A NEW UPPER BOUND FOR THE COMPLEX GROTHENDIECK CONSTANT

BY UFFE HAAGERUP Mathematisk Institut, Odense University, DK-5230 Odense M, Denmark

ABSTRACT

Let φ denote the real function

$$\varphi(k) = k \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - k^2 \sin^2 t}} dt, \qquad -1 \le k \le 1$$

and let K_G^C be the complex Grothendieck constant. It is proved that $K_G^C \leq \frac{8}{\pi(k_0+1)}$, where k_0 is the (unique) solution to the equation $\varphi(k) = \frac{1}{8}\pi(k+1)$ in the interval [0, 1]. One has $\frac{8}{\pi(k_0+1)} \approx 1.40491$. The previously known upper bound is $K_G^C \leq e^{1-\gamma} \approx 1.52621$ obtained by Pisier in 1976.

§1. Introduction

In [3], Grothendieck proved the following fundamental inequality: Let F be the real or the complex scalar field. There are universal constants $K^{\mathbb{R}}$ and $K^{\mathbb{C}}$ such that for every pair of compact spaces S, T and every bounded bilinear form V: $C(S, F) \times C(T, F) \rightarrow F$ there exist probability measures μ , v on S and T respectively, such that

$$|V(f,g)| \leq K^{F} \| V \| \mu(|f|^{2})^{1/2} \nu(|g|^{2})^{1/2}$$

for all $f \in C(S, F)$ and all $g \in C(T, F)$. The smallest possible values for $K^{\mathbb{R}}$ and $K^{\mathbb{C}}_{G}$ are usually denoted $K^{\mathbb{R}}_{G}$ and $K^{\mathbb{C}}_{G}$ respectively. Grothendieck's inequality has important applications in the theory of Banach lattices (cf. [6], [9]) and there exist natural generalizations of the inequality to C*-algebras (cf. [11], [4]). The exact values of $K^{\mathbb{R}}_{G}$ and $K^{\mathbb{C}}_{G}$ are not known, although the hunt for these constants has been going on for several years. Grothendieck proved that

Received November 9, 1986

$$\pi/2 \leq K_G^{\mathbf{R}} \leq \sinh(\pi/2) \approx 2.301.$$

In [12], Rietz pushed the upper bound down to 2.261. Finally Krivine proved by a very elegant method that

$$K_G^{\mathbf{R}} \leq \frac{\pi}{2\log(1+\sqrt{2})} \approx 1.782$$

(cf. [7]). Moreover he showed that $K_G^{\mathbf{R}} > \pi/2$ (unpublished). A straightforward generalization of Grothendieck's proof of $K_G^{\mathbf{R}} \ge \pi/2$ gives $K_G^{\mathbf{C}} \ge 4/\pi$. Kaiser proved by use of Rietz' method that $K_G^{\mathbf{C}} \le 1.607$ (cf. [5]) and in 1976 Pisier proved that $K_G^{\mathbf{C}} \le e^{1-\gamma} \approx 1.526$ (γ is Euler's constant). Recently Davie [2] has proved that $K_G^{\mathbf{C}} > 1.338$. (In particular $K_G^{\mathbf{C}} > 4/\pi$.)

The basic idea in this paper is to generalize Krivine's method for the proof of $K_G^{\mathbb{R}} \leq \frac{1}{2}\pi (\log(1+\sqrt{2}))^{-1}$ to the complex case, but in the course of doing this, one runs into several technical problems, which are not present in the real case:

The starting point of Krivine's proof is that if (X_1, X_2) are random variables that form a two-dimensional (real) joint normal distribution, such that $E(X_1) = E(X_2) = 0$, $E(X_1^2) = E(X_2^2) = 1$, then

$$E(\operatorname{sign} X_1 \cdot \operatorname{sign} X_2) = \frac{2}{\pi} \operatorname{Arcsin} E(X_1 X_2).$$

(The function $(2/\pi)$ arcsin also plays a key role in Grothendieck's proof of $K_G^{\mathbf{R}} \leq \sinh(\frac{1}{2}\pi)$, cf. [3], [8].) We prove that for complex symmetric normal distributions, the corresponding formula is

$$E(\operatorname{sign} X_1 \cdot \overline{\operatorname{sign} X_2}) = k \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - |k|^2 \sin^2 t}} dt$$

where $k = E(X_1 \overline{X}_2)$ (cf. Lemma 3.2). Now, put

$$\varphi(k) = k \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - k^2 \sin^2 t}}, \quad -1 \le k \le 1.$$

The function φ can be expressed in terms of the complete elliptic integrals E(k) and K(k) (see, e.g., [1]), namely

$$\varphi(k) = \frac{1}{k} (E(k) - (1 - k^2)K(k)), \quad -1 < k < 1, \quad k \neq 0.$$

It is easy to check that $\varphi(k)$ is a homeomorphism of [-1, 1] onto [-1, 1], and that it can be expressed by the Taylor series

$$\varphi(k) = \frac{\pi}{2} \left(k + \left(\frac{1}{2}\right)^2 \frac{k^3}{2} + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 \frac{k^5}{3} + \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^2 \frac{k^7}{4} + \cdots \right)$$

for all $k \in [-1, 1]$. The crucial part in the proof of our new upper bound for K_G^C is to prove that the Taylor series for the inverse function

$$\varphi^{-1}(u) = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} b_n u^n$$

converges to $\varphi^{-1}(u)$ for all $u \in [-1, 1]$, and that $b_n \leq 0$ for $n \geq 3$. This is in marked contrast to the real case, where the function corresponding to $\varphi^{-1}(u)$ is $\sin(\frac{1}{2}\pi u)$, which has an alternating Taylor series. The first few b_n 's are easily computed:

$$b_1 = \frac{4}{\pi}$$
, $b_3 = -\frac{1}{8} \left(\frac{4}{\pi}\right)^3$, $b_5 = 0$, $b_7 = -\frac{1}{1024} \left(\frac{4}{\pi}\right)^7$.

To prove that $b_n \leq 0$ for $n \geq 9$, we first observe that φ has an analytic continuation to the disk |z| < 1 and that

$$b_n = \frac{1}{n} \operatorname{Res}\left(\frac{1}{\varphi^n}, 0\right)$$

(Res (f, z_0) denotes the residue of f at $z_0 \in \mathbb{C}$). Next it is proved that φ can be extended further to a continuous function φ^+ in the upper half plane Im $z \ge 0$, such that φ^+ is analytic in the interior. This yields

$$b_n = \frac{2}{\pi n} \operatorname{Im} \left(\int_{\Gamma_n} \frac{ds}{\varphi^+(s)^n} \right) \quad \text{for } n \text{ odd},$$

where Γ_{α} is the arc consisting of the line segment $[1, \alpha]$ ($\alpha > 1$) and the quarter circle { $\alpha e^{i\theta} \mid 0 \le \theta \le \pi/2$ }. We put $\alpha = 5\sqrt{2}$, and prove that for $n \ge 9$ the main part of the above counter integral stems from a small interval $[1, \alpha_n]$ to the right of 1, where $(\varphi^+(s))^{-n}$ has a negative imaginary part. Thus $b_n < 0$ for $n \ge 9$.

