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w 1. INTRODUCTION 

The present paper is concerned with some spectral properties of  linear 

operators between (complex) Banach spaces. We  are mainly interested in 

the stability of  the nullity and deficiency and other related quantities under 

small perturbation and its relationship to the spectral theory. Our setting of 

the problem is rather general : we consider the eigenvalue problem of  the form 

Az  = ~Bx 

where A ,  B are in general unbounded linear operators from a Banach space 

X to another Banach space X'.  A is assumed to be dosed, but its domain 

need not be dense in X. B is mostly assumed to be " b o u n d e d  r e l a t i v e  

t O A ~.  

In this introduction, which is intended for a brief account of the 

problems dealt with in the sequel and the main results, we shall for simplicity 

restrict ourselves to bounded linear operators A ,  B with domain X. We  

denote by N[A]  the null space of  A and by R[A]  the range of  A. The 

dimensions of  N [A] and X ' / R  [A] are respectively called the nullity and the 

deficiency of ,4, and will be denoted by a ( A )  and ~)(A) (see w It has 

been known some time that a (A), ~)(A) have a certain kind of stability 

(see Atkinson [3,4], c*~ Dieudonn~ [6], Friedman [7], Gokhberg and I~ein 

[8], Sz.-Nagy [11,12], Yood [13]).  ~ (A)  and ~(A)  have a difference 

(called the index of A) which is not changed when A is subjected to a 

small perturbation under certain conditions. More precisely, we have 

1. Numbers in brackets refer to the Bibliography at the end of the paper. 
Unfortunately we have not been able to see Dieudonn~ [6]. We have come to notice 
the comprehensive work of Gokhberg and Krein [8] only after the completion of the 
present work. This paper, hereafter quoted as GK, contains many results in common 
with ours, though their methods are rather different from outs. The present paper has 
been revised to avoid as far as possible the repetition of the material contained in 
their paper. 
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a CA + B) - -  [3 (A + B) = a (A) --  [3 CA) 
provided R [A] is closed, at least one of  a (A), [3 (A) is finite and [IBII 

is sufficiently small, ct(A) and [3(A) themselves may decrease under such 

a perturbation, but they never increase as long as the perturbation is small 

(the first stability theorem). A different kind of  perturbation is given by a 

completely continuous operator B, for which IIBII need not be small. 

Here the index ct (A) --  [3 (A) is again unchanged, but ct (A), [3 (A) may 

change in either direction (the second stability theorem). 

Here the assumption that R [A] is dosed is essential. The same is 

true with the assumption that at least one of a (A), [3 (A) is finite, as will 

be  seen from an example in Remark 3 to Theorem 1, w 

The main object of  the present paper is to generalize the above 

results in several directions. In the first place we aim at a quantitative 

treatment (z) of the problem by giving as large a limit as possible for the 

magnitude lib [I of  the perturbation for which the first stability theorem is 

true. For this purpose we introduce the quantity T (A) which may be called 

the lower bound of  the operator A. Consider the factor space J~ = X]N, 
N - ~  N [A], which is a Banach space since N is a closed linear manifold 

of  X. The operator A defined by ~L~= Ax for each x E~7 is a bounded 

linear operator on X to X" and the inverse ~ - t  exists. T (A) is now defined 

by T (A)----- II ,~-t l l-1 if  ~ - t  is bounded and T(A) = 0 otherwise. It is well 

known that T ( A ) > 0  if and only if R [A] is dosed. Also we shall show 

that T(A*) = T(A), where A* is the adjoint of  A (see w 

The first stability theorem is now shown to be valid if liB II < T (A), 

see Theorem 1, w 4.3. This result is of  some interest in view of the fact 

that in general Banach spaces there does not exist the notion of  the ortho- 

gonal complement of  a given subspace. The proof of this result depends 

essentially on an important lemma (see I.emma 2I 1)(3) proved by Bohnenblust 

to the effect that, given any linear manifolds Mr, N of  X with dim M > dim ~r 

(so that dim N <  oo), there exists an x E M such that 

d ( x ,  N) = Ilxll > 0 

2. Such a quandtative result is important for appficadons. 
3. Lemma 2tl is the first lemma of w 2.1. The formulas are numbered in a 

similar way. 
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(d (x ,  N)  is the distance of x from N). In many problems this lemma can 

make up for the lack of perpendicularity in the Banach space. 

The proof of  Theorem 1 also makes use of  the notions of  approximate 

nullity a '  (A) and approximate deficiency ~' (A) of  the operator A. Roughly 

speaking, these are defined as the multiplicity of  the approximate eigenvalue 

0 of A resp. A ~ see w It is shown that a ' ( A ) = l B ' ( A ) = c o  if and 

only if either a ( A ) = ~ ( A ) = e o  or R[A]  is not closed. 

