f, and let I(P) = n/5~,, where 

(D;,) is a nested sequence of subdomains of D '  determined by a chain (E;,) in P with 

q(E'k)---~O (Theorem 5.1). By collaredness of D and by Corollary 7.18, every 

principal point of I(P) = C(f, b) belongs to C ( f  I A r, b). Assume, therefore, that b' 

is a subsidiary point of I(P) and that b' J ~. Choose x ~ ~ D;, so that x ~,---~ b', join x~, 
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to b' by a line segment L~, and denote by b~ the first point at which L~, meets OD'k. 

Obviously b~---~ b'. Moreover b'k~ OD' for all k sufficiently large, because other- 

wise b~, would lie in OD'k- OD', hence in E~, and b' would be a principal point of 

I(P). It is clear, furthermore,  that b~: ~ b' for each k, because otherwise b' would 

again be a principal point of I(P). We conclude that, for large k, b~, is accessible 

from D '  and f ' has an arcwise limit, bk, at b;, along L t  (Theorem 7.2). Since 

f ' D ' k - ~  b, it follows that bk --~ b, and therefore b ' E  C( f ]  At, b). 

7.22.  C o r o l l a r y .  A quasiconformal mapping f of a collared domain D has a 

limit at a boundary point b if and only if the asymptotic extension o f f  to D U A s has a 
limit at b along A s. 

7.23.  C o r o l l a r y .  A quasiconformal mapping f of a collared domain D can be 

extended to a continuous mapping of D if and only if the asymptotic extension o f f  to 

D O A s has a limit along A s at every point of aD. 

8. T h e  c lass i f icat ion of pr ime  end s  

8.1. A problem of Carath~odory. Let D again be a domain which can be 

mapped quasiconformally onto a collared domain. Following Carath6odory [3] we 

say that a prime end of D is of the first, second, third, or fourth kind according as its 
impression consists of 

(1) only one point (necessarily a principal point), 

(2) one principal point and some subsidiary points, 

(3) more than one principal point and no subsidiary points, 

(4) more than one principal point and some subsidiary points. 

We have already agreed to denote the set of prime ends of D by g'. The subset of 

of prime ends of i-th kind will be denoted by g',, i = 1,2,3,4. 

By Corollary 7.8, a prime end is of the first or second kind if and only if it is 

accessible. We also recall that the principal points of a prime end of the third or 

fourth kind form a continuum, and the subsidiary points, whenever they exist, form 
an infinite set (Corollary 7.7). 

By Theorem 4.1, g' = ~1 if and only if a quasiconformal mapping of a collared 

domain onto D extends continuously to the boundary. Continuous boundary 

extension of quasiconformal mappings was studied in some detail in [24]. From 

results there it follows that ~ = ~, if and only if D is finitely connected on the 

boundary, that is, each point in OD has an arbitrarily small neighborhood U such 

that U n D contains only a finite number of components. Alternatively, ~' = g'~ if 

and only if D satisfies the uniform modulus condition (2) in 2.3. 

Caratheodory raised the question of whether it is possible that ~' = ~'~ for a 

simply connected plane domain. This question has been answered in the negative 
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by Weniaminott [34] and Urysohn [31]. The situation remains unchanged in higher 

dimensions. This follows from an n-dimensional version of a theorem due to 

Collingwood [41: 

8.2.  T h e o r e m .  The set ~z U 33 of prime ends having only principal points is a 

residual subset of the set ~. 

Proof .  Let f be a quasiconformal mapping of a collared domain D,, onto D. By 

[24, 2.3], each boundary point of Do has a neighborhood U such that there is a 

quasiconformal mapping g of U N Do onto 13" which exteads to a homeomorphism 

g* of U n / )0 .  Theorem 7.4 implies that, for each point b E g*(U N ODo), the 

radial cluster set of fog  ~' at b equals the set H(P)  of principal points of the 

corresponding prime end P of D. On the other  hand, a well-known maximality 

theorem of Collingwood [4, theorem 7] implies that the radial cluster set of f og - '  

equals the complete cluster set I(P) of f og - '  at each point of g *(U N c~Do), except 

possibly for a set of the first category on cgB ~. It follows that I I ( P ) =  I(P) for all 

prime ends P of D corresponding to the points of U O 8Do, except possibly for a 

set of the first category. Since 8D0 can be covered by a finite number of such 

neighborhoods U, we conclude that I I ( P ) =  I(P) for all prime ends of D, except 

possibly for a set of the first category. This proves the theorem. 

