SOME INTRINSIC CHARACTERIZATIONS OF MINIMAL SURFACES*

By

H. BLAINE LAWSON, JR. in Berkeley, California, U.S.A.

Introduction.

Let $ds^2 = Edx^2 + 2Fdxdy + Gdy^2$ be a C^3 Riemannian metric defined in the plane. This metric will be said to satisfy the *Ricci condition* if its Gauss curvature K satisfies K < 0, and if the new metric

$$d\hat{s}^2 = \sqrt{-K} \, ds^2$$

is flat, i.e., its Gauss curvature \hat{K} satisfies

 $\hat{K} \equiv 0.$

It was first discovered by Ricci that every metric satisfying this condition can be realized on a minimal surface in \mathbb{R}^3 [1, p. 124]. Conversely, it is simple to verify that every metric on a minimal surface in \mathbb{R}^3 satisfies this condition away from the points where K = 0. M. Pinl showed, however, that in \mathbb{R}^4 there are minimal surfaces on which the Ricci condition fails to hold [6]. The central purpose of this paper is to classify those minimal surfaces in Euclidean *n*-space whose metrics do satisfy the condition, i.e., to classify those surfaces which are locally isometric to minimal surfaces in \mathbb{R}^3 . It will be shown that all such minimal surfaces either already lie in some 3-dimensional affine subspace or they lie fully in some 6-dimensional affine subspace. (Hence, in \mathbb{R}^5 the Ricci condition intrinsically characterizes those minimal surfaces which lie in \mathbb{R}^3 .) Moreover, it will be shown that the surface must be a member of a unique 2-parameter family of isometric minimal surfaces.

^{*} Research for this project was supported by the U.S. Army Research Office under Contract DA-31-124-AROD-170.

The index of the surface (which can be viewed as the degree of twisting of the surface away from holomorphy) in this family is computable explicitly in terms of a differential form induced from the second order osculating planes of the surface.

The paper then considers possible generalizations of the theory. Certain properties of minimal surfaces in \mathbb{R}^N , having a generalized Ricci condition $(d\hat{s}^2 = (-K)^{n/(n+2)}ds^2$ is flat), are found. Finally, the analogous problem in the *n*-dimensional Euclidean sphere is formulated and its solution conjectured.

The author wishes to express his gratitude to Professor Robert Osserman under whose valuable direction this work was prepared.

1. Preliminaries.

To begin, we develop some fundamental notions. A minimal surface M in \mathbb{R}^n shall be regarded (cf. [4]) as a conformal immersion

$$X: \mathscr{R} \to \mathbb{R}^n$$

where \mathscr{R} is a Riemann surface and the components of $X = (X_1, \dots, X_n)$ are harmonic on \mathscr{R} . In any local coordinate $z = x_1 + ix_2$ on \mathscr{R} , the induced metric has the form $ds^2 = 2F |dz|^2$, and the coordinate functions satisfy the equation

$$\partial \bar{\partial} X_k = 0; k = 1, \cdots, n$$

where $\partial = \frac{1}{2} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_2} \right).$

Hence the differentials

$$\omega_k = \phi_k dz$$

$$\phi_k(z) = \frac{\partial}{\partial z} X_k; \ k = 1, \cdots, n$$

are holomorphic on R. Moreover, since

$$\left.\frac{\partial X}{\partial x_1}\right|^2 = \left|\frac{\partial X}{\partial x_2}\right|^2 = 2F$$

and $\left< \frac{\partial X}{\partial x_1}, \frac{\partial X}{\partial x_2} \right> = 0$, we have that

(1)
$$\phi^2 = \Sigma \phi_k^2 = 0$$

and

(2)
$$|\phi|^2 = \Sigma |\phi_k|^2 = F > 0.$$

We observe that the minimal surface can be recaptured from the differentials. In fact, if ω_k^* , $k = 1, \dots, n$ are any holomorphic differentials on \mathscr{R} , with imaginary periods, such that $\Sigma(\omega_k^*)^2 = 0$, then the map $X^* \colon \mathscr{R} \to \mathbb{R}^n$, where each $X_k^* = \operatorname{Re}\left\{\int \omega_k^*\right\}$, is a (generalized) minimal surface.

