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1. Introduction

If A is the Laplace—Beltrami operator of a complete Riemannian manifold, we
say that e” conserves probability if

(1.1) e =1

for some (equivalently all) £ > 0. A number of different conditions on the Ricci
curvature or volume growth of M which imply this property are known [2, 3, 8,
12-18, 21, 23-27, 29, 30]. We mention particularly that (1.1) holds if

(12) vol[B(p, r)] < a exp(Br?)

for some p € M,a > 0, > 0 and all r > 0, where B(p, r) is the ball in M with
centre p and radius r.

In this paper we rewrite the argument of Gaffney [12] in a more general context,
and show that it implies the conservation of probability under the condition (1.2);
our calculation is closely related to the approach of [2, 18].

More surprisingly, Gaffney’s argument also yields a general L? Gaussian upper
bound on heat kernels, which has been proved elsewhere by wave equation tech-
niques [5]. By combining this with a local parabolic Harnack inequality, we obtain
a pointwise Gaussian upper bound on heat kernels which may be used when the
heat semigroup is not ultracontractive in the sense of [9] and one does not have
pointwise lower bounds on the Ricci curvature.

We say that e’ has the Feller property if

(1.3) eA'Cy C Cp

for all ¢+ > 0, where Cj is the space of continuous functions on M which vanish at
infinity. Conditions for this are given in [3, 8, 18, 24, 25]. We give a new condition
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100 E. B. DAVIES

for the Feller property which does not depend upon lower bounds on the Ricci
curvature, but rather upon the behaviour at infinity of a modified injectivity radius.

We develop the theory below for weighted Laplace—Beltrami operators on pos-
sibly incomplete Riemannian manifolds. Its application to second order elliptic
operators on RY is explained in Section 4. We note that our theorems may be
extended in a variety of ways, for example to Lipschitz manifolds [28] and to com-
plexes obtained by glueing together pieces of Riemannian manifolds in a locally
finite manner. One may also replace o(x)? in (1.5) and (1.6) below by any other
weight provided the quadratic form @ is closable; conditions for this may be found
inf{l, 6, 11].

We assume that M is a Riemannian manifold which is locally finite in the sense
that every ball has finite volume; this property holds if M is complete or is an open
set in some larger complete manifold. We define L{; to be the set of measurable
functions on M which are bounded on every ball. We assume that ¢ > 0O is a
measurable function on M with ¢! € L. We write dx for the Riemannian
volume element on M and d(x,y) for the Riemannian distance.

‘We shall be concerned with the operator L on M given formally by

(1.4) Lf = 072V - (6?Vf)

subject to Neumann boundary conditions at every point of the boundary of the
completion of M, and Dirichlet boundary conditions at infinity.

There are two ways of dealing with the weight ¢ when it is not identically one.
The first is to consider the unweighted Laplace-Beltrami operator A’ on M x $?
with respect to the metric ‘

dx® + o(x)?dw?.

Properties of the operator L defined by (1.4) can then be obtained from properties
of A’ by looking at the subspace of rotationally invariant functions. The more
direct approach, which we adopt, is to include the weight o in all the definitions
and proofs, and observe that it causes no real problems.

Because of the possible non-differentiability of o, a direct definition of L using
(1.4) is not easy, and we start by considering the quadratic form

(15) o) = [ 1vrPoas
M

and the norm

(1.6) 1P = / FPo?dx
M
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where the initial domain of Q is W,i‘oo; this is defined as the space of continuous
functions f of bounded support whose weak first derivatives lie in L>°.
We define an inner product on the set of boundedly supported vector fields by

(u,v) = /u(x) v{x)o(x)?dx

M

so that

The form @ is a closable Dirichlet form, and we define L to be the self-adjoint
operator associated with its closure Q0. We also define V to be the L? operator
closure of V initially defined on W,i’°°. It is then known [8, 11] that & is
a positivity preserving contraction semi-group on L” for 1 < p < oo which is
strongly continuous for 1 < p < co. Also

Dom((—L)!/?) = Dom(Q) = Dom(V).

