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1. Introduct ion  

If  A is the Laplace-Bel t rami  operator of  a complete Riemannian manifold, we 

say that e z~t conserves probabili ty if  

(1.1) earl = 1 

for some (equivalently all) t > O. A number  of  different conditions on the Ricci 

curvature or volume growth of  M which imply this property are known [2, 3, 8, 

12-18, 21, 23-27,  29, 30]. We mention particularly that (1.1) holds if  

(1.2) vol[B(p, r)] _< a exp(/3r 2) 

for some p C M, o~ > 0,/3 > 0 and all r > 0, where B(p, r) is the ball in M with 

centre p and radius r. 

In this paper we rewrite the argument of  Gaffney [ 12] in a more general context, 

and show that it implies the conservation of  probabili ty under the condition (1.2); 

our calculation is closely related to the approach of  [2, 18]. 

More surprisingly, Gaffney's  argument also yields a general L 2 Gaussian upper 

bound on heat kernels, which has been proved elsewhere by wave equation tech- 

niques [5]. By combining this with a local parabolic Harnack inequality, we obtain 

a pointwise Gaussian upper bound on heat kernels which may be used when the 

heat semigroup is not ultracontractive in the sense of  [9] and one does not have 

pointwise lower bounds on the Ricci curvature. 

We say that e zxt has the Feller property if 

(1.3) eZXt Co C_ Co 

for all t > 0, where Co is the space of  continuous functions on M which vanish at 

infinity. Conditions for this are given in [3, 8, 18, 24, 25]. We give a new condition 
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1 O0 E .B .  DAVIES 

for the Feller property which does not depend upon lower bounds on the Ricci 

curvature, but rather upon the behaviour at infinity of  a modified injectivity radius. 

We develop the theory below for weighted Laplace-Bel t rami operators on pos- 

sibly incomplete Riemannian manifolds. Its application to second order elliptic 

operators on 7~ N is explained in Section 4. We note that our theorems may be 

extended in a variety of  ways, for example to Lipschitz manifolds [28] and to com- 

plexes obtained by glueing together pieces of  Riemannian manifolds in a locally 

finite manner. One may also replace cr(x) 2 in (1.5) and (1.6) below by any other 

weight provided the quadratic form Q is closable; conditions for this may be found 

in [1, 6, 11]. 

We assume that M is a Riemannian manifold which is locally finite in the sense 

that every ball has finite volume; this property holds i f M  is complete or is an open 

set in some larger complete manifold. We define L~o c to be the set of  measurable 

functions on M which are bounded on every ball. We assume that ~ > 0 is a 

measurable function on M with cr +l C Llo~c. We write dx for the Riemannian 

volume element  on M and d(x, y) for the Riemannian distance. 

We shall be concerned with the operator L on M given formally by 

(1.4) Lf  = o - - 2 V  - (o-2~7f) 

subject to Neumann boundary conditions at every point of  the boundary o f  the 

complet ion of  M, and Dirichlet boundary conditions at infinity. 

There are two ways o f  dealing with the weight ~ when it is not identically one. 

The first is to consider the unweighted Laplace-Bel t rami operator A' on M x S 2 

with respect to the metric 
dx 2 + cr(x)2dw 2. 

Properties of  the operator L defined by (1.4) can then be obtained from properties 

of  A' by looking at the subspace of  rotationally invariant functions. The more 

direct approach, which we adopt, is to include the weight ~r in all the definitions 

and proofs, and observe that it causes no real problems. 

Because of  the possible non-differentiability of  ~, a direct definition of  L using 

(1.4) is not easy, and we start by considering the quadratic form 

(1,5) QO e) = / I  Vfl2~ 
M 

and the norm 

(1.6) Ikfll 2 = f ill 2~2dx 
M 
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where the initial domain of  Q is W t'~ this is defined as the space of  continuous 

func t ions f  of  bounded support whose weak first derivatives lie in L ~ . 

We define an inner product on the set of  boundedly supported vector fields by 

(U,V) = f u ( x ) . v ( x ) ~ ( x ) 2 d x  
M 

so that 

Q(f)  = (Vf,  Vf) .  

