A NEW UPPER BOUND FOR THE COMPLEX GROTHENDIECK CONSTANT

BY UFFE HAAGERUP

Mathematisk Institut, Odense University, DK-5230 Odense M, Denmark

ABSTRACT

Let φ denote the real function

$$
\varphi(k) = k \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - k^2 \sin^2 t}} dt, \qquad -1 \le k \le 1
$$

and let K_G^C be the complex Grothendieck constant. It is proved that $K_G^C \leq$ $8/\pi(k_0 + 1)$, where k_0 is the (unique) solution to the equation $\varphi(k) = \frac{1}{8}\pi(k + 1)$ in the interval [0, 1]. One has $8/\pi(k_0 + 1) \approx 1.40491$. The previously known upper bound is $K_G^C \leq e^{1-\gamma} \approx 1.52621$ obtained by Pisier in 1976.

§1. Introduction

In [3], Grothendieck proved the following fundamental inequality: Let F be the real or the complex scalar field. There are universal constants K^R and K^C such that for every pair of compact spaces S , T and every bounded bilinear form V: $C(S, F) \times C(T, F) \rightarrow F$ there exist probability measures μ , v on S and T respectively, such that

$$
|V(f,g)| \le K^F \| V \| \mu(|f|^2)^{1/2} \nu(|g|^2)^{1/2}
$$

for all $f \in C(S, F)$ and all $g \in C(T, F)$. The smallest possible values for K^R and K^c are usually denoted K_G^R and K_G^c respectively. Grothendieck's inequality has important applications in the theory of Banach lattices (cf. [6], [9]) and there exist natural generalizations of the inequality to C^* -algebras (cf. [11], [4]). The exact values of K_G^R and K_G^C are not known, although the hunt for these constants has been going on for several years. Grothendieck proved that

Received November 9, 1986

$$
\pi/2 \leq K_G^{\mathbf{R}} \leq \sinh(\pi/2) \approx 2.301.
$$

In [12], Rietz pushed the upper bound down to 2.261. Finally Krivine proved by a very elegant method that

$$
K_G^{\mathbf{R}} \le \frac{\pi}{2 \log(1 + \sqrt{2})} \approx 1.782
$$

(cf. [7]). Moreover he showed that $K_G^{\mathbf{R}} > \pi/2$ (unpublished). A straightforward generalization of Grothendieck's proof of $K_G^R \geq \pi/2$ gives $K_G^C \geq 4/\pi$. Kaiser proved by use of Rietz' method that $K_G^C \le 1.607$ (cf. [5]) and in 1976 Pisier proved that $K_G^C \leq e^{1-\gamma} \approx 1.526$ (γ is Euler's constant). Recently Davie [2] has proved that $K_G^C > 1.338$. (In particular $K_G^C > 4/\pi$.)

The basic idea in this paper is to generalize Krivine's method for the proof of $K_G^{\mathbf{R}} \leq \frac{1}{2}\pi(\log(1+\sqrt{2}))^{-1}$ to the complex case, but in the course of doing this, one runs into several technical problems, which are not present in the real case:

The starting point of Krivine's proof is that if (X_1, X_2) are random variables that form a two-dimensional (real) joint normal distribution, such that $E(X_1) = E(X_2) = 0$, $E(X_1^2) = E(X_2^2) = 1$, then

$$
E(\text{sign } X_1 \cdot \text{sign } X_2) = \frac{2}{\pi} \operatorname{Arcsin} E(X_1 X_2).
$$

(The function $(2/\pi)$ arcsin also plays a key role in Grothendieck's proof of $K_G^{\mathbf{R}} \leq \sinh(\frac{1}{2}\pi)$, cf. [3], [8].) We prove that for complex symmetric normal distributions, the corresponding formula is

$$
E(\text{sign } X_1 \cdot \overline{\text{sign } X_2}) = k \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - |k|^2 \sin^2 t}} dt
$$

where $k = E(X_1\bar{X}_2)$ (cf. Lemma 3.2). Now, put

$$
\varphi(k) = k \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - k^2 \sin^2 t}}, \qquad -1 \le k \le 1.
$$

The function φ can be expressed in terms of the complete elliptic integrals $E(k)$ and $K(k)$ (see, e.g., [1]), namely

$$
\varphi(k) = \frac{1}{k}(E(k) - (1 - k^2)K(k)), \qquad -1 < k < 1, \quad k \neq 0.
$$

It is easy to check that $\varphi(k)$ is a homeomorphism of [-1, 1] onto [-1, 1], and that it can be expressed by the Taylor series

$$
\varphi(k) = \frac{\pi}{2}\left(k + \left(\frac{1}{2}\right)^2\frac{k^3}{2} + \left(\frac{1\cdot3}{2\cdot4}\right)^2\frac{k^5}{3} + \left(\frac{1\cdot3\cdot5}{2\cdot4\cdot6}\right)^2\frac{k^7}{4} + \cdots\right)
$$

for all $k \in]-1, 1]$. The crucial part in the proof of our new upper bound for K_G^C is to prove that the Taylor series for the inverse function

$$
\varphi^{-1}(u)=\sum_{\substack{n=1\\n \text{ odd}}}^{\infty} b_n u^n
$$

converges to $\varphi^{-1}(u)$ for all $u \in [-1, 1]$, and that $b_n \leq 0$ for $n \geq 3$. This is in marked contrast to the real case, where the function corresponding to $\varphi^{-1}(u)$ is $sin(\frac{1}{2}\pi u)$, which has an alternating Taylor series. The first few b_n 's are easily computed:

$$
b_1 = \frac{4}{\pi}
$$
, $b_3 = -\frac{1}{8} \left(\frac{4}{\pi}\right)^3$, $b_5 = 0$, $b_7 = -\frac{1}{1024} \left(\frac{4}{\pi}\right)^7$.

To prove that $b_n \leq 0$ for $n \geq 9$, we first observe that φ has an analytic continuation to the disk $|z| < 1$ and that

$$
b_n = \frac{1}{n} \operatorname{Res} \left(\frac{1}{\varphi^n}, 0 \right)
$$

(Res(f, z₀) denotes the residue of f at $z_0 \in \mathbb{C}$). Next it is proved that φ can be extended further to a continuous function φ^+ in the upper half plane Im $z \ge 0$, such that φ ⁺ is analytic in the interior. This yields

$$
b_n = \frac{2}{\pi n} \operatorname{Im} \left(\int_{\Gamma_n} \frac{ds}{\varphi^+(s)^n} \right) \qquad \text{for } n \text{ odd},
$$

where Γ_a is the arc consisting of the line segment [1, α] ($\alpha > 1$) and the quarter circle $\{\alpha e^{i\theta} \mid 0 \le \theta \le \pi/2\}$. We put $\alpha = 5\sqrt{2}$, and prove that for $n \ge 9$ the main part of the above counter integral stems from a small interval $[1, \alpha_n]$ to the right of 1, where $(\varphi^+(s))^{-n}$ has a negative imaginary part. Thus $b_n < 0$ for $n\geq 9$.

