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1. Introduct ion.  

1.1. Summary of  Resul t s .  

The purpose of this paper is to determine the action of analytic functions 

(and in certain cases non-analytic functions) on a class of measures. 

Let #{.  } be a probability measure on ( - o o ,  oo) and #*J be the j-fold 

convolution o f / t  with itself. Define the measure 

(1) p = ~ c j p  *J, 
J=O 

where {cj;j ~ 0} is a sequence of complex numbers, and assume that 

(2) ~b(s) = Y, c.s" 

is analytic in a region containing the range of the Fourier transform of #. 

(i) We will define a class of measures characterized by the rate at which 

their tails decay relative to the exponential. In section 2 we show that if # is 

in this class, and is concentrated on the integers, then 

(3) lim /7_~ = constant. 
n " *  O0 ~"~ tl 

We prove an analogous result for the density of # when it is absolutely con- 

tinuous. 
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(ii) Let Tt = ( -  ~ ,  - t] w (t, ~ ) .  Then, without regularity conditions on/~ 

we show in section 3 that 

(4) lim /7(T,) _ constant. 
,-,co 

The constants in (3) and (4) depend on q~, and are given. 

(iii) For a result on the action of non-analytic functions, suppose that 

v,, = O(]nl -~') for some ct> 2 and that ~ Icjl IJ l '  < c~, for some ~ > ~ .  

Let 0(0)= ~ vie li~ be real, q~(O) = ~ cje v~ and define d n by 
J =  - ~  j = - ~  

q~(~(0)) = ~ d J  i~ 
J ~ - a o  

In section 4 we show that 

Id . I  = o ( I , 1 - = ) .  

If  in addition E v j =  1 and v j ~ c j  -~ a s j ~  +oo  then 

dj ,,~ c~b'(f(0))j -~ as j ~ + oo. 

Some applications of the above results to the renewal equation with a de- 

fective measure, and to the mean of a branching process are given in section 5. 

An appendix contains several further results related to (i). 

A sequel to this paper makes essential use of the results herein to describe 

the asymptotic behavior of the solutions of a class of non-linear Volterra 

integral equations. This in turn yields some new results in the theory of branch- 

ing processes. Both the present paper and the sequel are revisions of a techni- 

cal report of October, 1969. 

Some related results on the action of analytic functions, with different 

applications, have been obtained by Essen [E-I; and results for non-analytic 

functions on weighted 11 algebras, by Le Blanc I-L-]. 
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1.2. Background Remarks. 

When cj = 1, /7 is the well-known renewal function (see e.g. Feller, Vol. 

II I-F]). The situation cj = c j arises naturally in several probability contexts; 

e.g. the mean of a branching process, or the mean number of  visits to a point 

in a random walk with killing probability c < 1. More generally, if {c j} is 

any probability function on {0.1,2,. .-},  then /7 can be interpreted as the 

probability function of  a sum of N random variables each distributed according 

to/~, where N is itself a random variable with distribution {c j}. 

The case when cj = c j and c > 1 can be reduced to the case c = 1 by an 

exponential transformation; with the consequence that /7{[0,t]} grows, 

at the rate ~ e ~', where ~ > 0 is the so-called Malthusian parameter for 

(c,p), defined by 

(5) .c f e -~' d#(t) = 1. 
o 

When c > 1 such an 0t of  course always exists. When c < 1, the above 

remarks remain valid with ~ < 0, provided such an =t exists, i..e, provided the 

Laplace transform of  # can be extended sufficiently far into the left half plane 

(see page 362 of Feller [t7] for details). This will not be possible, in particular, 

if the tail o f / t  decays at a slower than exponential rate, in which case the 

asymptotic behavior of /7  was not previously known. This is the case which 

will be of primary interest to us. 

The appropriate generalization of  the condition c < 1 is that ~b(s) should 

be analytic on the range of  the Fourier transform of g .  (Note that if g is of  

exponential order then one cannot in general expect nice results about # 

for general {cj}. For  example, even if /7 has density P(O = e - ' ,  t >= O, 

then 

t1 
p(t) = e - '  Y_, cj f T, 

and just by choosing c i = 0 or 1 in different ways one can get varied decay 

rates.) 
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2. L o c a l  L i m i t  T h e o r e m s .  

Theorems 1 and 2 give local results for probability measures # = {/1,}, 

concentrated on the integers. For the measure 

(1) /7 -- s cit*l  {p.}, j 
j=O 

they show how the ratio/7_~, at an atom n behaves for large n.  For  simplicity, 
It, 

we have restricted # to the non-negative integers in Theorem 1. In that case, 

we can expose the hypotheses on the rate of tail decay most clearly in terms 

of the radius of convergence r > 1 of the generating function 

#(z) = X It.z" 
m 

of It. Then, in Theorem 2, we apply the same methods. 

T h e o r e m  1. For the probability measure It = {it., n __> O} assume that 

(a) lira It.2/it. = c exists (<  oo) 
;i"4'00 

t (>o) (13) lim It,+l/it, = r 
. ' ~  O0 

(?) ~(r) = d < oo; that is ~ converges at its radius of  convergence. 

Assume also that c~(w) is a function analytic in a region containing the 

range of l2(z) for J zl < r. Then there exists a measure ~p~) = {q~(p),,n > 0} 

with 

s for I zl--< r, ~ ( i t )  ( z )  - = 
n = O  

and for which 

(2) lim ~b(it), _ ~b'(d). 

I f  moreover ~(w) = s cjw J for I wl < 1, where 
j=O 

o o  

]eli < oo, then we 
j=O 
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can identify the measure ~p(tz) with /7 = ~ cfla *~. Final ly ,  we must  have 
j=O  

c = 2 d  in (o0. 

Remark 1. The conditions of the theorem are satisfied by many concrete 

examples such as 

(i) / q=c~r~n-~ ,  ~ > 1 ,  r <= 1, 
n - ~  -n~  (ii) pn=C~.arn  e , r < l , ~ r e a l ,  0 < f l < l ; a n d  

(iii) 1*~ = crne-nltl~ r ~_ 1, 

(where the constants are to normalize the p, so that ~/a~ = 1). However, 

the hypotheses are not satisfied if #,  = ce -~. 

In fact the following two alternative sufficient conditions (which cover 

most concrete cases) can be given. Namely the hypothesis (~) of Theorem 1 

is satisfied i f / ~ = r ~ m ~  with r <  1 provided Y/z n =  1, ~ m , < c o ,  and 

either 

a) sup ( m ~ - z l < - K  
1~l<n]2 ~ m n ]  

for some constant K ,  or 

b) m(n) = e -~'c~) 
t X )  

where @(t) ",~ 0, t21 @'(t)l 7 CO, and . (  e -~t2l~'O)l dt < co. The proof  that 

o 

(a) implies (o 0 is trivial. We will prove a continuous analog of  the second 
assertion at the end of  this section. 

Pr oof  of Theorem 1. We proceed by identifying /7 with an element 

of  a Banach algebra of  measures v for which limits of  the form (2) exist. By (~) 

A*2)n 
(3) M -- sup < co. 

n_zo /zn 

Let 9A be the collection of  all sequences v = {v~, n > O) such that 

(4) II vii = M sup I<  c o  
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Furthermore, let 9.Iz be the subset of  v ~ 9~ for which 

(5) L(v) = lim v_, 

exists and let ~o be the subset of 9.IL for which L(v) = 0. Note that 9~, with 

the norm [Iv [[ of  (4), is isomorphic with the Banach space l ~176 of  bounded 

sequences, and that 9~L and ~1~o are closed linear subspaces of 9.I. Moreover, 

(6) v e 9.I z iff v = L(v)# + co, to e 9..[ o . 

The decomposition in (6) follows directly from (5), and is unique. On ~L,  

L(V) is a bounded linear functional. 

L e m m a  1. Under *, ~ is a commutat ive  Banach algebra with identity,  

and 9.IL and 9.Io are Banach subalgebras with identity. In  particular,  for  

to = (con) e ~[o, we have # * co e 9.It. with 

L(~ , o~) = a ( r )  

~ co, z" is the generating funct ion o f  co. 
. = 0  

(7) 

where  ~ ( z )  = 

P r o o f  o f  L e m m a  1. F o r  v, c o e g ~ ,  

_ " = m 

/~. # ,  = 

= M / t .  k=O 

1 (,u* 2), 
i1" li co II M 

COk 

k=O \ # . - ~ ]  

i COk llF,_kp k 
#k / 

Taking suprema in (8) gives [Iv* co [[ __< [Iv Ill!  co [I, so is a commutative 

Banach algebra. The identity is 60 = {6o,, n > 0} (Kronecker 6's). 

