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1. I n t r o d u c t i o n  

A function f defined on a set A in R" and taking values in R" is said to satisfy a 

H61der condition of order a > 0 at a point y of A if there is a constant M > 0 such 

that 

(1) If(x)- f(y)l <= M i x  - Y I ~ 

for all x in A. In the event that (1) holds with fixed M for all points x and y of A, 

we speak of f as uniformly HSlder continuous with exponent ~ on A or say that f 
belongs to Lip~ (A), the Lipschitz class with exponent o~ on A. For any reasonable 

set A - -  a domain, for instance - -  the class Lip~ (A) consists entirely of constant 

mappings when a > 1. 
Suppose that f is a quasiconformal mapping of the open unit ball B ~= 

{x E R ~ : Ix ] < 1} into R ~. It is by now well-known that, if A is a compact subset of 

B", then f ] A is a member of the class Lip~ (A) for ot = / ( i  (f)l/(i-n), where KI (f) 

designates the inner dilatation of fi Typically, however, very little can be said about 

the uniform H61der continuity of f on sets which cluster at the boundary of B". In 

particular, there need not exist any ot > 0 with the property that f belongs to 
Lip, (B n). 

The goal of this paper is to describe a variety of circumstances in which it 

becomes possible to obtain uniform H~51der estimates for f on sets A that approach 

0B". The specific sets we have in mind are Stolz regions and the unit ball itself. The 

strategy for achieving this objective involves the study of special asymptotic values 

of fi Indeed, as will soon be apparent, the notion of an "asymptotic value of positive 

order" represents a unifying thread running through the paper. 
Regarding matters of notation and terminology we conform to the usage in the 

book of V/iis/il/i [10], unless otherwise stipulated. 

* Part of this research was done while the author was visiting The University of Texas at Austin during 
1985-86. 
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2. L i n d e l f f ' s  t h e o r e m  and  H61der cont inu i ty  

Let f be a continuous mapping of B"  into R ~ and let b be a boundary point of 

B". We say that f has the point b' of R n as an asymptotic value at b if there is an 

endcut E of B"  terminating at b - -  meaning an arc E lying in B"  except for an 

endpoint at b - -  with the property that f(x)---~ b' as x ---> b along E. If, in addition, 

there exists an exponent  a > 0 for which it is true that 

[ f ( x ) - b ' [ < M l x - b [  ~ 

for all x on E, where M > 0 is a constant, we will refer to b' as an asymptotic value 

of order or. (We stress: there is no requirement  here that a < 1. Also, as a matter of 

convenience we are free to assume that the endcut E has its second endpoint at the 

origin. This can always be achieved by truncating or extending E, the latter at the 

possible expense of increasing the size of M.) While we have elected to deal 

exclusively with finite asymptotic values in this paper, there is a perfectly natural 

way to speak of f having o0 as  an asymptotic value of order  ot at b: one simply 

requires the mapping I o f to have the origin as an asymptotic value of order a at b, 

where I denotes inversion with respect to the unit sphere. Under  this definition 

most results in the present section admit obvious counterparts for the case of an 

infinite asymptotic value. 

For 0 in (0, r and for b in OB", the Stolz cone So (b) with vertex at b is defined 

by 

So(b)={x  E B " :  Ix - b l < c o s  0, ( b - x ) .  b > l b - x [ c o s 0 } .  

It is easily demonstrated that there exists a constant c in (0, 1), depending only on 0, 

such that 

(2) dist(x, OB" ) >= c Ix - b I 

for every x in So (b). 

A classical theorem of Lindel6f asserts that, if [ is a bounded analytic function in 

the unit disk B 2 in C and if f has b' as an asymptotic value at a boundary point b of 

B 2, then f(z)---> b' as z---> b through any Stolz sector So(b). The analogue of this 

result for quasiconformal mappings of B"  was established by Gehring [4]. We 

contribute the following observation concerning asymptotic values of positive 

order: 

T h e o r e m  1. Let f be a quasiconformal mapping of B" into R". Suppose that f 

has a point b' as an asymptotic value of order a > 0 at a boundary point b of B". 
Then, corresponding to each 0 in (0, r there exists a constant Mo such that 

