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The usefulness of the Lax technique (1) to solve N-body problems has been demon-
strated in specific cases by FLASCHRA (%), MANAKOV (%), MOSER (%) and CALOGERO, MAR-
cH10RO and RaaNisco (3). Here we extend this approach to a class of many-body
problems with two-body forces (in one dimension) that includes as special cases most
of those previously known.

In this letter we concentrate mainly on the classical case; the main results can be
extended to the quantal case, following the procedure of CMR. The solvable character
of these models is displayed cxhibiting explicitly N integrals of the motion; some
gpecific propertics of the dynamical behaviour of these systems are also outlined.

A simple trick that generates novel solvable (N, - N,)-body problems, involving
N, particles of one kind and N, particles of another (with equal masses), is introduced.
It yields some integrable systems of remarkable physical interest, such as the case
with the repulsive short-range two-body potential ¥V (x) = g%a®sinh—2(awx) acting be-
tween equal particles and the attractive potential V(%) — --g%a® cosh™2(ax) acting
between different particles.

Consider the N-body problem characterized by the Hamiltonian

N N
(1 H—=3}>p5+ 3 Vie,—a)
=1

i>k=1

with V(—z)= V() (§). Define the matrices (7)

(2) L = 8;p; 1 (1— dj)a(a;— @)
N

(3) A= 05 3 plas— @) (1 — Opp)a’ (m,— i)
=1
15£]

(*) Permanent afilliations: Istituto di Fisica dell’Universitd, Roma, and Istituto Nazionale di Fisica
Nucleare, Sczione di Roma.

(1) P. D. Lax: Comm. Pure Appl. Math., 21, 467 (1968).

(*) H. FLASCHKA: Pays. Rev. B, 9, 1924 (1974); Prog. Thcor. Phys., 51, 703 (1974).

() 8. V. Ma~akov: Zurn. Eksp. Teor. Fiz., 67, 543 (1974).

") J. Mosgr: Threc integral Hamillonian syslems connected with iso-gpectral deformations (preprint).
(*) F. CALOGERO, C. MarcHIORO and O. RaGN1sc0: FLeft. Nuovo Cimenlo, 13, 383 (1975), hereaftor
referred to as CMR.

(°) We introduce here this condition for simplicity and on physical grounds; wo thereby exclude models
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where f(—x) = B(x) and the function «(x) satisfies the functional cquation (that also
defines f(w))

(4) 2 (y)x(2) — a(y)e’(2) = aly + 2)[B(y) —B(2)] .
It is then casy to show that the Lax condition ()
(5) L:-[A, L]

is implied by the equations of motion

N
(6) &= p;, p; = 'z V(@ — )
e
with
(7) V(x) = x(w)a(—x) -+ const .

It immediately follows that the N quantities I, defined by setting
N

(8) det [L,‘k - Aaik] = A¥ + z ;_N—nI"
n=1

N
provide N independent constants of motion. Note that, quite gencrally, I, == z]), is
the total momentum of the system, and =1

(9) I, = %(11)2—11 .

Thus any solution of the functional equation (4) generates an exactly solvable many-
body problem, with the two-body potential of eq. (7) (8). Note that if «(x) is one such
solution, «(w)explax] is also a solution (with the same f()), but it yields the same
potential.

The most general solutions of eq. (4) that we have obtained are

(10a) oy (x) = b dn (ax)/sn (az) ,

(10b) o,(x) = b en (aw)/sn (ax) .
They yield the same potential (up to additive constants, that we ignore hereafter)

(11) V(@) = — [b%/(L,— )] fo(az|w, o) .

such as the Toda lattice (™).

(") The primes indicate differentiation with respect to the argument; the dot (see below) indicates
(total) differentiation with respect to time.

(*) A. ErRD¥LYI (Kditor): Higher Transcendcntal Funclions, Vol. 3 (New York, N. Y., 1955). We use
hereafter, whenever referring to the properties and parameters of clliptic functions, the notation of
this book.
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Here f(zlw, ') is the Weierstrass function
(12) P(zlo, w) = 272+ Z’ [(z 4 2mw + 2nw’) 2— (2mw 4 2ne’)"?],
—®

and e,, e, are its values for z= o and 2 — o’ (8).