The introduction of the approximate nullity and deficiency enables us 

to formulate the second stability theorem in a somewhat different form. 

Instead of the completely continuous operators, we consider a class of  

linear operators which we shall call strictly singular operators (w It is 

easily seen that the complete continuity implies the strict singularity, but the 

question is open whether the converse is true except for the case in which 

both X and X '  are Hilbert spaces (w The second stability theorem is 

now seen to hold for a strictly singular perturbation B (Theorem 2, w 

Another generalization of the stability theorem we consider is concerned 

with the case a ( A ) = I B ( A ) =  ~o. As was remarked above, this is not 

possible without some additional condition. In order to introduce such a 

condition, we define a positive integer v (A  : B) for any pair A ,  B of 

linear operators. This is defined in a purely algebraic fashion in terms of 

two sequences M,  , N ,  of  linear manifolds of  X (w 5.1). In the special case 

in which X = X '  and B = I (the identity operator of X), these sequences 

reduce to R [A"] and N [A"] respectively o) and, in particular, v (A : I )  = oo 

means that N [ A ]  C R[A"] (or, equivalently, N[A"]  C R[A])  for all 

n = 1, 2, 3 . . . . .  Some lemmas on v (A : B) are given in w 5, and the results 

are applied to prove Theorem 3, w in which the stability of  ct(A),  

~(A) themselves is established, including the case a(A)-~ ~(A)= oo, 
under the assumption that R [A] is closed and that the perturbation B has 

the property v ( A : B ) = c o .  At the same time the stability of v ( A : B )  

itself and the Lipschitz-continuity of  the lower bound "/(A) is proved. 

A natural question arises as to what happens when v (A : BJ is finite. 

w 7 is devoted to this case. Here we have a reduction theorem: the spaces 

X , X '  are decomposed into several " f i n i t e  p a r t s "  and " r e s i d u a l  

4. This part of our theory has some contact with the work of Hukuhara [t0]. 
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p a r t s" in such a way that, in the finite parts, the operators A ,  B have 

a canonical structure similar to the Jordan form, while in the residual part 

we have v (A : B ) =  co and the situation of  Theorem 3 prevails (Theorem 

4, w Unfortunately we have to assume here that, among others, at 

least one of  ct (A), ~ (A) is finite. This theorem leads to a better under- 

standing of the situation expressed in Theorem 1. 

w 8 is devoted to some of  the conclusions that can be drawn from 

these theorems. The classit~ication of  complex numbers into several parts 

according to the spectral properties of  the operator A -  ~B is discussed. 

In the special case in which X = X" and B----I, this gives a finer partition 

of  the complex plane than the usual partition into the resolvent set and the 

point, continuous and residual spectra. In particular it follows from our 

classification that a linear operator A on X to itself has a spectrum of  

Fredholm type provided there are at most a countable number of  points 

~, (singular points) for which c t ' ( A -  ~/) = [3' ( A - - ~ I )  = oo (Theorem 9). 

This leads to a simple proof of  the Riesz-Schauder theorem for a strictly 

singular operator, which implies the same theorem for a completely 

continuous operator. 

As we have mentioned in the begining of  this introduction, most of  

these theorems ate actually proved for unbounded operators A ,  B. 

w LINEAR MANIFOLDS OF A BANACH SPACE 

1. L e m m a s  on  d imens ions  of  l inear  mani fo lds .  

Let X be a Banach space ts~ with the norm denoted by I[ II. For any 

x ~ X  and any subset S of  X, we denote by d(x, S) the distance of  x 

from S. For any two linear manifolds M ,  N of  X, r we introduce the 

number o~ 

(211) h(M-t.N) ---- sup d(x, N) ---- sup d(x, N)/IIx!l �9 
x ~ h I  0:f=x ~ hi 
I lzJl--a 

5. In this paper we consider complex Banach spaces. But our results are valid 
in real Banach spaces as well with slight obvious modifications. 

6. Throughout the present paper, X ,  X ~ ... denote Banach spaces and M ,  AT,... 
linear manifolds, unless otherwise stated positively. 

7. Max [~ (aM,/V), 8 (N,  M)] is called the "opening" of  M ,  N and employed 
extensively in GK. But we find it convenient to consider 8 ( M ,  N) separately. 
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Obviously 

(212) o ~ a(M', N) s i .  

We use the symbol dim M to denote the dimension of a linear 

manifold M ;  it is defined as the greatest number of  linearly independent 

vectors of  M. Thus dim M takes only the values 0, 1, 2 . . . .  or oo. (Thus 

dim M >  dim N implies dim N < o o ) .  We are not interested in distin- 

guishing between different infinite cardinal numbers as the value of  dim M 

as is done in GK, although many of  our results would be valid in this finer 

definition of  dim M. Thus defined, dim M is a purely algebraic notion 

independent of  the topology of  X. 