(3) I f ( x ) - b ' l < M o l  x - b l  G, 

whenever x lies in the Stolz cone So(b). 
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P r o o f .  Choose an endcut E of B" joining the origin to b and enjoying the 

property that 

(4) I f ( y ) - b ' l < M l y - b [  ~ 

for all y on E, where M is a positive constant. Then E intersects each sphere 

OB"(b, t) with 0 <  t < 1. Fix 0 in (0, ~/2)  and an arbitrary point x of S = So(b). 
Write r = l x -  b I . Denote  by A the line segment in S with endpoints x and 
x + c(b - x)/2, where c is the constant from (2). We consider the path families 

FI=A(A,  E A B " ( b , r ) : B " ) ,  F2=~o(A, OB":B"). 

An application of the cap-inequality [10, 10.2] immediately produces the modulus 

estimate 

(5) M(F~) => b. log 2 2 c ' 

where b. > 0 is a constant depending only on the dimension n. Moreover,  (2) 

implies that A is separated from OB" by the ring B" (x, cr)\B" (x, cr/2), with the 

consequence that 

(6) M(F2) <-- ( 1 0 ~ , - 1  �9 

Here  ~,_~ designates the surface area of 0B". 
Owing to (4), the set [ [E  n B" (b, r)] lies in the ball B" (b', Mr ~ ). This permits us 

to infer that 

(7) 

with 

d = dist[b', f (A) ]  _-_ Mlr ~ 

( o,.-,ro q) '""-" 

where Ko ([) signifies the outer dilatation of [. For, in view of (5), the alternative to 

(7) would result in, 

M[/:(F,)] =< / r ~ " - ' <  b. 1og12/(2- c)] = M(r,) 
~log ~_gr~ ,] Ko(J:) Ko(J) '  

which would contradict the quasiconformality of f. 
If I f i x ) - b ' l > d ,  then in each of the sets O B ' ( b ' , s ) n f ( B " )  with 

d < s < I f ( x ) -  b' I we can choose an open spherical cap, say C,, centered at a point 
of f (A )  and extending to the boundary of f(B").  Since f(F2) includes each of the 
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path families Ao0r(A), Of(B" ): Cs ), a second appeal to the cap-inequality yields the 

estimate 

M[f(F~)] => b,, log I f ( x ) -  b'l 
d ' 

which, of course, holds trivially when [ f ( x )  - b'l = d. In combination with (6), (7) 

and the inequality M[f(F2)] =< K~ (f)M(F2), this leads to 

I f (x)-  b'l =< M2d ~ M2Ml Ix - b I", 

with M2 = exp[to,_lK~ (f)]b, (log 2)"-1]. We have thus confirmed (3) for M0 = M2M1. 

At how many points b of OB" is it possible for a quasiconformal mapping f of B" 
into R" to have a given point b' as an asymptotic value? The answer: the set of such 

points b may be uncountable, although it is necessarily of conformal capacity zero. 

What happens if we append to the above question the phrase "of  positive order"? 

Theorem 1 enables us to establish the following result, which will provide an answer 

to the modified question. 

T h e o r e m  2. Let f be a quasiconformal mapping of B" into R"  and let bl . . . . .  bp 

be distinct boundary points of B". Suppose that f has a point b ' as an asymptotic value 

of order ot~ > 0 at b~. Then 

(8) aT-~ + " " " + a~ -I <=2Ko(f). 

P r o o f .  Fix 0 in (0, 7r/2). Invoking Theorem I we can choose a constant M > 0 

such that for i = 1 . . . . .  p 

(9) I f ( x ) - b ' l < - _ M l x - b , I  '', 

whenever x lies in S~ = Se(bi). Write 

(10) a = max a,. 

Fix d, with 0 < d < cos 0, such that the balls B" (bi, d)  are pairwise disjoint and set 

(11) m = inf{ I f ( x ) -  b'l: x ~ S, n aB" (b,, d),  1 _--< i _--< p}.  

Obviously m > 0. 
Now consider r in (0, d) with the property that Mra < m. For i = 1 . . . . .  p let 

F, = A(OB"(b,, d), OB"(b,, ra/"): S,). 