8.3. Corol lary .  3 ~  ~2. 

8,4,  R e m a r k .  Corollary 8.3 says that it is not possible for all prime ends of D 

to be accesible and nondegenerate.  In fact, it is not possible for all prime ends of D 

to have subsidiary points, i.e. 3 ~ 3 2 U  34, for ~2U34 is of the first, category 

(Theorem 8.2), while 3 is of the second category (Theorem 4.3). We also note that 

3 ~  33 U 34, because D contains accessible boundary points, hence accessible 

prime ends. 

The diameter of a prime end P is defined as the diameter of the impression I(P). 

A subset of 3 is called an arc if it corresponds to an arc on the boundary of a 

collared domain under a quasiconformal mapping. We conclude this section with 

the following observations, the 2-dimensional versions of which are due to Piranian 

[27]. 

8.5. T h e o r e m .  31 is a G~-set,  while 3~ U ~2 is an F~-set having the cardinal- 

ity of the continuum on each arc of 3. 

Proof .  Obviously 31 = n M~, where Mj denotes the set of prime ends of D of 

diameter less than 1/j. Let P be a prime end of D, let (Ek) be a chain in P with (Dk) 

the corresponding sequence of subdomains of D, and suppose that each neighbor- 
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hood of P in D U ~' (in the sense of Theorem 4.2) contains a prime end of diameter  

at least 1/j. Then every set Ok is of d iameter  at least 1/j and therefore the diameter  

of P is at least 1/j. Consequently,  each ~ - Mj is closed, hence Mj is open in ~, and 

therefore ~, is a G~-set. 

Let f be a quasiconformal mapping of a collared domain D,, onto D. By [24, 2.3], 

each boundary point of Do has a neighborhood U such that there is a quasiconfor- 

mal mapping of U n Do onto B" which can be extended to a homeomorphism of 

U n D,, onto/~".  The set of points on 3B" where a continuous mapping of B" fails 

to have radial limits is a G~-se t  (see, for example,  [5, p. 23]). Therefore,  since 0D0 

can be covered by a finite number  of the neighborhoods U, the set of points in ODo 

where f fails to have asymptotic values is a G~-se t ,  so its complement  in OD0 is an 

F~-set .  This set corresponds to ~1 U ~'2 under f. Since D is quasiconformally 

equivalent to a collared domain, every arc on ~ contains a subarc corresponding 

to an arc on OB" under a quasiconformal mapping of B". Therefore,  since the 

complement  of any set of capacity zero with respect to any arc has the cardinality of 

the continuum, the last assertion follows from Corollary 7.14. 

The first part of the proof gives 

8.6.  C o r o l l a r y .  For every positive number h, the set of prime ends of diameter 

at least h is closed. 

9. Trans i t i ve  ac t ion  and  b o u n d a r y  ex tens ion  

9.1. Quasiconformally homogeneous boundaries. Let ,~ be a family of 

homeomorphisms of a set F onto itself. We say that ~ a c t s  m-transitively on a set 

E C F  if, given any m points a l , ' " ,  am of E and any m points b~,--- ,  b,~ of E, 

there is a mapping f in ,~ such that f (al)  = bi, i = 1 , . . . ,  m. The family ~ is said to 

act transitively if it acts 1-transitively. We will show that the induced boundary 

homeomorphisms of the group of quasiconformal self-mappings of a collared 

domain D C/~ ~ act m-transitively, m = 1, 2 , - . . ,  on each boundary component  of 

D, provided n _-> 3. For n = 2 the boundary homeomorphisms act 2-transitively. 