The form Q is a closable Dirichlet form, and we define L to be the self-adjoint 

operator associated with its closure Q. We also define x~ to be the L 2 operator 

closure of  V initially defined on W 1'~.  It is then known [8, 11] that ~ t  is 

a positivity preserving contraction semi-group on Le for 1 < p < ~ which is 

strongly continuous for 1 _< p < ~ .  Also 

D o m ( ( - L )  1/2) = Dom(Q) = Dom(XT). 

If 9 : M ---, ~ is a bounded Lipschitz continuous function it is straightforward to 

show t h a t f  E Dom(XT) implies Cf E Dom(XT) and 

v(r = (vr  + r 

We shall apply this with 

(1.7) r = e ~r 

where a E Tr and r is a bounded function such that [~7 ~b[ _< 1, for example 

r = d(x,A) A n 

where A is any closed subset of  M, and n > 0. 

We conclude this section by presenting the lemma of  Gaffney [12], who only 

treated the case c~ = 1. 

L e m m a  1 lfO < f E L 2 and ut = eLtf then 

(1.8) IlCutll2 < e'~2'l[r 

and 
t 

It = f ][r <_ 2e2C~2tlbfr 

0 

for all t > O, and all r of the form (1.7). 



102 E.B. DAVIES 

P r o o f  We have 

= 2(~Lut ,  ~bur) 

(1.9) = --2(~U, ,  S~7(q~2U,)) 

= -2(Vu, ,  24~urV~b + q~2~r/~t} 

= -2ll~vu,ll2 - 4{~7u,, c~bu,V g,} 

_< - 2 1 [ ~ u ,  II 2 + 2(A -1 tl0Vu,ll 2 + a~211~u, II 2) 

for all A > 0, using IV,/,I _< 1. Putting A = 1 

0 2 
~ll~u,l12 _ 2~211~u,112- 

This yields (1.8) upon integration. 
Putting A = 2 in (1.9) yields 

~ 1t~u,1122 + II0Vu, l[ 2 <__ 4~2[l~utl[~ 

< 4c~2eZ~2rllOfll,'-. 

Integrating this inequality yields 

il0,,,112- II~fl12 +I t  < 2(e 2~2'- l)ll~fll2 2 

and hence 
II,u,II 2 + I, ~ 2e2~'-tlDf]12 2 

which implies the second statement of the lemma. [] 

2. G a u s s i a n  u p p e r  b o u n d s  o n  the  heat  s e m i g r o u p  

The above lemma already enables us to obtain an L 2 Gaussian upper bound on 
the heat semigroup. For c~ = 1 such bounds have also been obtained by wave 
equation techniques [5], [4, p. 199]. We recall that the heat kernel of L is defined 

by 

eL'f( / x) = K ( t , x ,  y) f(y)cr(y)-dy.  

M 

We define the cr-dependent volume of a Borel subset E of M by 

IEI = / ~(x)2dx  = II~ll 2 
E 
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where gE is the characteristic function of  E. 

Given two disjoint subsets E and F of  M and a function ~/, on M with IV~'I _< 1 

we define 

~ ( E , F )  = inf{~b(x) : x  E F} - sup{~/,(x) : x E E} 

and observe that 

sup ~ ( E , F )  = d ( E , F )  - inf{d(x, y) : x E E , y  C F}.  
0 

T h e o r e m  2 I f  E and F are two Borel subsets o f  M with IEI < ~ and IFI < ~ ,  

then 

0 < (eZ'~E, ~F) < tEIU21FIU2exp[-d(E,F)2/4t] 

for all t > O. 

P r o o f  If we put (,(x) = d(x, E) and 0 = e ~r then Lemma 1 yields 

0 _< (eL%e, ~F~ 

= (d)eLtxE , b - I x . F )  

< e~2r iEll/2 e - ~d~E,F~ IF[1/2. 

This yields the stated result upon putting 

o, = d ( E , F ) / 2 t .  

[] 

A standard method of  passing from L 2 estimates such as Theorem 2 to pointwise 

bounds is to rely upon suitable Sobolev embedding theorems [5]. These however 

are only valid if the manifold and metric are sufficiently smooth, and certainly 

cannot be applied to Lipschitz manifolds. We instead make assumptions on the 

local geometry expressed in terms of  a Harnack inequality. If  cr = 1 this idea has 

already been exploited in [4, p. 196] and [5]. The simplest form of  this is as 

follows. 