For v, to ~ 9~o, we can expand (8) further: 
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M [(v*co)n]< 1 1 I t ?  ] } ( [V , -k l ]  ( ~ )  
- -  - -  + ~ M M /An-kPk 

p, = M /An tk=O [n/2]+l \ /An-k ] 

IlcollM sup IvJ /+llvllM sup IcoJl 
j~[nl2] /Aj .i>-[n/2] /Aj 

The suprema in (9) tend to zero as n --. oo; hence L(v * co) = 0, and 9.Io is a 

subalgebra (which contains 80). 

Now/A ~ ~ t ,  and by (~)/A.2 ~ 9.IL with L(/A .2) = c. Since ~o is a subalgebra, 

and in view of the decomposition (6), to show that 9~L is a subalgebra it is 

sufficient to show that/A �9 co ~ 9.Iz for all co e 9.Io. We show that for such co, 

L(p*co) = ~ COk rk. For n > - N ,  
k = 0  

(/A * ~)~ 

k = O  k=O /An k=O 

N 

k = O /An 

1 
/A,,-k/Ak \ - -~  ] 

/An k = N + l  

(1o) 
k f N + l  

< Z -lcokl §  sup 
k=O ~An k ~ N  + l /Ak 

§ Ico lr 
k - - N + l  

| 1 ~o 
Since lim ~ [co'] = 0 and since Z ]cok[ rk =< I1 co II~k~o/Akr~ < oo, we can 

n--, oo /An o 

make the last two terms in (10) arbitrarily small by choosing N sufficiently 

large. By (p) we can make I ~n-k _ r~ arbitrarily small for fixed k __< N and 
/A. 

sufficiently large n. Hence L(/A,co)= ~ cokr k, and 9~ L is a commutative 
kffiO 
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Banach algebra (containing the identi ty 60). This completes the p roof  of  

Lemma 1. 

Hencefor th  we focus upon 9J L. We shall construct  a measure "~b(/0" in 

9~ z and prove (2) by identifying /7 with ~b(/~). First we locate the spectrum 

of  #. Let  .r denote  the set of  all homomorphisms of  a part icular  algebra 

~ , .  

L e m m a  2. 

the form 

We can identify ~ (9 Io)  with the set o f  all functionals o f  

(11) h2(co ) = 6)(z) = ~ og.z", Vo9 = ( o g . } E ~  o 
n = 0  

where z is any fixed element of (l l <= r}. 

P r o o f  o f  L e m m a  2. Any h, o f  the form (11) is in 3rt~ by standard 

arguments. (Note that  Ih,(~o)l < IIo911  z 11o9 . For  the 

converse, note that  finite linear combinat ions  o f  the vectors 6k = {6k,, n > 0} 

are dense in 9.Io; and that 6k = 6 *k for  k > 1. Tha t  is, fo r  co = {co,, n > 0} e 9.Io 

[co,[ 
c o -  ECOg 6.~ = M  sup ~ 0  as N - - , o o .  

k = O  n > N  l ln 

Hence for  h ~ ~(9.Io) and any o9 ~ 9.[0, 

(12) h(og) = lim h ,k = lim ]~ OJk[h(61)] k-~ COn Zn 
N~QO k N.-* oo k = 0  k = O  

where z = h(61). We complete the p roo f  o f  Lemma 2 by showing that  I z[ < r. 

Otherwise, if  z = Re ~~ with R > r ,  let r < p < R and note  that  the vector 

~176 = {o9nt~ n > 0} with w.'(~ = e-t"~ (for n => 0) lies in 9~ o . Hence 

there must  exist a finite limit 

N N 

(13) h(o9 t~ = lim ~ ogtk~ = l i m •  pklA k 
N--,oo k = O  N-~oo k = 0  

- - a  contradict ion to (fl). 
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Lemma 3. 

f o rm 

We can identify "r with the set o f  all functionals o f  the 

(14) hz(v ) = f(z) = ~ vnz n Vv = {vn} ~ 92L 
n=O 

where z is any f ixed element o f {  l z I < r} ; with the addition, in case c # 2d, 

o f  the functional 

(15) h(v) = (c - 2d)L(v) + ~(r) Vv = {v,} ~ 92z. 

P r o o f  of  L e m m a  3. Standard argument shows that any h~ of the form 

(14) must be ~ ~(92L)- The h in (15) is linear, and bounded, since L(v) and 

~(r) are bounded linear functionals of  v; and one can verify directly that 

h(v �9 ~o) = h(v)h@) for all v, co ~ 92z. 

Conversely, suppose h e ~(92L) and h@ ~ # oJ~ for some co ~ o = {co. } 920. 
Then, restricted to 920, h e Jt'(92o). Hence 

(16) h(og) = t~(Zo) Vco = (con) ~ 920 

for some Zo with I Zol < r .  Via (14), we have a homomorphism h,o on 92~ 

such that 

(17) h(co) = h~o(co ) Vc~ ~ 920. 

Apply both h and h~o to the vector 

(18) # �9 co ~ = o~ + co t 

where co 1 = {co. 1 } e 920. We get 

(19) h(p)h(co ~ + co~ + h(co t) 

and 

(20) hzo~)h~o(CO ~ = og~ + hzo(o9~). 

/x, 

Since h~o(co 1) = h@ ~) and hzo@ ~ = h@ ~ # co~ we must have hzo(~) = h(#) 

as the unique solution for the linear equation 
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(21) x[h(co ~ - co~ --- h(col). 

But then, in view of the decomposition (6), h = hzo on ~ r -  

Finally, suppose that h ~ ~IL is such that h(co) = cb(r) for all co = (co,} ~ 9.Io. 

Apply h to /t .2 = c# + co", to get 
/N 

(22) h2(~)  = ch(tO + co,,(r) = ch~) + d(d - c), 

A = d2  since co~(r) = [-/~(r)] 2 -  cp(r) - c d .  That is, h(p) is a solution of the 

equation 

(23) x 2 - cx + d(c -d)  = ( x - d ) [ x  - ( c -d ) ]  = 0. 

If  c = 2d, the unique root of (23) is h(/~) = d,  and we can identify h with 

h,(v) - f(r). If  c 4: 2d, then (23) has two roots x = d,  x = c - d; and h 

can either be h, or else must be the functional in (15). This completes the 

proof of Lemma 3. (Note: some such special argument is needed since in 

general homomorphisms of codimension-one subalgebras do not have unique 

extensions to homomorphisms of the full algebras.) 

Note that in any case we must have c > 2d, since for n > 2N, 

(24, 1~*2 k~O (ll"-kll~ + ~ It,_ k ( ltk)-~. 
#. = k - ~ - /  k =,,-N 

and, by (fl), we can make each sum on the right hand side of (24) arbitrarily 

close to d by choosing first N and then n sufficiently large. 

Now we construct an element ~b(/a)s 2It. which we shall later identify with 

/7 when ~. I cjl < ~ .  (The construction is a standard one for proving the 
j = l  

Wiener-Levy Theorem.)In  9.Iz, the spectrum of p,  S, ,  is the set {h~), 

V h ~,,Y'(9~z) } . By  L e m m a  3, S ,  c: {/~(z),  I z l _  r} u t c -  d}. For complex 
2r S, ,  the *-inverse [260 - /~]_1 exists and is a vector valued analytic func- 

tion of 2. Let F be a simple closed path in the domain of analyticity of q~, 
encircling S, n { I w  I < d} and bounded away from Su. There exists the 

vector 

1 ~ E26o _ p]_~ ~b(2)d2. (25) 4'~) = 2--~ 
Q/ 
r 
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as an element of 9~L; and for any bounded linear functional ~k o n  ~ L ,  

(26) O(q~(/~)) = ~ ~,([26o - #]-~)q~(2)d2. 

F 

If  ~O = h ~ a~'(9.tL), then 

(27)  h ( [ 2 6 o  - p ] -  2) = [h (26o  - $ t ) ] - '  = [ 2  - h ~ ) ] - '  

since h(6o) = 1.  In particular, if I h(/01 < d ,  

(28) h(q~(/~)) = ~ 2 -  h ~ ) d 2  = (9(h(l~)) 

F 

by Cauchy's theorem. 