Then 

(12) 
c(O, n)o,._~ 

M(F,)= [l d ~"-'' 
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where c(O, n) is a constant satisfying c(O, n)--*�89 as 0 ~ Ir/2. Specifically, c(O, 2) = 
0/,r and 

0 

c(O, n) = ~ ~ (sin t)"-2dt 
0 

if n > 2. The families f(F,) lie in disjoint open sets and, in view of (9), (10) and (11), 
each of these families is minorized by 

F = A(OB"(b', m), OB"(b ', MRS): R"). 

It follows that 

P 

(13) • Mlf(r,)] <_ M ( r )  = 
tO,_l 

m ~ n - 1  �9 

l~ ~-~r~ ) 

Since M(F,)_-_ Ko([)M[f(r,)], we use (12) and (13) to conclude 

c(O,n) < Ko([) 

i=1 log log 
. - -1  �9 

After multiplying by [a log(I/r)] ~-1 and allowing r---~0, we obtain 

P 

c(O,n)~, a7-1 <_- Koff). 
i ~ l  

Inequality (8) results when we let 0--> Ir/2. 

We record two immediate corollaries of Theorem 2. 

C o r o l l a r y  1. Let  f be a quasicon[ormal mapping of B" into R". Then 
(i) f has a given point as an asymptotic value of positive order at no more than 

countably many boundary points of B" ; 
(ii) [ has a given point as an asymptotic value of order a > 0 at no more than 

2Ko ([)lot n - t  boundary points of B n ; 
(iii) f has no asymptotic values of order exceeding [2Ko ([)]1,t.-1). 

p 

C o r o l l a r y  2. Suppose that a quasicon[ormal mapping f of B ~ belongs to the 
class Lipa (B"). Then at most 2/(0 ([)/a ~-~ boundary points of B" can have a 
common image under the induced extension of f to B". 

Theorem 2 and its corollaries extend work of Aharonov and Srebro [1]. Earlier, 
Miniowitz [6] had established similar results for a class of quasiregular mappings of 
B ~ under the assumption of a growth condition more restrictive than a H61der 
condition. We draw attention, as well, to the paper of Ess6n [2], in which Corollary 
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2 is proved for the special case of a conformal mapping from the disk B 2 into the 

complex plane. 
We next use Theorem 2 to retrieve topological information concerning the image 

of B" under a uniformly H61der continuous quasiconformal mapping. 
Recall that a domain D is said to be finitely connected at a boundary point b if b 

has arbitrarily small neighborhoods U such that U tq D consists of finitely many 
components. A domain D is said to be m-connected at b if m is the smallest integer 
for which there exist arbitrarily small neighborhoods U of b such that U tq D 

consists of exactly m components. If D is finitely connected at each boundary 

point, then D is said to be finitely connected on the boundary. Should there be an 
integer M with the property that D is m-connected at each point b of 0D for some 

m = m(b)  not exceeding M, D is said to be boundedly connected on the boundary. 

Now let f be a quasiconformal mapping of B" onto a bounded domain D. Then f 

is uniformly continuous if and only if D is finitely connected on the boundary [7], 
[10]. When such is the case, D is m-connected at a point b of 019 if and only if 

exactly m points of OB" are mapped to b under the induced boundary extension of 
f;  otherwise infinitely many points of OB" are mapped to b [7]. 

In view of the above and Corollary 2 we have: 

Corollary 3. Let f be a quasicon[ormal mapping of B" onto a domain D. I f  f 

belongs to Lip, (B n) for some a > O, then D is boundedly connected on the boundary. 

A further implication of Theorem 1 is a result on uniform H61der continuity in 
Stolz cones. 

Theorem 3. Let f be a quasiconformal mapping of B" into R". Suppose that f 

has some point of R" as an asymptotic value of order a > 0 at a boundary point b of 
B n. Then for each 0 in (0, ~'/2) the restriction o f f  to the Stolz cone S = So (b) belongs 

to Lip~ (S) for/3 = min{a, Kr ff)lm-")}. 

P roo f .  Let b' be the asymptotic value of f referred to in the statement of the 
theorem. Fix 0 in (0, r Theorem 1 insures the existence of a positive constant 
M0 such that 

(14) I f ( x ) -  b'[ <= Me Ix - b I ~, 

whenever x lies in S = So (b). 
Consider an arbitrary pair of points x and y in S. We distinguish two cases. 