We can now argue almost as in Krivine's paper [7, pp. 23–25] to see that if $\beta_0 \in [0, 1]$ is the number for which

$$
\sum_{n \text{ odd}} |b_n| \beta_0^n = 1
$$

then $K_G^C \leq 1/\beta_0$ (cf. Section 3). Since $b_1 = 4/\pi$ and $b_n \leq 0$ for $n \geq 3$, the identity can also be written

$$
\frac{8}{\pi}\beta_0 - \varphi^{-1}(\beta_0) = 1.
$$

Putting $k_0 = \varphi^{-1}(\beta_0)$, we get the following equation:

$$
\varphi(k_0) = \frac{\pi}{8} (k_0 + 1),
$$

which can be solved numerically by use of tables of elliptic integrals. One has $k_0 \approx 0.81256$, from which

$$
K_G^{\rm C} \leq \frac{1}{\beta_0} = \frac{8}{\pi (k_0 + 1)} \approx 1.40491.
$$

We doubt that the above upper estimate for K_G^C is an equality. A perhaps more plausible candidate for K_G^C is the slightly smaller number

$$
|\varphi(i)|^{-1} = \left(\int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 + \sin^2 t}} dt\right)^{-1} \approx 1.40458.
$$

This can be considered as a formed analogue of Krivine's upper bound $\frac{1}{2}\pi(\log(1+\sqrt{2}))^{-1}$ for K_G^R , because

$$
\left|\frac{2}{\pi}\arcsin(i)\right|^{-1} = \frac{\pi}{2 \operatorname{Arsinh}(1)} = \frac{\pi}{2}(\log(1+\sqrt{2}))^{-1}.
$$

§2. Power series expansions of φ and φ^{-1}

Let φ be the function

$$
\varphi(k) = k \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - k^2 \sin^2 t}} dt, \qquad -1 \le k \le 1.
$$

It is easily checked that φ is a continuous, strictly increasing function and that $\varphi(1) = 1, \varphi(-1) = -1$. Hence φ is a homeomorphism of $[-1, 1]$ onto itself. Using the expansion

$$
(1 - k^2 \sin^2 t)^{-1/2} = \sum_{m=0}^{\infty} \frac{1 \cdot 3 \cdot \cdot \cdot (2m-1)}{2 \cdot 4 \cdot \cdot \cdot 2m} k^{2m} \sin^{2m} t
$$

 $(|k| \leq 1, 0 \leq t < \pi/2)$ and the formula

$$
\int_0^{\pi/2} \cos^2 t \sin^{2m} t dt = \frac{\pi}{4(m+1)} \left(\frac{1 \cdot 3 \cdot \cdot \cdot (2m-1)}{2 \cdot 4 \cdot \cdot \cdot (2m)} \right),
$$

 φ can be expressed by the power series

$$
\varphi(k) = \sum_{n \text{ odd}} a_n k^n, \qquad -1 \leq k \leq 1
$$

where

$$
a_{2m+1}=\frac{\pi}{4(m+1)}\left(\frac{1\cdot 3\cdot \cdot \cdot (2m-1)^2}{2\cdot 4\cdot \cdot \cdot 2m}\right)^2.
$$

The first few terms of the series are

$$
\varphi(k) = \frac{\pi}{4}\left(k + \frac{1}{8}k^3 + \frac{3}{64}k^5 + \frac{25}{1024}k^7 + \cdots\right).
$$

For $k \in]-1, 1[, k \neq 0, \varphi(k)$ can also be expressed in terms of the complete elliptic integrals

$$
E(k)=\int_0^{\pi/2}(1-k^2\sin^2 t)^{1/2}dt,\quad K(k)=\int_0^{\pi/2}(1-k^2\sin^2 t)^{-1/2}dt,
$$

namely

$$
\varphi(k) = \frac{1}{k} (E(k) - (1 - k^2)K(k)).
$$

THEOREM 2.1. (1) The inverse function φ^{-1} of φ can be expressed by an *absolutely convergent power series*

$$
\varphi^{-1}(s) = \sum_{n \text{ odd}} b_n s^n, \qquad -1 \leq s \leq 1.
$$

(2) $b_1 = 4/\pi$ *and* $b_n \le 0$ *for all* $n \ge 3$.

REMARK. Since φ is a real analytic function, $\varphi(0) = 0$ and $\varphi'(0) \neq 0$, it is clear that φ^{-1} can be expanded in a power series

$$
\varphi^{-1}(s)=\sum_{n=1}^{\infty}b_n s^n
$$

in some neighbourhood of 0. Moreover $b_n = 0$ for *n* even, because φ^{-1} is an odd function of s. By solving the equation

$$
s = \frac{\pi}{4}\left(k + \frac{1}{8}k^3 + \frac{3}{64}k^5 + \frac{25}{1024}k^7 + \cdots\right)
$$

up to 7th power in s, one finds

$$
k = \varphi^{-1}(s) = \frac{4s}{\pi} - \frac{1}{8} \left(\frac{4s}{\pi}\right)^3 - \frac{1}{1024} \left(\frac{4s}{\pi}\right)^7 + O(s^9).
$$

Hence

$$
b_1 = \frac{4}{\pi}
$$
, $b_3 = -\frac{1}{8} \left(\frac{4}{\pi}\right)^3$, $b_5 = 0$, $b_7 = -\frac{1}{1024} \left(\frac{4}{\pi}\right)^7$.

The rest of this section is used to prove that $\Sigma_{n \text{ odd}} | b_n | < \infty$, and that $b_n < 0$ for $n \geq 9$, n odd.

Following standard notation of elliptic integrals, we put $E'(k) = E(\sqrt{1 - k^2})$ and $K'(k) = K(\sqrt{1 - k^2})$, $0 \le k \le 1$.

LEMMA 2.2. (1) *The function* $\varphi(k)$, $-1 \leq k \leq 1$ *can be extended to a continuous function* $\varphi^+(k)$ *in the closed upper half plane* Im $k \ge 0$ *such that* φ^+ *is analytic in the open half plane* Im $k > 0$.

 (2) *For* $k \in \mathbb{R}$, $k \geq 1$,

Re
$$
\varphi^+(k) = E\left(\frac{1}{k}\right)
$$
, Im $\varphi^+(k) = K'\left(\frac{1}{k}\right) - E'\left(\frac{1}{k}\right)$.

PROOF. For $k \in]-1, 1[$,

$$
\frac{d}{dt}\arcsin(k\sin t) = \frac{k\cos t}{\sqrt{1 - k^2\sin^2 t}}.
$$

Thus, by partial integration,

$$
\varphi(k) = \int_0^{\pi/2} \sin t \arcsin(k \sin t) dt, \qquad -1 \le k \le 1.
$$

The analytic function sin z is a bijection of $[-\pi/2, \pi/2] \times [0, \infty]$ onto the upper closed half plane. Let Arcsin⁺ be the inverse of this map. Then Arcsin⁺

is analytic in the open half plane $Im z > 0$, continuous in the closed half plane, and for $z \in \mathbb{R}$,

$$
\begin{aligned}\n\text{Arcsin}^+ z &= \text{Arcsin } z, & -1 \leq z \leq 1, \\
\text{Arcsin}^+ z &= \frac{1}{2}\pi + i \text{Arcosh} |z|, & |z| > 1.\n\end{aligned}
$$

Now, define

$$
\varphi^+(k) = \int_0^{\pi/2} \sin t \arcsin^+(k \sin t) dt, \quad \text{Im } k \ge 0.
$$

Then it is easily checked that φ + is a continuous extension of φ , and that φ + is analytic in the open half plane Im $k > 0$.

For $k > 1$ we have by partial integration

Re
$$
\varphi^+(k) = \int_0^{\sin t - 1/k} \sin t \arcsin(k \sin t) dt + \int_{\sin t - 1/k}^{\pi/2} \sin t \frac{1}{2} \pi dt
$$

= $k \int_0^{\sin t - 1/k} \frac{\cos^2 t}{\sqrt{1 - k^2 \sin^2 t}} dt$

and

$$
\operatorname{Im} \varphi^+(k) = \int_{\sin t - 1/k}^{\pi/2} \sin t \operatorname{Arcosh}(k \sin t) dt
$$

$$
= k \cdot \int_{\sin t - 1/k}^{\pi/2} \frac{\cos^2 t}{\sqrt{k^2 \sin^2 t - 1}} dt.
$$

Substituting $\sin u = k \sin t$ in the integral for Re $\varphi^+(k)$ and $\sin v =$ $(1 - k^{-2})^{-1/2}$ cos t in the integral for Im $\varphi^+(k)$, one finds

$$
\operatorname{Re} \varphi^+(k) = \int_0^{\pi/2} \sqrt{1 - k^{-2} \sin^2 u} \, du = E(1/k),
$$

\n
$$
\operatorname{Im} \varphi^+(k) = (1 - k^{-2}) \int_0^{\pi/2} \frac{\sin^2 v}{\sqrt{1 - (1 - k^{-2}) \sin^2 v}} \, dv
$$

\n
$$
= K(\sqrt{1 - k^{-2}}) - E(\sqrt{1 - k^{-2}}).
$$

LEMMA 2.3. (1) Im $\varphi^{+}(k) \geq \text{Im} \varphi^{+}(\vert k \vert)$ for $\vert k \vert \geq 1$, Im $k \geq 0$. (2) φ^+ has no zeros in the closed half plane Im $k \ge 0$ except $k = 0$.