This result will be combined with Corollary 8.3 to yield two theorems on the 

boundary extension of quasiconformal mappings. We begin with the following local 

result: 

9 .2.  L e m m a .  Let b be a boundary point of a collared domain D and let U be a 

neighborhood of b. Then there is a neighborhood N C U of b and a K >= 1 with the 

following property : given a point b' in N n a D ,  there is a homeomorphism f of D onto 

itself such that f is K-quasiconformal in D, f (x  ) = x for x E D - U, and f (b  ) = b'. 

P r o o f .  Since D is collared, there is a neighborhood V C U  of b and a 
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quas iconformal  mapping  g of V n D onto  B". By [24, 2.3], we may assume that g is 

a h o m e o m o r p h i s m  of V n / )  into/3".  For  0 < a < 1 let C,, deno te  the open  cone 

C~ = {tx: t > 0 ,  x E B " ( g ( b ) , a ) n  OB"} 

with vertex at the origin. Fix a E (0, 1) such that C2, n OB" lies in g ( V  n OD). Let 

N ' =  C,~ n / 3 "  and N = g  ' N ' U ( V - / 3 ) .  We show that the lemma holds for N. 

Fix b ' E  N N OD. Since g(b ' )C (2,, n OB", there is a bi-Lipschitzian 

h o m e o m o r p h i s m  h of /3" on to  itself (a "modif ied  ro ta t ion")  such that h(g(b) )= 

g(b'), 

h(x)  = x 

for each x in /3" - C~,, 

Ih(x)[ = Ix J 

for each x in /3", and 

L ~ l x - y l < ~ l h ( x ) - h ( y ) I = < L t x - y l  

for all x ,y  in /3". Here  L is a constant  depending  only on a and n. 

Define 

1 f(x)={ g ohog if x~Dnv, 

x i f x ~ l g - V .  

Since h is L2"-quas iconformal  in B n, it follows that f is K-quas iconformal  in D 

with K = L2"K(g) 2, where K(g)  denotes  the maximal dilatation of  g in V n D. 

Moreover ,  f ( x )  = x for x ~ / 0  - U and f (b)  = b'. Hence  f is a mapping  with the 

desired properties.  

9 .3 .  T h e o r e m .  Given a collared domain D, there is a K >_ 1 such that the 

boundary homeomorphisms of the K-quasiconformal self-mappings of D act trans- 

itively on each boundary component of D. 

P r o o f .  For  U = R m ,  b ~ O D  choose N = N b  and K = K b  as in L e m m a  9.2. 

Since 0D is compact ,  a finite number  of such Nb's, say N~, . . . ,  N,. covers aD. We 

show that the theorem holds for K = (KIK2 " "  Kp) 2, where K,, i = l , . . . , p ,  is the 

constant  cor responding  to N~. 
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Let a and b be two points in a boundary  component ,  B, of OD. We may assume 

that a ~ N,. Choose  a subset, {N~,. - -,Nm}, of {N~,- . . ,  Np} so that b E Nm and 

B ("l '~/'i ('] Ns~l r Q~" Set a,, = a, a~, = b, and for j = 1,. -. ,  m - l choose 

a, ~ B VI Nj VI Nj+l. By L e m m a  9.2, for each ] = 1,. �9 .. m there is a h o m e o m o r p h -  

ism f, o f / ~  on to  itself such that f is K~-quasiconformal  in D and ~ (ai_~) = as. The 

mapping f = f,, . . . . .  f, is a h o m e o m o r p h i s m  o f / 5  on to  itself, K-quas iconformal  in 

D, and f ( a )  = b. 

9 .4 .  T h e o r e m .  7he boundary homeomorphisms of the group of quasiconfor- 

mat self-mappings of a collared domain O C R ~, n >2, act m-transitively, m = 

l, 2 , , . . ,  on each boundary component olD.  If n = 2, the boundary homeomorphisms 

act 2-transitively on each boundary component. 