To show that qS(~) = 17 when ~ I < ~ ,  it suffices to show that ~b(#) 
j = 0  

and /7 have identical characteristic functions (Fourier transforms). To this 

end, let h = h z in (28), where z = e i~ Then 

co 

On the other hand, since/7 = ]~ c j# *j and 
j = l  

function of/7 

fi~e t"~ = Iim • cj .e ~'~ 
n=0  N ~  . i=0 "= 

[cjl < oo, the characteristic 
j = l  

oo neinO) 
n=O 

by standard interchange of limits. Hence fi = ~b(fl)~ ~IL. 

A corollary of  (26): 

L e m m a  4. I n  (~) ,  c m u s t  = 2 d ,  

P r o o f  of  L e m m a  4. We have noted from (24) that c > 2d. Suppose 

that c > 2d, and choose ~b(z) = z. Then (25) becomes 
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1 ~ [ 4 6  o - / * ] - 1 2  d2. 

U 

Here we can pick the path F of  (25)-(28) definitely separating the point c - d 

from the rest of S,,. As ~ in (26) pick the h of  (15). Now, on the one hand, 

(32) h~)  = c - d > 0 .  

On the other hand, since [4 - ( c - d ) ]  -1 is analytic for 2 # c - d,  we can use 

(26) and (27) to get 

(33) /i~)-=-- ~ 2 (/*)d2 
F 

= d 2 = ~  

- - a  contradiction. Hence c = 2d, and Lemma 4 is demonstrated. 

L e m m a  5. L(# *k) = k d  k- t  V k >  1. 

P r o o f  of  L e m m a  5. L ~ )  = 1, and L ~  *z) = 2d by Lemma 4. Suppose 

L ~ , j )  = j d  i -  1 for j < k. Write 

(34) /**(k+l) = /**k,/* = (kdk-1/* + co(k)),/, (co(k) Eg.Io) 

= k d k - l ~ , # )  + cock),/* 

= kdk-l(2dp + cou) + co(k)(r) # + ~(k) (~(k)~ 9.[0) 

= [2kd k + (1 - k)dk]l.t + (kd k- 1co,, + ~tk)) 

= (k + l)d~/* + co (k+l) (CO(~+~)E 9./o), 

,/N 

since co(~)(r) = [/2(r)] ~ -  kd ~- 1/~(r) = (1 - k ) d  ~. Thus Lemma 5 holds by in- 

duction. 

Finally, we show that L(~b(/*)) = q~'(d). For 2 > H/* [I, the inverse [260 - /*] -1  

has a series expansion 
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['~o - ~ ] - 1  = 2-1 ~ 2-k#,~ 
k = 0  

267 

convergent in norm. Since L is a bounded linear functional, 

oo 

(36) L([2c5 o - / t ]  -1) = 4 -1 ,~ 2 - k L ~  *k) = 2 -1 • k 2 - k d  ~-1 
k = 0  k = O  

= (2-d) -2. 

Now, the left hand side of (36) is a scalar function analytic in 2 outside St; 

and the right hand side is analytic for 2 ~ d. Hence (36) holds for all 2 out- 

side S t .  In particular, letting ~k = L in (26), we have 

1 ~ L([2C5o _ #] _,)~b().)d2 = (37) L ( q ~ ) ) =  

F 

1 ~ 4~(2) 

F 

- - d 2 = r  

This completes the proof  of Theorem 1. 

A Corollary of the P r o o f .  Suppose that v = {v~, n = 0,1,2, . . .} ,  

where v~ ,,, #~ as n --r m .  I f  ~ is analy t ic  on a region containing the range 

o f  ~, then l im v~ = dp'(tO. 
n .--~ CO I ~ n  

R e m a r k  2. If  one assumes that ~b is analytic in I wl < r + 8 (which is 

the case for many probabilistic applications), then there is a simple direct 

proof  of Theorem 1 due to H. Kesten (see chapter IV of Athreya-Ney [A-N]). 

Theorem 2. For  the probabi l i ty  measure  It = {Pn, n = 0, _ 1, ___ 2,...} 

assume that 

(~t) lira l~*2/#n = c exists (<  m) 
Dl-,~o 

(fl) lim /t n+l /#n=l .  
Inl-,~o 

Assume  also that qb(w) is a func t ion  analy t ic  in a region containing the 
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range of fl(e i~ = ~ lt, e ~"~ for 0 < 0 < 2n. Then there exists a measure 
n = - - o o  

q~(u) = {~b(p),, n = 0, _1,  __+2,-..} with 

/ ~  ,o ~ q~) . e  t"~ ~b(~(e~~ for 0 < 0 < 2re, q~(#)(e ) = = 
I I  = - -  OO 

and for which 

lim qS(#). = if'(1). 
1.1-,oo /t. 

I f  moreover dp(w) = ~ cjw j for I wl < 1 where ~ lcjl < ~ ,  then we can 
j = o  j=o 

identify the measure dp(#) with fi = ~ cj# *J. Finally, we must have c = 2 
j=O 

in (a). 

(Remark: The hypothesis (7) of  Theorem 1 is redundant here since 

Z ~ n  = 1.) 

P r o o f  of  T h e o r e m  2. The proof is similar to that for Theorem 1,with 

the following minor modifications: 

(i) Let/~ = sup #.2/#,.  
- - o O < n < O 0  

(ii) Let 9~ be the collection of all sequences v = {v., n = 0, _1 ,  _2, . . -} 

such that llv I1-- ~ sup l v.JJ < and let 9~ L be the subset of  v~ 9~ for 

/ I  

n fin 

which the L(v) = lim v .  exists. 
1.1~oo /.t. 

(iii) Replace r and d by 1, and replace one sided sums by two sided sums. 

Examples: In Lemma 1, L( / t .o>)= ~b(1)= ~ o9.. In (8), replace 
n = - o o  

N / t" -k- - rk  "lcokl by V,_ka~k by ~ V._kC0k. In (10) replace k~o #, 
k = 0  k =  - o o  = 

N 

]~ [ / t"-k-- l k] "l~ok[, and replace ~ [ok[ r k by ~ l o, l 1 k 
k =  - N  fin k ~ ' , + 1  Ikl_>-.+ 1 
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(iv) The ~(9~o) of  Lemma 2 becomes all functionals of the form 

he,o(co ) = tS(e i~ = ~ o~ne i~~ 
B ~  --00 

for 0 < 0 < 27r. This is because of the double tail of  p: in the proof  of  Lemma 

[ p ~[nl -inO 
2, we can now choose vectors co '~ of  the form o~P)= ~-~-] e ~tn for 

n = 0, +_1,2___,... and force I z] = R = 1. Similarly for Lemma 3. 

All other aspects of  the proof are identical to those for Theorem 1; and 

we omit further details. 

The following theorem is analogous to Theorem 1, and gives a local result 

for a one sided measure # having a continuous densi ty  m(t). (A similar analogue 

holds for Theorem 2.) For  integrable functions f and g on R § = [0, oo), 

we again denote convolution by *" 

(38) ( f  , #)( t )  = f ( t  - s)g(s)ds = f ( t  - s)g(s)ds; 

0 0 

and we shall use "characteristic functions" with complex argument z = x + iy, 

f ( z )  = f e~tf(t)dt. 

0 

Let 6t again denote the measure giving unit mass to the point t .  

T h e o r e m  3. Let  # be a probabi l i t y  measure on R + with continuous 

densi ty  funct ion  re(x) > 0 f o r  all  x .  Assume  the fo l lowing:  

(~') lim (m * m) (x) 
~-,oo re(x) - c exists (<  oo). 

(]3') There  exists a lira m(t + s) t-~,o re(t) - ~(s) > 0 un i formly  on all  compact  s 

subintervals o f  R + . I t  fo l lows that ~k(s) = e -P~for some p >__ 0 and  all s > O. 

(~') rfiCo) = d < ~ ,  where p is the exponent  in (fl). 