PROOF. (1) The analytic function sin maps the line segment

$$
\{t + ia \mid -\pi/2 \leq t \leq \pi/2\}
$$

onto the half ellipsoid

$$
\{z \in \mathbb{C} \mid |z - 1| + |z + 1| = 2 \cosh a, \operatorname{Im} z \ge 0\}.
$$

Therefore

Im Arcsin⁺(z) = Arcosh(
$$
\frac{1}{2}
$$
(|z - 1| + |z + 1|))

for Im $z \ge 0$. Since Arcosh is an increasing function on [1, ∞ [, we get

$$
\text{Im Arcsin}^+(z) \ge \begin{cases} \text{Arcosh}|z|, & |z| \ge 1, \\ 0, & |z| < 1. \end{cases}
$$

Hence, for Im $k \ge 0, |k| \ge 1$,

$$
\operatorname{Im} \varphi^{+}(k) = \int_0^{\pi/2} \sin t \operatorname{Im} \operatorname{Arcsin}^{+}(k \sin t) dt
$$

\n
$$
\geq \int_{\sin t - 1/|k|}^{\pi/2} \sin t \operatorname{Arcosh}(|k| \sin t) dt
$$

\n
$$
= \operatorname{Im} \varphi^{+}(|k|).
$$

(2) Since $\text{Im Arcsin}^+(z) > 0$ for $\text{Im } z > 0$, $\varphi^+(k)$ has strictly positive imaginary part when Im $k > 0$.

For $k \in [-1, 1]$, $\varphi^+(k) = \varphi(k)$ is zero only at $k = 0$, and for $k > 1$ or $k < -1$,

Im
$$
\varphi^+(k)
$$
 = $\int_{\sin t - 1/|k|}^{\pi/2} \sin t \operatorname{Arcosh}(|k| \sin t) dt > 0.$

This proves (2).

 $Lemma 2.4. Let $\alpha > 1$. For $n \in \mathbb{N}$, n odd$

$$
b_n=\frac{2}{\pi n}\int_1^{\alpha}\text{Im}(\varphi^+(k)^{-n})dk+r_n(\alpha)
$$

where

$$
|r_n(\alpha)| \leq \frac{\alpha}{n} (\operatorname{Im} \varphi^+(\alpha))^{-n}.
$$

PROOF. The Taylor series

n~l n odd

$$
\varphi(k) = \sum_{n=1}^{\infty} a_n k^n
$$

for φ defines an analytic function in the complex disk $|k| < 1$, which coincides with $\varphi^+(k)$ for $|k| < 1$, Im $k \ge 0$. Since $\varphi(0) = 0$ and $\varphi'(0) = \pi/4 \ne 0$, there exists $\delta_0 \in]0, 1]$, such that $\varphi(k)$ has an analytic inverse in the disk $|k| < \delta_0$. Let C_{δ} be the circle with radius δ with usual (counter-clockwise) orientation. For $0 < \delta < \delta_0$, $\varphi(C_\delta)$ is a simple closed curve with winding number + 1. Hence by Cauchy's integral formula

$$
b_n = \frac{1}{2\pi i} \int_{\varphi(C_\delta)} \frac{\varphi^{-1}(s)}{s^{n+1}} ds.
$$

Substituting $s = \varphi(k)$ we get

$$
b_n=\frac{1}{2\pi i}\int_{C_\delta}\frac{k}{\varphi(k)^{n+1}}\varphi'(k)dk.
$$

Using

$$
-n\int_{C_{\delta}}\frac{k\varphi'(k)}{\varphi(k)^{n+1}}dk+\int_{C_{\delta}}\frac{1}{\varphi(k)^{n}}dk=\int_{C_{\delta}}\frac{d}{dk}\left(\frac{k}{\varphi(k)^{n}}\right)dk=0
$$

we get

$$
b_n=\frac{1}{2\pi in}\int_{C_s}\varphi(k)^{-n}dk,
$$

i.e., nb_n is the residue of φ^{-n} at 0. Since $b_n \in \mathbb{R}$,

$$
b_n = \frac{1}{2\pi n} \operatorname{Im} \left(\int_{C_\delta} \varphi(k)^{-n} dk \right)
$$

=
$$
\frac{1}{2\pi n} \operatorname{Im} \left(\int_0^{2\pi} \varphi(\delta e^{i\theta})^{-n} \delta i e^{i\theta} d\theta \right)
$$

Using that $\varphi(k)$ ⁻ⁿ is an odd function for n odd, and using that $\varphi(\bar{k}) = \overline{\varphi(k)}$, one gets that the imaginary parts of the integrals over the four intervals $[0, \pi/2]$, $[\pi/2, \pi]$, $[\pi, 3\pi/2]$, $[3\pi/2, 2\pi]$ are equal. Thus, if C'_δ denotes the quarter circle

$$
k = \delta e^{i\theta}, \qquad 0 \le \theta \le \pi/2,
$$

then

$$
b_n=\frac{2}{\pi n}\operatorname{Im}\left(\int_{C_\delta}\varphi(k)^{-n}dk\right).
$$

Since $\varphi(k)$ coincides with $\varphi^+(k)$ on C'_δ and since $\varphi^+(k)$ has no zeros in the set

$$
\{z \in \mathbb{C} \mid \delta \leq |z| \leq \alpha, 0 \leq \arg z \leq \pi/2\}
$$

(cf. Lemma 2.3(2)), we get by Cauchy's integral formula that

$$
b_n=\frac{2}{\pi n}\operatorname{Im}\left(\int_{\delta}^{\alpha}\varphi^+(k)^{-n}dk+\int_{C'_\sigma}\varphi^+(k)^{-n}dk+\int_{i\alpha}^{i\delta}\varphi^+(k)^{-n}dk\right)
$$

where the last integral is taken along the imaginary axis. Moreover, since $\varphi^+(k)$ is real on $[\delta, 1]$ and purey imaginary on the imaginary axis,

$$
\operatorname{Im}\left(\int_{\delta}^{1}\varphi^{+}(k)^{-n}dk\right)=0
$$

and

$$
\operatorname{Im}\left(\int_{i\alpha}^{i\delta}\varphi^+(k)^{-n}dk\right)=0.
$$

Hence

$$
b_n=\frac{2}{\pi n}\int_1^{\alpha}\operatorname{Im}\,\varphi^+(k)^{-n}dk+\frac{2}{\pi n}\operatorname{Im}\left(\int_{C'_n}\varphi^+(k)^{-n}dk\right).
$$

By Lemma 2.3, $|\varphi^+(k)| \geq \text{Im } \varphi^+(k) \geq \text{Im } \varphi^+(k)$. Thus

$$
\left|\int_{C_4} \varphi^+(k)^{-n} dk\right| \leq \frac{\pi \alpha}{2} (\text{Im } \varphi^+(\alpha))^{-n}.
$$

This completes the proof of Lemma 2.4.

LEMMA 2.5. Let $\varphi_1(k) = \text{Re }\varphi^+(k), \ \varphi_2(k) = \text{Im }\varphi^+(k), \text{ and } \varphi_1' = d\varphi_1/dk,$ $\varphi'_{2} = d\varphi_{2}/dk$ for $k > 1$. Then:

- (1) $\varphi_1(k)\varphi_2'(k) \varphi_1'(k)\varphi_2(k) = \pi/2k, k > 1.$
- (2) Let $q = (4/\pi)E(1/\sqrt{2})(K(1/\sqrt{2}) E(1/\sqrt{2})) \approx 0.86575$, then

$$
\varphi_1(k)\varphi_1'(k)+\varphi_2(k)\varphi_2'(k)\geqq \frac{\pi}{2k}q, \qquad k>1
$$

and equality holds for $k = \sqrt{2}$.

