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Introduction. 

Let ds 2= Edx2 + 2Fdxdy + Gdy z be a C 3 Riemannian metric defined in 

the plane. This metric will be said to satisfy the Ricci condition if its Gauss 

curvature K satisfies K < 0, and if the new metric 

dg 2 = ~ / ~  ds 2 

is flat, i.e., its Gauss curvature /~ satisfies 

/~---0. 

It was first discovered by Ricci that every metric satisfying this condition 
can be realized on a minimal surface in E3 [1,p. 124]. Conversely, it is simple 
to verify that every metric on a minimal surface in R 3 satisfies this condition 
away from the points where K = 0. M. Pinl showed, however, that in R 4 
there are minimal surfaces on which the Ricci condition fails to hold [6]. 
The central purpose of  this paper is to classify those minimal surfaces in 
Euclidean n-space whose metrics do satisfy the condition, i.e., to classify 
those surfaces which are locally isometric to minimal surfaces in E3. It will 
be shown that all such minimal surfaces either already lie in some 3-dimen- 
sional affine subspace or they lie fully in some 6-dimensional affine subspace. 
(Hence, in R 5 the Ricci condition intrinsically characterizes those minimal 
surfaces which lie in R3.) Moreover, it will be shown that the surface must 
be a member of a unique 2-parameter family of isometric minimal surfaces. 

* Research for this project was supported by the U.S. Army Research Office under 
Contract DA-31-124-AROD-170. 
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The index of  the surface (which can be viewed as the degree of  twisting of 

the surface away from holomorphy) in this family is computable explicitly 

in terms of a differential form induced from the second order osculating 

planes of the surface. 

The paper then considers possible generalizations of the theory. Certain 

properties of  minimal surfaces in A N, having a generalized Ricci condition 

(dg z = ( - K)'/("+Z)dsZ is flat), are found. Finally, the analogous problem in the 

n-dimensional Euclidean sphere is formulated and its solution conjectured. 

The author wishes to express his gratitude to Professor Robert Osserman 

under whose valuable direction this work was prepared. 

1. P r e l i m i n a r i e s .  

To begin, we develop some fundamental notions. A minimal surface M 

in R" shall be regarded (cf. I-4]) as a conformal immersion 

X: ~ - ~ R "  

where ~ is a Riemann surface and the components of X = ( X i , ' " ,  X,)  are 

harmonic on ~ .  In any local coordinate z = x 1 + ix2 on ~ ,  thc induced 

metric has the form ds2= 2F I dz 12, and the coordinate functions satisfy the 

equation 

a~Xk= O; k = 1, . . . ,n  

where a = ~-  - i  . 

Hence the differentials 

Wk = CkdZ 

Ck(Z) = ~-~'-Xk; k = 1, . . . ,n 

are holomorphic on ~ .  Moreover, since 
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aa-~xx, z abe2 = = 2F 

and <OX OX > = 0 ,  we have that 

(1) q~2= g~b 2 = 0  

and 

(2) 14,1 =  l bk]2 = F > 0 .  

We observe that the minimal surface can be recaptured from the differentials. 

In fact, if co*, k = 1,.. . ,  n are any holomorphic differentials on N, with im- 

aginary periods, such that ~ (09*) 2 = 0, then the map X*: N -r ~", where 

each X * =  Re {fco*}, is a (generalized) minimal surface. 

Our main tool for studying minimal surfaces will be the generalized Gauss 

map as defined by Osserman and Chern I-4]. This map is constructed as follows. 

Let (Z1, ' " ,Z , )  be a fixed system of homogeneous coordinates for (n - 1)- 

dimensional complex projective space ~"-*. Let Qn--2 be the hyperquadric 

defined by the equation ~ Z ]  = 0. The generalized Gauss map is the anti- 

holomorphic mapping 

(I)'- ~ "+ Qn_ 2 

which in each local coordinate system is given by the functions 

~o(z)=(~l(Z),...,gL,(z)). 

From the above discussion, it follows easily that this map is well defined. 

The quadric Q,-2 may be identified with the Grassmannian 

SO(n, ~)/SO(n - 2, ~) x S0(2, ~) 

of oriented planes through the origin in R" as follows. Let Z = (Z i, . . . ,Z,) 

represent a point pEQn_ 2. To p we associate the oriented plane in ~" 
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determined by the oriented orthogonal pair of vectors (Re{Z}, Im{Z}). This 

correspondence is well defined and forms a diffeomorphism between the 

two spaces. 