(H1)  We assume that one is given constants c(x, s) for x E M and s > 0 such 

that if u is a positive solution of  

&__2 ~ = r  (r 
Ot 
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on M x (0, oo) then 

0 <_ u(x, t) < c(x, s) 
IB(x, sl/2)l f 

B(x,sll 2) 

u(y,t+s)~(y2)dy 

for all t > s > 0 and a l l x  c M .  

T h e o r e m  3 Under the hypothesis (HI )  we have the pointwise upper bound 

1/2 1/2 2 
C(X, S1) c (y ,  s2) exp - ( d ( x ' y ) - s l  - -$2  ) + ]  

0 < K(t,x,y) <_ iB(x, sll2)l,lZ iB(y,412)l,i 2 4-C(f+~-+s~ j 

for all x, y C M and t > O, provided 0 < si ~ t. 

N o t e  The best choice o f  Sl and s2 in this inequality will depend upon the 

particular forms of  c(x, s) and IB(x, sa/2)l as functions o f x  and s. 

P r o o f  S i n c e  K(t, x, y) is  a solution of  the heat equation as a function of  x and 

t we have 

K(t, x, y) < 
c(x, sl) 

IB(x, sll2)l f 
c(x, sl) 

B/ 1/2~ ~x~s I I 

K ( t + S1, W, y)G2(w)dw. 

Since 

u(y, t) = f 
B, 112, IX,S 1 ) 

K(t + Sl, w, y)G2(w)dw 

is also a solution of  the heat equation we have 

u(y,t) < c(y, s2) i u(z't+s2)G2(z)dz" 
- iB(y,s~12)l ,,~, 

~tY,S2 ) 

Combin ing  these est imates we obtain 

K('t,x, y) <_ c(x, sl) c(y, s2) 
1t2 IB(x,s{12)l IB(y, s2 )[ 

The proof  is completed '  by applying Theorem 2. [] 
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E x a m p l e  4 If M is a complete Riemannian manifold with non-negative Ricci 

curvature, and we put o- = 1, then it follows from [19] (see also [8, p. 163]) that 

u(x,t) <_ u(y,t + \ t /I exp L 4s j 

It follows that we may take 

C(X, S) = 2 N / 2 e l / 4  = r 

in (HI). Putting Sl = $2 = s ,  Theorem 3 now yields 

0 < K(t,x,y) < c2IB(x, sl/2)[-1/2IB(y, sl/2)[ -1/2 exp 5 f (d (x , y ) -  2sl/2) 2 "~ 
- - l ,  - 4 ( t 7  2s) J 

provided 0 < s < t. The Li-Yau upper bound on K, [19], [8, p. 170], follows from 

this upon putting s = et where 0 < c < 1. 

An entirely similar calculation may be carried out i f  the Ricci curvature is 

bounded below by a negative constant [7, 8, 19]. 

The statement and proof  of  Theorem 3 are still valid if  one replaces (H1) by the 

following hypothesis: 

(H2)  There exists a constant c(x, s) such that 

0 < u(x,s) < c(x, s)u(y, 2s) 

whenever y C B(x, S 1/2) and  u is a positive solution of  

0 u  
Oq t - -  O ' - 2 V .  (O-2VU) 

on B(x, 2s 1/2) x (0, 2s]. 

Since we are using what is usually considered to be a deeper property, the 

parabolic Hamack inequality, to prove a more superficial pointwise Gaussian upper 

bound, some comments  are needed. Firstly we emphasize that we have the constant 

4 inside the exponential  of  the Gaussian upper bound even though we make no 

global assumptions about M, o- or A The parabolic Harnack inequality is only 

needed in a neighbourhood of  x and y in order to get an upper bound on K(t, x, y). 
If ~r = 1 and one has local lower bounds on the Ricci tensor around x, then suitable 

constants c(x, s) can be obtained for small s f rom [19, Theorem 2.1]. There are 

several other methods of  obtaining suitable constants c(x, s) for small s based upon 
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the use of  a local coordinate system around x [6, 9, 22]. f f  we do not assume 

that the metric is smooth, geodesics may not be definable as solutions o f  a first 

order differential equation on M, the exponential map may not exist, and we cannot 

use normal coordinates in small neighbourhoods.  This accounts for the slightly 

cumbersome form of  the following hypothesis: 

(H3)  We say that M, ~ has weak bounded geometry if  there are positive constants 

cl and r and a diffeomorphism 

Cx: {y:  I[y[I < r} c j~N ---+ Ux g M 

for all x E M, with ~x(O) = x and the following properties. I f y  E Ux then 

c~(y) < cl. Cll ~ O'(X) 

Considering {y : IIYH < r} as a coordinate patch, the metric satisfies 

Cl 1 <_ gij(Y) <_ Cl. 