PROOF. (1) By Lemma 2.2,

$$
\varphi_1(k) = E\left(\frac{1}{k}\right)
$$
 and $\varphi_2(k) = K'\left(\frac{1}{k}\right) - E'\left(\frac{1}{k}\right)$.

Using

$$
\frac{dE}{dk} = -\frac{1}{k}(K - E) \quad \text{and} \quad \frac{d(K - E)}{dk} = \frac{k}{1 - k^2}E
$$

(cf. [1, Formula 710.02 and 710.05]) one gets

$$
\varphi_1'(k) = \frac{1}{k} \left(K \left(\frac{1}{k} \right) - E \left(\frac{1}{k} \right) \right),
$$

$$
\varphi_2'(k) = \frac{1}{k} E' \left(\frac{1}{k} \right).
$$

Thus (1) follows from Legendre's relation $EK' + E'K - KK' = \pi/2$ (cf. [1, Formula 110.10]).

(2) We have

$$
k(\varphi_1(k)\varphi_1'(k) + \varphi_2(k)\varphi_2'(k)) = (E(K - E) + E'(K' - E'))(1/k).
$$

In particular

$$
\sqrt{2}(\varphi_1\varphi_1'+\varphi_2\varphi_2')(\sqrt{2})=2E\left(\frac{1}{\sqrt{2}}\right)\left(K\left(\frac{1}{\sqrt{2}}\right)-E\left(\frac{1}{\sqrt{2}}\right)\right)=\frac{\pi}{2}\,q.
$$

It remains to be proved that

$$
(E(K - E) + E'(K' - E'))(k) \ge (E(K - E) + E'(K' - E'))(1/\sqrt{2})
$$

for $0 < k < 1$. Since the function

$$
f(m) = (E(K - E) - E'(K' - E'))(\sqrt{m}), \qquad 0 < m < 1
$$

is symmetric around $m = \frac{1}{2}$, it is sufficient to prove that f is convex. Using the above-mentioned formulas for dE/dk and $d(K - E)/dk$ one gets

$$
\frac{d^2}{dm^2}E(\sqrt{m})(K-E)(\sqrt{m}) = \frac{1}{2}\left(\frac{E(\sqrt{m})}{1-m} - \frac{(K-E)(\sqrt{m})}{m}\right)^2
$$

$$
\geq 0.
$$

Since $E'(\sqrt{m})(K'-E')(\sqrt{m}) = E(\sqrt{1-m})(K-E)(\sqrt{1-m})$ also

$$
\frac{d^2}{dm^2}E'(\sqrt{m})(K'-E')(\sqrt{m})\geq 0.
$$

This proves that f is convex.

LEMMA 2.6. $\Sigma_{n \text{ odd}} |b_n| < \infty$ and $\varphi^{-1}(s) = \Sigma_{n \text{ odd}} b_n s^n$ for $s \in [-1, 1]$.

PROOF. By Lemma 2.5

$$
\frac{d}{dk}|\varphi(k)|^2=2(\varphi_1\varphi_1'+\varphi_2\varphi_2')(k)\geq \frac{\pi q}{k}.
$$

Fix $\alpha > 1$, then for $1 \leq k \leq \alpha$,

$$
|\varphi(k)|^2 \ge |\varphi(1)|^2 + \int_1^k \frac{\pi q}{\alpha} dk
$$

= $1 + \frac{\pi q}{\alpha} (k - 1).$

Thus for $n \geq 3$

$$
\int_1^{\alpha} |\varphi(k)|^{-n} dk \leq \int_1^{\alpha} \left(1 + \frac{\pi q}{\alpha} (k-1)\right)^{-n/2} dk
$$

$$
\leq \int_1^{\infty} \left(1 + \frac{\pi q}{\alpha} (k-1)\right)^{-n/2} dk
$$

$$
= \frac{\alpha}{\pi q} \frac{2}{n-2}.
$$

Hence, by Lemma 2.4,

$$
|b_n| \leq \frac{4\alpha}{\pi^2 q n(n-2)} + \frac{\alpha}{n} (\operatorname{Im} \varphi^+(\alpha))^{-n}, \qquad n \geq 3.
$$

If, for instance, we put $\alpha = 5\sqrt{2}$, then by [1, p. 324]

Im
$$
\varphi^+(\alpha) = K'(\sqrt{0.02}) - E'(\sqrt{0.02}) \approx 2.32555.
$$

Thus the sequence $n^2|b_n|$ is bounded. In particular $\sum_{n \text{ odd}} |b_n| < \infty$. Therefore $\Sigma_{n \text{ odd}} b_{n} s^{n}$ converges to a continuous function on [- 1, 1], which is real analytic in the interior of the interval. Since this function coincides with $\varphi^{-1}(s)$ in some neighbourhood of 0 and since $\varphi^{-1}(s)$ is also real analytic on] – 1, 1[, we have

$$
\varphi^{-1}(s) = \sum_{n \text{ odd}} b_n s^n, \qquad s \in [-1, 1].
$$

LEMMA 2.7. Let $\theta(k) = \arg(\varphi^+(k))$, $k \ge 1$. Then $\theta(k)$ is a strictly increas*ing function of k,* $\theta(1) = 0$ *and* $\lim_{k\to\infty} \theta(k) = \pi/2$.

PROOF. Using

$$
\theta(k) = \arctan \frac{\varphi_2(k)}{\varphi_1(k)}
$$

we have by Lemma 2.5 (1)

$$
\frac{d\theta(k)}{dk} = \frac{\varphi_1(k)\varphi_2(k) - \varphi_1'(k)\varphi_2(k)}{|\varphi^+(k)|^2} = \frac{\pi}{2k|\varphi^+(k)|^2} > 0
$$

for $k > 1$. Thus $\theta(k)$ is strictly increasing for $k \ge 1$. For $k = 1$, $\theta(k) = \text{Arg}(1)$ 0. Using that

$$
E(0) = \pi/2, \quad E(1) = 1, \quad \lim_{k \to 1} K(k) = +\infty
$$

we have by Lemma 2.2

$$
\lim_{k\to\infty}\varphi_1(k)=\frac{\pi}{2}\quad\text{and}\quad\lim_{k\to\infty}\varphi_2(k)=\infty.
$$

Thus $\theta(k) \rightarrow \pi/2$ for $k \rightarrow \infty$.

LEMMA 2.8. *Put* $\alpha = 5\sqrt{2}$ and $\theta_0 = \theta(\alpha)$. For fixed $n \in \mathbb{N}$ let $p = [n\theta_0/\pi]$ (= integer part of $n\theta_0/\pi$), and put

$$
I_r = \frac{2}{\pi n} \int_{\theta(k) - (\pi/n)(r-1)}^{\theta(k) - (\pi/n)r} |\varphi^+(k)|^{-n} |\sin n\theta(k)| dk
$$

for $r = 1, \ldots, p$ *. Moreover, put*

$$
I'=\frac{2}{\pi n}\int_{(\pi/n)p}^{\theta_0}|\varphi^+(k)|^{-n}|\sin n\theta(k)|dk.
$$

Then:

- (1) $(2/\pi n)$ $\int_1^{\alpha} \text{Im}(\varphi^+(k)^{-n})dk = -I_1 + I_2 \cdots + (-1)^p I_p + (-1)^{p+1} I'.$
- (2) *For* $n \ge 9$ *one* has $p \ge 2$ *and* $I_1 > I_2 > \cdots > I_p > I'$.