If $ : M — R is a bounded Lipschitz continuous function it is straightforward to
show that f € Dom(V) implies ¢f € Dom(V) and

VIgf) = (Vo) + ¢(Vf).
We shall apply this with
(1.7) ¢ =e™
where o € R and ¢ is a bounded function such that |V ¢| < 1, for example
PY(x) = d(x,A) An

where A is any closed subset of M, and n > 0.
We conclude this section by presenting the lemma of Gaffney [12], who only
treated the case o = 1.

Lemma 1 If0<f € L? and u, = "f then

(1.8) bl < e||¢f |12
and

t
L= [ 1169udds < 267513
0

forallt >0, and all ¢ of the form (1.7).
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Proof We have

%nmng = —§;<¢a,,¢ur>
= 2{¢Lu,, duy)
= —2(Vu,, V($%u,))
= —2(Vu, 20u,V ¢ + ¢*Vu,)
= =2||6Vu||3 — HeVu, agu,V i)
< =2/[¢Vu |l + 200 |$Vudl 5 + AaP||gui|]3)

for all A > 0, using |V#| < 1. Putting A = 1
9 2 £ 942 2
57”‘75%”2 < 2a%||éu[.

This yields (1.8) upon integration.
Putting A = 2 in (1.9) yields

o -
w3 + 10Vl < 4o o3
< 4a”e || of 3.
Integrating this inequality yields
o5 — 18715 + I < 2(**" — D)]lgf113

and hence
g5 + 1 < 2627|113

which implies the second statement of the lemma.

2. Gaussian upper bounds on the heat semigroup

The above lemma already enables us to obtain an L? Gaussian upper bound on
the heat semigroup. For ¢ = 1 such bounds have also been obtained by wave
equation techniques [5], {4, p. 199]. We recall that the heat kernel of L is defined

by
&1 = [ KiexyfGlotsPdy
M

We define the o-dependent volume of a Borel subset £ of M by

Bl = [ o(dx = |el?
E
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where yg is the characteristic function of E.
Given two disjoint subsets E and F of M and a function ¢ on M with |[Vy| < 1

we define
Y(E,F)=inf{¢(x) :x € F} —sup{¢(x) : x € E}

and observe that

supY(E,F)=d(E,F)=inf{d(x.y) :x € E,y € F}.

Theorem 2 If E and F are two Borel subsets of M with |[E| < oo and |F| < oo,

then
0 < (", xr) < |E|'?|F|'/2 exp[—d(E, F)*/41]

foralit > 0.

Proof If we put ¢'(x) = d(x,E) and ¢ = ¢*¥ then Lemma 1 yields

0 < {"xg, xF)
= (¢pe"xe, ¢~ 'xr)
< || gxall2llo ™ xr Iz
< eaztlEl1/26~ad(E‘F)|Fll/2.

This yields the stated result upon putting
a=dE F)/2t.

a

A standard method of passing from L? estimates such as Theorem 2 to pointwise
bounds is to rely upon suitable Sobolev embedding theorems [5]. These however
are only valid if the manifold and metric are sufficiently smooth, and certainly
cannot be applied to Lipschitz manifolds. We instead make assumptions on the
local geometry expressed in terms of a Harnack inequality. If o = 1 this idea has
already been exploited in [4, p. 196] and [5]. The simplest form of this is as
follows.

(H1) We assume that one is given constants c(x,s) for x € M and s > 0 such
that if « is a positive solution of

Ou _ 5 2
E—-O’ Vv (0' Vu)
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on M x (0, 00) then

132%%%] ] uly,t+ s)o(y*)dy
, B(x,51/2)

0 <ux 1) <

forallz>s>0andallxe M.

Theorem 3 Under the hypothesis (H1) we have the pointwise upper bound

2
0<K(txy) < c(x,51) oy, 52) exp | — (@y) - 5" - ")
S A Y) S |B(x,si/2)l1/2 ’B(y,Séfz)lllz 4(t+S1 +S2)

forallx,y e M and t > 0, provided 0 < s; < t.

Note The best choice of s; and s in this inequality will depend upon the
particular forms of ¢(x, s) and |B(x, s'/2)| as functions of x and s.

Proof Since K(z,x,y) is a solution of the heat equation as a function of x and
t we have

clx, s1)

K(tvx: y) S——575—
1B si )l

/ K(t+ 51, w,y)o2(w)dw.