As sume  also that dp(w) is a func t ion  analy t ic  in a region containing the 
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range of f i t (z) for R e ( z ) ~  p. Then there exists a measure d:(#) on R +, 

with continuous density c~(m)(x) on 0 < x < oo, such that 

c~(m) (z) - eZtc~(m) (t)dt = ~b(fit(z)) for Re(z) < p 

O 

and such that 

(39) lim ~(m)(t) _ qb'(d). 
t - .  ~o r e ( t )  

I f  moreover ~b(w) = ~ c,w j for I wl < 1, where ~ lc,  I < oo, we can 
j=O j=O 

identify the measure d~(!a) with ~ = ~. c ,,.1 where ~ -Co6o  has density �9 J P  J 

j =O  

(40) r~(t) = ,~ cjm*J(t). 
J = l  

Furthermore we must have c = 2d in (n'). 

P r o o f .  The proof  again follows lines similar to that of  Theorem 1, with 

modifications to take the density into account. 

(m * m) (0 
(i) Let M = sup 

,~_o m(t) 

(ii) Let 9~ be the collection of  all Radon measures v on R + of  the form 

(41) v = e,6 o + v ' ,  

where e, is a scalar 

If~(t) l < oo. Let 
sup m(O t_~O 

and v' has a continuous density f ~ ( t ) w i t h  

I L(t) { 
(42) I1'II = le, I + M sup 

,~o re(t) 

Let 9AL be the subset of 9A for which there exists the limit 
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s  
(43) L(v) = limt_,oo re(t)' 

and let 9/0 be the subset of 9/L for which L(v) = 0 and also e, = 0. 

Replacing the sums in the proofs for Theorem 1 now by integrals, we can 

show that 9/ is  a Banach algebra of measures relative to convolution and to 

the norm in (42). Furthermore, 9/L and ~o are closed subalgebras; and 

(44) L ( # ,  v) = ~ e~ = f~(p) 
i t  

0 

for all v in 9/0. 

Note also that for a given subinterval [a, b] of R § and for measures 

v ~ 9/0 with densities f~ having support in [a, b],  the norm II v Ii of (42) is 

equivalent to the supremum norm sup [f,(0[.  
a~_t~b 

(iii) The main step is to characterize all homomorphisms in ~ ( ~ L )  a s  

having the form 

oo 

h,(v) = ev + f e"tJ',(t)dt for all v ~ 9/L (45) 
o /  

0 

where u is some complex number with Re(u) < p.  

As in Theorem 1, we can establish (45) for 9/L by first demonstrating it 

for v's in 9/0; and indeed for the dense subset of v's in 9/o whose densities fv 

have compact support. To this end, for any x > 0, we approximate the unit 

mass 6~, be measures Nx., with corresponding density functions nx,(t) 
(0 < a < x) which are piecewise linear, with 

~0 forlt-x I =>cr 
nx.,(0 = (a_1 for t = x .  

For any function f on R + , and s => 0, let 

~ 0 for O < t < s  

(zsf) (t) = L f ( t -  s) for t >-_ s 
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I f  f is the density of  a measure v, let z,v denote the shifted measure corre- 

sponding to z J .  With this notation, T,n;., = nx+s., for 0 < a < x and any 

s > 0. Moreover, if  f is any continuous function with support  in an interval 

[0, b] ,  then 

b b 

(46) (nx,.*f)(t) = f n~,:(t-s)f(s)ds = f T,n~.=(t)f(s)ds 
o o 

b 

= f nx+~.,(t)f(s)ds 
o 

= lim Z nx+,~(t)f(sk) [sk - Sk-1]. 
II ~11 --,o skG~ 

The limit of  sums in (46) is for partitions 7r = {Sk) of [0, b] with meshes 

II"!l, and is uniform in t on R + . Let f n o w  be the density of  a measure v. 

Since all the t-functions indicated in (46) have support in [0 ,x  + b + a ] ,  

we can conclude that  

(47) lim I[Nx,,*v- 2~ Nx+j(Sk)[Sk--Sk-1]]]=O. 
II~ll "-'o sk~ ,~ 

Furthermore, if  f (0 )  = 0 and f has (say) a continuous derivative on R +, then 

(48) l im 11Nx,~, v - ~ l  = 0 for x > 0; 
a~,O 

(49) l im II N x + , , * v -  ~xv 11 = 0 for x > 0; 
r 

and in the same norm, 

(50) lim N,,+~.~,Ny+,,,,v = lim Nx+y+~.~*v = ~x+yv 
a l O  ~ . 0  

for all x, y > 0. 

Now to identify ~ ( 2 o ) ,  note that for any h ~ ~'r (h ~ 0) and any 

s > 0, there exists a vs E 9~o, whose density f~ has all of  the above properties, 
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for which h(~,v,) ~ O. Cro find v, for s > 0,  pick some measure co, with sup- 

port contained in an interval [a,b] where 0 < a < b ~ s, and for which 

,N will have support in (s, oo), and we can let h(og,) # 0. For  some N ,  oJ, 
,N 

v, be the measure resulting from a leftward shift of  co, by the amount  s .  

There must exist such an co, with h(co,) ~ 0; otherwise, h would induce a 

nontrivial linear functional, bounded in the supremum norm on [0, s-I, which 

would vanish on all continuous functions with compact supports not in- 

cluding the origin.) By (49), 

(51) lim h(N,§ v,) = h(v,) lira h(N,+~.o) = h(~v~) ~ O. 

Hence there exist the limit 

(52) lim h(N,+,.,) = ~(s) for each s ~ 0. 
~ 0  

By (50) and (51), ~b(s)~ 0, and 

,l,(s + t) = r for all s, t ~ 0; 

that is, ~(s) = e z' for some complex number z .  Next pick any v e 9/0, with 

support in [0, b] and density f .  Let x = a in (47), and apply h to get 

h(N,,.,)h(v) = 

b 

f h(N**~.,)f(s)ds. 
o 

Then let a -~ 0 as in (52), for the representation 

(53) h ( v )  = 

oo 

f eZtf(t)dt. 
0 

That Rez must __< p follows from the hypothesis (?') as in the proof  of  Theo- 

rem 1. All other steps are likewise similar, and we omit further details. 
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S u f f i c i e n t  c o n d i t i o n  f o r  ~' .  

In remark 1 we indicated (without proof) a sufficient condition for (~). 

We now prove the analogous statement for the density case. (We treat the 

analog of the case r = 1; and the case r < 1 then follows.) 
co  

Assume that re(t) >= O, f m ( t ) d t  = 1 and 

0 

re(t) = e - ` r  

with ~(t) as given in Remark 1. Then write 

I = 

t/2 t/2 l f f  
re(t) p(x)p(t  - x )dx  = e-  ~r,~x) - , , -~ )Je  § - ~,(,- ~)Jdx. 

,4 A 

b 

But ~ ( a ) - ~ ( b ) =  f(-C(t))t2t~ ~ a Z ( - C ( a ) ) [ ~  - ~] 
a 

, and hence 

t 
ip(x) - ~,(t - x) >= x ( - ~ ' ( x ) )  for x ~ ~, 

and 

~p( t -  x ) -  ~(t) > l ( t - x ) 2 ( - ~ ' ( t - x ) ) t  -1 for ; < x __< t .  

Thus 

t/3 t/2 

I <= f e-Xt~(x)-~o-X)Jdx + f e+'tc'to-~tt-X)]dx 
A t[3 

< 
t/3 t[2 

f e-~X2t-*'l(X))dx + f 
.4 t/3 

e -�89 dx 

= oa(1) + o,(1).  
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By (~) 

A t 

f+f 
0 A 

p(x)p(t - x) 

p(0 
= 2 + 0.4(1), 

implying (~). 

3. A G l o b a l  T h e o r e m .  

Theorem 4 gives a "global" result in that it compares the cumulative 

"tails" of the measure 

/~ = ~, cflz *J 
y = O  

with those of/~. As such it is weaker than the "local"  Theorems 1, 2, and 3. 

However we need not restrict # here to be discrete or absolutely continuous. 

By way of notation let ] v I denote the "absolute value" measure associated 

with a (Radon) measure v defined for the Borel sets of R = ( - ~ ,  ~ ) ,  and 

let v , ( A ) =  v (A-z ) ,  the measure translated by any real z. Also let Tt 

= ( -  oo, - t]t.) (t, ~ )  for t > 0 and let To = R.  

T h e o r e m  4. Let It be a probability measure on the Borel set o f  R ,  

with p(Tt) > O f o r  all t > O, and satisfying 

(~") lim #*2(T,)/It(Tt) = c exists ( <  oo) 

and 

q '3 lira I It - g, I ( ~ ) / ~ ( Z )  = 0 f o r  all real z .  
t -'* o~ 

Assume that c~(w) = ~ cjw J is analytic in I wl < 1 + for some e > O. 
]=o 

Then with ~ defined as above, 

( 1 )  lira = 
t --~ r 

Furthermore we must have e = 2 in (~'). 
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R e m a r k s .  The condition (fl) of  Theorem 2 implies (if') in Theorem 4. 