PROOF. (1) It is clear that

$$
\frac{2}{\pi n} \int_1^{\alpha} \text{Im}(\varphi^+(k)^{-n}) dk = -\frac{2}{\pi n} \int_1^{\alpha} |\varphi^+(k)|^{-n} \cdot \sin(n\theta(k)) dk
$$

= $-I_1 + I_2 - \cdots + (-1)^p I_p + (-1)^{p+1} I'.$

(2) Let $k = \chi(\theta)$, $\theta \in [0, \pi/2]$ be the inverse function of $\theta = \theta(k)$. Then by the formula for $d\theta(k)/dk$ derived in the proof of Lemma 2.7 we have

$$
I_r = \frac{4}{\pi^2 n} \int_{(\pi/n)(r-1)}^{(\pi/n)r} \chi(\theta) |\varphi^+(\chi(\theta))|^{2-n} |\sin n\theta| d\theta
$$

and

$$
I'=\frac{4}{\pi^2 n}\int_{(\pi/n)p}^{\theta_0}\chi(\theta)|\varphi^+(\chi(\theta))|^{2-n}|\sin n\theta|d\theta.
$$

We prove next that $k | \varphi^+(k)|^{2-n}$ is a strictly decreasing function on [1, α] for $n\geq 9$:

$$
\frac{d}{dk}(k|\varphi^+(k)|^{2-n}) = |\varphi^+(k)|^{2-n} + k\left(\frac{2-n}{2}\right)|\varphi^+(k)|^{-n}\frac{d}{dk}|\varphi^+(k)|^2
$$

\n
$$
= |\varphi^+(k)|^{-n}(|\varphi^+(k)|^2 - (n-2)k(\varphi_1(k)\varphi_1(k) + \varphi_2(k)\varphi_2(k))|
$$

\n
$$
\leq |\varphi^+(k)|^{-n} \left(|\varphi^+(k)|^2 - (n-2)\frac{\pi}{2}q\right)
$$

\n
$$
\leq |\varphi^+(k)|^{-n} \left(|\varphi^+(\alpha)|^2 - \frac{7\pi q}{2}\right).
$$

Here we have used Lemma 2.5(2), and that $|\varphi^+(k)|^2$ is an increasing function of k (which also follows from Lemma 2.5(2)). From [1, p. 324],

$$
\varphi_1(\alpha) = \varphi_1(5\sqrt{2}) = E(\sqrt{0.02}) \approx 1.56291,
$$

\n $\varphi_2(\alpha) = K'(\sqrt{0.02}) = E'(\sqrt{0.02}) \approx 2.32555.$

Hence $|\varphi^+(\alpha)|^2 \approx 7.8509$ while $7\pi q/2 \approx 9.5194$. Thus $k|\varphi^+(k)|^{2-n}$ is a strictly decreasing function of k for $1 \le k \le \alpha$ and $n \ge 9$.

Using $|\sin n\theta|$ is periodic with period π/n , it now follows that

$$
I_1>I_2>\cdots>I_p.
$$

Moreover,

$$
I' = \frac{4}{\pi^2 n} \int_{\pi p/n}^{\theta_0} \chi(\theta) |\varphi^+(\chi(\theta))|^{2-n} |\sin n\theta| d\theta
$$

\n
$$
\leq \frac{4}{\pi^2 n} \int_{(\pi/n)(p-1)}^{\theta_0 - \pi/n} \chi(\theta) |\varphi^+(\chi(\theta))|^{2-n} |\sin n\theta| d\theta
$$

\n
$$
< I_p.
$$

Finally,

$$
\theta_0 = \arctan \frac{\varphi_2(\alpha)}{\varphi_1(\alpha)} \ge \arctan(1) = \pi/4.
$$

Thus

$$
p = \left[\frac{n\theta_0}{\pi}\right] \ge \left[\frac{9\theta_0}{\pi}\right] \ge 2 \quad \text{for } n \ge 9.
$$

This completes the proof of Lemma 2.8.

LEMMA 2.9. Let $n \ge 9$, let I, be as in Lemma 2.8, and let $c = |\varphi^+(\sqrt{2})|e^{-q\theta(\sqrt{2})} \cong 1.05838.$

Then

(1) $I_1 > (0.27/n^2)c^{-n}$, (2) $I_2 < 0.35 \cdot I_1$.

PROOF. Since $\chi(\theta) \ge 1$ for $0 \le \theta < \pi/2$, we have

$$
I_1 \geqq \frac{4}{\pi^2 n} \int_0^{\pi/n} |\varphi^+(\chi(\theta))|^{2-n} |\sin n\theta d\theta.
$$

For $\theta = \theta(k)$ (equivalently $k = \chi(\theta)$) we have

$$
\frac{d}{d\theta} \log |\varphi^+(\chi(\theta))| = \frac{d}{dk} \log |\varphi^+(k)|^2 \cdot \left(\frac{d\theta}{dk}\right)^{-1}
$$

$$
= \frac{\varphi_1(k)\varphi_1'(k) + \varphi_2(k)\varphi_2'(k)}{|\varphi^+(k)|^2} \cdot \frac{2}{\pi} k |\varphi^+(k)|^2
$$

$$
\geq q
$$

where $q \approx 0.86575$ is the constant defined in Lemma 2.5. Hence for $0 \le \theta \le$ $\theta(\sqrt{2}),$

$$
\log |\varphi^+(\chi(\theta))| \leq \log |\varphi^+(\sqrt{2})| - (\theta(\sqrt{2}) - \theta)q.
$$

Equivalently

$$
|\varphi^+(\chi(\theta))| \leq ce^{q\theta}, \qquad 0 \leq \theta \leq \theta(\sqrt{2})
$$

where

$$
c=|\varphi^+(\sqrt{2})|e^{-q\theta(\sqrt{2})}.
$$

From [1, p. 324],

$$
\varphi_1(\sqrt{2}) = E(1/\sqrt{2}) \approx 1.35064,
$$

\n $\varphi_2(\sqrt{2}) = K(1/\sqrt{2}) - E(1/\sqrt{2}) \approx 0.50343.$

Thus

$$
|\varphi^+(\sqrt{2})| \approx 1.44142,
$$

$$
\theta(\sqrt{2}) = \arctan(\varphi_2(\sqrt{2})/\varphi_1(\sqrt{2})) \approx 0.35678
$$

and

$$
c \approx 1.05838.
$$

Since $\theta(\sqrt{2}) > \frac{1}{2}\pi$ (\approx 0.34907), we have for $n \ge 9$

$$
I_1 \ge \frac{4}{\pi^2 n} \int_0^{\pi/n} (ce^{q\theta})^{2-n} \sin n\theta \ d\theta
$$

= $\frac{4c^{2-n}}{\pi^2 n^2} \int_0^{\pi} e^{-(n-2)q\theta/n} \sin \theta \ d\theta$
 $\ge \frac{4c^{2-n}}{\pi^2 n^2} \int_0^{\pi} e^{-q\theta} \sin \theta \ d\theta$
= $\left(\frac{2c}{\pi n}\right)^2 \frac{1+e^{-qx}}{1+q^2} c^{-n}.$

Since

$$
\left(\frac{2c}{\pi}\right)^2 \frac{1+e^{-q\pi}}{1+q^2} \approx 0.27659
$$

we have proved (1).