577

Since
u(y,t) = f K(t+s1,w,y)0%(w)dw

B(.\’,s;"z)

is also a solution of the heat equation we have

C(ya SZ) 2 d
u(y, 1) < _*———IB(y, s;/2)| / u(z, t+ s2)o*(z)dz.

B(y.s)?)

Combining these estimates we obtain

K(-t,x,y) < C(x,Sl) C(y7 SZ) <eL(t+S1+S2)

" 1B,/ 1B(y, 5] Xt sl/7) Xagy, 7))

The proof is completed by applying Theorem 2. O
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Example 4 If M is a complete Riemannian manifold with non-negative Ricci
curvature, and we put o = 1, then it follows from [19] (see also [8, p. 163]) that

N/2 dix.y)?
u(x.ty < u(y, t+s) (HTS) exp [%y__} .

It follows that we may take
c(x.s) = 2NV 24 = ¢

in (H1). Putting s; = 52 = 5, Theorem 3 now yields

R d -2 1/242
osmr,x,wscle(x,slﬂ)[—‘”lB(y.s1/~)l-“2exp{ _ (doy) = 25 ”}

4(t+ 2s)

provided 0 < s < r. The Li—Yau upper bound on K, [19], [8, p. 170], follows from
this upon putting s = ¢f where 0 < ¢ < 1.

An entirely similar calculation may be carried out if the Ricci curvature is
bounded below by a negative constant [7, 8, 19].

The statement and proof of Theorem 3 are still valid if one replaces (H1) by the
following hypothesis:

(H2) There exists a constant ¢(x, s) such that
0 < u(x,s) < clx, s)uly,2s)

whenever y € B(x,s'/?) and u is a positive solution of

%’; =072V - (6°Vu)
on B{x.2s'/2) x (0, 2s].

Since we are using what is usuvally considered to be a deeper property, the
parabolic Harnack inequality, to prove a more superficial pointwise Gaussian upper
bound, some comments are needed. Firstly we emphasize that we have the constant
4 inside the exponential of the Gaussian upper bound even though we make no
global assumptions about M, or A. The parabolic Harnack inequality is only
needed in a neighbourhood of x and y in order to get an upper bound on K (7, x, y).
If o = 1 and one has local lower bounds on the Ricci tensor around x, then suitable
constants c(x,s) can be obtained for small s from [19, Theorem 2.1]. There are
several other methods of obtaining suitable constants c(x, s) for small s based upon
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the use of a local coordinate system around x [6, 9, 22]. If we do not assume
that the metric is smooth, geodesics may not be definable as solutions of a first
order differential equation on M, the exponential map may not exist, and we cannot
use normal coordinates in small neighbourhoods. This accounts for the slightly
cumbersome form of the following hypothesis:

(H3) We say that M, & has weak bounded geometry if there are positive constants
¢1 and r and a diffeomorphism

o {y:pll<rtcRY = U CM
for all x € M, with ®,(0) = x and the following properties. If y € U, then

cﬁggggq

Considering {y : ||y|| < r} as a coordinate patch, the metric satisfies
i <gyly) <er.

Under the above conditions if we define the distorted balls B(x, p) for 0 < p < r
by
B(x, p) = &x{y - |yl < p}

then there exists a constant ¢; = c¢2(c;, N) such that
;e (x)? )" < |Blx, p)| < ca0(x)”p"

and z € B(x, p) implies d(x, z) < c2p.
By Moser’s parabolic Hamack inequality [9, 22] we have the following further
crucial information.

Lemma 5 There is a positive constant ¢z = c3(c1,N) such that if 0 < 2512 < r
and u is a positive solution of

@u_ -2 2
rinid V - (6°Vu)

on B(x,25"%) x (0,2s) then

0 < u(x,s) < cau(y,2s)
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forally e B(x, sY2). In particular

0 < u(xs) € i [ w2902 volly).

B(x,s4/2)

An altemnative proof of the following theorem may be obtained by first treating
only the case x = y, which is the simplest one, and then using the much deeper
methods of [7, 8, 10]. We prefer to give a completely self-contained treatment.

Theorem 6 Suppose that M, o has weak bounded geometry in the sense of
(H3). Then

2\" a\"\
0 <K(t.x.y) < cao(x)" ' o(y)~" max { (;) N2 (_) J o4 4

t

forallx,y e M and t > 0, where d = d{(x,y) and c4 = c4(c1,N).