We can now argue almost as in Krivine's paper [7, pp. 23-25] to see that if $\beta_0 \in [0, 1]$ is the number for which

$$\sum_{n \text{ odd}} |b_n| \beta_0^n = 1$$

then $K_G^C \leq 1/\beta_0$ (cf. Section 3). Since $b_1 = 4/\pi$ and $b_n \leq 0$ for $n \geq 3$, the identity can also be written

$$\frac{8}{\pi}\beta_0-\varphi^{-1}(\beta_0)=1.$$

Putting $k_0 = \varphi^{-1}(\beta_0)$, we get the following equation:

$$\varphi(k_0)=\frac{\pi}{8}(k_0+1),$$

which can be solved numerically by use of tables of elliptic integrals. One has $k_0 \approx 0.81256$, from which

$$K_G^{\mathbf{C}} \leq \frac{1}{\beta_0} = \frac{8}{\pi(k_0+1)} \approx 1.40491.$$

We doubt that the above upper estimate for $K_G^{\mathbb{C}}$ is an equality. A perhaps more plausible candidate for $K_G^{\mathbb{C}}$ is the slightly smaller number

$$|\varphi(i)|^{-1} = \left(\int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1+\sin^2 t}} dt\right)^{-1} \approx 1.40458.$$

This can be considered as a formed analogue of Krivine's upper bound $\frac{1}{2}\pi(\log(1+\sqrt{2}))^{-1}$ for $K_G^{\mathbf{R}}$, because

$$\left|\frac{2}{\pi}\operatorname{Arcsin}(i)\right|^{-1} = \frac{\pi}{2\operatorname{Arsinh}(1)} = \frac{\pi}{2}\left(\log(1+\sqrt{2})\right)^{-1}.$$

§2. Power series expansions of φ and φ^{-1}

Let φ be the function

$$\varphi(k) = k \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - k^2 \sin^2 t}} dt, \qquad -1 \le k \le 1.$$

It is easily checked that φ is a continuous, strictly increasing function and that $\varphi(1) = 1$, $\varphi(-1) = -1$. Hence φ is a homeomorphism of [-1, 1] onto itself. Using the expansion

$$(1-k^2\sin^2 t)^{-1/2} = \sum_{m=0}^{\infty} \frac{1\cdot 3\cdot \cdots \cdot (2m-1)}{2\cdot 4\cdot \cdots \cdot 2m} k^{2m} \sin^{2m} t$$

 $(|k| \leq 1, 0 \leq t < \pi/2)$ and the formula

$$\int_0^{\pi/2} \cos^2 t \sin^{2m} t \, dt = \frac{\pi}{4(m+1)} \left(\frac{1 \cdot 3 \cdot \cdots \cdot (2m-1)}{2 \cdot 4 \cdot \cdots \cdot 2m} \right),$$

 φ can be expressed by the power series

$$\varphi(k) = \sum_{n \text{ odd}} a_n k^n, \qquad -1 \leq k \leq 1$$

where

$$a_{2m+1} = \frac{\pi}{4(m+1)} \left(\frac{1 \cdot 3 \cdot \cdots \cdot (2m-1)^2}{2 \cdot 4 \cdot \cdots \cdot 2m} \right)^2.$$

The first few terms of the series are

$$\varphi(k) = \frac{\pi}{4} \left(k + \frac{1}{8} k^3 + \frac{3}{64} k^5 + \frac{25}{1024} k^7 + \cdots \right).$$

For $k \in]-1, 1[, k \neq 0, \varphi(k)$ can also be expressed in terms of the complete elliptic integrals

$$E(k) = \int_0^{\pi/2} (1 - k^2 \sin^2 t)^{1/2} dt, \quad K(k) = \int_0^{\pi/2} (1 - k^2 \sin^2 t)^{-1/2} dt,$$

namely

$$\varphi(k) = \frac{1}{k} (E(k) - (1 - k^2)K(k)).$$

THEOREM 2.1. (1) The inverse function φ^{-1} of φ can be expressed by an absolutely convergent power series

$$\varphi^{-1}(s) = \sum_{n \text{ odd}} b_n s^n, \qquad -1 \leq s \leq 1.$$

(2) $b_1 = 4/\pi$ and $b_n \leq 0$ for all $n \geq 3$.

REMARK. Since φ is a real analytic function, $\varphi(0) = 0$ and $\varphi'(0) \neq 0$, it is clear that φ^{-1} can be expanded in a power series

$$\varphi^{-1}(s) = \sum_{n=1}^{\infty} b_n s^n$$

in some neighbourhood of 0. Moreover $b_n = 0$ for *n* even, because φ^{-1} is an odd function of *s*. By solving the equation

$$s = \frac{\pi}{4} \left(k + \frac{1}{8} k^3 + \frac{3}{64} k^5 + \frac{25}{1024} k^7 + \cdots \right)$$

up to 7th power in s, one finds

$$k = \varphi^{-1}(s) = \frac{4s}{\pi} - \frac{1}{8} \left(\frac{4s}{\pi}\right)^3 - \frac{1}{1024} \left(\frac{4s}{\pi}\right)^7 + O(s^9).$$

Hence

$$b_1 = \frac{4}{\pi}, \quad b_3 = -\frac{1}{8} \left(\frac{4}{\pi}\right)^3, \quad b_5 = 0, \quad b_7 = -\frac{1}{1024} \left(\frac{4}{\pi}\right)^7.$$

The rest of this section is used to prove that $\sum_{n \text{ odd}} |b_n| < \infty$, and that $b_n < 0$ for $n \ge 9$, *n* odd.

Following standard notation of elliptic integrals, we put $E'(k) = E(\sqrt{1-k^2})$ and $K'(k) = K(\sqrt{1-k^2}), 0 \le k \le 1$.

LEMMA 2.2. (1) The function $\varphi(k)$, $-1 \le k \le 1$ can be extended to a continuous function $\varphi^+(k)$ in the closed upper half plane Im $k \ge 0$ such that φ^+ is analytic in the open half plane Im k > 0.

(2) For $k \in \mathbf{R}, k \ge 1$,

Re
$$\varphi^+(k) = E\left(\frac{1}{k}\right)$$
, Im $\varphi^+(k) = K'\left(\frac{1}{k}\right) - E'\left(\frac{1}{k}\right)$.

PROOF. For $k \in [-1, 1[,$

$$\frac{d}{dt}\operatorname{Arcsin}(k\sin t) = \frac{k\cos t}{\sqrt{1-k^2\sin^2 t}}$$

Thus, by partial integration,

$$\varphi(k) = \int_0^{\pi/2} \sin t \operatorname{Arcsin}(k \sin t) dt, \qquad -1 \leq k \leq 1.$$

The analytic function sin z is a bijection of $[-\pi/2, \pi/2] \times [0, \infty]$ onto the upper closed half plane. Let Arcsin⁺ be the inverse of this map. Then Arcsin⁺

is analytic in the open half plane Im z > 0, continuous in the closed half plane, and for $z \in \mathbf{R}$,

Arcsin⁺
$$z = \operatorname{Arcsin} z$$
, $-1 \leq z \leq 1$,
Arcsin⁺ $z = \frac{1}{2}\pi + i\operatorname{Arcosh}|z|$, $|z| > 1$.

Now, define

$$\varphi^+(k) = \int_0^{\pi/2} \sin t \operatorname{Arcsin}^+(k \sin t) dt, \quad \operatorname{Im} k \ge 0.$$

Then it is easily checked that φ^+ is a continuous extension of φ , and that φ^+ is analytic in the open half plane Im k > 0.

For k > 1 we have by partial integration

$$\operatorname{Re} \varphi^{+}(k) = \int_{0}^{\sin t - 1/k} \sin t \operatorname{Arcsin}(k \sin t) dt + \int_{\sin t - 1/k}^{\pi/2} \sin t \frac{1}{2}\pi \, dt$$
$$= k \int_{0}^{\sin t - 1/k} \frac{\cos^{2} t}{\sqrt{1 - k^{2} \sin^{2} t}} \, dt$$

and

$$\operatorname{Im} \varphi^+(k) = \int_{\sin t - 1/k}^{\pi/2} \sin t \operatorname{Arcosh}(k \sin t) dt$$
$$= k \cdot \int_{\sin t - 1/k}^{\pi/2} \frac{\cos^2 t}{\sqrt{k^2 \sin^2 t} - 1} dt.$$

Substituting $\sin u = k \sin t$ in the integral for $\operatorname{Re} \varphi^+(k)$ and $\sin v = (1 - k^{-2})^{-1/2} \cos t$ in the integral for $\operatorname{Im} \varphi^+(k)$, one finds

Re
$$\varphi^+(k) = \int_0^{\pi/2} \sqrt{1 - k^{-2} \sin^2 u} \, du = E(1/k),$$

Im $\varphi^+(k) = (1 - k^{-2}) \int_0^{\pi/2} \frac{\sin^2 v}{\sqrt{1 - (1 - k^{-2}) \sin^2 v}} \, dv$
 $= K(\sqrt{1 - k^{-2}}) - E(\sqrt{1 - k^{-2}}).$

LEMMA 2.3. (1) Im $\varphi^+(k) \ge \text{Im } \varphi^+(|k|)$ for $|k| \ge 1$, Im $k \ge 0$. (2) φ^+ has no zeros in the closed half plane Im $k \ge 0$ except k = 0.