P r o o f .  Let B be a boundary  c o m p o n e n t  of D and let a , , . . . , a , ,  E B, 

b , , . " ,  b,, E B. By T h e o r e m  9.3, there is a h o m e o m o r p h i s m  f, of  /} on to  itself 

which is quas iconformal  in D and takes a, to b,. Since B is a connected  

(n - 1 ) - m a n i f o l d - -  for  n = 2, B is a closed Jordan  c u r v e - -  we can join fl(a2) to b2 

by a closed path L2 in B so that L2 does not meet  b~. Let U2 be a ne ighborhood  of 

L2 with b~ ff 02. Apply ing  Lemma 9.2 repeatedly,  we first find a h o m e o m o r p h i s m  ]:2 

o f / }  on to  itself such that f2(f~(a2)) = b2, f2 iS quas iconformal  in D, and fz(x) = x for 

x E / ) -  02. The  composed  mapping  f '=f2of~ is quas iconformal  in D and 

f'2(a~) ~ b~, i = 1,2. Thus  the boundary  h o m e o m o r p h i s m s  act 2-transitively on B. If 

n > 3 and m > 3, we can join f~(a3) to b3 by a closed path L3 in B so that L3 does 

not meet  {b~, b2}. The above procedure  gives a h o m e o m o r p h i s m  f ;  o f / 5  on to  itself 

which is quas iconformal  in D and takes a, to b~, i = 1,2, 3. The  desired mapping is 

obtained after m - 1 such steps. 

9 .5 .  T h e o r e m .  A quasiconformal mapping f of a collared domain D can be 

extended to a continuous mapping o l D  if and only if all arcwise limits exist for every 

quasiconformal self-mapping of fD. 

P r o o f .  If f can be extended to a cont inuous  mapping o f /5 ,  then all the prime 

ends of D ' =  fD are of the first kind. Since every end-cut  of D '  converges  to a 

prime end, so does its image under  a quasiconformal  self-mapping of D ' ,  and the 

necessity of the condi t ion follows. 

For  the sufficiency, observe first that  every boundary  c o m p o n e n t  of D' contains 

accessible points, hence  accessible pr ime ends. By Theorems  4.2 and 9.3, any two 

prime ends of the same boundary  c o m p o n e n t  cor respond to each other  under  some 

quasiconformal  self-mapping of D'. Therefore ,  the extension condit ion implies that 

every prime end of  D '  is accessible, hence  ei ther  of the first or  of  the second kind. 

Let P,  i = 1,2, be a pr ime end of i-th kind on a fixed boundary  c o m p o n e n t  of D ' ,  let 
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b, be the point of OD corresponding to P, under f, and let (xk) be a sequence of 

points in D converging to b2 so that the points f(xk) do not converge. Since D is 

collared, we can construct an end-cut 7 of D from b2 containing all the points xk. By 

Theorem 9.3, there is a quasiconformal mapping g of D onto itself whose 

homeomorphic  extension t o / 9  takes b, to b2. Then 7 ' =  f~ is an end-cut of 

D '  from the point I (P0  and fog  of-~ is a quasiconformal mapping of D '  onto itself 

which does not have a limit along 7'. Consequently,  either all the prime ends of a 

given boundary component  of D' are of the first kind or all are of the second kind. 

By Corollary 8.3, all the prime ends of D '  must be of the first kind. Thus f has an 

extension to a continuous mapping of /3. 

As a consequence we have the following result, proved by Erkama [7] for 

D = B ~ using a somewhat  different argument.  

9.6.  T h e o r e m .  A quasiconformal mapping f of a collared domain D can be 
extended to a homeomorphism of D if and only if every quasiconformal self-mapping 
of fD can be extended to a continuous mapping of fD. 

P r o o f .  If f can be extended to a homeomorphism of /3, then D ' =  fD is 

collared and, therefore,  the necessity of the condition follows [24], [32]. For the 

sufficiency, observe first that f has an extension to a continuous mapping f* o f / 5  

(Theorem 9.5). If f* is not injective, there are three distinct points b~, b2, and b3 on 

a boundary component  of D with f*(b~) = f*(b~)# f*(b O. By Theorem 9.4, there is 

a quasiconformal mapping h of D onto itself whose homeomorphic  extension t o / 5  

takes b~ to b2 and b2 to b3. Then foh  of 1 is a quasiconformal mapping of D' onto 

itself which does not extend continuously to the point f*(b~), because the cluster set 

of f oh of ' at f*(bO contains the points f*(b2) and f*(b3). Consequently,  f* is 

injective and the proof is complete. 