Suppose first that 

In this event 

(15) 

dist(x, aB") < Ix - y I- 

< 1  < 2  
I b - X [ = c l x - y [ ,  I b - y l = c - l x - y l -  
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Here c is the constant corresponding to 0 in (2). It follows by using (14), (15) and 

the triangle inequality that 

(16) [f(x)_f(y) l<=(l+2a)c- , ,M~[x _ y l a  <=3c-"Me[x - y l  ~ 

The remaining case has 

dist(x, ~B ") > ] x - y [. 

Let R be the ring domain B"(x, d)\ /~"(x,  r), where we have set d = dist(x, OB") 
and r = Ix - y [. If F is the family of paths joining the boundary components of R 

through R, then 

(17) M(F) = oJ,_, 
log 

On the other hand, the Teichmiiller modulus estimate gives 

logX. 1+  I b ' - f ( x ) [  " - ' '  
[/(x)-/(y) 

with a constant A. => 1 depending only on n. (See [3].) Since Ix - y ] < [ b - x 1, and 

thus ] b - y ] < 21 b - x 1, we can combine (2) and (14) with the triangle inequality to 
arrive at 

(19) I f ( x ) -  f(Y)I -- (1 + 2 ~)Mo I b - x I ~ =< 3Me (d/c)% 

The validity of (2), (14) and (19) allows us to manipulate the lower bound in (18) so 

as to secure the estimate 

~0n-I 
(20) M[ f ( r ) ]  _-> [ , . .  4A.M. ( d / c ) " ]  " - '  " 

L " ~  If(x)-f(y)lJ 
Because M[f(F)] _-__ Kr (/)M(F), (17) and (20) in tandem give rise to the bound 

Jr(x) - f(y)] = 4A.Mec-~r"' d ~-~', 
�9 t 

where we have inserted a '  fo r / ( i  (f)~/r If ot < a ' ,  then, recalling that Ix - Y l = 
r < d < 1, we are led to conclude 

(21) [ f ( x ) - f ( y ) l  =< 4A.Moc T M  Ix - y f% 

In case a = a ' ,  we can at least salvage the inequality 

(22) I f (x  ) -  f (y  )l <= 4A.Mec-" tx - y I ~'. 

Together, inequalities (16), (21) and (22) show that 

I f (x)-  f(y)l <-- Mix  - y I", 
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with /3 =min{a, Kr(f) 1/t~-")} and M =4A,M0c-L Accordingly, [ I S  belongs to 
Lip~ (S), as asserted. 

3. Theorems of Hardy-Li t t lewood type 

In this section we intend to shift our focus from the microscopic to the 

macroscopic. The prior discussions have been concerned primarily with the 

behavior of a quasiconformal mapping of B" near a specific boundary point of B". 

We turn now to an examination of the global consequences for such a mapping of 

the requirement that its induced boundary function satisfies a uniform H61der 

condition. Here we interpret the notion of boundary values of a function in the 

sense of radial limits. Recall that a quasiconformal mapping f of B" into R" 

possesses a finite radial limit at almost every point of 8B". We use Af to designate 
the set of points at which such a limit exists and we set 

f(x) = lim_ f(tx) 

for x in A I. It is the function t that we have in mind when referring to the boundary 
function associated with f. 

Let us review the situation in classical function theory. If f is a function analytic 

and bounded in the unit disk B 2 in the complex plane, then Fatou's theorem insures 

that f has finite radial limits almost everywhere on the unit circle. Assume, 

adopting the notation introduced above, that the boundary function t belongs to 

the class Lip~ (AI). Then a theorem of Hardy and Littlewood, in conjunction with 

standard results from H ~-theory, shows that f must be a member of Lip~ (B2). The 

next theorem transports this result to the setting of quasiconformal mappings in 
n-space. 

Theorem 4. Let[be a quasiconformal mapping orB" into R". Assume that its 
associated boundary function f is a member of the class Lip~ (Ai). Then f belongs to 
Lip~ (B ") for/3 = min{~, Ki (f)t/tl-.)}. 