PROOF. (1) The analytic function sin maps the line segment

$$\{t + ia \mid -\pi/2 \leq t \leq \pi/2\}$$

onto the half ellipsoid

$$\{z \in \mathbb{C} \mid |z-1| + |z+1| = 2 \cosh a, \operatorname{Im} z \ge 0\}.$$

Therefore

Im
$$\operatorname{Arcsin}^+(z) = \operatorname{Arcosh}(\frac{1}{2}(|z-1| + |z+1|))$$

for Im $z \ge 0$. Since Arcosh is an increasing function on $[1, \infty]$, we get

$$\operatorname{Im}\operatorname{Arcsin}^+(z) \ge \begin{cases} \operatorname{Arcosh} |z|, & |z| \ge 1, \\ 0, & |z| < 1. \end{cases}$$

Hence, for Im $k \ge 0$, $|k| \ge 1$,

$$\operatorname{Im} \varphi^{+}(k) = \int_{0}^{\pi/2} \sin t \operatorname{Im} \operatorname{Arcsin}^{+}(k \sin t) dt$$
$$\geq \int_{\sin t - 1/|k|}^{\pi/2} \sin t \operatorname{Arcosh}(|k| \sin t) dt$$
$$= \operatorname{Im} \varphi^{+}(|k|).$$

(2) Since $\lim \operatorname{Arcsin}^+(z) > 0$ for $\lim z > 0$, $\varphi^+(k)$ has strictly positive imaginary part when $\lim k > 0$.

For $k \in [-1, 1]$, $\varphi^+(k) = \varphi(k)$ is zero only at k = 0, and for k > 1 or k < -1,

$$\operatorname{Im} \varphi^+(k) = \int_{\sin t - 1/|k|}^{\pi/2} \sin t \operatorname{Arcosh}(|k| \sin t) dt > 0.$$

This proves (2).

LEMMA 2.4. Let $\alpha > 1$. For $n \in \mathbb{N}$, n odd

$$b_n = \frac{2}{\pi n} \int_1^{\alpha} \operatorname{Im}(\varphi^+(k)^{-n}) dk + r_n(\alpha)$$

where

$$|r_n(\alpha)| \leq \frac{\alpha}{n} (\operatorname{Im} \varphi^+(\alpha))^{-n}.$$

PROOF. The Taylor series

$$\varphi(k) = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} a_n k^n$$

for φ defines an analytic function in the complex disk |k| < 1, which coincides with $\varphi^+(k)$ for |k| < 1, Im $k \ge 0$. Since $\varphi(0) = 0$ and $\varphi'(0) = \pi/4 \ne 0$, there exists $\delta_0 \in]0, 1]$, such that $\varphi(k)$ has an analytic inverse in the disk $|k| < \delta_0$. Let C_{δ} be the circle with radius δ with usual (counter-clockwise) orientation. For $0 < \delta < \delta_0, \varphi(C_{\delta})$ is a simple closed curve with winding number + 1. Hence by Cauchy's integral formula

$$b_n = \frac{1}{2\pi i} \int_{\varphi(C_s)} \frac{\varphi^{-1}(s)}{s^{n+1}} \, ds.$$

Substituting $s = \varphi(k)$ we get

$$b_n = \frac{1}{2\pi i} \int_{C_s} \frac{k}{\varphi(k)^{n+1}} \varphi'(k) dk$$

Using

$$-n\int_{C_s}\frac{k\varphi'(k)}{\varphi(k)^{n+1}}dk+\int_{C_s}\frac{1}{\varphi(k)^n}dk=\int_{C_s}\frac{d}{dk}\left(\frac{k}{\varphi(k)^n}\right)dk=0$$

we get

$$b_n=\frac{1}{2\pi in}\int_{C_s}\varphi(k)^{-n}dk,$$

i.e., nb_n is the residue of φ^{-n} at 0. Since $b_n \in \mathbf{R}$,

$$b_n = \frac{1}{2\pi n} \operatorname{Im} \left(\int_{C_\delta} \varphi(k)^{-n} dk \right)$$
$$= \frac{1}{2\pi n} \operatorname{Im} \left(\int_0^{2\pi} \varphi(\delta e^{i\theta})^{-n} \delta i e^{i\theta} d\theta \right).$$

Using that $\varphi(k)^{-n}$ is an odd function for *n* odd, and using that $\varphi(\bar{k}) = \overline{\varphi(\bar{k})}$, one gets that the imaginary parts of the integrals over the four intervals $[0, \pi/2]$, $[\pi/2, \pi], [\pi, 3\pi/2], [3\pi/2, 2\pi]$ are equal. Thus, if C'_{δ} denotes the quarter circle

$$k = \delta e^{i\theta}, \qquad 0 \leq \theta \leq \pi/2,$$

then

$$b_n=\frac{2}{\pi n}\operatorname{Im}\left(\int_{C_k}\varphi(k)^{-n}dk\right).$$

Since $\varphi(k)$ coincides with $\varphi^+(k)$ on C'_{δ} and since $\varphi^+(k)$ has no zeros in the set

$$\{z \in \mathbb{C} \mid \delta \leq |z| \leq \alpha, 0 \leq \arg z \leq \pi/2\}$$

(cf. Lemma 2.3(2)), we get by Cauchy's integral formula that

$$b_n = \frac{2}{\pi n} \operatorname{Im} \left(\int_{\delta}^{\alpha} \varphi^+(k)^{-n} dk + \int_{C'_{\alpha}} \varphi^+(k)^{-n} dk + \int_{i\alpha}^{i\delta} \varphi^+(k)^{-n} dk \right)$$

where the last integral is taken along the imaginary axis. Moreover, since $\varphi^+(k)$ is real on [δ , 1] and purey imaginary on the imaginary axis,

$$\operatorname{Im}\left(\int_{\delta}^{1}\varphi^{+}(k)^{-n}dk\right)=0$$

and

$$\operatorname{Im}\left(\int_{i\alpha}^{i\delta}\varphi^{+}(k)^{-n}dk\right)=0.$$

Hence

$$b_n = \frac{2}{\pi n} \int_1^\alpha \operatorname{Im} \varphi^+(k)^{-n} dk + \frac{2}{\pi n} \operatorname{Im} \left(\int_{C_k} \varphi^+(k)^{-n} dk \right).$$

By Lemma 2.3, $|\varphi^+(k)| \ge \operatorname{Im} \varphi^+(k) \ge \operatorname{Im} \varphi^+(|k|)$. Thus

$$\left|\int_{C_{*}^{\prime}}\varphi^{+}(k)^{-n}dk\right| \leq \frac{\pi\alpha}{2}(\operatorname{Im}\varphi^{+}(\alpha))^{-n}.$$

This completes the proof of Lemma 2.4.

LEMMA 2.5. Let $\varphi_1(k) = \operatorname{Re} \varphi^+(k)$, $\varphi_2(k) = \operatorname{Im} \varphi^+(k)$, and $\varphi'_1 = d\varphi_1/dk$, $\varphi'_2 = d\varphi_2/dk$ for k > 1. Then:

(1) $\varphi_1(k)\varphi_2'(k) - \varphi_1'(k)\varphi_2(k) = \pi/2k, \ k > 1.$ (2) Let $q = (4/\pi)E(1/\sqrt{2})(K(1/\sqrt{2}) - E(1/\sqrt{2})) \approx 0.86575$, then

$$\varphi_1(k)\varphi_1'(k) + \varphi_2(k)\varphi_2'(k) \ge \frac{\pi}{2k}q, \qquad k > 1$$

and equality holds for $k = \sqrt{2}$.