Moreover, (i f ' )  implies that 

(tim) lim /~(Tt_~)//l(Tt) = 1 for all real T. 
t '-* o0 

Hence 

lim eS"-~ - e -st for all s > 0 and T > 0. 
,~ o~ e~t l2( Tt ) 

From this it follows that 

(7") lim eSt#(Tt) = ov for all s > 0.  
t-+O0 

With the generality allowed for # in the above hypotheses, we shall not 

be able to determine the spectrum S u exactly in the algebra ~L to be con- 

structed; hence the requirement that ~ be analytic on an entire disc J w I < 1 + 8. 

I f  we excluded the possibility of a continuous singular component in g ,  then 

we could argue in closer analogy to the proofs of Theorems 1 and 2, using 

only the condition that q~ be analytic on a region containing the range of the 

characteristic function 

c o  

= f d~"dl.t(x) for v e ( -  0% oo). 

(See also Theorem 4' ,  which follows as a corollary of Theorem 3.) 

P r o o f  o f  T h e o r e m  4. By (~t"), M = sup #*2(Tt)/g(Tt) < oo. Let 9.I be 
t ~ o  

the collection of  all Radon measures v on R such that 

(2) llvll = M sup I vl(Tt) 

where I vl denotes the total variation measure of  v. By standard methods 

one can check that ~ ,  with the norm (2), is a Banach space. Let ~o be the 

subset of  v z ~ for which 

(3) lim I vl(Tt) = 0. 



(6) 

P r o o f  o f  L e m m a  1. 

the identity. For v, cosgg,  

~(T,) 
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One can check that 2o  is a closed subspace of 9~. Let %. be the set of  all 

v ~ 9.1 of  the form 

(4) v = a/z+ co, a = scalar, coe91o. 

From (3) it follows that the representation (4) is unique for each v E % .  

Moreover, on %. the limit 

(5) L(v) L(al~ + co) lira v(T,) ~ - -  ~ a 

,.-,oo ~(T,)  

is a bounded linear functional. Moreover, 9~ L is a closed subspace of  9i. 

L e m m a  1. Under *, 9i is a commutat ive  Banach algebra with identity,  

and 91L and 9~ o are subalgebras with identity. In  particular,  f o r  co ~ 9.Io, 

we have It * 09 ~ 9.It. with 

L ~  * co) = CO(R). 

go, the measure having unit mass at 0, is again 

(7) 

ao 

=< ~,/~) ~(~-x)  ~'(~-x)lcol(dx) =.(~-,) .(~-x)(coldx 

o o  

1 

~oo  

U(T,- x)~(dx) 

1 #*2(Tt) 
-< II, H "H IJ M .or,) " 

Taking suprema in (7) gives ]l v,co[I =< I[ v J]'l] coil" Thus 9~ is a Banach 

algebra. 

For v, co e 9~0, and for fixed N > 0, we have 
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N oO - - N  

{:: (8) M .Iv*col (T,) < + + 
~(r,) = . (rD 

- N  N - ~  

I v l ( ~ - ~ )  - "' col (ax). 

We can dominate the first integral in (8) by 

M sup I-Ivl('r'-~)l (I col * .) (7;) 
I~,-~' L ~r,--z~)-J ~ )  

su- rlvl (s -~ ) l  
= M ,x,~,,,L~,----------------~-.I 

cO 

f 
- - 0 0  

] co] (Tt - Y)lz(Tt- y)tt(dy) 
~ ( ~ - y )  

Ilcoll sup 
- p,l_<~ L ~ ( T , - x )  J ~(T,) ' 

which becomes arbitrarily small as t ~ oo, since v e 9~o. We can dominate 

the second integral in (8) as follows--using integration by parts: 

1 f tt(Tt - x) 1 co I (dx) II v H ,-~,) 
N 

oo) -< IIv ~ Icol(rN)+ Ilvtl~--~,) Ico](Tx)a.(T,-x) 
N 

~ ( ~ - ~  i-Icol(n) 1 ~,*~(~) 
-< Ilvlt .~r,) Icol(r~)+llvllsup - ~,_~N k ,u(T~,) J tt(Tt) 

(Here we may interpret the integrals as limits (under partition refinement) 

of  Stieltjes sums. The integrand and integrator functions are suitably left- 

and right-hand continuous, respectively, to justify existence and integration 

by parts. Cf. Hildebrandt [Hi].) 

We can make the last term in (10) arbitrarily small by choosing N suffi- 

ciently large, since co e 9ff 0 . So also with I col (TN). Note that lim/~(Tt_ N) = 1, 

by (/3"). Hence we can make the second integral in (8) arbitrarily small by 
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choosing first N and then t large. A similar result holds for the third integral 

too. Thus v * co z 9~o. 

By (a"), #'2 ~9~ L with L(it .2) - - c .  Thus, as in Lemma 1 of Theorem 1, 

to show that 9~t. is an algebra, it suffices to show that It �9 co ~ 9.[/. for all co z 9~ 0 . 

Again, we shall also show that L(i t ,  co) = co(R). For t > N,  

(11) 

oo 

I (it*co) - co(R)Itl (Tt) < ~ 1  f 
**(7;,) = It(T,) 

--00 

N 

< f = l lcol(d )+ 
- N  

N 

As t ~ o o ,  the integral f 

--N 

We can make the integrals 

[px-itl(Tt)lcol(dx) 

~ - N  

-~T--ff x)t ~ (dx) 
N - -oo  

+lcol(r ). 

tends to zero by (fl") (dominated convergence). 

; i  + arbitrarily small by choosing first N 

and then t large just as for (8), since co ~ 9~ o . 

Also I co ] (TN) ~ 0 as N ~ m .  Hence # �9 co - co(R)# ~ 9~ o and It �9 co ~ 9~L 

with L(g* co) = CO(R). This completes the proof of Lemma 1. 

At this point, our method diverges from that in the proof of Theorems 1 

and 2 (because of the possible continuous singular component in It). We 

shall compare the homomorphisms ~"(9~o) and ~r with ~r for the 

standard algebra ~ of  Radon measures v on R,  u n d e r . ,  and with total- 

variation norm, Yar(v). 

Lemmas 2 and 3. The spectrum Su of It in 9AL is contained in the set 
I wl __< 1} u 

P r o o f .  For co ~ ~o and any Borel subset B of R let co B denote the measure 

to cut down to the set B. Note that with respect to the norm [[ II of (2), we 

have 
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(12) co = lim cot_.,.]. 
n ...I. O0 

Moreover, for fixed n > 1, we can write 

n - - I  

(13) co(_...] = ]~ 6k,co tk), 
k ~  - n  

where 6k is the measure with unit mass at k ,  and where 

(14) co(k) = 6-k * co(k,~+l] 

has support in (0,1] and has 

(15) Var(co~k]) = Var(co(k,k+ 1]). 

Now pick any ho ~.r For  k >= 1, 

(16) ho(6,) -- ho(6 *k) = [ho(61)] k . 

We must have [ ho(6,) I __< 1. Otherwise, exactly as in the proof  of  Lemma 2 

of Theorem 1 (with r = 1), we could construct a discrete measure co co) lying 

in ~ o ,  for which there existed a finite limit 

N 

(17) ho(co tD)) = lim ~ pk#((0,k]) 
N-~oo k=O 

where p = e 8 > 1. Such a limit would contradict (~") above. Similarly for 
k < 0 w e  can get 

(18) I ho(60l = ] hoO--~l = I ho(6- ,) l  -~ =< 1. 

And ho(6o) = 1, since 6o is the identity of  9~ o . Thus we can apply ho to the 

co's in (12) and (13) and find 

n--1  

ho(co) = lim Y~ ho(6k)ho(cocl')), 
n.-~ oo k m - - n  

(19) 

and 

(2O) 
n - 1  

I ho(co)l < lim X I ho(co'k')l. 
~1-~ oo k m - n  
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Since the support of  co (z) is contained in (0,1], it follows from the defini- 

tion (2) that 

(21) Ilco'k)[l < M Var(co(k)) 
= a ( T , )  

Hence 

n - 1  

(22) ]ho(co)J _-< M lim ]E Var(co (~)) 
/~(v~) . ~ .  ~ = _ .  