Our main tool for studying minimal surfaces will be the generalized Gauss map as defined by Osserman and Chern [4]. This map is constructed as follows. Let (Z_1, \dots, Z_n) be a fixed system of homogeneous coordinates for (n-1)dimensional complex projective space \mathbb{P}^{n-1} . Let \mathbb{Q}_{n-2} be the hyperquadric defined by the equation $\sum Z_k^2 = 0$. The generalized Gauss map is the antiholomorphic mapping

$$\Phi:\mathscr{R}\to\mathbb{Q}_{n-2}$$

which in each local coordinate system is given by the functions

$$\vec{\phi}(z) = (\vec{\phi}_1(z), \cdots, \vec{\phi}_n(z)).$$

From the above discussion, it follows easily that this map is well defined.

The quadric \mathbb{Q}_{n-2} may be identified with the Grassmannian

$$SO(n,\mathbb{R})/SO(n-2,\mathbb{R}) \times SO(2,\mathbb{R})$$

of oriented planes through the origin in \mathbb{R}^n as follows. Let $Z = (Z_1, \dots, Z_n)$ represent a point $p \in \mathbb{Q}_{n-2}$. To p we associate the oriented plane in \mathbb{R}^n

determined by the oriented orthogonal pair of vectors ($\operatorname{Re}\{Z\}$, $\operatorname{Im}\{Z\}$). This correspondence is well defined and forms a diffeomorphism between the two spaces.

Introduce on \mathbb{P}^{n-1} the Fubini-Study metric defined in the given homogeneous coordinates by

$$ds^2 = \frac{2\left|Z \wedge dZ\right|^2}{|Z|^4}.$$

In this metric, \mathbb{P}^{n-1} has constant holomorphic curvature 2, and \mathbb{Q}_{n-2} is an Einstein hypersurface. Moreover, the holomorphic isometries of \mathbb{P}^{n-1} correspond to unitary transformations of the homogeneous coordinates.

The metric induced on \mathscr{R} by $\overline{\Phi}$ is given by

(3)
$$d\sigma^2 = \frac{2 \left| \phi(z) \wedge \phi'(z) \right|^2}{\left| \phi(z) \right|^4} \left| dz \right|^2.$$

A straightforward computation shows that the Gauss curvature of the minimal surface is given by

(4)
$$K = -\frac{\left|\phi \wedge \phi'\right|^2}{\left|\phi\right|^6} = -\frac{d\sigma^2}{ds^2}.$$

Observe that if a minimal surface in \mathbb{R}^n is not a plane, then the singular points of the Gauss map (points where K = 0) are isolated.

For purposes of convenience, we shall consider the holomorphic Gauss map Φ , corresponding to (ϕ_1, \dots, ϕ_n) , instead of the above. Φ describes an analytic curve in \mathbb{Q}_{n-2} . To each such curve is associated a class of minimal surfaces having certain common differential geometric properties. It is in this context that we shall analyse the problem posed above.

Lemma 1. The Ricci condition will hold everywhere that $K \neq 0$ on a minimal surface in \mathbb{R}^n if and only if the Gaussian image of the surface in \mathbb{Q}_{n-2} has curvature 1 at all points of regularity.

Proof. We shall work away from the isolated points where K = 0. Suppose

the curvature of the Gauss map is $\equiv 1$. For any metric of the form $ds^2 = 2\lambda |dz|^2$ the Gauss curvature K' is given by the formula

$$K' = -\frac{1}{\lambda}\partial\bar{\partial}\log\lambda.$$

Hence, from (3) we have that

$$\frac{|\phi \wedge \phi'|^2}{|\phi|^4} = -\partial \overline{\partial} \log \frac{|\phi \wedge \phi'|^2}{|\phi|^4}$$
$$= \partial \overline{\partial} \log |\phi|^2 - \partial \overline{\partial} \log \frac{|\phi \wedge \phi'|^2}{|\phi|^2}.$$

However,

$$\partial \bar{\partial} \log |\phi|^2 = \frac{|\phi|^2 |\phi'|^2 - |\langle \phi, \phi' \rangle|^2}{|\phi|^4} = \frac{|\phi \wedge \phi'|^2}{|\phi|^4},$$

and therefore

$$\partial \bar{\partial} \log \frac{|\phi \wedge \phi'|^2}{|\phi|^2} = 0.$$

Hence,

$$\partial \bar{\partial} \log(-F^2 K) = \partial \bar{\partial} \log |\phi|^4 \frac{|\phi \wedge \phi'|^2}{|\phi|^6} = 0$$

and the Ricci condition is satisfied.