PROOF. (1) By Lemma 2.2,

$$\varphi_1(k) = E\left(\frac{1}{k}\right)$$
 and $\varphi_2(k) = K'\left(\frac{1}{k}\right) - E'\left(\frac{1}{k}\right)$.

Using

$$\frac{dE}{dk} = -\frac{1}{k}(K-E) \quad \text{and} \quad \frac{d(K-E)}{dk} = \frac{k}{1-k^2}E$$

(cf. [1, Formula 710.02 and 710.05]) one gets

$$\varphi_1'(k) = \frac{1}{k} \left(K\left(\frac{1}{k}\right) - E\left(\frac{1}{k}\right) \right),$$
$$\varphi_2'(k) = \frac{1}{k} E'\left(\frac{1}{k}\right).$$

Thus (1) follows from Legendre's relation $EK' + E'K - KK' = \pi/2$ (cf. [1, Formula 110.10]).

(2) We have

$$k(\varphi_1(k)\varphi_1'(k) + \varphi_2(k)\varphi_2'(k)) = (E(K-E) + E'(K'-E'))(1/k).$$

In particular

$$\sqrt{2}(\varphi_1\varphi_1'+\varphi_2\varphi_2')(\sqrt{2})=2E\left(\frac{1}{\sqrt{2}}\right)\left(K\left(\frac{1}{\sqrt{2}}\right)-E\left(\frac{1}{\sqrt{2}}\right)\right)=\frac{\pi}{2}q.$$

It remains to be proved that

$$(E(K-E) + E'(K'-E'))(k) \ge (E(K-E) + E'(K'-E'))(1/\sqrt{2})$$

for 0 < k < 1. Since the function

$$f(m) = (E(K - E) - E'(K' - E'))(\sqrt{m}), \qquad 0 < m < 1$$

is symmetric around $m = \frac{1}{2}$, it is sufficient to prove that f is convex. Using the above-mentioned formulas for dE/dk and d(K - E)/dk one gets

$$\frac{d^2}{dm^2} E(\sqrt{m})(K-E)(\sqrt{m}) = \frac{1}{2} \left(\frac{E(\sqrt{m})}{1-m} - \frac{(K-E)(\sqrt{m})}{m}\right)^2$$

Since $E'(\sqrt{m})(K' - E')(\sqrt{m}) = E(\sqrt{1-m})(K - E)(\sqrt{1-m})$ also

$$\frac{d^2}{dm^2}E'(\sqrt{m})(K'-E')(\sqrt{m})\geq 0.$$

This proves that f is convex.

LEMMA 2.6. $\Sigma_{n \text{ odd}} | b_n | < \infty$ and $\varphi^{-1}(s) = \Sigma_{n \text{ odd}} b_n s^n$ for $s \in [-1, 1]$.

PROOF. By Lemma 2.5

$$\frac{d}{dk}|\varphi(k)|^2=2(\varphi_1\varphi_1'+\varphi_2\varphi_2')(k)\geq \frac{\pi q}{k}.$$

Fix $\alpha > 1$, then for $1 \leq k \leq \alpha$,

$$|\varphi(k)|^{2} \ge |\varphi(1)|^{2} + \int_{1}^{k} \frac{\pi q}{\alpha} dk$$
$$= 1 + \frac{\pi q}{\alpha} (k - 1).$$

Thus for $n \ge 3$

$$\int_{1}^{\alpha} |\varphi(k)|^{-n} dk \leq \int_{1}^{\alpha} \left(1 + \frac{\pi q}{\alpha} (k-1)\right)^{-n/2} dk$$
$$\leq \int_{1}^{\infty} \left(1 + \frac{\pi q}{\alpha} (k-1)\right)^{-n/2} dk$$
$$= \frac{\alpha}{\pi q} \frac{2}{n-2}.$$

Hence, by Lemma 2.4,

$$|b_n| \leq \frac{4\alpha}{\pi^2 q n(n-2)} + \frac{\alpha}{n} (\operatorname{Im} \varphi^+(\alpha))^{-n}, \qquad n \geq 3.$$

If, for instance, we put $\alpha = 5\sqrt{2}$, then by [1, p. 324]

Im
$$\varphi^+(\alpha) = K'(\sqrt{0.02}) - E'(\sqrt{0.02}) \approx 2.32555.$$

Thus the sequence $n^2 |b_n|$ is bounded. In particular $\sum_{n \text{ odd}} |b_n| < \infty$. Therefore $\sum_{n \text{ odd}} b_n s^n$ converges to a continuous function on [-1, 1], which is real analytic in the interior of the interval. Since this function coincides with $\varphi^{-1}(s)$ in some neighbourhood of 0 and since $\varphi^{-1}(s)$ is also real analytic on]-1, 1[, we have

$$\varphi^{-1}(s) = \sum_{n \text{ odd}} b_n s^n, \qquad s \in [-1, 1].$$

LEMMA 2.7. Let $\theta(k) = \arg(\varphi^+(k)), k \ge 1$. Then $\theta(k)$ is a strictly increasing function of k, $\theta(1) = 0$ and $\lim_{k \to \infty} \theta(k) = \pi/2$.

PROOF. Using

$$\theta(k) = \arctan \frac{\varphi_2(k)}{\varphi_1(k)}$$

we have by Lemma 2.5 (1)

$$\frac{d\theta(k)}{dk} = \frac{\varphi_1(k)\varphi_2'(k) - \varphi_1'(k)\varphi_2(k)}{|\varphi^+(k)|^2} = \frac{\pi}{2k\,|\varphi^+(k)|^2} > 0$$

for k > 1. Thus $\theta(k)$ is strictly increasing for $k \ge 1$. For k = 1, $\theta(k) = \operatorname{Arg}(1) = 0$. Using that

$$E(0) = \pi/2, \quad E(1) = 1, \quad \lim_{k \to 1} K(k) = +\infty$$

we have by Lemma 2.2

$$\lim_{k\to\infty}\varphi_1(k)=\frac{\pi}{2} \quad \text{and} \quad \lim_{k\to\infty}\varphi_2(k)=\infty.$$

Thus $\theta(k) \rightarrow \pi/2$ for $k \rightarrow \infty$.

LEMMA 2.8. Put $\alpha = 5\sqrt{2}$ and $\theta_0 = \theta(\alpha)$. For fixed $n \in \mathbb{N}$ let $p = [n\theta_0/\pi]$ (= integer part of $n\theta_0/\pi$), and put

$$I_{r} = \frac{2}{\pi n} \int_{\theta(k) = (\pi/n)(r-1)}^{\theta(k) = (\pi/n)r} |\varphi^{+}(k)|^{-n} |\sin n\theta(k)| dk$$

for $r = 1, \ldots, p$. Moreover, put

$$I'=\frac{2}{\pi n}\int_{(\pi/n)p}^{\theta_0}|\varphi^+(k)|^{-n}|\sin n\theta(k)|\,dk.$$

Then:

- (1) $(2/\pi n) \int_{1}^{\alpha} \operatorname{Im}(\varphi^{+}(k)^{-n}) dk = -I_{1} + I_{2} \cdots + (-1)^{p} I_{p} + (-1)^{p+1} I'.$
- (2) For $n \ge 9$ one has $p \ge 2$ and $I_1 > I_2 > \cdots > I_p > I'$.