Under the above conditions if  we define the distorted balls/)(x,  p) for 0 < p < r 

by 

i~(x, p) = ~ x { y  : Ilyll < p} 

then there exists a constant c2 = c2(cl, N) such that 

C210"(X)2p N ~ [B(x, p)[ ~ c2cr(x)2p N 

and z C/)(x, p) implies d(x, z) <_ c2p. 

By Moser 's  parabolic Hamack  inequality [9, 22] we have the following further 

crucial information. 

L e m m a  5 There is a positive constant c3 = c3 (Cl, N)  such that ifO < 2s 1/2 < r 

and u is a positive solution o f  

0u = _ 2 V  ' (~.2Vu) 
Ot 

on/) (x ,  2s I/2) • (0, 2s) then 

0 <_ u(x,s)  <_ c3u(y, 2s) 
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for all y E/~(x, sl/2). In part icular 

0 < u(x, s) <_ c3 f i[~(x, sl/2)l - ~ u(y, 2s)o'(y)Zd vol(y). 

B(x,s t/2) 

An alternative proof  of  the following theorem may be obtained by first treating 

only the case x = y, which is the simplest one, and then using the much deeper 

methods of  [7, 8, 10]. We prefer to give a completely self-contained treatment. 

T h e o r e m  6 Suppose that M, ~ has weak bounded geomet O" in the sense o f  
(H3). Then 

0 <_ K( t , x , y )  < C40"(X)-Io'(y) -1 max , t -N /2 ,  e -d2/4t 

for alt x, y E M and t > O, where d = d(x,y) and c4 = c4(Cl,N). 

P r o o f  We first combine the method of  proof  of  Theorem 3 and Lemma 5, but 

with B(x, s 1/2) replacing B(x, sl/2). This yields 

(2.1) 0 < K(t ,x ,y )  < cs~(x)- l~r(y)- ls-U/Zexp [ -- (d(x,y) - 2c2st/2)2+ 
- - L 4 ( t  + 2s) 

provided 0 < s _< min(t, r; /4) .  We treat three cases separately. 
Case 1. If d 2 _< t we put s = min(t, r2/4) so that 

= m a x { ( 2 ) N , t - N / 2 , ( d ) N } .  

We now use (2.1) to obtain 

< c6o-(x)- 1 ~r(y)-a max{ . . . }e  -d2/4t. 

Case 2. If  d 2 > t and t / d  > r / 2  we put 

r 2 r 2 

s -  64c2 < ~-. 

tN,2 
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We also have 
1 t 2 1 

s <_ 16c~ d 2 <- 1-~c9 el -< t 

so s is a permissible value. Now 

V r 

d - 2 c 2 s  1/2=d-2c28-~: 2 = d -  ~ _ > 0  

S O  

Since 

we have 

Therefore 

Also 

so (2.1) yields 

,) 

(4) ( d -  2czst/2)+ = d -  > d2 d r _ d 2  _ - ~ - >  - t > 0 .  

r 2 1 t 2 t 

32c~----~ < 8c2~td z <- ~- < 1 

�9 - 1  

( t + 2 s )  -I = t  -1 1 + ~  

4 ( t + 2 s )  >_ ~ 1-~__ 

-9 

4t 1 

d 2 
> - - - 1 .  
- 4t 

{d2 } O<K(t,x ,y)<csc7cr(x)-I(r(y)- lmax{. . .}exp - ~ + 1  

= c~r(x)-I~r(y) -I max{ . . . }exp  - ~ . 
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Case 3. If  d 2 > t and t / d  <_ r / 2  we put 

s -  16c22d 2 <_ - ~  <_ min  t, 

so s is a permissible value. We have 

~)_, (t + 2 s ) - l  = t - I  t +  t 

->t  -1 1--~-ff > 0 .  