Proof .  As a member of the class Lip~(Ar), the function [ is uniformly 
continuous on A I. Since the set A t is dense in OB", it follows that [ has a unique 

extension to a function continuous on 813". This fact permits us to invoke Corollary 

7.23 in [8] and to conclude that the mapping f admits an extension to a continuous 

mapping of/~", for which extension we retain the notation f. Because f = t on At, it 

is manifest that f I 8B" belongs to Lip~ (8B "). Let M be a Lipschitz constant for 
f] 8B" corresponding to the H61der exponent a. 

We next show that there is a constant M0 such that 

(23) I f ( x ) -  f(b )l <= Mol x - b I ~, 

whenever b lies on OB" and x lies on the radial segment of B" terminating at b. Fix 
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points b and x satisfying the preceding requirements. The argument which 
establishes an estimate of the type (23) is virtually identical to that used in the proof 

of Theorem 1 to demonstrate (3). For this reason we feel justified in glossing over 

certain details of the proof. 
Let r = Ix - b l and let d = dist[f(b), f (A)] ,  where A denotes the line segment 

with endpoints x and (x + b)/2. We here consider the path families 

FI=Ao(A, OB" f')B"(b,r): B"), F2=Ao(A, OB": B"). 

Since M(F1) _-__ b, log 2 and since f[OB" f3 B" (b, r)] is situated inside B" (f(b), Mr ~ ), 
we conclude as in (7) that 

(24) d <= M,r ~, 

with M1 = M exp[(to,-1Ko ([)lb, log 2)1'<"-1)]. Assuming that I f (x ) - f (b )[  > d, we 

employ the modulus estimates 

and 

O'~n --1 
M(r2) _-< (log 2 )  " - 1  

M[f(r~)] > b. log [[(x) - f(b)l 
= d ' 

in conjunction with (24), to insure that 

(25) I f ( x ) -  f(b)] <= M2d <= M2MtIx - b I', 

with M2 = exp[to,_lK~ (J)/b, (log 2)"-1]. Inequality (25) is trivial when I f ( x ) -  f(b)[ = 

d. Consequently, (23) obtains for Mo = M2MI. 
Finally, fix an arbitrary pair of points x in B" and y in 3B". Let b be a point of 

OB" closest to x. The obvious inequalities [ b - x [ _-__ [ y - x [ and [ b - y 1 --< 21 y - x I, 
combined with the triangle inequality, with (23) and with the estimate 

I f ( y ) - f ( b ) l  <--MI y -  b I', allow us to conclude that 

I f ( x ) -  f (y  )l <= (Mo + 2aM)lx - Y I ~. 

We have thus maneuvered into a situation covered by Theorem 1 in [9], a result 

which justifies the assertion that f belongs to Lip0 (B ") for/3 = rain{a, KI (f)1/o-,)}. 

As a special instance of the preceding result we record: 

Corollary 4. Let f be a continuous mapping of B" into R" which is quasicon- 
formal in,B". Assume that f laB" is a member of the class Lip~(OB"). Then f 
belongs Io Lipo ( B ") for/3 = min{a, K~ (/)~/o-,)}. 

The H61der exponent/3 obtained in Theorem 4 and Corollary 4 is not, in general, 
subject to improvement.  To see this fix /3, 0 < / 3  <_-1, and consider the radial 
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stretching of /~"  onto itself defined by f ( x )  = Ix la-'x for x #  0 and f(0) = 0. Then f 
is a homeomorphism which is quasiconformal in B n, with Kr 0 r) =/31-". Since f 

reduces to the identity mapping on 0B", f I OBn belongs to Lip~ (aB n) for a = 1. On 

the other hand, the optimal H61der exponent for f at the origin is quite clearly 
/3 = min{1, Kx or),o-n~}. 

The next theorem describes one set of circumstances in which the effect of the 

dilatation on a H61der exponent is muted. 

T h e o r e m  5. Let f be a quasiconformal mapping of B"  into R"  and let a > O. 

Assume the existence of a constant M such that 

(26) I f (x)  - f (y) l  ---- M I x - y 15, 

whenever x and y lie on the same sphere centered at the origin. Then f belongs to 

Lip~ (B"). 