The constants a and & and the 2 half-periods w and w’ of the Weierstrass function
can be chosen arbitrarily; of course, a physically interesting model obtains only if V (=),
eq. (11). is real. Previously known cases correspond to special choices of the half-
periods: for w = —iw' = oo, V(z) — ¢¥/x? (°); for w'-—ico (and o — n/2), V(z)=g2-
- a®fsin? (ax) (°°); for w -+ oo {(and @’'=: in/2), V(z) == g2a?/sinh? (az) (11).

The potential of eq. (11) (see also below) has remarkable properties also in the con-
text of the quantal two-body problem (*2); and it may play a special role in Lie group
theory, just as the potentials g%a?/sin? (ax) and g2a?/sinh?(ax)do (*%). It should also be
mentioned that SUTHERLAND has been able to obtain explicitly the ground-state prop-
erties of the one-dimensional quantal many-body problem with a two-body potential
that also involves elliptic functions (14).

Set formally z,=y, for 1<j< N,, #,;--2;4-d for Ny <j<N,|-N,=N, and in-
terpret the co-ordinates y; as those of the particles of one type and the co-ordinates z;
as those of the particles of another type. Then the solvability of any ¥-body model
with the pair potential V() implies the solvability of the model with N, particles of
one type and N, particles of another type, with the potential V, (x)= V(x) acting
between equal particles and the potential V,(z)— V(x + d) acting between different
particles.

Clearly this trick can yield a physically reasonable potential only if V(x) is periodic
with period 2d. The reality and periodicity properties of the Weierstrass function (%)
imply that the following choices in eq. (11) produce interesting potentials:

iy Let e,>e¢,>¢;, ¢,>0, <0, 4>0, a and w real, b and o’ imaginary,
d == o’[a; then both potentials are real and periodic with period 2w/a, and, as = goes
from 0 to w/a. V,(x) decreases from :-co to 0 (1%). while Vy(x) increases from -—|b|2-
"(es-—e3)/(€;— €3) to O (V7).

ii) Let e;= e}, 4 < 0, o’ = w*, a real, b%/(e,—-¢;) real and negative, d = (0 — o’)/a;
then both V.(x) and V,(®) are real and periodic with period 2(w+ w’)/a, and, as x

(*) This case was first solved in the quantal case: for N =3 by C. MARCHIORO: Journ. Math. Phys.,
11, 2193 (1970), and for arbitrary N by F. CALOGERO: Journ. Math. Phys., 12, 419 (1971). In the
classical case iv was solved for arbitrary N by J. Mo8SER: ref. (*).

('°) This case was first solved in the quantal case by B. SUTHERLAND: Phys. Rev. 4, 5, 1375 (1972);
then, in the classical casc, by J. MoskRr: ref. (*). The matrix L used by Moskr corresponds to the
solution a,(r).

(*'} This casc was solved by CMR; the matrix L used corresponds to tho solution «(x); that corresponding
to the solution a,(x) —iga/sinh (ar) is actually more convcnient, because the nondiagonal elements
then vanish rather than becoming constant, when all particles separate.

('*) B. SUTHERLAND: Phys. Rev. 4, 8, 2514 (1973). The potential discussed by SUTHERLAND i8
actually a special case of that acting between different particles in case i) below.

(1) M. A. OLSHANETZKY and A. M. PERELOMOV: J. Phys. A (to be submitted to).

(**) B. SCTHERLAND: proprint ITP-SB-75-2 (to be published). It will be interesting to apply the trick
mentioned below to this potential.

('*) See. for instance, Subsect. 13.15 of ref. (®).

(') Here and in the following we take advantage of the possibility to add arbitrary constants to V,(x)
and/or Vg4(x).

(*7) A qualitatively similar behaviour obtains for ¢ and @ imaginary, b and ' real.
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goes from 0 to (v -+ w’)/a, V(z) decreases from + oo to 0, while T(x) increases from
to - oo (19).