Tracing the above steps in the reverse direction completes the proof.

2. The main Theorem.

The problem under consideration entails describing a class of isometric minimal surfaces, at least one of which lies in \mathbb{R}^3 . Given a minimal surface $\mathcal{M} \subset \mathbb{R}^n$, we now show how to construct a two-parameter family of minimal surfaces in \mathbb{R}^{2n} which are isometric to \mathcal{M} . Suppose that \mathcal{M} is parametrized

by $X: \mathscr{R} \to \mathbb{R}^n$ where, by passing to the universal covering surface, we assume that \mathscr{R} is simply-connected. Define the *conjugate minimal surface* by $\widetilde{X}: \mathscr{R} \to \mathbb{R}^n$ where each component \widetilde{X}_k of \widetilde{X} is the harmonic conjugate of X_k . We then define the minimal surfaces, $\mathscr{M}_{\alpha} \subset \mathbb{R}^n$, by the immersions

$$X_{\alpha} = X \cos \alpha + \tilde{X} \sin \alpha.$$

Note that $\phi_{\alpha} = \partial X \cos \alpha - i \partial X \sin \alpha = e^{-i\alpha} \phi$, and therefore $\phi_{\alpha}^2 = 0$ and $|\phi_{\alpha}|^2 = |\phi|^2$. It follows that \mathcal{M}_{α} is minimal and isometric to \mathcal{M} .

Let $\mathbb{R}^{2n} = \mathbb{R}^n \oplus \mathbb{R}^n$ be an orthogonal decomposition. For each pair of real numbers (α, β) , we define the minimal surface $\mathcal{M}_{\alpha,\beta} \subset \mathbb{R}^{2n}$ by the mapping

$$X_{\alpha \ \beta} = X_{\alpha} \cos(\beta/2) \oplus \tilde{X}_{\alpha} \sin(\beta/2)$$

where \tilde{X}_{α} is the immersion conjugate to X_{α} and \oplus is direct sum with respect to the above decomposition of \mathbb{R}^{2n} . Evidently, $\mathcal{M}_{\alpha,\beta}$ is again isometric to \mathcal{M} . Note, moreover, that when $\beta \equiv \pi/2 \pmod{\pi}$, the map $X_{\alpha,\beta}$ can be viewed as the holomorphic immersion $(e^{-i\alpha}/\sqrt{2})(X+i\tilde{X}): \mathcal{R} \to \mathbb{C}^n$ isometric to X.

A set $E \subset \mathbb{R}^n$ will be said to *lie fully* in $\mathbb{R}^m \subset \mathbb{R}^n$ if $E \subset \mathbb{R}^m$ and if E lies in no proper affine subspace of \mathbb{R}^m . We can now state the main theorem.

Theorem 1. Let ds^2 be the metric on a minimal surface $\mathcal{M} \subset \mathbb{R}^n$, and suppose that away from the points where the Gauss curvature K vanishes the metric $d\hat{s}^2 = \sqrt{-K} ds^2$ is flat. Then ds^2 can be realized on a minimal surface $\mathcal{M}^* \subset \mathbb{R}^3 \subset \mathbb{R}^n$ (parametrized over the universal covering surface of \mathcal{M}), and up to Euclidean motions either:

1) $\mathcal{M} \subset \mathbb{R}^3$ and $\mathcal{M} = \mathcal{M}^*_{\alpha}$ for some α , or

2) \mathcal{M} is linearly full in some \mathbb{R}^6 , and $\mathcal{M} = \mathcal{M}^*_{\alpha,\beta}$ for constants α and β , $\beta \neq 0 \pmod{\pi}$.