10 .  P r i m e  e n d s  in  n o n c o l l a r e d  d o m a i n s  

Prime ends have been defined above for domains quasiconformally equivalent to 

collared domains. In terms of extrema[ length one can define a "pr ime end metr ic"  

for an arbitrary domain D as follows. (The question has also been discussed 

recently by Goldstein and Vodopjanov [12].) 

10.1. Aprimeendmetric. F i x a c o n t i n u u m A  i n D a n d c h o o s e r > O s o t h a t t h e  
closure of 

B = { x : q ( x , A ) < r }  

lies in D. For x h x2 ~ D - B let 
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e(x,, x2) = inf M(A(A, F:  D)),  

where the infimum is taken over  all connected sets F in D containing x~ and x2, 

cf. [171. 

10.2.  L e m m a .  e defines a metric in D - B equivalent to the spherical metric q. 

P r o o f .  Obviously e assumes nonnegative finite values, e (x,, x2) = e (x2, x,), and 

e(x~,x2)=O if xl=x2.  By results in [25], e(xl, x2)=O implies x,=x2.  For the 

triangle inequality, let x~, x~, x3 E D - B and let 77 > 0. Choose connected sets Ft 

and F2 in D such that x , ,x2E  F~ and x2, x3E F3 and such that 

M(A(A, F,: D) )  =< e (x ,  x2) + 7/2, 

M(A(A, F2: D))  =< e(x2, x~) + rl/2. 

Then F = Fz U F2 is a connected set in D containing x, and x3. The subadditivity of 

the modulus implies 

e(x,, x3) _-< M(A(A,  F: D)) <= M(A(A,  F,: D)) + M(A(A, F2: D) )  

<= e(x,,x2) + e(xz, x3) + n. 

Thus e defines a metric in D -  B. 

Since A lies at a positive distance from D - B ,  limq(xo, xk)=O implies 

lime(xo, xk)=O for any sequence (xk) of points in D - B .  By results in [25], 

lime(xo, xk)=O implies limq(xo, xk)=O. Therefore,  the metrics e and q are 

equivalent in D -  B. 

As in 6.3, we can extend e to all of D so that it remains equivalent to q. The 

domain D with metric e is denoted by De. We complete the metric space De a s  in 

6.4 and denote the completion by D*.  Theorem 4.1 in [25] implies that the 

boundary elements in D *  are independent of the choice of the continuum A and 

the number  r in 10.1. 

10.3.  T h e o r e m .  If  D is quasiconformally equivalent to a collared domain, 
then the prime end completion D* of D is equivalent to the completion D*. 

P r o o f .  The proof of Theorem 6.6 applies verbatim. 

Theorem 10.3 shows that the boundary D *  - D can be identified with the set of 

prime ends of D whenever D is quasiconformally equivalent to a collared domain. 

Let D / t q  n once again be an arbitrary domain and let D '  be quasiconformally 
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equivalent to D. Fix a continuum A '  in D ' ,  choose r ' > 0  so that the closure of 

B ' = { x : q ( x , A ' ) < r ' }  lies in D ' ,  and define a metric e '  in D ' - B '  as in 10.1. 

Extend e '  to all of D '  as in 6.3 and let De', denote  the completion of the metric space 

D~,. 

10.4.  T h e o r e m .  A quasiconformal mapping f o l D  onto D '  can be extended to 

a homeomorphism of D*  onto D'~,. 

P r o o f .  As noted before, the boundary elements of De', are independent of the 

choice of the continuum A '  and the number  r '  used in defining the metric e'. 

Therefore,  we may assume that the continuum used in defining e '  is [A,  where A is 

as in 10.1. There is a neighborhood U of OD such that e and e '  are defined in 

U n D and f ( U  N D) ,  respectively, in terms of extremal length as indicated in 10.1. 

Since M ( F ) / K  <= M(fF)_ -  < KM(F)  for each path family F in D, where K is the 

maximal dilatation of f, we have 

K le (x, y ) <= e ' ( f (x  ), f (y  )) =< Ke (x, y ) 

for all x ,y  in U N D. Hence f is bi-Lipschitzian in U n D with respect to the 

metrics e and e', and the theorem follows. 