It should be noted that in all cases the potential V,(xz) is singular at zero separation.
and is therefore better chosen repulsive in that region (19); the potential V,(z) is instead
always finite at x==0, and its derivative has the opposite sign to that of V,(x) (it yields
therefore generally attractive forces at short distance). The potentials of type ii) resemble
to the I’osch-Teller potential (20); case i) is perhaps more interesting, since in this case
Vy(#) is finite-valued. It will be interesting to analyse explicitly the trajectories of the
particles; one conjectures that all orbits in phase space are closed, at least if only equal
particles are present (in case i), if different particles are present and the energy is
sufficiently large, the trajectories could be periodie only mod (2w/a) in the co-ordinates).
The quantal problem is also very appealing, especially in case i), when the presence
of even only one different particle (« impurity ») should originate a band spectrum (21).
Also the thermodynamical limit will be interesting, especially when different particles
are present, in view of the attractive nature of their interaction.

Space does not permit here a more detailed discussion of these potentials and of
the properties of the corresponding many-body systems (22). There are, however, two
cases which deserve special mention. They obtain from cases i) and ii) in the limit
w — oo respectively Re w —co; more directly they can be obtained by applying the trick
described above directly to the potentials discussed by CMR or by SUTHERLAND (!0)
and MOSER (®), with d = in/2 respectively d = n/2. The sccond possibility implies that
all the results obtained by these authors can be dircctly taken over (2%). except for the
conclusions connected with the impenetrability of the particles (that apply now only
to equal particles) and the absence of bound states (in the first case) (). However
the physical properties of the systems when particles of different kinds are present
differ substantially from those of systems with only equal particles, due to the attrac-
tive and nonsingular nature at short range of the interaction between different particles.

To justify the last statement, we discuss now tersely. in the classical case, the phys-
ically more interesting system, namely that with two kinds of particles interacting
via the potentials V,(z) -- ¢%a?/sinh? (az) and V,(x) — —g¢®a?/cosh? (axz) (obtained from
the CMR model with d = in/2) (%). In this case the c.m. ground-state energy in the

('*) A qualitatively similar behaviour obtains for ¢ imaginary, b*/(e,— ¢;) real and positive, d = (w+o')a.
(%) This is actually not necessary in the classical case; indeed an cxplicit trecatment of this case is
possible (although it leads generally to collapse in a finite time), and should be particularly interesting
in the degenerate case V(z)— -- g*/x*, cspeccially if this potential could be supplemented by a hard
core and the limit of large NV could be considered (for N = 3 the problem with a hard coreis certainly
tractable, since the classical problem has been cxplicitly integrated in closed form: C. MARCHIORO:
unpublished; D. .. KHANDEKAR and S. V. LAWANDE: Amcr. Journ. Phys., 40, 458 (1972)).

(29) See problem 38 in S. FLUGGE: Practical Quantum Mcchanies, Vol. 1 (Berlin, 1871).

(*') See however, in this connection, ref. ('?).

(2*) Actually the doubly periodic nature of the Weierstrass function implies the possibility to introduce
models with 4 different kinds of particles and 4 different potentials, all of them reasonable, 7.c. even.
(23%) Thus one can ohtain directly, from the results of SUTHERLAND, ref. (1), the complete energy spectrum
for the sccond system. This opens the possibility to evaluate a number of nontrivial multiple integrals,
following G. Garnravorti and (. MarcHIORO: Journ. Math. Anal. Appl., 44, 661 (1973).

(**) The proot by CMR that {I,, I} = 0 exploits the asymptotic scparation of the particles, but, since
this result is of & purely algebraic nature, it continues to hold even in the more general case with dif-
ferent particles (and also, by analytic continuation in «, for the Sutherland model and its gencralized
version with different particles). Onc conjcctures that such a result holds also in tho more gencral
case, with the potential of cq. (7).