Using

$$
\varphi_1(5/\sqrt{3}) = E(\sqrt{0.12}) \approx 1.52256,
$$

\n $\varphi_2(5/\sqrt{3}) = K'(\sqrt{0.12}) - E'(\sqrt{0.12}) \approx 1.37189,$

we have

$$
\theta(5/\sqrt{3})\approx 0.73339.
$$

Hence

$$
\theta(5/\sqrt{3}) > \frac{2\pi}{9} \quad (\approx 0.69813).
$$

Thus for $0 \le \theta \le 2\pi/9$, $\chi(\theta) \le 5/\sqrt{3}$. Hence for $n \ge 9$

$$
I_2 \leq \frac{4}{\pi^2 n} \frac{5}{\sqrt{3}} \int_{\pi/n}^{2\pi/n} |\varphi^+(\chi(\theta))|^{2-n} |\sin n\theta| d\theta
$$

=
$$
\frac{4}{\pi^2 n} \frac{5}{\sqrt{3}} \int_0^{\pi/n} |\varphi^+(\chi(\theta + \frac{\pi}{n}))|^{2-n} \sin n\theta d\theta.
$$

Since

$$
\frac{d}{d\theta}\log|\varphi^+(\chi(\theta))|\geqq q,
$$

it follows that

$$
|\varphi^+(\chi(\theta+\pi/n))|^{2-n}\leq e^{-(n-2)\pi q/n}|\varphi^+(\chi(\theta))|^{2-n}.
$$

Thus

$$
I_2 \leq \frac{4}{\pi^2 n} \frac{5}{\sqrt{3}} e^{-(n-2)\pi q/n} \int_0^{\pi/n} |\varphi^+(\chi(\theta))|^{2-n} \sin n\theta d\theta
$$

$$
\leq \frac{5}{\sqrt{3}} e^{-7\pi q/9} \cdot I_1.
$$

But

$$
\frac{5}{\sqrt{3}}e^{-7\pi q/9}\approx 0.34809.
$$

This proves (2).

END OF PROOF OF THEOREM 2.1. Let $n \ge 9$ and let $I_1, I_2, \ldots, I_p, I'$ be as in Lemma 2.8. By Lemma 2.4 with $\alpha = 5\sqrt{2}$ and Lemma 2.8, we get

$$
-b_n=(I_1-I_2+\cdots+(-1)^{p-1}I_p+(-1)^pI')-r_n(5\sqrt{2}).
$$

Since the terms in the alternating series have decreasing size by Lemma 2.8(2), and since $p \geq 2$, one has

$$
-b_n > I_1 - I_2 - r_n(5\sqrt{2}).
$$

Lemma 2.9 gives

$$
(I_1 - I_2) > 0.27(1 - 0.35) \frac{1}{n^2} (1.06)^{-n}
$$

$$
> \frac{0.175}{n^2} (1.06)^{-n}.
$$

Since Im $\varphi^+(5\sqrt{2}) \approx 2.32555$, we get by Lemma 2.4

$$
|r_n(5\sqrt{2})| \leq \frac{5\sqrt{2}}{n}(2.32)^{-n}.
$$

Thus

$$
-b_n > \frac{0.175}{n^2} (1.06)^{-n} - \frac{5\sqrt{2}}{n} (2.32)^{-n}
$$

= $\frac{0.175}{n^2} 1.06^{-n} \left(1 - \frac{5\sqrt{2} n}{0.175} \left(\frac{1.06}{2.32}\right)^n\right)$
> $\frac{0.175}{n^2} (1.06)^{-n} (1 - 41 \cdot n \cdot 2^{-n}).$

Since $n \cdot 2^{-n}$ is a decreasing function of $n \in \mathbb{N}$, and since $41 \cdot 9 \cdot 2^{-9} < 1$, we conclude that $b_n < 0$ for all odd $n \ge 9$. This completes the proof of Theorem 2.1.

REMARK. In the beginning of this section we found b_1 , b_3 , b_5 and b_7 by solving the equation $\varphi(k)=s$ in terms of power series. Continuing this procedure, one gets

$$
b_9 = -5 \cdot 2^{-14} \left(\frac{4}{\pi}\right)^9
$$
, $b_{11} = -15 \cdot 2^{-17} \left(\frac{4}{\pi}\right)^{11}$, $b_{13} = -49 \cdot 2^{-20} \left(\frac{4}{\pi}\right)^{13}$.

We doubt that it is possible to write the b_n 's in a closed form. However, using the following asymptotic expressions for $\varphi_1(k)$ and $\varphi_2(k)$ for $k \to 1$ ($k \ge 1$):

$$
\varphi_1(k) = 1 - \frac{1}{2}(k-1)\log(k-1) + O(k-1),
$$

$$
\varphi_2(k) = \frac{\pi}{2}(k-1) + O(1),
$$

it is not hard to prove that $I_2/I_1 \rightarrow 0$ and that $I_1 \sim 4/(n^2 \log^2 n)$ for $n \rightarrow \infty$, so that

$$
b_n \sim -\frac{4}{n^2 \log^2 n} \quad \text{for } n \to \infty \quad (n \text{ odd}).
$$

§3. The main result

THEOREM 2.1. Let K_G^C denote the complex Grothendieck constant and let φ *be as in Section 2. Then*

$$
K_G^{\rm C} \leq \frac{8}{\pi (k_0+1)},
$$

where k₀ is the unique solution to the equation $\varphi(k) = \frac{1}{2}\pi(k + 1)$ *in the interval* [0, 1]. *One has* $8/\pi(k_0 + 1) \approx 1.40491$.

LEMMA 3.2. Let $d \in \mathbb{N}$ and let Z_1, \ldots, Z_d be independent complex random *variables, equally distributed with density*

$$
\frac{1}{\pi}e^{-|z|^2}dxdy \qquad (x=\text{Re } z, y=\text{Im } z).
$$

For each $u = (u_1, \ldots, u_d) \in \mathbb{C}^d$, *let*

$$
Z_u = \sum_{k=1}^d u_k Z_k
$$

and let $\langle u, v \rangle = \sum_{k=1}^d u_k v_k$ *be the usual inner product in* C^d *. If* $u, v \in C^d$ *and* $||u||_2 = ||v||_2 = 1$, then

$$
E(\text{sign }Z_u \overline{\text{sign }Z_v}) = \langle u, v \rangle \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - |\langle u, v \rangle|^2 \sin^2 t}} dt.
$$

PROOF. The sign of a complex number z is

$$
\operatorname{sign} z = \begin{cases} z/|z|, & z \neq 0, \\ 0, & z = 0. \end{cases}
$$

It is elementary to check that for any $z \in \mathbb{C}$,

$$
(*)\qquad \qquad \text{sign }z=\frac{1}{4}\int_0^{2\pi}\text{sign}(\text{Re}(e^{-i\theta}z))e^{i\theta}d\theta.
$$

Put $X_{2k-1} = \sqrt{2} \text{ Re}(Z_k)$ and $X_{2k} = \sqrt{2} \text{ Im}(Z_k)$, $k = 1, ..., d$. Then $(X_i)_{i=1}^{2d}$ is a set of independent real valued random variables each normally distributed with $E(X_i) = 0$ and $E(X_i^2) = 1$. For $a \in \mathbb{R}^{2d}$, put

$$
X_a = \sum_{i=1}^{2d} a_i X_i.
$$

For a, $b \in \mathbb{R}^{2d}$, $||a||_2 = ||b||_2 = 1$, (X_a, X_b) form a joint normal distribution, $E(X_a) = E(X_b) = 0$, $E(X_a^2) = E(X_b^2) = 1$ and $E(X_a X_b) = \langle a, b \rangle$. Thus by [7, proof of lemma 1].

$$
E(\text{sign } X_a \text{ sign } X_b) = \frac{2}{\pi} \text{Arcsin}(a, b).
$$

For $u, v \in \mathbb{C}^d$,

Re
$$
Z_u = \frac{1}{\sqrt{2}} X_a
$$
, Re $Z_v = \frac{1}{\sqrt{2}} X_b$

where $a_{2k-1} = \text{Re } u_k$, $a_{2k} = -\text{Im } u_k$, $b_{2k-1} = \text{Re } v_k$, and $a_{2k} = -\text{Im } v_k$, $k =$ **l** , d. Hence

$$
E(\text{sign}(\text{Re } Z_u)\text{sign}(\text{Re } Z_v)) = \frac{2}{\pi} \arcsin \langle a, b \rangle
$$

$$
= \frac{2}{\pi} \arcsin \text{Re}\langle u, v \rangle,
$$

so by formula $(*)$

$$
E(\text{sign }Z_u \overline{\text{sign }Z_v}) = \frac{1}{16} \int_0^{2\pi} \int_0^{2\pi} \frac{2}{\pi} \text{Arcsin Re}(e^{-i\theta}u, e^{-i\varphi}v) e^{i(\theta-\varphi)} d\theta d\varphi.
$$