Also 

SO 

Therefore 

Now 

so (2.1) yields 

t 
d -  2c2s I/2 = d -  2C24c2d 

2 ( t )  
(d - 2c2s1/2)~ > d 2 1 -- ~ > d 2 1 - > 0. 

4( t ~ 2~s ) >- 4-i 1 - -~  

d 2 (  2 / )  d 2 
->27 1-~ ->27-1. 

s_N,2 c9(d)N (()N ()N} 

{d2 ) 0 < K ( t , x , y )  < CsC9Cr(x)-lcr(y) -1 m a x { . . . } e x p  - ~-~ + 1 

= ClOO'(X)-1 o'(y)- ~ max{ . . . }  exp - ~ . 

109 

[] 
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3. Conservation o f  probability and the Feller property 

In this section we use the previous results to prove the above-named properties 

under hypotheses which do not mention pointwise curvature bounds. Apart from 

allowing a general weight ~r, our proof of  conservation of  probability is similar 

to that of [2, 13, 18], and we include it mainly for completeness. We believe, 
however, that our theorem on the Feller property is new. Applications of  these 

theorems may be found in [13, 20, 25, 26] and in the next section. 

Theorem 7 l f  M is a complete Riemannian manifold and 

[B(p, r)[ < aexp(br  2) 

for  some p E M, a, b, > 0 and all r > O, then the semigroup e Lt on L l (M, o'2dx) is 

conservative. 

P r o o f  I f f  _> 0 has bounded support we put 

~/,(x) = dist(x, suppf) .  

We alsoput  ~ = e ~r where ~ : m/2t .  I fm  is large enough t h e n m -  1 < d(x,p)  <_ m 

implies 4,(x) >__ m - c, where c > 0 depends upon p and the support o f f .  Next put 

1 

gm(x)= m -  d(x ,p)  

0 

if d(x ,p)  <_ m -  1, 

if m - I  < d ( x , p ) < m ,  

if d(x ,p)  > m, 

and put 

Sm= {x : m -  1 < d(x ,p)  <_ m}. 
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Then u, = er  satisfies 

t 

Oe, grn) - (ut, gm) = - J  d ~s (Us, gm) ds 
0 

t 

0 
t 

=/(fbfTUs, $-lVgm)ds 
0 

<_ IIjTu, ll ds II - Vgmll ds 
0 

< [2e2~2tllfOll2e-2~(,,-c)tlS(m)l] 1/2 

<_ [2[Lf]12taexp(2~2t - 2 a ( m -  c) + bm2)] 1/2 

-< 2]~ell~taexp ~ -  "t- + bin2 

This converges to zero as m ---, ~ provided 0 < t < (2b)-  i. We conclude that 

(f, 1) _< (ut, 1) 

for all f _> 0 of  bounded support and all 0 < t < (2b) -1. This implies the 

conservation of  probability for all 0 < t < (2b)-  1 by standard density arguments, 

and the result for all t > 0 then follows by an application o f  the semigroup 

property. [] 

We next turn to the Feller property. Since e Lt : L ~176 ~ L ~ is bounded, one has 

eLt(Co) C_ Co if  eLt(Cc) C_ Co where Cc is the space o f  continuous functions of  

compact support. Since 

eLtf(x) = f K(t, x, yff'(y)~2(y)dy 
B 

where B is the compact  support o f f  E Cr we find that the problem is to prove that 

lim K(t,x, y) = 0 
A " ~  OO 



1 12 E.B. DAVIES 

for all y E M and t > 0. Indeed using the semigroup property it is sufficient to 

do this for 0 < t < T, where T is arbitrarily small ( independently of  y). Another  

version of  the following theorem was obtained independently by  Pang [25]. 

We suppose that c > 0 and that for each x E M there exists r(x) > 0, called the 

bounded geometry  radius at x, with the fol lowing property. The  ball B(x, r(x)) can 

be mapped  diffeomorphical ly  onto the coordinate patch U in RN given by 

U = {y E TeN: Ilyll < r(x)} 

in such a way that for any y, z E U one has 

c-1 <_ gr < c, 

c -1 <_ c~(y)/c~(z) <_ c. 

I f  ~r(x) and the metric depend continuously upon x E M, then such an r(x) > 0 
always exists and one should take it as large as possible,  but in the general case the 

existence of  c > 0 for which such an r(x) > 0 exists is a hypothesis.  