Proof .  Fix a pair of points x and y in B". We may assume that Ix I and I Y [ 

differ - -  say [xl<lyl-- for otherwise (26) is at our disposal. We consider two 

cases. 
If x and y lie on the same radius of B", then the argument used in the proof of 

Theorem 4 to establish (23), but applied to the mapping fl B~ Y I), shows that 

(27) I f ( x ) -  f (Y )l <= Molx - y I ~, 

where Mo = M exp[(to._lKo or)/b, log 2)'~"-1)+ (to,_lK~ or)/b, flog 2]"-1)]. In the 

other case, meaning x and y are not co-radial, let yo be the point of B" which is 

located on the radius of B" passing through x and which satisfies I Yol = I Y I. Since 

[x - y01 = I x - y I and I yo - y I ---- 2Ix - Y l, we employ (26), (27) and the triangle 

inequality to infer 

I f ( x ) -  f(y)] _-_ Mol x - yo] ~ + M I Yo- Y 15 --< (Mo + 2~M)I x - y I *. 

All possible configurations of x and y have now been accounted for and f is seen to 

be a member of Lip~ (B n). 

Simple examples illustrate that the quasiconformality of f is an essential 

hypothesis in Theorem 5. The next result might be looked at as a "uniform version" 

of Theorem 3. 

T h e o r e m  6. Let f be a quasiconformal mapping of B"  into R"  and let a > O. 

Assume the existence of a constant M such that the boundary function f associated 

with f satisfies 

(28) If(x ) -  f(b )l <= M i x  - b I ~, 

whenever b lies in Ar and x is a point on the radius of B"  terminating at b. Then f 

belongs to Lipa (B ") for/3 = min{a, K~ (f)l/o-,~}. 
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P r o o f .  We show that f is a member  of the class Lip~ (At) and, in this way, 
derive Theorem 6 as a consequence of Theorem 4. For this, fix a pair of points bl 
and b2 in A I and choose points xl and x2 on the radii of B" terminating at b~ and b2, 
respectively, such that 

l x , - b , I - - I x 2 - b 2 [ - - 2 [ x , - x 2 [ .  

For the path family F = ~o(A, OB": B") ,  where A is the line segment joining xt and 
x2, we have the estimate 

O ) n - - I  - -  0 t ) n - -  1 

M(F)_-< ( Ix,-b~ ~'-' (log 2) "-1" 
log ix I _ x2 [J 

On the other hand, 

M[f(r ) ]  = b~ log If(x,) - f(x2) l 
[ f ( x O - f ( b l ) [  " 

This is a consequence of the cap-inequality when [ f ( x l ) -  f ( b ~ ) l < [ f ( x O -  f(x2)[ and 
holds trivially otherwise. It follows from the above modulus estimates and from the 
quasiconformality of f that 

(29) [/(xl) - / (x2 )  [ <= Mo If(x1) - f(b~)l, 

where Mo = exp[to,_lKx (f)/b,  (log 2)"-1]. Since ]x~ - bl I --< 2[ b~ - b2 [, we can utilize 
(28) and (29) to conclude that 

I /(b~)-/(b2)l  ~ [ f (b l ) - f (x l ) l  + I f ( x l ) -  f(x2)[ + If(x2)-f(b2)[ 
(30) _-_ ( 2 M  + MM0)  I x,  - b, I ~ 

------- 2~M(2 + Mo)[ b~ - b2 [~. 

Hence f belongs to Lip~ (At), as desired. 

The radial analogue of Theorem 5 i~ supplied by 

T h e o r e m  7. Let f be a quasiconformal mapping of B"  into R "  and let ot > O. 

Assume the existence of a constant M such that 

[ f ( x ) - f ( y ) [  <= M i x  - y [0, 

whenever x and y lie on the same radius of B". Then f belongs to Lip~ (B ' ) .  

P r o o L / F i x  points x and y in B" with [ x I = I Y l- We consider the restriction of f 
to the bal4 B n (t x I ). The identical method used to derive inequality (30) in the proof 
of Theorem 6 can be applied to the mapping f I B" (I x [ ). The result is the estimate 

[ f ( x  ) -  f ( y  )[ <= 2*M (2 + Mo)[ X - y [~, 
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where Mo = exp[ton-lK~(f)/bn(log2)n-1]. An appeal to Theorem 5 completes the 

proof. 

We remark that alternative proofs for Theorems 5, 6 and 7 can be based on 
results of Gehring and Martio to be found in [5]. Theorem 6, for instance, is a 
straightforward consequence of Theorems 3.5 and 2.24 in their paper. 
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