Proof We first combine the method of proof of Theorem 3 and Lemma 5, but
with B(x, s'/?) replacing B(x, s'/2). This yields

_ 1/2y2
(2.1) 0 < K(t,x,y) < cso(x) " lo(y)~1s¥ 2 exp [_ (d(x’ﬁ)(t +2;;Y )+J

provided 0 < s < min{z, 7?/4). We treat three cases separately.
Case 1. If d* < t we put s = min(z,72/4) so that

5 N
s“N/Z:max{(——) ,t'N"z}
r
2\" a\"
r t

We now use (2.1) to obtain

N N
0 < K(1,x,y) < eso(x) " o(y)™" max{ (%) V2, (g) }

< coo(x) " o(y) " max{- - Je~ ¥4,
Case 2. If &* > tand t/d > r/2 we put

r2 r

= < —.
64c3 ~

%)

N
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We also have

s0 s is a permissible value. Now

d—2czsl/2:d_202L :d_izo
(651 4
SO .
(d—2(:2s'/2)§r: d_£ Zdz_ﬂzdl’-_t>0‘
4 2
Since
32¢3t T 8cHtd? T &P
we have '
2 -1 = -1 "
(t+2s) t <l+32c2t)
; -1
>t 14+ =
t
2:”(1_35) > 0.
Therefore
(d—2c8'%7 _d* -1t |1
4(r+2s) T 4 &2
2
i
T4t d?
d? t
>—11-2—
- 41( 2d2>
d2
v 1.
Also

5 N ) N 4 N
\\._N/Z B C7 (_> B C7 e { (_) :[—,V/z’ <_) }
e I3 t

so (2.1) yields
d2
0 < K(t.x.y) < cscro(x) "' o(y) " max{-- }exp? — ot !

d2
= cyo(x) "o (y)” max{---}exp abrid
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Case3. Ifd? > tand t/d < r/2 we put

2 2 r2
= —u — < mi —_—
Ky ]6C%d2§d2_mm t,4

so s is a permissible value. We have

Also ;
C9esl2 = g 9,
d— 2¢s8 d—2c; derd
—af1-L)>o0
o 24d?
S0
2
o232 2 t !
(d —2c5'/%)2 > d (1—2?) Zdz(l—a—,z) > 0.
Therefore 5
(d —2cs™2)% S d? 1!
4(t+2s) T 4t d?
d? 2t d?
>—(1-=]> -
— 4t (1 d2) 4t I
Now

N N N
t r t

s0 (2.1) yields
d2
0 < K(t,x,5) < cscoo(x)"lo(y) " max{- - Yexp{ — TR

-1 _1 d?
= c1o0(x)” o(y)” max{---}exp e
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3. Conservation of probability and the Feller property

In this section we use the previous results to prove the above-named properties
under hypotheses which do not mention pointwise curvature bounds. Apart from
allowing a general weight o, our proof of conservation of probability is similar
to that of [2, 13, 18], and we include it mainly for completeness. We believe,
however, that our theorem on the Feller property is new. Applications of these
theorems may be found in [13, 20, 25, 26] and in the next section.

Theorem 7 If M is a complete Riemannian manifold and
1B(p,r)| < aexp(br?)

for some p € M, a,b,> 0 and all r > 0, then the semigroup e*' on L'(M, a%dx) is
conservative.

Proof If f > 0 has bounded support we put
¥ (x) = dist(x, supp f).

We also put ¢ = ¢*¥ where o = m/2t. If mis large enoughthenm—1 < d(x,p) < m
implies ¥(x) > m — ¢, where ¢ > O depends upon p and the support of f. Next put

1 if dix,p) <m—1,
gm(x) = {m—d(x,p) if m—1<dxp)<m,
0 if d(x,p) > m,

and put
Sw={x:m—-1<dxp)<m}.
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Then u, = eXf satisfies

usa gm

&IQ‘

(f gm) uﬁgm = /
0
(Vux, Vgm)ds

(6Vus, 6~ 'Vgn)ds

t 1/2
< [ / I6%ulds [ nqs-Ingn%ds}
0 0

< 2627 |[Fg|3e 2= 1]S(m) )/
< [2|Ifl13taexp(2a®t — 2a(m — c) + bm?)]'/?