In the case cr = 1, the condition of  the theorem below on the rate at which the 

bounded geometry  radius r(x) can vanish as x ---, oc may  be related to stronger 

conditions [5, 18] about the rate at which the sectional curvature can tend to minus 

infinity as x - -  oc. 

T h e o r e m  8 Let M be a complete Riemannian manifold. I f  there exist p E M 

and positive constants Cl, c2 such that the bounded geometry radius r(x) satisfies 

O'(X) 2 min{r(x),  1 }U _> Cl exp[ -czd(x ,p )  2] 

for  all x E M, then e ct has the Feller property. 

P r o o f  Assuming  that 0 < t < �88 we put 

s(x) = t min{r(x),  1} 2 

so that 0 < s(x) _< t and 0 < 2s(x) < r(x). 
The ellipticity constants o f  L in B(x, 2s(x) if2) are bounded independently of  x. 

So the parabolic Harnack inequality [9, 22] yields 

c(x,s(x)) 5 c3 

for all x E M. The uniform geometry  in B(x, r(x)) also implies that 

C4 lty(x)Zs(x)U/2 ~ iB(x ' s(x) l/2)l ~ C4Or(X)2S(X) u/2 
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for all x E M. Applying Theorem 3 under the hypothesis (H2) instead of  (H1) we 

obtain 

0 < K(t,x,y) 

< c2c4cr(x)_ls(x)_N/4~(y)_ls(y)_N/4exp [ _ (d(x,y) - s(x) 1/2 - s(y)l/2)2+ 
- [ 4(t + s(x) + s(y)) 

,~ C2Cat-N/Zo.(X)- 1 min{r(x), 1 }-U/2cr(y)-1 min{r(y),  1 } -U/2 

(d(x,y)--2t'/z)z+] 
x exp - 12t j 

< cs(y)t_N/2exp [2d(x ,p )  2 (d (x , y ) -  2tl/2) 2 ] 

If 6c2t < 1, then this converges to zero as x ~ oc for all y. [] 

4. A p p l i c a t i o n s  o f  the  t h e o r y  

In this section we show that the theory we have described yields results con- 

ceming a variety of  singular elliptic operators and singular Schr6dinger operators 

on Euclidean space. 

We put M = ,EN and let H be the non-negative self-adjoint operator on L 2(Tr N, Adx) 
associated with the quadratic form 

(4.1) a(f )  / ~ Of 0i 
= -~Dij(x) ~ c~r; dNx 

TeN 

so that formally one has 

Hf = - A - I  Z - ~ x  ~ DO �9 

We assume that A(x) • are measurable and locally bounded on T~ N. We assume 

that DO(x ) is a real symmetric matrix which has bounded distortion in the sense 

that 

D,j(x) = B(x)Ctj(x) 

where det C(x) = 1 and 

O <  c -1  < C ( x )  < c < oo 

for all x E 7~ u. We also assume that B(x) +1 are locally bounded. We then have 

c-lQ'( f )  <_ Q(f) <_ cQ'(f) 
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where 

We now put 

or equivalently 

to obtain 

(4.2) 

and 

(4.3) 

E. B. DAVIES 

Q ' ( f )  = f Biwi2a x 
7-r 

p = B -  1A, o" = BN/4A 1[2-N]4 

B = o'2p N/2-1, A = o'2p N/2 

Of 0.2pN/2_ I dNx Q(f) = f Y~cis~--~fxi Oxs 

Itflh z = f ~l 2~ 

If we introduce the Riemannian metric 

(4.4) ds2 = Z P(x){C(x)-I }ijdxidxj 

then it has volume element 
d vol = pN/2dUx 

and is quasiconformal in the sense that 

c - l  p(x)dx 2 < ds 2 < cp(x)dx 2 

for all x E 7~ u.  We can then rewrite (4.1) or (4.2) in the form 

Q(f) = / IVfl2cr2d v o l  

and (4.3) in the form 

Ibell2 2 = f 0el2cr2d vol. 

This enables us to identify H with -L .  