(2%) In the quantal casc the potential ¥ (x) is, in the two-body case, exactly solvable, and it has pecnliar,
but nontrivial, properties: sce. for instance, problem 39 in ref. (*°). One conjectures that an analysis
guch as that given, for the N-body problemn with attractive delta-function potentials, by C. N. Yaxe
(Phys. Rev. Lett., 19, 1312 (1967); Phys. Rev., 168, 1920 (1968)) is also applicable in this case, at least
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two-body problem with different particles is clearly (%) —1. Remarkably, exactly the
same value obtains as the minimum of the potential energy for the (2 + 1)-body prob-
lem, in the symmetrical configuration with the different particle at the centre and the
two equal particles at a distance arcsinh (2 %) from it; it can moreover be proved that
this is a position of stable equilibrium for the system. Thus the classical (2+ 1)-body
can be bound; indeed it is actually easy to evaluate explicitly. in closed form, the
trajectories of the particles for any motion that preserves the symmetry of the system (27).
An interesting question is whether the ground state of the (N; -~ N,)-body system is
also bound, for N’ = N, = ¥, > 3, and in particular for N — co. For small N the answer
can be easily obtained with the help of a computer; for large N, one conjectures that
the system is not bound, but rather tends to break into clusters, due to the positive
definiteness of V,(x)+ V(). This conjecture is supported by the following remark:

Let wy(x) be the potential energy per particle in an equally spaced configuration
of N particles of alternating type (with nearest-neighbour distance z); then clearly there
always exists a finite value zy such that. for any x> 2y, wy(x) < 0; yet for all finite
values of », the energy per particle w_(x) in such an infinite lattice is positive. Indeed

1 1 1
y —= —-- 4(2K2— 1Y K2(k)/(3n2%) = — ——
(13) w_(x) 3 |- 42K YE2(k)/(3a?) 373 -

2 2
(1—2K7?) [— K(k)] ,
where K (k) is the complete elliptic integral and its argument k? is related to x through

(14) & = (n/2)K(k')] K (k) , W—=V1—k2,

so that w_(x) decreases monotonically from -}-oo to 0 as x varies from 0 to oo. Note
however that min{w_(x)] need not coincide with the ¥ — oo limit of the energy per

x
particle of the ground state of the (N/2 -+ ¥/2)-body system.

As for scattering states, it is clear from the results of CMR that (both in the clas-
sical and quantal cases) an initial incoming state with ¥ separated particles of mo-
menta p,(— o) goes into a final state of N separated particles of momenta p,( ;- o0),
the set {p,(+ co)} coinciding with the set {p,(— oo)}; however, if different particles
are present. the distribution of the final momenta between the particles need not be
uniquely determined (indeed, in the quantal case different final states will generally
occur with finite probabilities).

This also implies that in the 3-body case with different particles an initial configura-

tion with, say, py(— 00) = — 2p., Py{—00) — Py(— o0) = P, F,( - 00) = @4(— oo) (partiele 2
heing the different one), goes definitely into the final state with p,(+ oo) = py(+ o) = p,
Pyl +00) — —2p, Ty( i- o0) — Zy( |- o0). Thus an initial state with one of the equal

particles incoming from one side alone and the other two from the other side as a com-
pletely bound pair (with no internal kinetic energy) goes definitely into a final state
having again one single particle and a completely bound pair; but while, of course,

for the special valucs of the couplinz counstant y* =n(n - 1), n =2, 3, ..., in which cases the two-body
potential is transparent (vaunishing reflection coefficient), but it has n -1 bound states (and a zero-
energy resonance); in those cases also the group-theoretical structure underlying the V-body quantal
problem is particularly transparent (1?).

(%) We use hereafter, as units of energy and length, g?a® and 1/e.

(*7) The existence of a stable bound state in the classical case need not imply the existence of a bound
three-body state for the quantal problem, in which case a more detailed analysis is needed.
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the two equal particles always go back in the direction they came from (they cannot
overcome each other), the different particle always exchanges partner.

Additional results will be published elsewhere, together with the detailed proofs
of all those reported here.

* Kk %k

These results have been obtained during a visit to ITEF performed in the frame-
work of the exchange agreement between CNEN and GKAE. Itisa pleasure to acknow-
ledge the contribution of many stimulating discussions with friends and colleagues, no-
tably F. PaALumBo, A. M. PERELOMOV, Yu. A. S1MoxoV, Ya. G. SiNna1r, M. V. TERENTEV
and K. A. TER-MARTIROSYAN.