Assume now that $\langle u, v \rangle \in \mathbb{R}$. Then the integral is equal to

$$
\frac{1}{8\pi} \int_0^{2\pi} \int_0^{2\pi} \arcsin(\cos(\theta - \varphi) \langle u, v \rangle) e^{i(\theta - \varphi)} d\theta d\varphi
$$

$$
= \frac{1}{4} \int_0^{2\pi} \operatorname{Arcsin}(\cos t \langle u, v \rangle) e^{it} dt.
$$

Since Arcsin(cos $t(u, v)$) is an even function of period 2π , the imaginary part of the integral vanishes. Thus

$$
E(\text{sign }Z_u \overline{\text{sign }Z_v}) = \frac{1}{4} \int_0^{2\pi} \text{Arcsin}(\cos t \langle u, v \rangle) \cos t \, dt.
$$

The integral is the sum of four integrals, namely the integrals over [0, $\pi/2$], $[\pi/2, \pi]$, $[\pi, 3\pi/2]$ and $[3\pi/2, 2\pi]$, and these integrals are equal. By substituting t with $\pi/2 - t$ in the integral from 0 to $\pi/2$ we thus have

$$
E(\text{sign }Z_u \overline{\text{sign }Z_v}) = \int_0^{\pi/2} \text{Arcsin}(\langle u, v \rangle) \sin t \sin t \, dt.
$$

Finally, using

$$
\frac{d}{dx}\operatorname{Arcsin}(x) = (1-x^2)^{-1/2},
$$

one gets by partial integration

$$
E(\text{sign }Z_u \overline{\text{sign }Z_v}) = \langle u, v \rangle \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - \langle u, v \rangle^2 \sin^2 t}} dt.
$$

If $\langle u, v \rangle \notin \mathbb{R}$, we can choose $c \in \mathbb{C}$, $|c| = 1$, such that $c \langle u, v \rangle = |\langle u, v \rangle|$. Since $\langle cu, v \rangle \in \mathbb{R}$ and since sign $Z_{cu} = c \cdot \text{sign } Z_u$, we have

$$
E(\text{sign } Z_u \overline{\text{ sign } Z_v}) = cE(\text{sign } Z_{cu} \overline{\text{ sign } Z_v})
$$

= $\bar{c} | (u, v) | \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - | \langle u, v \rangle |^2 \sin^2 t}} dt$
= $\langle u, v \rangle \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - | \langle u, v \rangle |^2 \sin^2 t}} dt.$

This completes the proof of Lemma 3.2.

The following definition can essentially be found in Krivine's paper [7, pp. 23-24], but we will phrase it differently, so that we can take Lindenstrauss' and

Pelczynski's matrix formulation of Grothendieck's inequality [8] as starting point.

On the set of complex $n \times n$ matrices $M_n(C)$ we consider two norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_*$ defined by:

$$
\|A\|_{\infty} \leq 1 \Leftrightarrow A \in \overline{\text{conv}\{(s_i\bar{t}_j)_{i,j=1,\dots,n} \mid |s_i| \leq 1, |t_i| \leq 1\}}
$$

$$
\|A\|_{\ast} \leq 1 \Leftrightarrow \begin{cases} A \text{ is in the closed convex hull of the matrices of the form } \langle x_i, y_j \rangle, \text{ where} \\ x_1, \dots, x_n, y_1, \dots, y_n \text{ are vectors in the unit ball of some complex Hilbert space.} \end{cases}
$$

It is clear that $||A||_* \leq ||A||_0$. A straightforward dualization of [8, Theorem 2.1] gives

LEMMA 3.3. *For every n* $\in N$ *and every A* $\in M_n(C)$,

$$
\|A\|_{\otimes} \leq K_G^{\mathbb{C}} \|A\|_{*}.
$$

Moreover, K_G^C *is the smallest constant for which this inequality holds for all* $n \in \mathbb{N}$ and all $A \in M_n(\mathbb{C})$.

LEMMA 3.4. (1) Let $A \in M_n(\mathbb{C})$. Then $||A||_* \le 1$ if and only if there exist *unit vectors* $x_1, \ldots, x_n, y_1, \ldots, y_n$ *in a Hilbert space* \mathcal{H} *, such that*

 $A_{ii} = \langle x_i, y_i \rangle, \quad i, j = 1, \ldots, n.$

(2) Let $A \circ B$ denote the Schur product of $A, B \in M_n(C)$:

 $(A \circ B)_{ii} = A_{ij}B_{ii}, \quad i,j = 1, \ldots, n.$

Then $||A \circ B||_* \leq ||A||_* ||B||_*$.

PROOF. Let \mathscr{D}_n be the set of $n \times n$ matrices of the form $\langle x_i, y_j \rangle_{i,j=1}^n$, where x_i, y_j are unit vectors in some Hilbert space \mathcal{H} . Since the unit ball of a Hilbert space is the convex hull of the unit sphere, we have

$$
||A||_* \leq 1 \Leftrightarrow A \in \text{conv}(\mathcal{D}_n).
$$

In the definition of \mathcal{D}_n we can put $\mathcal{H} = \mathbb{C}^{2n}$, because $x_1, \ldots, x_n, y_1, \ldots, y_n$ span a subspace of $\mathcal H$ of dimension at most 2n. This shows that $\mathcal D_n$ is a compact subset of $M_n(C)$, and therefore

$$
\operatorname{conv}(\mathscr{D}_n) = \operatorname{conv}(\mathscr{D}_n).
$$

Next, let $A, B \in \mathcal{D}_n$ and $\lambda \in [0, 1]$. Choose Hilbert spaces \mathcal{H}, \mathcal{H} and unit vectors $x_i, y_i \in \mathcal{H}$, $z_i, w_i \in \mathcal{K}$, such that

$$
A_{ij}=\langle x_i, y_j\rangle, \quad B_{ij}=\langle z_i, w_j\rangle.
$$

Then

$$
(1-\lambda)A_{ij}+\lambda B_{ij}=(\frac{(1-\lambda)^{1/2}x_i\oplus\lambda^{1/2}z_i,(1-\lambda)^{1/2}y_j\oplus\lambda^{1/2}w_j)}
$$

where the last inner product is taken in $\mathcal{H} \oplus \mathcal{K}$. Thus $(1 - \lambda)A + \lambda B \in \mathcal{D}_n$. Hence conv(\mathcal{D}_n) = \mathcal{D}_n . This proves (1). To prove (2) it is sufficient to show that $|| A \circ B ||_* \leq 1$ whenever $|| A ||_* \leq 1$ and $|| B ||_* \leq 1$. By (1) we have

$$
A_{ij} = \langle x_i, y_j \rangle, \quad B_{ij} = \langle z_i, w_j \rangle
$$

where $x_i, y_j \in$ Unitsphere(\mathcal{H}), $z_i, w_j \in$ Unitsphere(\mathcal{H}) for a pair of Hilbert space \mathcal{H} and \mathcal{K} . Hence

$$
A_{ij}B_{ij} = \langle x_i \otimes z_i, y_j \otimes w_j \rangle
$$

and $|| x_i \otimes z_i || = || y_i \otimes w_i || = 1$ where norms and scalar products are computed in the Hilbert tensorproduct $\mathcal{H} \otimes \mathcal{K}$. Hence $|| A \circ B ||_{*} \leq 1$.

LEMMA 3.5. (1) *The function*

$$
\Phi(k) = k \int_0^{\pi/2} \frac{\cos^2 t}{\sqrt{1 - |k|^2 \sin^2 t}} dt
$$

is a homeomorphism of the closed unit disc $\bar{D} = \{z \in \mathbb{C} \mid |z| \leq 1\}$ *onto itself.* (2) Let $A \in M_n(C)$. Then

 $||A||_{\ast} \leq 1 \Rightarrow ||\Phi(A)||_{\otimes} \leq 1$

where $\Phi(A)$ *is the matrix with elements* $\Phi(A)_{ij} = \Phi(A_{ij})$.