PROOF. (1) It is clear that

$$\frac{2}{\pi n} \int_{1}^{\alpha} \operatorname{Im}(\varphi^{+}(k)^{-n}) dk = -\frac{2}{\pi n} \int_{1}^{\alpha} |\varphi^{+}(k)|^{-n} \cdot \sin(n\theta(k)) dk$$
$$= -I_{1} + I_{2} - \dots + (-1)^{p} I_{p} + (-1)^{p+1} I'$$

(2) Let $k = \chi(\theta)$, $\theta \in [0, \pi/2[$ be the inverse function of $\theta = \theta(k)$. Then by the formula for $d\theta(k)/dk$ derived in the proof of Lemma 2.7 we have

$$I_r = \frac{4}{\pi^2 n} \int_{(\pi/n)(r-1)}^{(\pi/n)r} \chi(\theta) |\varphi^+(\chi(\theta))|^{2-n} |\sin n\theta| d\theta$$

and

$$I' = \frac{4}{\pi^2 n} \int_{(\pi/n)p}^{\theta_0} \chi(\theta) |\varphi^+(\chi(\theta))|^{2-n} |\sin n\theta| d\theta.$$

We prove next that $k |\varphi^+(k)|^{2-n}$ is a strictly decreasing function on $[1, \alpha]$ for $n \ge 9$:

$$\begin{aligned} \frac{d}{dk}(k | \varphi^+(k)|^{2-n}) &= |\varphi^+(k)|^{2-n} + k\left(\frac{2-n}{2}\right) |\varphi^+(k)|^{-n} \frac{d}{dk} |\varphi^+(k)|^2 \\ &= |\varphi^+(k)|^{-n}(|\varphi^+(k)|^2 - (n-2)k(\varphi_1(k)\varphi_1(k) + \varphi_2(k)\varphi_2(k))) \\ &\leq |\varphi^+(k)|^{-n} \left(|\varphi^+(k)|^2 - (n-2)\frac{\pi}{2}q \right) \\ &\leq |\varphi^+(k)|^{-n} \left(|\varphi^+(\alpha)|^2 - \frac{7\pi q}{2} \right). \end{aligned}$$

Here we have used Lemma 2.5(2), and that $|\varphi^+(k)|^2$ is an increasing function of k (which also follows from Lemma 2.5(2)). From [1, p. 324],

$$\varphi_1(\alpha) = \varphi_1(5\sqrt{2}) = E(\sqrt{0.02}) \approx 1.56291,$$

 $\varphi_2(\alpha) = K'(\sqrt{0.02}) = E'(\sqrt{0.02}) \approx 2.32555.$

Hence $|\varphi^+(\alpha)|^2 \approx 7.8509$ while $7\pi q/2 \approx 9.5194$. Thus $k |\varphi^+(k)|^{2-n}$ is a strictly decreasing function of k for $1 \le k \le \alpha$ and $n \ge 9$.

Using $|\sin n\theta|$ is periodic with period π/n , it now follows that

$$I_1 > I_2 > \cdots > I_p.$$

Moreover,

$$I' = \frac{4}{\pi^2 n} \int_{\pi p/n}^{\theta_0} \chi(\theta) |\varphi^+(\chi(\theta))|^{2-n} |\sin n\theta| d\theta$$
$$\leq \frac{4}{\pi^2 n} \int_{(\pi/n)(p-1)}^{\theta_0 - \pi/n} \chi(\theta) |\varphi^+(\chi(\theta))|^{2-n} |\sin n\theta| d\theta$$
$$< I_n.$$

Finally,

$$\theta_0 = \arctan \frac{\varphi_2(\alpha)}{\varphi_1(\alpha)} \ge \arctan(1) = \pi/4.$$

Thus

$$p = \left[\frac{n\theta_0}{\pi}\right] \ge \left[\frac{9\theta_0}{\pi}\right] \ge 2$$
 for $n \ge 9$.

This completes the proof of Lemma 2.8.

LEMMA 2.9. Let $n \ge 9$, let I, be as in Lemma 2.8, and let $c = |\varphi^+(\sqrt{2})| e^{-q\theta(\sqrt{2})} \cong 1.05838.$

Then (1) $I_1 > (0.27/n^2)c^{-n}$, (2) $I_2 < 0.35 \cdot I_1$.

PROOF. Since $\chi(\theta) \ge 1$ for $0 \le \theta < \pi/2$, we have

$$I_1 \ge \frac{4}{\pi^2 n} \int_0^{\pi/n} |\varphi^+(\chi(\theta))|^{2-n} |\sin n\theta \, d\theta.$$

For $\theta = \theta(k)$ (equivalently $k = \chi(\theta)$) we have

$$\frac{d}{d\theta} \log |\varphi^+(\chi(\theta))| = \frac{d}{dk} \log |\varphi^+(k)|^2 \cdot \left(\frac{d\theta}{dk}\right)^{-1}$$
$$= \frac{\varphi_1(k)\varphi_1'(k) + \varphi_2(k)\varphi_2'(k)}{|\varphi^+(k)|^2} \cdot \frac{2}{\pi} k |\varphi^+(k)|^2$$
$$\ge q$$

where $q \simeq 0.86575$ is the constant defined in Lemma 2.5. Hence for $0 \le \theta \le \theta(\sqrt{2})$,

$$\log|\varphi^+(\chi(\theta))| \leq \log|\varphi^+(\sqrt{2})| - (\theta(\sqrt{2}) - \theta)q.$$

Equivalently

$$|\varphi^+(\chi(\theta))| \le ce^{q\theta}, \quad 0 \le \theta \le \theta(\sqrt{2})$$

where

$$c = |\varphi^+(\sqrt{2})|e^{-q\theta(\sqrt{2})}.$$

From [1, p. 324],

$$\varphi_1(\sqrt{2}) = E(1/\sqrt{2}) \approx 1.35064,$$

 $\varphi_2(\sqrt{2}) = K(1/\sqrt{2}) - E(1/\sqrt{2}) \approx 0.50343.$

Thus

$$|\varphi^+(\sqrt{2})| \approx 1.44142,$$

$$\theta(\sqrt{2}) = \arctan(\varphi_2(\sqrt{2})/\varphi_1(\sqrt{2})) \cong 0.35678$$

and

$$c \approx 1.05838.$$

Since $\theta(\sqrt{2}) > \frac{1}{9}\pi$ (≈ 0.34907), we have for $n \ge 9$

$$I_{1} \ge \frac{4}{\pi^{2}n} \int_{0}^{\pi/n} (ce^{q\theta})^{2-n} \sin n\theta \ d\theta$$
$$= \frac{4c^{2-n}}{\pi^{2}n^{2}} \int_{0}^{\pi} e^{-(n-2)q\theta/n} \sin \theta \ d\theta$$
$$\ge \frac{4c^{2-n}}{\pi^{2}n^{2}} \int_{0}^{\pi} e^{-q\theta} \sin \theta \ d\theta$$
$$= \left(\frac{2c}{\pi n}\right)^{2} \frac{1+e^{-q\pi}}{1+q^{2}} c^{-n}.$$

Since

$$\left(\frac{2c}{\pi}\right)^2 \frac{1+e^{-q\pi}}{1+q^2} \approx 0.27659$$

we have proved (1).

Using

$$\varphi_1(5/\sqrt{3}) = E(\sqrt{0.12}) \approx 1.52256,$$

 $\varphi_2(5/\sqrt{3}) = K'(\sqrt{0.12}) - E'(\sqrt{0.12}) \approx 1.37189,$

we have

$$\theta(5/\sqrt{3}) \approx 0.73339$$

Hence

$$\theta(5/\sqrt{3}) > \frac{2\pi}{9} (\approx 0.69813).$$

Thus for $0 \le \theta \le 2\pi/9$, $\chi(\theta) \le 5/\sqrt{3}$. Hence for $n \ge 9$

$$I_2 \leq \frac{4}{\pi^2 n} \frac{5}{\sqrt{3}} \int_{\pi/n}^{2\pi/n} |\varphi^+(\chi(\theta))|^{2-n} |\sin n\theta| d\theta$$
$$= \frac{4}{\pi^2 n} \frac{5}{\sqrt{3}} \int_0^{\pi/n} \left| \varphi^+\left(\chi\left(\theta + \frac{\pi}{n}\right)\right) \right|^{2-n} \sin n\theta \, d\theta.$$

Since

$$\frac{d}{d\theta}\log|\varphi^+(\chi(\theta))|\geq q,$$

it follows that

$$|\varphi^+(\chi(\theta+\pi/n))|^{2-n} \leq e^{-(n-2)\pi q/n} |\varphi^+(\chi(\theta))|^{2-n}$$

Thus

$$I_{2} \leq \frac{4}{\pi^{2}n} \frac{5}{\sqrt{3}} e^{-(n-2)\pi q/n} \int_{0}^{\pi/n} |\varphi^{+}(\chi(\theta))|^{2-n} \sin n\theta \, d\theta$$
$$\leq \frac{5}{\sqrt{3}} e^{-7\pi q/9} \cdot I_{1}.$$

But

$$\frac{5}{\sqrt{3}}e^{-7\pi q/9}\approx 0.34809.$$

This proves (2).