Remark. The constant β , $0 \leq \beta < \pi$, can be computed from the formula

$$\sin\beta = -\frac{\Omega}{Kds^2} = \frac{\Omega}{d\sigma^2}$$

where Ω is a differential form induced from the second order osculating planes and given in local coordinates by

$$\Omega = 2 \quad \frac{\left|\phi \wedge \overline{\phi} \wedge \phi' \wedge \overline{\phi}'\right|}{\left|\phi\right|^4} \left|dz\right|^2.$$

The values β , $0 \leq \beta < \pi$, give all possible non-congruent immersions. Moreover, when $\beta = 0$ we have $\mathscr{M} \subset \mathbb{R}^3$, and when $\beta = \pi/2$, \mathscr{M} is a holomorphic curve.

Proof. It follows from a theorem of E. Calabi [2] that if $\Phi: \mathscr{R} \to \mathbb{P}^{n-1}$ is a holomorphic curve having Gauss curvature $\equiv 1$ (where the Fubini-Study metric is normalized as above), then the image under Φ lies on an algebraic curve which, after a suitable holomorphic isometry of \mathbb{P}^{n-1} , is given by the following imbedding of \mathbb{P}^1 into \mathbb{P}^{n-1}

$$(z_0, z_1) \rightarrow (z_0^2, \sqrt{2}z_0z_1, z_1^2, 0, \dots, 0)$$

Hence, if we choose $p \in \mathscr{R}$ such that $\phi(p) \wedge \phi'(p) \neq 0$, then after: a) making a suitable unitary change of homogeneous coordinates, b) choosing an appropriate local coordinate, w, in a neighborhood \mathscr{U} of p, and c) dividing Φ by a nonzero holomorphic function f(w) defined in \mathscr{U} , we will obtain a map of the form $\tilde{\phi}(w) = (1, \sqrt{2}w, w^2, 0, \dots, 0)$.

The original Gauss map was therefore of the form: $\phi(w) = f(w)U\tilde{\phi}(w)$ where U is a unitary $n \times n$ matrix. In what follows, it will be convenient to deal with the map $\Psi(w) = (1/f(w))\phi(w) = U\tilde{\phi}(w)$. Each component of Ψ is of the form $\Psi_k(w) = \alpha_{k1} + \alpha_{k2}\sqrt{2}w + \alpha_{k3}w^2$ where $\sum_k \alpha_{ki}\bar{\alpha}_{kj} = \delta_{ij}$. Moreover, since $\Psi^2 = 0$, we have that $\sum_k \alpha_{ki}\alpha_{kj} = 0$ for $i + j \neq 4$ and $\sum_k (\alpha_{k2}^2 + \alpha_{k1}\alpha_{k3}) = 0$.

From the defining equation for \mathbb{Q}_{n-2} , it is clear that the subgroup of holomorphic isometries of \mathbb{P}^{n-1} which leaves \mathbb{Q}_{n-2} invariant corresponds precisely to making real orthogonal transformations of the homogeneous coordinates. From the relation $X_k = \operatorname{Re}\left\{\int \omega_k\right\}$, it is clear that each such transformation corresponds to a rotation of \mathcal{M} in \mathbb{R}^n .

Since we are working modulo Euclidean motions, all such changes of coordinates are admissable. It follows that we may assume Ψ to have the form

H. BLAINE LAWSON, JR.

$$\begin{split} \Psi_{1}(w) &= \alpha_{11} + \alpha_{12}\sqrt{2}w + \alpha_{13}w^{2} \\ \Psi_{2}(w) &= \alpha_{21} + \alpha_{22}\sqrt{2}w + \alpha_{23}w^{2} \\ \Psi_{3}(w) &= \alpha_{32}\sqrt{2}w + \alpha_{33}w^{2} \\ \Psi_{4}(w) &= \alpha_{42}\sqrt{2}w + \alpha_{43}w^{2} \\ \Psi_{5}(w) &= \alpha_{53}w^{2} \\ \Psi_{6}(w) &= \alpha_{63}w^{2}, \end{split}$$

and $\Psi_7 = \cdots = \Psi_n = 0$ where $\text{Im}(\alpha_{11}) = \text{Im}(\alpha_{32}) = \text{Im}(\alpha_{53}) = 0$. A straightforward calculation now shows that:

(5)

$$\Psi(w) = (1 + \cos(\beta)w^{2}, i(1 - \cos(\beta)w^{2}), 2\sin(\beta/2)w,$$

$$2i\cos(\beta/2)w, \sin\beta w^{2}, i\sin\beta w^{2}, 0, \cdots, 0)$$

for some real constant β .