The following lemma (s) is fundamental throughout the present paper. 

Lemma 211. I f  d i m M > d i m N ,  t h e r e  e x i s t s  an  x ~ M  s u c h  

t h a t  d ( x , N ) =  I lxl l>0.  I n  p a r t i c u l a r  8 ( M , N ) =  1. 

The following is a direct consequence of this lemma. 

L e m m a  212. I f  8 ( M , N ) < I ,  t h e n  d i m M ~ d i m N .  

8 ( M , N )  is not symmetric with respect to M and N. In this 

connection the following lemma is of  some interest. 

L e m m a  213. I f  d i m M = d i m N < o o ,  t h e n  

(213) a (N, M) _g a ( M ,  N) [1 - -  a ( M ,  N)]-'. 

The proof  can be given on the basis of  a theorem of  Borsuk (9) as 

in the case of  I.emma 211. We shall not give the details, for this lemma 

is not needed in the following. We only note that the inequality (213) is 

the best possible, as is seen from the following example. Let X be the 

two-dimensional Banach space consisting of vectors x----($1,  $2), where 

the norm is defined by Ilxll = ]$1[ + ]~21. Let M ,  N be the one-dimensional 

linear manifolds defined by the equations ~2 = a$1 and ~2 = 0 respectively, 

where [al< 1. Then it is easily seen that the equality holds in (213). 

Lemma 214. L e t  M , N  b e  c l o s e d  l i n e a r  m a n i f o l d s  o f  X. 

F o r  a n y  x ~ X  a n d  ~ > 0 ,  t . h e r e  i s  an  xo~x  (mod M) s u c h  t h a t  

(214) d(xo,N)~_(1--~)[1--,~(N,M)] [ I + a ( N ,  M)]- '  l lxoll. 

8. This lemma is proved in GK, Theorem 1.1, so we shall not give a proof 
here. It may be remarked, however, that this lemma was proved independently by 
H. F. Bohnenblust in 1952 in a private communication to the writer. The proof is 
the same as in GK. 

9. See Alexandroff and Hopf [2], p. 485. 
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Proof. If  x cM, we need only to take Xo = 0. We assume therefore 

that x ~  M. Then there exists an xo =--x (rood 214) such that 

d(xo, M) > (1 - -~)  Ilxoll > 0 .  

For this Xo there is a y E N  such that [Ixo--Ylf < d + ~ l l X o l [ ,  where 

d=d(xo, N). In particular IlYll ~_(1 +E)[IXoll + d .  On the other hand 

we have d ( y ,  M ) ~ 8  [lYlI, where 8 =  8(N , M). Hence 

(1 --E)llXoll ~ d(Xo, M) < IlXo-- yll + d(y, M) 
s d + ~ Ilx0t! + ~ [(1 + 0 IIx0!i + a] 

and 

d ( x 0 , N ) = d > [ ( l - - e - - 8 ) ( 1  + 8 )  - l - s ]  Ilx0!l. 

This is equivalent to (214) since ~ > 0  is arbitrary. (Note that ( 2 1 4 ) i s  

trivial if 8---- 1). 

From Lemma 214 follows immediately 

L e m m a  215. L e t  MCM1 a n d  l e t  M n o t  be  d e n s e  i n  MI.  

T h e n  

(215) 8 ( M r , N ) >  [1--8(N,M)][I +8(N,M)] -1. 

Remark.  If  N is finite-dimensional, we have a stronger result to the 

effect that 8 ( N ,  M ) ~  1 implies 8 (Ma,  N ) =  1. This follows directly from 

Lemma 212. The same is true even for infinite-dimensional N provided X 

is a Hilbert space (see Lemma 222). We have not been able to obtain 

the same result in the general case. 

L e m m a  216. L e t  M , N  be  c l o s e d  l i n e a r  m a n i f o l d s  o f  X, 

a n d  f o r  e v e r y  y e N  l e t  t h e r e  e x i s t  a op(y)~M s u c h  t h a t  

Uy--cP(y)II ~ 8  Ilyil, w h e r e  8 < 1  is  i n d e p e n d e n t  o f y .  I f  

(216) 8 ( M ,  N) < (1 --  8) (1 + 8) -1 , 

t h e n  t h e  c l o s e d  l i n e a r  m a n i f o l d  M0 s p a n n e d  by  a l l  q~(y), 

y e N ,  c o i n c i d e s  w i t h  M. 

Remark.  If  dim N <  ~o, (216) can be replaced by a weaker condition 

8 ( M ,  N ) < I .  The same is true if X is a Hilbert space. See the remark 

after I.emma 215. 