END OF PROOF OF THEOREM 2.1. Let $n \ge 9$ and let $I_1, I_2, \ldots, I_p, I'$ be as in Lemma 2.8. By Lemma 2.4 with $\alpha = 5\sqrt{2}$ and Lemma 2.8, we get

$$-b_n = (I_1 - I_2 + \cdots + (-1)^{p-1}I_p + (-1)^p I') - r_n(5\sqrt{2}).$$

Since the terms in the alternating series have decreasing size by Lemma 2.8(2), and since $p \ge 2$, one has

$$-b_n > I_1 - I_2 - r_n(5\sqrt{2}).$$

Lemma 2.9 gives

$$(I_1 - I_2) > 0.27(1 - 0.35) \frac{1}{n^2} (1.06)^{-n}$$

 $> \frac{0.175}{n^2} (1.06)^{-n}.$

Since Im $\varphi^+(5\sqrt{2}) \approx 2.32555$, we get by Lemma 2.4

$$|r_n(5\sqrt{2})| \leq \frac{5\sqrt{2}}{n} (2.32)^{-n}.$$

Thus

$$-b_n > \frac{0.175}{n^2} (1.06)^{-n} - \frac{5\sqrt{2}}{n} (2.32)^{-n}$$
$$= \frac{0.175}{n^2} 1.06)^{-n} \left(1 - \frac{5\sqrt{2} n}{0.175} \left(\frac{1.06}{2.32} \right)^n \right)$$
$$> \frac{0.175}{n^2} (1.06)^{-n} (1 - 41 \cdot n \cdot 2^{-n}).$$

Since $n \cdot 2^{-n}$ is a decreasing function of $n \in \mathbb{N}$, and since $41 \cdot 9 \cdot 2^{-9} < 1$, we conclude that $b_n < 0$ for all odd $n \ge 9$. This completes the proof of Theorem 2.1.

REMARK. In the beginning of this section we found b_1 , b_3 , b_5 and b_7 by solving the equation $\varphi(k) = s$ in terms of power series. Continuing this procedure, one gets

$$b_9 = -5 \cdot 2^{-14} \left(\frac{4}{\pi}\right)^9, \quad b_{11} = -15 \cdot 2^{-17} \left(\frac{4}{\pi}\right)^{11}, \quad b_{13} = -49 \cdot 2^{-20} \left(\frac{4}{\pi}\right)^{13}.$$

We doubt that it is possible to write the b_n 's in a closed form. However, using the following asymptotic expressions for $\varphi_1(k)$ and $\varphi_2(k)$ for $k \to 1$ ($k \ge 1$):

$$\varphi_1(k) = 1 - \frac{1}{2}(k-1)\log(k-1) + O(k-1),$$

$$\varphi_2(k) = \frac{\pi}{2}(k-1) + O(1),$$

it is not hard to prove that $I_2/I_1 \rightarrow 0$ and that $I_1 \sim 4/(n^2 \log^2 n)$ for $n \rightarrow \infty$, so that

$$b_n \sim -\frac{4}{n^2 \log^2 n}$$
 for $n \to \infty$ (*n* odd).

§3. The main result

THEOREM 2.1. Let $K_G^{\mathbb{C}}$ denote the complex Grothendieck constant and let φ be as in Section 2. Then

$$K_G^{\mathbf{C}} \leq \frac{8}{\pi(k_0+1)},$$

where k_0 is the unique solution to the equation $\varphi(k) = \frac{1}{8}\pi(k+1)$ in the interval [0, 1]. One has $8/\pi(k_0+1) \approx 1.40491$.

LEMMA 3.2. Let $d \in \mathbb{N}$ and let Z_1, \ldots, Z_d be independent complex random variables, equally distributed with density

$$\frac{1}{\pi}e^{-|z|^2}dxdy \qquad (x = \operatorname{Re} z, y = \operatorname{Im} z).$$

For each $u = (u_1, \ldots, u_d) \in \mathbb{C}^d$, let

$$Z_u = \sum_{k=1}^d u_k Z_k$$

and let $\langle u, v \rangle = \sum_{k=1}^{d} u_k \bar{v}_k$ be the usual inner product in \mathbb{C}^d . If $u, v \in \mathbb{C}^d$ and $||u||_2 = ||v||_2 = 1$, then

$$E(\operatorname{sign} Z_u \, \overline{\operatorname{sign} Z_v}) = \langle u, v \rangle \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - |\langle u, v \rangle|^2 \sin^2 t}} \, dt.$$

PROOF. The sign of a complex number z is

sign
$$z = \begin{cases} z/|z|, & z \neq 0, \\ 0, & z = 0. \end{cases}$$

It is elementary to check that for any $z \in \mathbf{C}$,

(*)
$$\operatorname{sign} z = \frac{1}{4} \int_0^{2\pi} \operatorname{sign}(\operatorname{Re}(e^{-i\theta}z)) e^{i\theta} d\theta.$$

Put $X_{2k-1} = \sqrt{2} \operatorname{Re}(Z_k)$ and $X_{2k} = \sqrt{2} \operatorname{Im}(Z_k)$, $k = 1, \ldots, d$. Then $(X_i)_{i=1}^{2d}$ is a set of independent real valued random variables each normally distributed with $E(X_i) = 0$ and $E(X_i^2) = 1$. For $a \in \mathbb{R}^{2d}$, put

$$X_a = \sum_{i=1}^{2d} a_i X_i$$

For $a, b \in \mathbb{R}^{2d}$, $||a||_2 = ||b||_2 = 1$, (X_a, X_b) form a joint normal distribution, $E(X_a) = E(X_b) = 0$, $E(X_a^2) = E(X_b^2) = 1$ and $E(X_aX_b) = \langle a, b \rangle$. Thus by [7, proof of lemma 1].

$$E(\operatorname{sign} X_a \operatorname{sign} X_b) = \frac{2}{\pi} \operatorname{Arcsin} \langle a, b \rangle.$$

For $u, v \in \mathbb{C}^d$,

Re
$$Z_u = \frac{1}{\sqrt{2}} X_a$$
, Re $Z_v = \frac{1}{\sqrt{2}} X_b$

where $a_{2k-1} = \operatorname{Re} u_k$, $a_{2k} = -\operatorname{Im} u_k$, $b_{2k-1} = \operatorname{Re} v_k$, and $a_{2k} = -\operatorname{Im} v_k$, $k = 1, \ldots, d$. Hence

$$E(\operatorname{sign}(\operatorname{Re} Z_u)\operatorname{sign}(\operatorname{Re} Z_v)) = \frac{2}{\pi}\operatorname{Arcsin}\langle a, b \rangle$$
$$= \frac{2}{\pi}\operatorname{Arcsin}\operatorname{Re}\langle u, v \rangle,$$

so by formula (*)

$$E(\operatorname{sign} Z_u \, \overline{\operatorname{sign} Z_v}) = \frac{1}{16} \int_0^{2\pi} \int_0^{2\pi} \frac{2}{\pi} \operatorname{Arcsin} \operatorname{Re} \langle e^{-i\theta} u, e^{-i\varphi} v \rangle e^{i(\theta-\varphi)} d\theta d\varphi.$$

Assume now that $\langle u, v \rangle \in \mathbf{R}$. Then the integral is equal to

$$\frac{1}{8\pi} \int_0^{2\pi} \int_0^{2\pi} \operatorname{arcsin}(\cos(\theta - \varphi) \langle u, v \rangle) e^{i(\theta - \varphi)} d\theta d\varphi$$
$$= \frac{1}{4} \int_0^{2\pi} \operatorname{Arcsin}(\cos t \langle u, v \rangle) e^{it} dt.$$