Introduce on P"-X the Fubini-Study metric defined in the given homo- 

geneous coordinates by 

2lZAdZl 2 
Ks 2 _ [zl" 

In this metric, p.-1 has constant holomorphic curvature 2, and Q.-2 is an 

Einstein hypersurface. Moreover, the holomorphic isometrics of p.-1 cor- 

respond to unitary transformations of the homogeneous coordinates. 

The metric induced on ~ by �9 is given by 

(3) dtTZ 21 ~(z) A q~'(z)] 2 
= i (z)l, Idzl 2 

A straightforward computation shows that the Gauss curvature of the minimal 
surface is given by 

1r = d e  2 (4) K = 
Its[  6 ds 2" 

Observe that if a minimal surface in ~" is not a plane, then the singular points 

of the Gauss map (points where K = 0) are isolated. 

For purposes of convenience, we shall consider the holomorphic Gauss 

map r corresponding to (~bl, .-., ~b,,), instead of the above. �9 describes an 

analytic curve in Q,-2. To each such curve is associated a class of minimal 

surfaces having certain common differential geometric properties. It is in 

this context that we shall analyse the problem posed above. 

L e m m a  1. The Ricci condition will hold everywhere that K v~ 0 on a 

minimal surface in •n if and only if the Gaussian image of the surface in 

Qn-2 has curvature 1 at all points of regularity. 

Proof .  We shall work away from the isolated points where K = 0. Suppose 
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the curvature of the Gauss map is = I, For any metric of 

ds2= 221 dzl 2 the Gauss curvature K' is given by the formula 

K '  = -- ~ 3 ~ l o g  2. 

Hence, from (3) we have that 

t ~ A ~ ' I  2 I ~ A ~ ' I  2 - - a ~ l o g  
141" 14:  

However, 

= a~logl 4~ 12 - a~log l e A e ' l  ~ 
1412 �9 

m 

and therefore 

Hence, 

a~log( - F2K)  = a~log I q~[" 14 A q~' 12 
1416 = 0  

and the Ricci condition is satisfied. 

Tracing the above steps in the reverse direction completes the proof. 

2 .  T h e  m a i n  T h e o r e m .  

155 

the form 

The problem under consideration entails describing a class of isometric 

minimal surfaces, at least one of which lies in R 3. Given a minimal surface 

c R ", we now show how to construct a two-parameter family of minimal 
surfaces in IR z" which are isometric to ~ ' .  Suppose that Jr '  is parametrized 
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by X: ~ ~ ~" where, by passing to the universal covering surface, we assume 

that ~ is simply-connected. Define the conjugate m in ima l  surface by 

)?: N ~  R" where each component J?k of J? is the harmonic conjugate of 

Xk. We then define the minimal surfaces, d//, c R", by the immersions 

X~ = X cos e + )?sin ~. 

Note that ff~ = aXcosc~ - iOXsin~ = e-i'c~, and therefore q~2 = 0 and 

[q~,12 = [qSI z. It follows that ~ ' ,  is minimal and isometric to , g .  

Let N2n = N, �9 N" be an orthogonal decomposition. For each pair of real 

numbers (e, fl), we define the minimal surface d//,,p c R 2" by the mapping 

X, p = X, cos (fl/2) (9)?,  sin (fl/2) 

where )?, is the immersion conjugate to X,  and �9 is direct sum with respect 

to the above decomposition of N2,. Evidently, JC/,,a is again isometric to 

all. Note, moreover, that when fl - n /2(modn) ,  the map X,,p can be viewed 

as the holomorphic immersion (e - ~ / x / 2 ) ( X  + i)?): ~ C "  isometric to X. 

A set E c ~" will be said to lie f u l l y  in Rm= N, if E = ~ "  and if E lies 

in no proper affine subspace of Nm. We can now state the main theorem. 

T h e o r e m  1. Let  ds 2 be the metric  on a min imal  surface d'g cff~", 

and suppose that away  f r o m  the points where the Gauss curvature K vanishes 

the metric dg 2 = x / -  K ds 2 is f la t .  Then  ds z can be real ized on a min imal  

surface dg* c ~3 ~ ~ ,  (parametr i zed  over the universal covering surface 

of  all), and up to Eucl idean motions either: 

1) ~ '  ~ ~a and J /g= ~ *  for  some c<, or 

2) Me' is l inearly  .full in some ~6, and  dg  = Jg~*~ fo r  constants c~ and fl, 

fl # 0 (rood n). 