M n - 1  
lim ]~ Var(cock,k+lj) 

# ( T , )  . . ~  ~ = _ .  

M M 
P(T1) ,-.~olim Var(co(_,,,j) #(7"1) Var(co). 

The elements co of ~o form a subalgebra of  the standard algebra . .g, dense 

in the v a r i a t i o n  n o r m .  From (22) we can conclude that the homomorphism 

ho is continuous in the variation norm. Thus ho can be extended to all of . / /  

as a unique element ~o of ~r 

Now pick any h ~ ~r Let ho denote its restriction to 9~o and let ~o 

denote the extension of ho in ~(r  If  ho(co 0) # co~ for some coo ~ 93[0, 
write 

(23) # .  co o = co~ + co x for some cot E 9.Io. 

I f  ho(co) = CO(R) for all co ~ 9.Io, write 

(24) #,2 = c/~ + co" (cou ~ 9Jo)" 

We can consider (23) and (24) as equations in both ~ '  and 9.IL; and we can 

apply ~o and h to them, to find (as in Lemma 3 of Theorem 1) that the values 

~o(P) and hO) both satisfy the linear equation 

(25)  x[ho(co ~ - co~ = ho(co 1) 

or both satisfy the equation 
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(26) X 2 = cx + 1 - c. 

Thus, again as in Lemma 3 of Theorem 1, we can conduct that h(/~) = ~0(/~) 

or else h(/a)= c - 1 .  Since 15~) ] < Var(/0 = 1, the present lemmas are 

proved. 

The rest of the proof of Theorem 4 may be carried out exactly as was the 

corresponding part of Theorem 1, with replacement of summation ( ]~, co,) 

by integration 

If  we restrict ourselves to absolutely continuous measures #,  then we obtain 

global results such as the following direct corollary of Theorem 3 (via l'Hos- 

pital's rule): 

Theorem 4'. Let I ~ be a probability measure on the Borel sets o f  R + 

with continuous density satisfying the hypothesis o f  Theorem 3, and let 

c, p, d, and r be as in that theorem. Then the measure ~(IZ) o f  Theorem 3 

has tail behavior 

lim r = r 
,-.~o ~(T,) 

4. Non-Analytic Functions. 

Non-analytic functions can be shown to act on many algebras of the types 

considered in sections 2 and 3. In this section we develop a more "classical" 

technique to demonstrate this fact. 

The general question as to which functions operate on which algebras is 

very difficult. Here we limit ourselves to convolution algebras of complex 

measures 

satisfying 

v = { v , ,  n = 0,-t- 1, _+ 2,...} 

I .1 = > 2 

and 
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O0 

0(0) = Y~ v,e ~"~ real. 
n = - - o o  

We also consider some Banach sub-Algebras of  these. 

While it is not too difficult to show that some non-analytic functions "oper-  

a te"  on the present algebras precise results are difficult. Here we offer the 

following theorem. 

Theorem 5. Let  

0(0) = ~ vie 'i~ 
j=~oo 

be a real valued func t ion  with period 27~, where 

Let  

and  assume that 

f o r  some r > ~. 

Let  

Then  

I Jl - o(1]JJl~} , ~ >  2.  

q~(x) = ~ cje 'j~, 
j =  --OO 

j - - ~ o O  

d n = 

[d.I = O  
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R e m a r k .  One could use our methods to obtain results for some other 

algebras. In particular we could obtain results of  the type above for 1 < ~ ~ 2, 

with a much messier, more restrictive hypothesis on r .  We could also simplify 

our proof if r were assumed sufficiently large. It would be easy to conclude 

~ less about d. ,  for example d. = can be shown trivially. 

We also prove that if vj is asymptotic to cj -~ (as j -~ + oo), then the d / s  

are asymptotic to j -~ ,  namely 

Theorem 6. Let ~ and d~ satisfy the hypothesis o f  Theorem 5. In addi- 

tion assume that ~, vj = i ,  and that 
j = - - o o  

vj ,,, cj -~ as j ~ + oo. 

Then 

dj ,.~ cq~'(f~(O))j -~ as j ~ + oo 

Proof  of  Theorem 5. We shall consider n > 0. A similar proof  works 

if n < 0 .  

We begin by outlinig the method of  proof. We have 

d. = ; e-~"~ 

Thus 

lg 

(1) d. = t=~-| ct f e-~"~176176 
- - X  

Note that if we could change the contour of  integration [ -  ~, rt] to a new 

contour on which 0 = tr - ix, with ~ fixed and psoitive, then I e-~"~ = e - " "  

Thus 
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/ e-i.O eU~(O~O 

would tend to zero exponentially fast. However, this can not be done since 

~(0) is not analytic. Hence we try to replace f(0) by 

f~m(O) = ~ vje rio , 
lJl _-<m 

and compute the error we make. Also we would like to keep l small in (1), 

and m small so that exp(ilfm(O)) does not get too large when Im0 = - z .  

Actually most lines o f  the proof are used to show that terms in the sum (1) 

with l large (in a sense to be made precise later), and the error made by 

replacing 9 by fro, are not too large. We also remark that the actual choice 

of ~ depends on n.  

We return now to consider the expression (1) for d. .  We take 6 > 0 small 

(to be chosen more precisely later) and let m = ] 'nl-~].  Let 

(2) Ore(0) = ~ v y  j~ 
j ~ m  

Then from (1) we have 

(3) d. = I n + I[. 

where 

(4) I.= ,= c,/e-'"Oexp(itOm(O)), 

and 

l = - - ~ o  

cl f e-i"~ -- exp(ilf'm(O))dO. 
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We consider 11. first. 

I I  n 

I t  

c t f e -i"~ exp(ilf,(O)) (1 - exp il(f'm(O ) - f'(O))}dO 
- - i t  

I t  

ilc, f e -'"~ exp(ilf,(O)) {~,.(0) - f,(O)}dO 
- - i t  

I t  

- - I t  

By Parseval's identity the second term above is O ( 1 ) _ - O ( ] - -~)  
n I tl -~)(2~-~). 

if 6 is sufficiently small. Hence we can write 

(6) II. = A. + B. + O(n-') 

where 

(7) A. = ~ ilc, f e-'"~ { 0 . , ( 0 )  - ~p.(O)}dO 
- - 0 0  

and 

(8) B. = ~ ilc, /e-'"~ - ~(O)}dO, 
- - i t  

where p is a small positive number  to be chosen later. Now 
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B~ = - i  Y~ vj f e -l("-j)~ ~ cdexp(ilf,(O))dO 
l j l > p n  l = - o o  

~, vj: c~'(9(O))e-t("-J)adO. 
IJ l>pn 

Since ~b' and f are continuously differentiable, the same is true for ~b'(f). 

Hence qV(0 has an absolutely convergent Fourier Series. See Zygmund Vol. 

I [Z] .  Thus 

lB.] < maxlvjl E '(f,(O))e-'("-J)~ 
I J l > p n  - o o  

- oo 

< K max [vii .  
I J l > p .  

Hence 

, , ,  

We turn now to A. .  We divide the sum for A. in (7) into two parts 

Y~ . (e is a sufficiently small positive number.) In considering 
I/l_~nl-. I l l > . t - .  

the second sum we use the Schwarz inequality and Parseval's relation to ob- 

tain 

Ig 

If:" 
- Ig 

exp(ilf(O)) {Ore(O) - Op.(O)}dO 

~_K 

z 
" 2  

- -  lg 

= ~(D.I - r  ) .  

Thus 
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Itl >'1-" ] 

Z g m -~+'12 ~ Ill I c, I 
Ill>nt-- 

< K m  - ' + ' ( n ' - ~ )  " - '  ~ I / l ' l c ' l  
- -OO 

-~)n(l 

(10) .4. = 2 It, i e-''~ exp{ilf,(O)} {~.(0) - f,,.(O)}dO 
Ill gnt-.  J 

- - l  

+ 0(5 )  

In (10) we again replace ~(0) by Ore(O). and write 

(11) A. = O. + E ,  

where 

(12) o .  = 

and 

(13) 

Ict f 
Ill Nnt-s 

e-'"~ exp(iD.,(O)) {0,~(0) - ~p.(0)} dO, 

En=O(n-~+OIl~_~_" IZc,;If~(O)-Vm(O)llOm(O)-Opn(O)ldO} �9 
- - Z  

Using the Schwarz inequality and the Parseval relation, we can conclude 

that the integral in (13)is  0[_1-~ = 0(11 if ~ i s  sufficiently small. Thus 
\n I 
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(14) ]E.] = O(n-~) .  