Since $\operatorname{Arcsin}(\cos t \langle u, v \rangle)$ is an even function of period 2π , the imaginary part of the integral vanishes. Thus

$$E(\operatorname{sign} Z_u \, \overline{\operatorname{sign} Z_v}) = \frac{1}{4} \int_0^{2\pi} \operatorname{Arcsin}(\cos t \langle u, v \rangle) \cos t \, dt.$$

The integral is the sum of four integrals, namely the integrals over $[0, \pi/2]$, $[\pi/2, \pi]$, $[\pi, 3\pi/2]$ and $[3\pi/2, 2\pi]$, and these integrals are equal. By substituting t with $\pi/2 - t$ in the integral from 0 to $\pi/2$ we thus have

$$E(\operatorname{sign} Z_u \, \overline{\operatorname{sign} Z_v}) = \int_0^{\pi/2} \operatorname{Arcsin}(\langle u, v \rangle \sin t) \sin t \, dt.$$

Finally, using

$$\frac{d}{dx}\operatorname{Arcsin}(x) = (1-x^2)^{-1/2},$$

one gets by partial integration

$$E(\operatorname{sign} Z_u \, \overline{\operatorname{sign} Z_v}) = \langle u, v \rangle \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - \langle u, v \rangle^2 \sin^2 t}} dt$$

If $\langle u, v \rangle \notin \mathbf{R}$, we can choose $c \in \mathbf{C}$, |c| = 1, such that $c \langle u, v \rangle = |\langle u, v \rangle|$. Since $\langle cu, v \rangle \in \mathbf{R}$ and since sign $Z_{cu} = c \cdot \text{sign } Z_u$, we have

$$E(\operatorname{sign} Z_u \, \overline{\operatorname{sign} Z_v}) = \bar{c} E(\operatorname{sign} Z_{cu} \, \overline{\operatorname{sign} Z_v})$$
$$= \bar{c} |\langle u, v \rangle| \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - |\langle u, v \rangle|^2 \sin^2 t}} dt$$
$$= \langle u, v \rangle \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - |\langle u, v \rangle|^2 \sin^2 t}} dt.$$

This completes the proof of Lemma 3.2.

The following definition can essentially be found in Krivine's paper [7, pp. 23–24], but we will phrase it differently, so that we can take Lindenstrauss' and

Pelczynski's matrix formulation of Grothendieck's inequality [8] as starting point.

On the set of complex $n \times n$ matrices $M_n(\mathbb{C})$ we consider two norms $\| \|_{\otimes}$ and $\| \|_{*}$ defined by:

$$\|A\|_{\otimes} \leq 1 \Leftrightarrow A \in \overline{\operatorname{conv}}\{(s_{i}\bar{t}_{j})_{i,j-1,\dots,n} \mid |s_{i}| \leq 1, |t_{i}| \leq 1\}$$

$$\|A\|_{*} \leq 1 \Leftrightarrow \begin{cases} A \text{ is in the closed convex hull of the} \\ \text{matrices of the form } \langle x_{i}, y_{j} \rangle, \text{ where} \\ x_{1}, \dots, x_{n}, y_{1}, \dots, y_{n} \text{ are vectors in the} \\ \text{unit ball of some complex Hilbert space.} \end{cases}$$

It is clear that $||A||_* \leq ||A||_{\otimes}$. A straightforward dualization of [8, Theorem 2.1] gives

LEMMA 3.3. For every $n \in \mathbb{N}$ and every $A \in M_n(\mathbb{C})$,

$$\|A\|_{\otimes} \leq K_G^{\mathbb{C}} \|A\|_{\ast}.$$

Moreover, $K_G^{\mathbb{C}}$ is the smallest constant for which this inequality holds for all $n \in \mathbb{N}$ and all $A \in M_n(\mathbb{C})$.

LEMMA 3.4. (1) Let $A \in M_n(\mathbb{C})$. Then $||A||_* \leq 1$ if and only if there exist unit vectors $x_1, \ldots, x_n, y_1, \ldots, y_n$ in a Hilbert space \mathcal{H} , such that

 $A_{ij} = \langle x_i, y_j \rangle, \quad i, j = 1, \dots, n.$

(2) Let $A \circ B$ denote the Schur product of $A, B \in M_n(\mathbb{C})$:

 $(A \circ B)_{ij} = A_{ij}B_{ij}, \quad i, j = 1, \ldots, n.$

Then $||A \circ B||_* \leq ||A||_* ||B||_*$.

PROOF. Let \mathscr{D}_n be the set of $n \times n$ matrices of the form $\langle x_i, y_j \rangle_{i,j=1}^n$, where x_i, y_j are unit vectors in some Hilbert space \mathscr{H} . Since the unit ball of a Hilbert space is the convex hull of the unit sphere, we have

$$||A||_* \leq 1 \Leftrightarrow A \in \operatorname{conv}(\mathcal{D}_n).$$

In the definition of \mathcal{D}_n we can put $\mathcal{H} = \mathbb{C}^{2n}$, because $x_1, \ldots, x_n, y_1, \ldots, y_n$ span a subspace of \mathcal{H} of dimension at most 2n. This shows that \mathcal{D}_n is a compact subset of $M_n(\mathbb{C})$, and therefore

$$\overline{\operatorname{conv}}(\mathscr{D}_n) = \operatorname{conv}(\mathscr{D}_n).$$

Next, let $A, B \in \mathcal{D}_n$ and $\lambda \in [0, 1]$. Choose Hilbert spaces \mathcal{H}, \mathcal{H} and unit vectors $x_i, y_i \in \mathcal{H}, z_i, w_j \in \mathcal{H}$, such that

$$A_{ij} = \langle x_i, y_j \rangle, \quad B_{ij} = \langle z_i, w_j \rangle.$$

Then

$$(1-\lambda)A_{ij}+\lambda B_{ij}=\langle (1-\lambda)^{1/2}x_i\oplus\lambda^{1/2}z_i,(1-\lambda)^{1/2}y_j\oplus\lambda^{1/2}w_j\rangle$$

where the last inner product is taken in $\mathscr{H} \oplus \mathscr{K}$. Thus $(1 - \lambda)A + \lambda B \in \mathscr{D}_n$. Hence $\operatorname{conv}(\mathscr{D}_n) = \mathscr{D}_n$. This proves (1). To prove (2) it is sufficient to show that $||A \circ B||_* \leq 1$ whenever $||A||_* \leq 1$ and $||B||_* \leq 1$. By (1) we have

$$A_{ij} = \langle x_i, y_j \rangle, \quad B_{ij} = \langle z_i, w_j \rangle$$

where $x_i, y_j \in \text{Unitsphere}(\mathcal{H}), z_i, w_j \in \text{Unitsphere}(\mathcal{H})$ for a pair of Hilbert space \mathcal{H} and \mathcal{H} . Hence

$$A_{ij}B_{ij} = \langle x_i \otimes z_i, y_j \otimes w_j \rangle$$

and $||x_i \otimes z_i|| = ||y_j \otimes w_j|| = 1$ where norms and scalar products are computed in the Hilbert tensorproduct $\mathscr{H} \otimes \mathscr{K}$. Hence $||A \circ B||_* \leq 1$.

LEMMA 3.5. (1) The function

$$\Phi(k) = k \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - |k|^2 \sin^2 t}} dt$$

is a homeomorphism of the closed unit disc $\overline{D} = \{z \in \mathbb{C} \mid |z| \leq 1\}$ onto itself. (2) Let $A \in M_n(\mathbb{C})$. Then

 $\|A\|_{*} \leq 1 \Rightarrow \|\Phi(A)\|_{\otimes} \leq 1$

where $\Phi(A)$ is the matrix with elements $\Phi(A)_{ij} = \Phi(A_{ij})$.