R e m a r k .  The constant fl, 0 < fl < n, can be computed from the formula 

sin fl = Kds2 = dff 2 

where f~ is a differential form induced from the second order osculating planes 

and given in local coordinates by 
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f ~ = 2  I 1" la=l  

The values fl, 0 < fl < re, give all possible non-congruent immersions. More- 

over, when fl = 0 we have ~ c ~3, and when fl = n/2, ~ '  is a holomorphic 

curve. 

P roof .  It follows from a theorem of E. Calabi I-2] that if ~:  ~ pn-1 

is a holomorphic curve having Gauss curvature = 1 (where the Fubini-Study 

metric is normalized as above), then the image under qb lies on an algebraic 

curve which, after a suitable holomorphic isometry of 0 zn-~, is given by the 

following imbedding of pl  into p , -1  

(Zo, o, .. . ,  o). 

Hence, if we choose p ~N such that ~b(p) A q~'(p) # 0, then after: a) making 

a suitable unitary change of homogeneous coordinates, b) choosing an ap- 

propriate local coordinate, w, in a neighborhood a/ /of  p, and c) dividing 

by a nonzero holomorphic function f ( w )  defined in qg, we will obtain a map 

of the form ~(w) = (1, ~/t2w, w 2,0,...,0). 

The original Gauss map was therefore of the form: ~b(w)=f(w)U(a(w) 

where U is a unitary n x n matrix. In what follows, it will be convenient to 

deal with the map q~(w)= (1/ f (w))q~(w)= U~(w). Each component of 

is of the form Wk(W) = CtkX + Ctk2 ~/2W + ~kaW 2 where Y~ ~kfikj = 6U" Moreover, 
k 

since qj2 = 0, we have that • C~klCtkj = 0 for i + j # 4 and ~,(~kZ2 + C~kl~k3) = O. 
k k 

From the defining equation for Q,-2,  it is clear that the subgroup of holo- 

morphic isometrics of p , -1  which leaves Q,,-2 invariant corresponds precisely 

to making real orthogonal transformations of the homogeneous coordinates. 

the relation X k =  Re{.I'COk }, it is clear that each such transformation From 

corresponds to a rotation of ~ '  in E". 

Since we are working modulo Euclidean motions, all such changes of 

coordinates are admissable. It follows that we may assume q~ to have the 

form 
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~I(W) = a l l  --[- (ZI242W + ~13 W2 

Ux/2(W) = (Z2I "~- ~22 4 ~W "~ ~23 W2 

V~(w) = ~ x/2w + ~ w  ~ 

V 4 ( w )  = ~42x/~w + ~ 3 w  2 

V ~ ( w )  = ~ 3 w  ~ 

~'~(w) = ~ 3 w  2, 

and q~7 . . . . .  qJ. = 0 where Im(~11 ) = Im(~32 ) = Im(~3)  = 0. 

A straightforward calculation now shows that: 

(5) 
qJ(w) = (1 + cos(fl)w 2, i(1 - cos(fl)w2),2 sin(fl/2)w, 

2i cos(fl/2)w, sin flw 2, i sin flw 2, 0, ..., 0) 

for some real constant ft. 

It follows immediately that ~ r  •6. Moreover, the surface ..r must 

lie in R 6, and can be viewed as a holomorphic curve in C 3. Each fixed rea_ 

part (i.e., projection of the surface onto a 3-dimensional, real subspace of 

C 3) is a minimal surface in •3 which is isometric to (x/2/2)~g. It is possible 

to find such a surface ~ /  having its Gauss map over ~ in the form: q~ 

= (f(w)(1 + w2), i f(w)(1 - w2), 2/f(w)w). Direct computation then shows 

that, up to rotations, ~ '  = Jgo,a. 

We now suppose that d /*  is the surface given by the Ricci Theorem over 

= (~bl, ~b2, ~b3) is the associated Gauss map, a domain ~/', p ~ Y/'c ~/. I f  t~* * * * 

we have that 

(6) 1 ,12-1 l 2 on C.  

It follows from Calabi [-2, Thm 2] or by dividing (6) by Ifl 2, taking a~ and 

using an induction argument, that there is a unitary 3 x 3 matrix, U, such 

that r  Uq~. An easy argument now shows that modulo elements in 0(3, R), 
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U = e -i~ x (identity). Hence, J/~ is a minimal surface in R 3 which coincides 

with ~ ' *  over ~r 

The formula for fl follows directly from (5) and the proof is complete. 

There are several immediate consequences of Theorem 1. 