L e m m a  9 I f  
B-I(x)A(x) >__ Cl(1 +x2) -! 

for some cl > 0 and all x E 7g N, then 7g u is complete for the metric (4.4). If  

B-1(x)A(x) > c1(1 +x2) '~-1 
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for some cl > O, a > 0 and all x E Tr then 

d(x, O) > c2 Ixl ~ 

for some c2 > 0 and all large enough Ix I. 

Proof  In the first case we have 

as > c3(1 +.F)-l/21dxl 

SO 
Ix[ 

d(x,O) > f c3<l + 
0 

,-, log Ix[ 

as Ix[ - -  oc,. Since log diverges this implies completeness. In second case 

Ixl 

d(x,O) >_ f c 4 ( l  + r2)(~-~)/Zdr 
,1 
0 

~ J x l  ~ 

a s  iXl ~ ~'~. 

The following theorem introduces the function 

/t(r) = f A(rw)dS(w). 
S ~ -  J 

T h e o r e m  10 If 
A~x)/B(x) > c~lxl 2~-2 

for large enough [xl, where c5 > 0 and (x > 0 and 

/](r) <_ 6 exp(~r a) 
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[] 

for  all r > O, where/3, 7, 6 are positive constants and 3 < 2~, then the semigroup 

e zt on L I (7~ u, Adx) conserves probability. 
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Proof  For large enough r we have 

IB(O,r) l= / A(x)dx 
d(O,a)<r 

< / A(x)dx 
[xl<c6ri/~ 

c 6 r l / ~  

<- f 6exp (6s~)cudv-lds 
0 

_< c7 exp(~/r  p/~). 

One may now apply Theorem 7. [] 

We now specialize even further to the case where M = 7~ N , ~+ l E L ~ ,  

(4.5) Q(f) = / [~TflZcr2dNx, 

T~N 

( 
(4.6) I[fl~ = / VI20"2NNx, 

J ~u 

so that the metric (4.4) is the Euclidean metric. 

The operator H on Lz(Tg n, ~rZdNx) associated with Q is unitarily equivalent to 

H' = UHU- 1 on L2(Tr n, dNx) where the unitary operator U from L2(Td ", ~2dUx) to 

L2(R n, dNx) is defined by Uf = c~f. We call H '  a "singular Schr6dinger operator" 

since it is of  the form 

H'U = - A T +  vU 

with V = ._kc~/cr, provided ~r is sufficiently smooth. In [8, w we used the theory 

of  Schr6dinger operators to investigate H,  but it is now possible to argue in the 

reverse direction! Note that cr may be the ground state eigenfunction of  H ' ,  but we 
need not assume that ~r E L2(7"g N, dNx). 

The hypothesis on ~r in the next theorem corresponds in some sense to the 

"potential" V being uniformly bounded "on average" in 7~ u. 

T h e o r e m  11 Suppose that there are positive constants Cl and r such that the 
positive weight ~ on T~ u satisfies 

_ : ( x )  cl~ < - ~ _ < c l  
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whenever Ix - y[ < r. Then the heat kernel K'  o f  the "singular SchrOdinger 

operator" H ~ satisfies 

[ 4y 0 <_ K ' ( t , x , y )  < c4 max , t -N/z, exp 

for  all t > 0 and x, y E 7U v, where c4 = c4(ct ,N) .  

P r o o f  This follows from Theorem 6, once one observes that 

K'(t, x, y) = ~(x)cr(y)K(t, x, y). 

[] 

Note .  One cannot expect to improve this bound for large t when x = y, since 0 

may be an eigenvalue of  H'. 

We now study the Feller property for (4.5) and (4.6) but for a different class of  

weights. 

T h e o r e m  12 Suppose that there is a constant c >__ 1 such that 

~r(x) >_ c -  I e-~XZ 

for all x E R u, and 

for  all x, y E R N such that 

~ ( x )  
c-I  <_ -y(~ <_ c 

Ix- yl < c-~(1 + Ixl) - "  

Then the semigroup e -nt  o n  L2(7"~. N , o '2dx) associated with (4.5) and (4.6) has the 

Feller property. 

Note .  This theorem may be compared with Theorem 4.7.3 of  [8], which as- 

sumes that the "Schrtidinger operator" H '  has a genuine potential which is bounded 

below. 

P r o o f  This is an application o f  Theorem 8 with p = 0 and 

fix) = c -  1 ( 1 + Ixl) - c .  

[] 
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