It follows immediately that $\mathscr{M} \subset \mathbb{R}^6$. Moreover, the surface $\mathscr{M}_{0,\pi/2}$ must lie in \mathbb{R}^6 , and can be viewed as a holomorphic curve in \mathbb{C}^3 . Each fixed reapart (i.e., projection of the surface onto a 3-dimensional, real subspace of \mathbb{C}^3) is a minimal surface in \mathbb{R}^3 which is isometric to $(\sqrt{2}/2)\mathscr{M}$. It is possible to find such a surface $\widehat{\mathscr{M}}$ having its Gauss map over \mathscr{U} in the form: $\widehat{\phi}$ $= (f(w)(1 + w^2), if(w)(1 - w^2), 2if(w)w)$. Direct computation then shows that, up to rotations, $\mathscr{M} = \widehat{\mathscr{M}}_{0,\beta}$.

We now suppose that \mathscr{M}^* is the surface given by the Ricci Theorem over a domain \mathscr{V} , $p \in \mathscr{V} \subset \mathscr{U}$. If $\phi^* = (\phi_1^*, \phi_2^*, \phi_3^*)$ is the associated Gauss map, we have that

(6)
$$|\phi^*|^2 \equiv |\hat{\phi}|^2 \text{ on } \mathscr{V}.$$

It follows from Calabi [2, Thm 2] or by dividing (6) by $|f|^2$, taking $\partial \bar{\partial}$ and using an induction argument, that there is a unitary 3×3 matrix, U, such that $\phi^* = U\hat{\phi}$. An easy argument now shows that modulo elements in $O(3,\mathbb{R})$,

 $U = e^{-i\alpha} \times (\text{identity})$. Hence, $\hat{\mathcal{M}}_{\alpha}$ is a minimal surface in \mathbb{R}^3 which coincides with \mathcal{M}^* over \mathscr{V} .

The formula for β follows directly from (5) and the proof is complete.

There are several immediate consequences of Theorem 1.

Corollary 1. A minimal surface in \mathbb{R}^5 satisfies the Ricci condition if and only if it lies in some 3-dimensional affine subspace.

Hence, the Ricci condition intrinsically characterizes those minimal surfaces in \mathbb{R}^5 which lie in 3-dimensional hyperplanes.

Corollary 2. If \mathcal{M} is a minimal surface in \mathbb{R}^3 , then the family $\mathcal{M}_{\alpha,\beta}$ for $(\alpha,\beta) \in S^1 \times S^1$ constitutes all the minimal surfaces lying in Euclidean space and isometric to \mathcal{M} .

In particular, the family $\mathcal{M}_{\alpha,0}$, the classical family of associate surfaces, gives all the minimal surfaces in \mathbb{R}^3 isometric to \mathcal{M} . One example of this phenomenon is the well known family of surfaces joining the catenoid and the helicoid.

We observe that any minimal surface in \mathbb{R}^n satisfying the Ricci condition can be obtained locally from the generalized Weierstrass representation:

$$\phi = f(1 + \cos\beta g^2, i(1 - \cos\beta g^2), 2\sin(\beta/2)g,$$

$$2i\cos(\beta/2)g, \sin\beta g^2, i\sin\beta g^2, 0, \dots, 0)$$

where f and g are arbitrary holomorphic functions.

There is an immediate generalization of the above theory in light of the Calabi theory of holomorphic curves of constant curvature in \mathbb{P}^{n-1} .

Theorem 2. Let ds^2 be the metric on a minimal surface $\mathcal{M} \subset \mathbb{R}^N$, and suppose that away from the (isolated) points where the Gauss curvature K = 0, the new metric defined by $ds^2 = [-K]^{n/(n+2)}ds^2$; $n \ge 2$ is flat. Then \mathcal{M} must lie in some \mathbb{R}^{2n+2} and cannot lie in any \mathbb{R}^n . Moreover, if \mathcal{M} is complete then the total curvature C satisfies

$$C = -2\pi nk$$

where $k = 1, 2, \cdots, \infty$.