We now turn to D..  We consider the integral in (12) as a complex integral 

and move the contour of integration to the line 

0 = t r - - i t ,  t = l l o g n B ,  - - n <  tr ~ ~c 
n 

with fl to be chosen later. (The contributions from portions of the contour 

parallel to the imaginary axis cancel, when we use Cauchy's theorem on the 

rectangle in the diagram.) 

0 

--~ ~ " > t ~ - - N - i t  r r~ + it  

For sufficiently large n,  mt  < 1; thus we have 

(15) 

since 

I o.,(a - iO - ~.,(~)i = o ( t ) ,  

I ~ . (~,  - ~ )  - ~.(~,)1 -~ :~ [ vii (1 - ~'~) 

= o ( 0 .  

Hence from (15) and the fact that 0,,(a) is real, we have 

(16) [ Im %(~ - i0[  = O(~). 

Now since ]11 ~ n 1-~, (16) gives 

(17) I exp il O,.(u - i~)[  = O(1). 

One also sees easily that 

(18) I O,.(a - ix) -- fp.(a -- ix)[ = O(e""') 

= O(n p#) 
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and 

(19) 
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l e',(~-")] = O(n-B). 

Choosing fl large, and using (17), (18), (19) and the indicated change of 

contour of integration, we see 

(20) [ D, [ = O(n- ') .  

Equations (20), (14), and (11) thus give 

(21) [ A , [  = O(n-'). 

Then (21), (19), and (6) give 

(22) ] II.[ = O(n- ' ) .  

Hence via (3), we can finish the proof by proving 

(23) [ I.] = O(n-" ). 

In the expression for I. we divide the sum into two parts, • + 
[ l [<nt-* l ~ n t - a  

To estimate the second sum we use the trivial estimate 

i z l ~ n t - ,  I IZl~nt-" 

____ (n'-') -'  ~:l/J'[c, I 
--CO 

if e is sufficiently small. The first sum, Y~ , can be shown to be O(l/n ~) 
]H<n~-. 

exactly in the manner for D, above. Thus (23) is proved. This completes the 

proof of Theorem 5. 
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The proof of Theorem 6 rests upon two lemmas. We begin by making a 

few comments preparatory to the first of these lemrnas. 

We let A~ be the Banach Algebra of doubly infinite sequences v = {v,} 

w i t h v , = ~ _ ,  (so that ~(0)= • v,e ~"~ real) andlv , [  = O  I , with 

norm II II defined by 

ilvll = s u P { l v o l , l n l ' l q ,  n = + 1 ,+  2, ..}. 

(The fact that A~ is a Banach Algebra is essentially contained in section 2.) 

We also consider the Banach space of sequences c = {Co, C•177 ""} 

{I } v , =  e Z l c ,  I I n l ' < ~ o  
- - e 0  

with norm III III, where 

co 

IIIclll : z l e , 1 0 + l n l ' ) .  
n m - - ~  

Theorem 5 asserts that if r > a V, operates on A, in the following way: Let e 

b e i n i n V ,  andv~A~.Thenc(v )={ /F ' "~  n = 0, +_1, :t:2,.-.} 
- - X  

is in A,, where 

e(x) = ~(x) = Y., e,e t"x 

in the terminology of Theorem 5. We are now ready for the first of our lemmas. 

Lemma 1. Let r>ot. For each fixed vEA~, the transformation 

T: V,--* A, 

given by 

T(c) = c(v) = {d.} 

is continuous from V, to A~. 
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P r o o f  o f  L e m m a  I. The proof of  Lemma 1 is almostthe sameas the proof 

of Theorem 5, since in that proof the estimates for all terms in the decompo- 

sition of d (in (3), (6), and (11)), except for B~ (see (8)) were in fact less than 

or equal to KI "l-~1i ilvll Ill till for a suitable constant K. Hence it suffices 

to obtain an estimate of the same type for B~, in particular it suffices to show 

(24) I B,I Z K<~>I hi-f i  IIc III- 

Proceeding as in the proof of Theorem 5, we can conclude that 

o r  

(25) 

where 

]Bnl < max l vii. ~ I f  qb'(~ ' 
j > p n  .i = - o o  

- - Z  

I Bnl -< g n  -~ ~. l ejl 

X 

= f r176 
- - X  

In the proof of  Theorem 5, we said ~ I ej[ < oo since r is continuously 

differentiable. The theorem we quote says that if 

and 

then 

~b(O) = Z Ae t~~ 

I d/(O + h) - d/(O)l ~_ Mh T M  

x I~l < o o  

The proof given in Zygmund [Z] p. 240 actually shows that 
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Is, I ---- + ISol). 
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lesl < maxl~b'(0(0))+max Id(~b'(0)))l 
o 0 

< ~ Ill  I c, I +max[  ~b"(f(0))V(0)l < g ~ 1ll21c, l 

KIIl elll. 
Thus 25 gives 24, and the lemma is proved. We now come to the second lemma: 

L e m m a  2. Theorem 6 is true for  ~'s which are trigonometric poly- 

nomials. 

In order to prove Lemma 2 we first note that if v satisfies the hypothesis 

of  Theorem 6, then v*k(n) ,~ kv(n). (Proved as for Theorem 1.) 

P r o o f  o f  L e m m a  2. 

{ " / We let A, = v e A~ I lira ~ exists . We define L on A , ,  by 

L(v) = lira v,n -~. 

Clearly L is continuous on A~ in the topology of  A~. To prove Lemma 2, it 

suffices to consider 

for a fixed n. Let v ~ A.,  with 

~b(x) = e i"'~ 

n=-oo V n =  1" 

el.~c0) = 0(0)] j 
j = 0  

= ~ e 'k~ ~ (v*J)k (in)j 

k = - ~  j=o j !  
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Hence 

q~(v) = { ~ (v*J)k(in)J} 
~=o J! k=o,•177 

Since II v*' II < c' for some constant e,  it is clear that 

R v,J(in)J 
y_, 

j = o  J! 

converge in the topology of A= to ~b(v). Hence ~b(v) is in A= and 

L(,/,(v)) = ~: ~L,(~*J) 
J=O 

= ~ (in)JjL(v) 
J=o j t  

= (in)t,(v) ~, (in)J 
~=o J! 

= (in)L(v)e I";{~ 

= L(v) ~b'(O(0)) 

and the lemma is proved. 

The proof of Theorem 6 now follows by Lemma I, Lemma 2, the conti- 

nuity of L and the fact that the trigonometric polynomials are dense in V, 

in the Ill Ill nor . 

5. Application to the Renewal Equation and the Mean of a 

Branching Process. 

As an application of the previous results we will look at asymptotic pro- 

perties of solutions of equations of the form 

t 

(1) H(t) = ~(t) + 7 f H(t-y)dM(y),  
i s  

0 
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where M("  ) is a distribution on [0, oo), 0 < 7, and ~(t) is a given function. 

When 7 = 1, then (1) is the renewal equation. The renewal measure is defined 

by 

(2) U(t) = ~ M,(t) ,  
r im0 

where M , ( .  ) is the n-fold convolution of  M(" ). The solution of  (1) with 

7 = 1 can be expressed in the form 

t 

H(t) = I ~( t -  y)dU(y), (3) 
q l /  

0 

and if ~ is directly Riemann integrable (see chapter XI of W. Feller, Vol. II 

IF]) then 
oo 

(4) lira H(t) = 1 f ~(t)dt, 
t"* o0 

0 

where /t = ( t d M ( t ) .  

0 

If  7 # 1, then there may exist a number 0r called the Malthusian 
parameter, such that 

(5) 7 l e-~tdM(t) = 1. 
~ t  

0 

Such an 0~ can always be found if ? > 1, and may or may not exist if 7 < 1. 

When it does, then one can multiply (1) through by if e-=t, and if e -=t ~(t) 

is directly R-integrable then a little manipulation yields 

O0 

f e-~t~(t)dt 

(6) H(t) ~ e ~t o 
O0 

7 f te-=tdM(t) 
0 

Note that ~ >  0 i f7  > 1 and ~ < 0  i f ?  < 1. 
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R e m a r k .  At first sight one might guess that the Malthusian parameter 

exists whenever 1 - M(0 is of exponential order. To see that this is not 

so suppose M has density m satisfying (g'), (//') and (?') in Theorem 3. 