PROOF. Let φ be as in Section 2. Then

$$|\Phi(k)| = \varphi(|k|),$$

arg $\Phi(k) = \arg k, \quad k \neq 0$

so (1) follows from the fact that φ is a homeomorphism of [0, 1] onto itself and $\varphi(0) = 0$. If $A \in M_n(\mathbb{C})$ and $||A||_* \leq 1$, there exist by Lemma 3.4 (2) a Hilbert space \mathscr{H} and unit vectors $u_1, \ldots, u_n, v_1, \ldots, v_n \in \mathscr{H}$, such that

$$A_{ij} = \langle u_i, v_j \rangle.$$

U. HAAGERUP

Since span{ $u_1, \ldots, u_n, v_1, \ldots, v_n$ } is finite dimensional, we can assume that $\mathcal{H} = \mathbb{C}^d$ for some $d \in \mathbb{N}$. Let Z_1, \ldots, Z_d be complex random variables on a probability space $(\Omega, d\omega)$ satisfying the conditions of Lemma 3.1, and put

$$Z_u = \sum_{k=1}^d u_k Z_k, \qquad u \in \mathbb{C}^d.$$

By Lemma 3.1,

$$\Phi(\langle u_i, v_j \rangle) = \int_{\Omega} \operatorname{sign} Z_{u_i}(\omega) \overline{\operatorname{sign} Z_{v_j}(\omega)} \, d\omega.$$

Hence, by the definition of $\| \|_{\infty}$, we have

$$\| \Phi(\langle u_i, v_j \rangle)_{i,j-1}^n \|_{\otimes} \leq 1.$$

PROOF OF THEOREM 3.1. Let Φ^{-1} : $\overline{D} \to \overline{D}$ be the inverse function of Φ (cf. Lemma 3.5). Since $\Phi(k) = \operatorname{sign}(k)\varphi(|k|)$, we have

$$\Phi^{-1}(s) = \operatorname{sign}(s)\varphi^{-1}(|s|).$$

Thus, by Theorem 2.1,

$$\Phi^{-1}(s) = \operatorname{sign}(s) \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} b_n |s|^n$$

where $b_1 = 4/\pi$ and $\sum_{n \text{ odd}} |b_n| < \infty$. Since

$$s \to \sum_{n \text{ odd}} |b_n| s^n$$

is a strictly increasing continuous function on [0, 1] and since $\sum_{n \text{ odd}} |b_n| \ge 4/\pi > 1$, there is a unique $\beta_0 \in]0, 1[$ for which

$$\sum_{n \text{ odd}} |b_n| \beta_0^n = 1.$$

Next, we show that $K_G^{\mathbb{C}} \leq 1/\beta_0$: Let $A \in M_n(\mathbb{C})$, and assume that $||A||_* \leq 1$. For $s \in D$,

$$\Phi^{-1}(\beta_0 s) = \sum_{k=0}^{\infty} b_{2k+1} \beta_0^{2k+1} \operatorname{sign}(s) |s|^{2k+1}$$
$$= \sum_{k=0}^{\infty} b_{2k+1} \beta_0^{2k+1} s^{k+1} s^k.$$

Since $(M_n(\mathbb{C}), 0)$ is a Banach algebra with norm $\| \|_*$ and since clearly $\| \bar{C} \|_* = \| C \|_*$ for all $C \in M_n(\mathbb{C})$, we have

$$\| \Phi^{-1}(\beta_0 A) \|_{*} \leq \sum_{k=0}^{\infty} |b_{2k+1}| \beta_0^{2k+1} = 1,$$

where $\Phi^{-1}(\beta_0 A)$ denotes the matrix with elements $\Phi^{-1}(\beta_0 A_{ij})$, i, j = 1, ..., n. Hence by Lemma 3.5

$$\|\beta_0 A\|_{\otimes} = \|\Phi \circ \Phi^{-1}(\beta_0 A)\|_{\otimes} \leq 1.$$

Thus we have proved that for any $n \times n$ matrix

$$\|A\|_{*} \leq 1 \Rightarrow \|A\|_{\otimes} \leq 1/\beta_{0},$$

so, by Lemma 3.3, $K_G^{\mathbb{C}} \leq 1/\beta_0$. To compute β_0 , we use that $b_1 = 4/\pi$ and $b_n \leq 0$ for $n \geq 3$ (cf. Theorem 2.1). This gives

$$\sum_{n \text{ odd}} |b_n| \beta_0^n = \frac{8}{\pi} \beta_0 - \varphi^{-1}(\beta_0).$$

Hence β_0 is a solution to the equation

$$\varphi^{-1}(\beta_0) = \frac{8}{\pi}\beta_0 - 1.$$

Now, put $k_0 = \varphi^{-1}(\beta_0)$. Then $k_0 \in [0, 1]$ and

$$\varphi(k_0) = \beta_0 = \frac{\pi}{8}(k_0 + 1).$$

From the Taylor expansion of $\varphi(k)$ it follows that $\varphi'(k) \ge \pi/4$ for $0 \le k < 1$, so that

$$\varphi(k) - \frac{1}{8}\pi(k+1)$$

is an increasing function on [0, 1]. Therefore k_0 is the unique solution to the equation

$$\varphi(k) = \frac{\pi}{8}(k+1)$$

in the interval [0, 1]. Recall from Section 2 that

$$\varphi(k) = \frac{1}{k} (E(k) - (1 - k^2)K(k)), \quad 0 < k < 1.$$

By second-order interpolation in the tables [1, p. 324] one finds

L(K)	$\mathbf{N}(\mathbf{k})$	$\varphi(\kappa)$	$\varphi(\kappa) = \frac{1}{2}\pi(\kappa+1)$
1.264955	2.020408	0.711684	- 0.000070
1.264898	2.020537	0.711754	-0.000023
1.264841	2.020666	0.711825	+0.000023
1.264784	2.020795	0.711895	+0.000069
	1.264955 1.264898 1.264841 1.264784	1.264955 2.020408 1.264898 2.020537 1.264841 2.020666 1.264784 2.020795	1.264955 2.020408 0.711684 1.264898 2.020537 0.711754 1.264841 2.020666 0.711825 1.264784 2.020795 0.711895

(slight adjustments in the last decimal place have been carried out by use of more accurate tables [10]). Hence

$$k_0 \approx (0.66025)^{1/2} \approx 0.81256$$

which gives

$$K_G^{\mathbf{C}} \leq \frac{1}{\beta_0} = \frac{8}{\pi(k_0+1)} \approx 1.40491.$$

References

1. P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Die Grundlehren Math. Wiss. in Einzeldarst. 67, Springer-Verlag, Berlin, 1971.

2. A. M. Davie, private communication (1984).

3. A. Grothendieck, *Résumé de la théorie métrique des produits tensoriels topologiques*, Bol. Soc. Mat. Sao Paulo 8 (1956), 1–79.

4. U. Haagerup, The Grothendieck inequality for bilinear forms on C*-algebras, Advances in Math. 56 (1985), 93-116.

5. S. Kaijser, A note on the Grothendieck constant with an application to harmonic analysis, UUDM Report No. 1973:10, Uppsala University (mimeographed).

6. J. L. Krivine, *Théorème de factorisation dans les espaces réticulés*, exp. XXII-XXIII, Seminaire Maurey-Schwartz, 1973-74.

7. J. J. Krivine, Constantes de Grothendieck et fonctions de type positif sur les sphères, Advances in Math. 31 (1979), 16-30.

8. J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in l_p -spaces and their applications, Studia Math. 29 (1968), 275–326.

9. J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces II*, Ergebnisse der Mathematik und ihre Grenzgeb. 97, Springer-Verlag, Berlin, 1979.

10. L. M. Milne-Thomson, Ten-figure tables of the complete elliptic integrals K, K', E, E', Proc. London Math. Soc. (2) 33 (1932), 160–164.

11. G. Pisier, Grothendieck's theorem for non-commutative C*-algebras with an appendix on Grothendieck's constant, J. Funct. Anal. 29 (1978), 379-415.

12. R. Rietz, A proof of the Grothendieck inequality, Isr. J. Math. 19 (1974), 271-276.