10.5.  R e m a r k .  Lelong-Ferrand [18] defined metrics 8~ and 8o, for proper  

subdomains D and D '  of R"  in such a way that every quasiconformal mapping of D 

onto D '  is bi-Lipschitzian with respect to these metrics. We note, however,  that her 

metrics are complete.  

The question immediately arises whether  new results on pointwise boundary 

extension can be deduced as corollaries of Theorem 10.4. We will give an example 

of such a result. To this end, let g : [0, ~ ) - ~  R i be a function satisfying the following 

conditions for some 0 < a < o~: 

(i) g is continuous, g ( 0 ) = 0 ,  g ( u ) > 0  for u > 0 ,  and g ( u ) = g ( a )  for u _->a. 

(ii) g '  is continuous and increasing in (0, a).  

(iii) lim~_,, g ' ( u )  = 0. 

Let 

D = R~ - {x = (r, O, x O E  R 3 : 0 =  < r <=g(a - x~),O<=x3<= a}, 

where (r, 0,x3) are cylindrical coordinates in R 3. The domain D is called an inward 

directed spire. The point ae3 is called the vertex of the spire. The above terminology 

is taken from Gehring and V~iis~ilfi [11]. It was shown in [11] that D cannot be 

mapped quasiconformally onto a ball. Hence D is a noncollared Jordan domain in 

/~3 whose boundary is a flat 2-sphere. 
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10.6.  C o r o l l a r y .  A quasiconformal mapping of a spire D onto a spire D'  can 
be extended to a homeomorphism of D onto 1~'. 

P r o o f .  Since a spire is collared at each boundary point except for the vertex, it 

follows that two fundamental  sequences clustering at the boundary of the spire are 

equivalent, in the metric defined in 10.1, if and only if they converge, in the 

spherical metric, to one and the same boundary point. The assertion follows, 

therefore, from Theorem 10.4. (Observing that the vertices must correspond to one 

another  under the mapping, the existence of the extension would also follow from 

Viiishl~i [32, 17.I7].) 

10.7. Concluding remarks. To illustrate the difficulties, from the point of view 

of mapping theory, arising in at tempts to develop satisfactory prime end theories 

for domains which are not quasiconformally equivalent to collared domains, 

consider domains of the form 

D = {x = (x~, x2, x3) E R3:Ix21 < g(xO, Xl > 0}, 

where the function g satisfies the conditions (i)-(iii) in 10.5. Such a domain D is 

called an outward directed wedge of angle zero. The set 

E = {x: x, = x2 = 0} U{o~} 

is called the edge of D. The terminology is again taken from Gehring and Viiis~ilfi 

[11]. It was shown in [11] that D cannot be mapped quasiconformally onto a ball. 

Hence D is a noncollared Jordan domain in/~3 whose boundary is a flat 2-sphere. 

The edge E is a continuum on 8D. It follows from [22, 5.4] that 

M(A(A ,E:  D) )=  0 

for every continuum A in D if (and only if) 

f du g ~  = ~ 
0 

for all d > 0 .  This is the case, in particular, if D is defined by the function 

g(u)  = u p, p >= 2. Therefore,  the completion of the metric e defined in 10.1 yields 

the whole edge E as one "boundary  e lement"  for p >_- 2. We conclude that, for 

p _-> 2, Theorem 10.4 does not reveal whether  or not a quasiconformal mapping of a 

wedge D onto a wedge D '  admits a pointwise extension to /5 .  By other methods 
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[23], however,  one can show that such an extension does indeed exist. It remains an 

open question whether a quasiconformal mapping between two arbitrary Jordan 

domains  in /~", n > 2, must admit an extension to a h o m e o m o r p h i s m  between the 

closures. It is this fact, demonstrated above,  that, even in the case of  a Jordan 

domain D in /~", n > 2 ,  M(A(A,E: D)) may be zero for continua A in D and U 

on OD, which prevents one  from carrying over to the general problem the proof  

used to establish the homeomorph ic  extension in the case where one of  the domains  

is a collared Jordan domain.  
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