Proof. Let φ be as in Section 2. Then

$$
|\Phi(k)| = \varphi(|k|),
$$

arg $\Phi(k) = \arg k, \quad k \neq 0$

so (1) follows from the fact that φ is a homeomorphism of [0, 1] onto itself and $\varphi(0) = 0$. If $A \in M_n(C)$ and $||A||_* \le 1$, there exist by Lemma 3.4 (2) a Hilbert space \mathcal{H} and unit vectors $u_1, \ldots, u_n, v_1, \ldots, v_n \in \mathcal{H}$, such that

$$
A_{ij}=\langle u_i,v_j\rangle.
$$

222 U. HAAGERUP Isr. J. Math.

Since span $\{u_1, \ldots, u_n, v_1, \ldots, v_n\}$ is finite dimensional, we can assume that $\mathcal{H} = \mathbb{C}^d$ for some $d \in \mathbb{N}$. Let Z_1, \ldots, Z_d be complex random variables on a probability space (Ω , d ω) satisfying the conditions of Lemma 3.1, and put

$$
Z_u=\sum_{k=1}^d u_k Z_k, \qquad u\in \mathbb{C}^d.
$$

By Lemma 3.1,

$$
\Phi(\langle u_i, v_j \rangle) = \int_{\Omega} \operatorname{sign} Z_{u_i}(\omega) \overline{\operatorname{sign} Z_{v_j}(\omega)} \, d\omega.
$$

Hence, by the definition of $\|\cdot\|_{\infty}$, we have

$$
\|\Phi(\langle u_i, v_j \rangle)_{i,j=1}^n\|_{\otimes} \leq 1.
$$

PROOF OF THEOREM 3.1. Let Φ^{-1} : $\bar{D} \rightarrow \bar{D}$ be the inverse function of Φ (cf. Lemma 3.5). Since $\Phi(k) = sign(k)\varphi(|k|)$, we have

$$
\Phi^{-1}(s) = \text{sign}(s)\varphi^{-1}(|s|).
$$

Thus, by Theorem 2.1,

$$
\Phi^{-1}(s) = \text{sign}(s) \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} b_n |s|^n
$$

where $b_1 = 4/\pi$ and $\Sigma_{n \text{ odd}} | b_n | < \infty$. Since

$$
s \to \sum_{n \text{ odd}} |b_n| s^n
$$

is a strictly increasing continuous function on [0, 1] and since $\sum_{n \text{ odd}} |b_n| \ge$ $4/\pi > 1$, there is a unique $\beta_0 \in]0, 1[$ for which

$$
\sum_{n \text{ odd}} |b_n| \beta_0^n = 1.
$$

Next, we show that $K_G^{\mathbb{C}} \leq 1/\beta_0$: Let $A \in M_n(\mathbb{C})$, and assume that $||A||_* \leq 1$. For $s \in \overline{D}$,

$$
\Phi^{-1}(\beta_0 s) = \sum_{k=0}^{\infty} b_{2k+1} \beta_0^{2k+1} \operatorname{sign}(s) |s|^{2k+1}
$$

$$
= \sum_{k=0}^{\infty} b_{2k+1} \beta_0^{2k+1} s^{k+1} s^k.
$$

Since $(M_n(\mathbb{C}), 0)$ is a Banach algebra with norm $\|\cdot\|_*$ and since clearly $\|\bar{C}\|_* = \|C\|_*$ for all $C \in M_n(C)$, we have

$$
\|\Phi^{-1}(\beta_0 A)\|_* \leq \sum_{k=0}^{\infty} |b_{2k+1}|\beta_0^{2k+1} = 1,
$$

where $\Phi^{-1}(\beta_0A)$ denotes the matrix with elements $\Phi^{-1}(\beta_0A_{ii}), i, j = 1, ..., n$. Hence by Lemma 3.5

$$
\|\beta_0 A\|_{\otimes} = \|\Phi \circ \Phi^{-1}(\beta_0 A)\|_{\otimes} \leq 1.
$$

Thus we have proved that for any $n \times n$ matrix

$$
\|A\|_* \leq 1 \Rightarrow \|A\|_{\otimes} \leq 1/\beta_0,
$$

so, by Lemma 3.3, $K_G^C \leq 1/\beta_0$. To compute β_0 , we use that $b_1 = 4/\pi$ and $b_n \leq 0$ for $n \ge 3$ (cf. Theorem 2.1). This gives

$$
\sum_{n \text{ odd}} |b_n| \beta_0^n = \frac{8}{\pi} \beta_0 - \varphi^{-1}(\beta_0).
$$

Hence β_0 is a solution to the equation

$$
\varphi^{-1}(\beta_0) = \frac{8}{\pi}\beta_0 - 1.
$$

Now, put $k_0 = \varphi^{-1}(\beta_0)$. Then $k_0 \in [0, 1]$ and

$$
\varphi(k_0) = \beta_0 = \frac{\pi}{8} (k_0 + 1).
$$

From the Taylor expansion of $\varphi(k)$ it follows that $\varphi'(k) \ge \pi/4$ for $0 \le k < 1$, so that

$$
\varphi(k)-\tfrac{1}{8}\pi(k+1)
$$

is an increasing function on [0, 1]. Therefore k_0 is the unique solution to the equation

$$
\varphi(k) = \frac{\pi}{8}(k+1)
$$

in the interval $[0, 1]$. Recall from Section 2 that

$$
\varphi(k) = \frac{1}{k}(E(k) - (1 - k^2)K(k)), \qquad 0 < k < 1.
$$

By second-order interpolation in the tables [1, p. 324] one finds

(slight adjustments in the last decimal place have been carried out by use of more accurate tables [10]). Hence

$$
k_0 \approx (0.66025)^{1/2} \approx 0.81256
$$

which gives

$$
K_G^{\rm C} \leq \frac{1}{\beta_0} = \frac{8}{\pi (k_0 + 1)} \approx 1.40491.
$$

REFERENCES

1. P. F. Byrd and M. D. Friedman, *Handbook of Elliptic Integrals for Engineers and Scientists,* Die Grundlehren Math. Wiss. in Einzeldarst. 67, Springer-Verlag, Berlin, 1971.

2. A. M. Davie, private communication (1984).

3. A. Grothendieck, *Résumé de la théorie métrique des produits tensoriels topologiques*, Bol. Soc. Mat. Sao Paulo 8 (1956), 1-79.

4. U. Haagerup, *The Grothendieck inequality for bilinear forms on C*-algebras,* Advances in Math. 56 (1985), 93-116.

5. S. Kaijser, *A note on the Grothendieck constant with an application to harmonic analysis,* UUDM Report No. 1973:10, Uppsala University (mimeographed).

6. J. L. Krivine, *Thdordme de factorisation dans les espaces rdticulds,* exp. XXII-XXIII, Seminaire Maurey-Schwartz, 1973-74.

7. J. J. Krivine, *Constantes de Grothendieck et fonctions de type positif sur les spheres,* Advances in Math. 31 (1979), 16-30.

8. J. Lindenstrauss and A. Pelczynski, *Absolutely summing operators in l_r-spaces and their applications,* Studia Math. 29 (1968), 275-326.

9. J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces H,* Ergebnisse der Mathematik und ihre Grenzgeb. 97, Springer-Verlag, Berlin, 1979.

10. L. M. Milne-Thomson, *Ten-figure tables of the complete elliptic integrals K, K', E, E',* Proc. London Math. Soc. (2) 33 (1932), 160-164.

11. G. Pisier, *Grothendieck's theorem for non-commutative C*-algebras with an appendix on Grothendieck's constant,* J. Funct. Anal. 29 (1978), 379-415.

12. R. Rietz, *A proof of the Grothendieck inequality,* Isr. J. Math. 19 (1974), 271-276.