2 m*  m{m— c) 2 v
< |2|lf|lstaexp 57t bm

o\‘_‘ o\

t

This converges to zero as m — oo provided 0 < # < (2b)~!. We conclude that

(. 1) <(u 1)

for all £ > 0 of bounded support and all 0 < ¢ < (2b)~!. This implies the
conservation of probability for all 0 < ¢ < (2b)~! by standard density arguments,
and the result for all + > O then follows by an application of the semigroup
property. O

We next turn to the Feller property. Since e’ : L — L* is bounded, one has
eH(Co) C Cy if eM'(C.) C Co where C. is the space of continuous functions of
compact support. Since

= f K(1,x,y)f (y)o?(y)dy
B

where B is the compact support of f € C,, we find that the problem is to prove that

lim K(t,x,y)=0

X=—00
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for all y € M and ¢t > 0. Indeed using the semigroup property it is sufficient to
do this for 0 < ¢t < T, where T is arbitrarily small (independently of y). Another
version of the following theorem was obtained independently by Pang [25].

We suppose that ¢ > 0 and that for each x € M there exists r(x) > 0, called the
bounded geometry radius at x, with the following property. The ball B(x, r(x)) can
be mapped diffeomorphically onto the coordinate patch U in R" given by

U={yeR": |yl <rx}

in such a way that for any y, z € U one has

¢! <oly)/olz) < c.

If ¢(x) and the metric depend continuously upon x € M, then such an r(x) > 0
always exists and one should take it as large as possible, but in the general case the
existence of ¢ > O for which such an r(x) > O exists is a hypothesis.

In the case o = 1, the condition of the theorem below on the rate at which the
bounded geometry radius r{x) can vanish as x — oo may be related to stronger
conditions [5, 18] about the rate at which the sectional curvature can tend to minus
infinity as x — oc.

Theorem 8 Let M be a complete Riemannian manifold. If there existp € M
and positive constants c1, ¢2 such that the bounded geometry radius r(x) satisfies

o(x)? min{r(x), 1} > ¢ exp[—c2d(x.p)?]

for all x € M, then €' has the Feller property.
Proof Assuming that0 < ¢ < 1 we put
s(x) = tmin{r(x), 1}
so that 0 < s{x) <tand 0 < 2s(x) < r(x).
The ellipticity constants of L in B(x, 2s(x)'/?) are bounded independently of x.
So the parabolic Harmack inequality [9, 22] yields
c(x, s(x)) < c3

for all x € M. The uniform geometry in B(x, r(x)) also implies that

CZIO'(X)ZS(X)N/z < |B{x, s(x)1/2)| < cqo(x)s(x)V/?
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for all x € M. Applying Theorem 3 under the hypothesis (H2) instead of (H1) we
obtain
0<K(t.xy)

(d(x,y) — s()'? - s(»)'?)3
4(t + s(x) + s(y))
< ABeat™ 26 (x)"  min{r(x), 1}~ 26(y)~ min{r(y), 1}~V/?

(d(x.y) — 20/2)2
X exp [— y)12t )+

< C%cw(x)_ls()c)”\’/“zr(y)‘ls(y)‘N/4 exp [ -

_nl/232
<es(y)rNexp [%d(x,p)z _ xy )1212’ M} :

If 6¢3t < 1, then this converges to zero as x — oc for all y. O

4. Applications of the theory

In this section we show that the theory we have described yields results con-
cerning a variety of singular elliptic operators and singular Schridinger operators
on Euclidean space.

We put M = RY and let H be the non-negative self-adjoint operator on L2(RV . Adx)
associated with the quadratic form

gaide

@1) o) = [ wpy L

RN

so that formally one has

- 9 of
Hf = -A lza(pg%)

We assume that A(x)*! are measurable and locally bounded on R". We assume
that D;{x) is a real symmetric matrix which has bounded distortion in the sense
that

Dlj(x) = B(x)C,j(x)

where det C(x) = 1 and
O<c'<Cx)<e< o
for all x € RY. We also assume that B(x)*! are locally bounded. We then have

Q') < Q) < cQ'(f)
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where
0= [ Bivsrax
RN
We now put
sz_lA, O,ZBN/4A1/2—-N/4

or equivalently

B:(szN/z_l, A=a,2pN/2

to obtain
O O 2 nja-

4.2 = o N2 1gN
(42 0 = [ ¥ Cigl gt
and
(43) IF1B = [ trito%o 2.
If we introduce the Riemannian metric
(4.4) ds* =Y " p(x){C(x)™ "} ydxidx;

then it has volume element
dvol = pM2dVx

and is quasiconformal in the sense that
cp(x)dx? < ds? < cp(x)dx®
for all x € RY. We can then rewrite (4.1) or (4.2) in the form
o) = [ IvfPod vol
and (4.3) in the form
1B= [ o vol

This enables us to identify H with —L.