Then the Malthusian parameter for (?, M) will exist if and only if th(p) > ~- 1. 

Thus a density function of the form c e - ~ x  -~ for some k > 0 will only have 

such a parameter for 7 sufficiently close to 1. Observe also that under the 

hypothesis of  Theorem 3 on the analyticity of  qb, the Malthusian parameter 

can never exist. In fact given any density m(0 satisfying ~' and / / ' ,  we can 

assert that (~, m) fails to have Malthusian parameter if and only if (1 - 7w)- i 

is analytic on the range of th, in which case the conclusion of the theorem 

holds for cj = )d. 

When y < 1 and the distribution M satisfies the hypotheses (g") and (]3") 

of Theorem 3 then the Malthusian parameter will not exist, but the behavior 

of H can still be given. We illustrate this when 4(0 "" 1 - M(t), since this is 

case of interest in the application which follows, but similar results can clearly 

be derived depending on the asymptotic behavior of 4. 

E x a m p l e  1. I f  M satisfies (~") and (fl") and 4(0 is measurable and 

~ 1 - M(0 then 

(7) H ( 0  1 - M(t) " a s  t - - c o o .  
1 - ~  

P r o o f .  It is easy to verify that 

(8) n(0 --- f 4(t - y)av,(.v), 
o 

where 

oo  

U,(O = ~, ?'M.(t). 
n=O 

A truncation argument shows that 
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(9) 

t 

H(t) .~ f 
0 

[1 - M(t-y)] dU~(y) 

_ 1 - ?  [ 1 7  1 -  ? Ur(t)] " 

But by Theorem 4 

- -  --  U , ( t )  ,~ ~? [1 - M ( t ) ] ,  
1 - ~, (1 7)2 

and this with (9) implies (7). 

E x a m p l e  2. If  M ( . )  satisfies the hypothesis of Theorem 4' then a 

calculation analogous to that above shows that 

(10) H(t) 1 - ?  
(1 ~-d-~) 2 [1 - M(t)] 

where 0 < d < 1 is the constant specified in Theorem 3 in terms of  M ,  and 

where the hypothesis forces 0 < d? < 1. Thus the behavior H(t).., const. 

[-1 - M(t)] is not limited to the case of measures whose tails are of  exponential 

order. 

T h e  m e a n  o f  a B r a n c h i n g  P r o c e s s .  

Consider an age dependent branching process with mean particle pro- 

duction (per particle) equal to y, and lifetime distribution M.  (See chapter 

VI of Harris [Ha]  or chapter IV of Athreya, Ney [A-N] for definitions.) 

The mean number of particles H(t) at time t satisfies (1) with ~(t) = 1 - M(t). 
Its asymptotic behavior is thus given by (6), (7) or (10), depending on the 

behavior of M.  

6.  A p p e n d i x .  

The methods of  Section 4 can also be used to prove results of  the type 

in Section 1; and we state some below. Our proofs are lengthy, and are 
contained in a University of Wisconsin technical report. 
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L. Carleson has informed us of a very simple approach, which has been 

exploited by Ess6n [El. However, our method enables one to compute 

bounds explicitly, while the Carleson-Ess6n technique does not. 

Suppose that v{" } is an absolutely continuous complex measure on R 

with density m(" ), let fit be the Fourier transform of m and consider a func- 

tion M(t) satisfying 

(1.1) M(t) is positive and monotone decreasing as t ~ + oo. 

(1.2) M(O = M ( - O .  
o o  

(1.3) f M(t)dt  < oo. 

o 

(1.4) o~(t) = - l l o g  [tM(t)} decreases to zero as t ~ + ~ .  
t 

(1.5) log'(t)] > ~e~(t)/t for some ~ > 0. 

One can easily verify that e.g. (1 + t2) -~/2, ~ > 1 and e - " ,  0 < ~ < 1 

satisfy these conditions. 

T h e o r e m  A-I. Assume that 49 is analytic on an open set containing 

the closure o f  the range of  fit(. ) and q~(O) = O. I f  

I m(t)l < KM( t ) '  - oo < t < 

then there exists a funct ion fit such that 

and 

[fit(t)] < r i M ( t ) ,  - oo < t < oo 

/ N  
~b(fit(t)) = (fit(t)). 

For applications to probability we observe the following 

oo 

R e m a r k .  Let ~b(s) = ]~ c,s" define a function regular in the disc Is I < r  
n = l  

and vanishing at the origin. Then if I fit(t) I < r we may take the fit(t) of 

Theorem A-1 to be 
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~(t) = ~ c,m*"(t) 
n = l  

where the infinite series converges in LI .  

The above conclusions do not hold for a general ~b. 

There is also an analogue of Theorem A-1 for Fourier series (i.e., when v 

is a discrete complex valued measure {v,, - o o  < n < oo}). 

T h e o r e m  A-2. Assume that ~(s) is regular on an open set containing 

the range of f(s)= ~ etJ'vj. Then if 
j ~ ~ o o  

- - o o < j < o o ,  [vj[ ~ KM(j), 

there exists a sequence {~j} such that 

and 

[~j[ < KIM(j). 

jmt ~oo 

Theorem A-2 can be used to characterize the maximal ideals in certain 

Banach algebras. 

Then if I z KM(n), and q~(s) = s 2, we have 

(v.} .2 ~ K1M(n). 

Hence there is a constant K3 such that all sequences v = {v,} with i v. I ~ KM(n) 

form a Banach algebra Bu with 

Corollary. 
the form 

IIv II = K3 sup lv./M(n)l. 
t l  

Each homomorphism, h, of the Banach algebra BM is of 
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oO 

hi{v,}] = I~ v,e '"~ - rr < O < lr. 
I t  ~ - - O 0  

I d e a  o f  P r o o f  o f  T h e o r e m  A-1. We must show 

~-.olim f e-~XYe-~lxlcb(rh(x))dx = O(M(y)). 
~ 0 0  

Note that if 

then 

! 
Im x = - v = + -~log yM(y),  

Y 

I e-':'Y] = yM(y).  

Hence we would be almost finished if  we could consider the above integral 

as an integral in the complex plane, and move the contour of  integration 

down to Imx  = - v .  There are two obstacles to this: 

1) e -~lxl is not analytic; 

2) rh(x) is not analytic. o/ 
The first obstacle can be dealt with by splitting the integral into f / + 1 

The fact that rh(x) is not analytic leads to greater difficulty. By a somewhat 

subtle argument we replace rh(x) by rhy(x) where 

~m(x) i f  I xl < y  
my(x) 

i f  Ix  > y .  

We still cannot push the integral down to Im x  = - v ,  however it actually 

suffices to put 

Im x = - I: = 1 log yM(y) 
y 6 

for an arbitrarily small 6; and we can in fact justify this change o Jcontour. 
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Of course we still need to gain a factor of l / y ,  and we do this by writing 

e-SXY = t__ de-~XY 
Y 

and integrating by parts. This in turn leads to certain difficulties arising from 

d . - i x ) ,  which, though not quite trivial, can be dealt with. m(x 

T he o rem A-3. Let  M(t )  be as in T h e o r e m  A-1  and be convex ,  and 

M' ( t )  
such that M(t)oJ(t) is bounded f o r  t >_ to >-_ O. Assume  ~b is analy t ic  

on an open set containing the range o f  th and q~(O)= O. If l (x) I 
< k M ( x )  and rh(x) ~- M(x )  as x ~ + oo, then there is a f unc t ion  rfi(x) 

such that 

m = ~ ( , ~ ) ,  

and 

r~(x) ,~ q~'(rh(0))M(x) as x .--, + oo. 

00 

Remark.  If  q~(s) is defined by q~(s) = Y~ cns n for Is[ < p and if the 

range of ~ is contained in the disc I xl < P, then the function r~ of Theorem 5 

is given by 

(1) ~ = Y~ c~m *~. 
n----I 

where the sum converges in L 1 . 

As before, there is a discrete analogue to the above result for Fourier series 

when re(t) is replaced by the discrete measure (v~, -Qo < n < oo}. Of  course 

here ~b(0) need not be 0. 

The proof of Theorem A-3 is similar to the proof of Theorem A- l ,  though 

the details become more complicated. 
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