C o r o l l a r y  1. A minimal surface in R s satisfies the Ricci condition 

if and only if it lies in some 3-dimensional affine subspace. 

Hence, the Ricci condition intrinsically characterizes those minimal 

surfaces in R 5 which lie in 3-dimensional hyperplanes. 

C o r o l l a r y  2. I f  . ~  is a minimal surface in ~3, then the fami ly  d.[~,a 

for  (~, f l )~S 1 x S 1 constitutes all the minimal surfaces lying in Euclidean 

space and isometric to J4. 

In particular, the family ~'~,o, the classical family of  associate surfaces, 

gives all the minimal surfaces in ~3 isometric to de'. One example of  this 

phenomenon is the well known family of  surfaces joining the catenoid and 

the helicoid. 

We observe that any minimal surface in R n satisfying the Ricci condition 

can be obtained locally from the generalized Weierstrass representation: 

~b = f (1  + cos fig2, i(1 - cos fig2), 2 sin(fl/2)g, 

2i cos (fl/2)g, sin f ig2 ,  i sin fig2, 0, ..., 0) 

where f and g are arbitrary holomorphic functions. 

There is an immediate generalization of the above theory in light of  the 

Calabi theory of holomorphic curves of  constant curvature in pn- t .  

T h e o r e m  2. Let d s  2 be the metric on a minimal surface J [  c R N, 

and suppose that away from the (isolated) points where the Gauss curvature 

K = O, the new metric defined by d~ 2 = [ - K]n/(n+2)ds2; n > 2 is flat. Then 

�9 At must lie in some R 2"+2 and cannot lie in any R ~. Moreover, i f  de  is complete 

then the total curvature C satisfies 

C = - 2nnk 

where k = 1, 2, . . . ,  ~ .  
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Proof .  The condition that d s  2 is flat translates into the condition that 

the Gauss map have constant curvature, 2/n. By Calabi [2], the Gauss image 

lies on an algebraic curve, ~, ,  which, up to unitary transformations, is given by 

1 /  \ 

(Zo,Z,)-~(Zo, x/nz~~ X/~ Zo zl,...,zl,0,...,O). 

The first part of the theorem follows as above from the fact that we are working 

modulo real orthogonal transformations. 

If  ~ '  is complete and the total curvature is bounded, then the Riemann 

surface ~ is conformally equivalent to a compact surface ~0,  punctured 

at a finite number of points. Moreover, the functions oh/o9 k extend to mero- 

morphic functions on Mo [-4]. Hence, the map ~: No ~ cg, c Q, -2  is a finite 

branched covering, and 

C ( S )  = - A r e a  of the Gaussian image surface 

= - k x A r e a  of  Tn 

= - 27znk 

where k is a positive integer. 

3. Conjecture for S3~ 

The theorem characterizing metrics on minimal surfaces in R a can be ex- 

tended to an intrinsic characterization of the metrics on surfaces of constant 

mean curvature in a 3-dimensional space form. A particular case of this is 

the following spher ica l  R i cc i  condi t ion .  I f  the Gauss curvature K of a C 3- 

Riemannian metric ds 2, defined in the plane, satisfies K < 1 / r  2 for some 

constant r > 0, and if the metric dg 2 = x/r/-~ - -  K ds 2 is everywhere fiat, 
, r  

then ds 2 can be locally realized on a continuous 1-parameter family of minimal 

surfaces in the Euclidean 3-sphere, S3(r), of  curvature 1/r  2 I-5]. This family 

can be viewed as a continuous family of  immersions ~k0: U ~ S3(r), for 0 < 0 

< n, where U is some domain in the plane. Generally speaking, the immersions 
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00 will be mutually non-congruent. Moreover, if one chooses any numbers 

0, < 02 < "" < Or, between 0 and n and any numbers e , , - . . ,  e,, with ~ e2 = 1, 

and if, further, one views each map 00k as an N4-valued function with I ~0~ [2 

= r 2, then one can construct a minimal immersion ~ :  U--} $4m-1 ~ R 4" 

by setting I 

(7) 't' = ~i~ol @ " "  @ ~mr �9 

(Again the symbol @) implies orthogonal direct sum.) Evidently W induces 

the metric ds 2 over U. Furthermore, W is almost always linearly full in ~4,,. 

(Consider, for example, the metric d s 2 =  d x 2 +  dy2.) The author conjectures 

that every minimal surface in Sn(r) whose metric satisfies the spherical Ricci 

condition away from the points where the Gauss curvature = 1/r  2 must be 

of  the form of (7). 
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