Lemma9 If
B 1 (x)A(x) > c1(1 4+ %)

for some ¢y > 0 and all x € RN, then RN is complete for the metric (4.4). If

B (0)A(x) > c1(1 + %)
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for some ci > Q. a > Oandall x € RY then
d(x.0) > c2|x|”

for some ¢z > 0 and all large enough |x}.

Proof In the first case we have
ds > c3(1 + %)~ 12 |dx]

N sl
d(x,0) 2 /Ca(1+r2)*}”2dr
0
~ log x|

as |x| — oo. Since log diverges this implies completeness. In second case

]
d(x, 0) > /c4(1 + r2)(a-—1)/2dr
0
~ |x|*

as Jx| — oc.
The following theorem introduces the function

A(r) = /A(rw)dS(w).

SN-1

Theorem 10 If
A(x)/B{x) > cs[x>?

Jor large enough |x|, where cs > 0 and o > O and
A(r) < 8 exp(rr”)

Jor all r > 0, where 3.7, 6 are positive constants and 3 < 2a, then the semigroup
e on L'(RY, Adx) conserves probability.
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Proof For large enough r we have

IB(0,r)]| = / A(x)dx

d0,x)<r

< / A(x)dx
[x|<cert/
cor'/ ™
< / b exp(6s®yensN ~ds
0
< crexp(y'r?e).

One may now apply Theorem 7. O

We now specialize even further to the case where M = RY o%! € L2,

(4.5) o) = / fPotd .
RN

(4.6) i3 = / F 2%,
RN

so that the metric (4.4) is the Euclidean metric.

The operator H on L?(R”,o%?d" x) associated with Q is unitarily equivalent to
H' = UHU~! on L*(R",d" x) where the unitary operator U from L% (R", o2d" x) to
L*(R" d"x) is defined by Uf = of. We call H' a “singular Schrédinger operator”
since it is of the form

H'f = —AF + Vf

with V = Ag /o, provided o is sufficiently smooth. In [8, §4.7] we used the theory
of Schrodinger operators to investigate H, but it is now possible to argue in the
reverse direction! Note that ¢ may be the ground state eigenfunction of H’, but we
need not assume that o € L*(RY, d"x).

The hypothesis on ¢ in the next theorem corresponds in some sense to the
“potential” V being uniformly bounded “on average" in R".

Theorem 11 Suppose that there are positive constants ¢, and r such that the
positive weight o on RN satisfies



HEAT KERNEL BOUNDS 117

whenever |x — y| < r. Then the heat kernel K' of the “singular Schridinger
operator” H' satisfies

N
2 |x — y|¥ Ix —y|?
! * — N/2 — — ———
O<K(t,x,Y)<C4max{(r> ot Y exp :

forallt >0andx,y € RN, where c4 = ca(c1,N).

Proof This follows from Theorem 6, once one observes that
K'(t,x,y) = o(x)o(y)K(t,x,y).

O

Note. One cannot expect to improve this bound for large t when x = y, since 0
may be an eigenvalue of H'.

We now study the Feller property for (4.5) and (4.6) but for a different class of
weights.

Theorem 12 Suppose that there is a constant ¢ > 1 such that
a(x) > e

for all x € RN, and

for all x,y € RN such that
be—yl <1+ )7

Then the semigroup e~ on L2 (RN, 62dx) associated with (4.5) and (4.6) has the
Feller property.

Note. This theorem may be compared with Theorem 4.7.3 of [8], which as-

sumes that the “Schrddinger operator” H' has a genuine potential which is bounded
below.

Proof This is an application of Theorem 8 with p = 0 and

r(x) =711+ x])~e.
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