H. BLAINE LAWSON, JR.

Proof. The condition that $d\hat{s}^2$ is flat translates into the condition that the Gauss map have constant curvature, 2/n. By Calabi [2], the Gauss image lies on an algebraic curve, \mathscr{C}_n , which, up to unitary transformations, is given by

$$(z_0, z_1) \to (z_0^n, \sqrt{n} z_0^{n-1} z_1, \cdots, \sqrt{\binom{n}{k}} z_0^{n-k} z_1^k, \cdots, z_1^n, 0, \cdots, 0).$$

The first part of the theorem follows as above from the fact that we are working modulo real orthogonal transformations.

If \mathscr{M} is complete and the total curvature is bounded, then the Riemann surface \mathscr{R} is conformally equivalent to a compact surface \mathscr{R}_0 , punctured at a finite number of points. Moreover, the functions ω_l/ω_k extend to meromorphic functions on \mathscr{R}_0 [4]. Hence, the map $\Phi: \mathscr{R}_0 \to \mathscr{C}_n \subset \mathbb{Q}_{n-2}$ is a finite branched covering, and

$$C(S) = -$$
 Area of the Gaussian image surface
= $-k \times$ Area of \mathscr{C}_n
= $-2\pi nk$

where k is a positive integer.

3. Conjecture for S^3 .

The theorem characterizing metrics on minimal surfaces in \mathbb{R}^3 can be extended to an intrinsic characterization of the metrics on surfaces of constant mean curvature in a 3-dimensional space form. A particular case of this is the following spherical Ricci condition. If the Gauss curvature K of a C^3 -Riemannian metric ds^2 , defined in the plane, satisfies $K < 1/r^2$ for some constant r > 0, and if the metric $d\hat{s}^2 = \sqrt{\frac{1}{r^2} - K} ds^2$ is everywhere flat, then ds^2 can be locally realized on a continuous 1-parameter family of minimal surfaces in the Euclidean 3-sphere, $S^3(r)$, of curvature $1/r^2$ [5]. This family can be viewed as a continuous family of immersions $\psi_{\theta}: U \to S^3(r)$, for $0 \le \theta$ $\le \pi$, where U is some domain in the plane. Generally speaking, the immersions

 ψ_{θ} will be mutually non-congruent. Moreover, if one chooses any numbers $\theta_1 < \theta_2 < \cdots < \theta_m$ between 0 and π and any numbers $\alpha_1, \cdots, \alpha_m$ with $\sum \alpha_k^2 = 1$, and if, further, one views each map ψ_{θ_k} as an \mathbb{R}^4 -valued function with $|\psi_{\theta_k}|^2 \equiv r^2$, then one can construct a minimal immersion $\Psi: U \to S^{4m-1} \subset \mathbb{R}^{4m}$ by setting i

(7)
$$\Psi = \alpha_1 \psi_{\theta_1} \oplus \cdots \oplus \alpha_m \psi_{\theta_m}.$$

(Again the symbol \oplus implies orthogonal direct sum.) Evidently Ψ induces the metric ds^2 over U. Furthermore, Ψ is almost always linearly full in \mathbb{R}^{4m} . (Consider, for example, the metric $ds^2 = dx^2 + dy^2$.) The author conjectures that every minimal surface in $S^n(r)$ whose metric satisfies the spherical Ricci condition away from the points where the Gauss curvature $= 1/r^2$ must be of the form of (7).

BIBLIOGRAPHY

1. W. Blaschke, Einführung in die Differentialgeometrie, Springer, Berlin, 1950.

2. E. Calabi, Isometric imbedding of complex manifolds, Ann. of Math., 58 (1953), 1-23.

3. ——, Quelques applications de l'analyse complexe aux surfaces d'aire minima, Topics in complex manifolds, Univ. of Montreal Press, Montreal, 1967, 58-81.

4. S. S. Chern and R. Osserman, Complete minimal surfaces in Euclidean *n*-space, J. d'Analyse Math., 19 (1967), 15-34.

5. H. B. Lawson, Jr., Minimal varieties in constant curvature manifolds, Ph.D. Thesis, Stanford University, 1968.

6. M. Pinl, Über einen Satz von G. Ricci-Curbastro und die Gaussche Krummung der Minimalflächen, Arch. Math., 4 (1953), 369-373.

7. — , Über einen Satz von G. Ricci-Curbastro und die Gaussche Krummung der Minimalflächen, II, Arch. Math., 15 (1964), 232-240.

UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA, U.S.A.

(Received March 20, 1969)