Proof. For every y r N we have d ( y ,  M0) < [iY -- q~ (Y) II _ 8 IIY II 

so that 8 ( N ,  Mo)<~ 8. I f  Mo were a proper subset of M, we must have 

8 ( M ,  N ) _  (1 - -8)  (1 + 8) -z by I.emma 215. 
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2. The  specia l  case  of  Hilber t  space .  I f  X is a Hilbert space, 

we can sharpen some of the lemmas stated in the preceding paragraph. 

L e r n m a  221. L e t  M , N  b e  c l o s e d  l i n e a r  m a n i f o l d s  in  a 

H i l b e r t  s p a c e  X w i t h  t h e  c o r r e s p o n d i n g  (perpendicular) 

p r o j e c t i o n s  E , F .  I f  8 ( N , M ) < I ,  t h e r e  a r e  t w o  p o s -  

s i b i l t i e s .  E i t h e r  

i) 8 ( M , N ) = 8 ( N , M ) - =  l i E - - F I I  <~ 1; E m a p s  N o n t o  M 

a n d  F m a p s  M o n t o  N, b o t h  m a p p i n g s  b e i n g  o n e - t o - o n e .  O r  

ii) 8 ( M , N ) = I ;  E m a p s  N o n t o  an  MoCM o n e - t o - o n e ,  

t h e  i m a g e  M0 b e i n g  a c l o s e d  l i n e a r  m a n i f o l d  a n d  a p r o p e r  

s u b s e t  o f  M, a n d  8 ( M 0 , N ) =  8 ( N , M 0 ) = 8 ( N , M ) =  I I E 0 - - F I I < I ,  

w h e r e  E0 i s  t h e  p r o j e c t i o n  o n  M0; t h e r e  e x i s t s  a n  x E M  

s u c h  t h a t  d ( x , N ) = l l x l l > O .  

Proof. For each y.~N, we have Ily--Eyll = d ( y ,  M)~_8 IlYll, 

where 8 = 8 (N ,  M). Hence IIEyll ~ (1 - -  8) Ilyll and the map N .-). E N C M  

is one-to-one and bicontinuous by 8 <  1. Set Mo = EN; Mo is thus a closed 

linear submanifold of  M. 

Each x(EM0 has the form x = E y ,  y ~ N .  x # O  implies y : / :O  and 

a simple calculation gives 

II x - -  IlY I1-2 ( x ,  y)  y II -2 = II x II 2 flY 11-2 IlY - Ey !12 = II x II ~ I!Y 11-2 d ( y ,  M) 2 

82 Ilxll 2 . 

This shows that d(x ,  N)~_ 8 Ilxll. Since this is true for every xEMo,  

we have 8 ( M 0 , N ) _ ~ 8 .  On the other hand it is obvious that 

8 (N ,M0) - - - -  8 ( N , M ) =  8. 

It follows from a known theorem (see Achieser and Glasmann [1], w 34) 

that IIEo--Fll  = 8 <  1 and in turn this implies that F maps M0 onto N 

one-to-one. Thus we conclude as above that 

8 = 8 ( N ,  M0) ~ 8 (M0 ,  N ) .  

Combined with the above inequality, this proves that 

8 (M0, N) = 8 = 8 ( N ,  M).  

We now distinguish between two cases: M0 = M and Mo=/=M. 

In the former case, the proposition i) follows immediately. In the latter 

case, it remains to prove the last statement of  ii); this implies in particular 

8 ( M ,  N ) =  1. Take an x E M  which does not belong to Mo. Since 
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Fx E N, there is an Xo E 34"o such that Fxo = Fx because FMo = N. Thus 

F ( x - - x o ) = O  and so d(x--xo,N)=llx--xoll .  Since X--Xo~O, we 

obtain the required result by writing x in place of x--xo. 
L e m m a  222. L e t  M , N  b e  c l o s e d  l i n e a r  m a n i f o l d s  o f  a 

H i l b e r t  s p a c e  s u c h  t h a t  ~ ( N , M ) < I ,  a n d  l e t  Mt b e  a l i n e a r  

m a n i f o l d  s u c h  t h a t  MaiM, Mt:3~M. T h e n  t h e r e  is  an  xr 
s u c h  t h a t  d ( x , N ) =  IIxll>0. I n  p a r t i c u l a r  ~ ( M 1 , N ) - - 1 .  

Proof. We have two possibilities i), ii) of  I.emma 221. If  the case 

ii) happens, the required x exists already in M. If i) happens, we choose 

an xEMI, x~:M, and apply the same argument as in the proof of 

Lemma 221. to find an xoEM such that d(x--Xo, N)----llX--xoll >0 .  

8. Dual l emmas .  

We now consider the lemmas which are dual of  the foregoing ones. 

Let X* be the adjoint space of X consisting of all bounded linear funct- 

ionals on X. For any subset S of X, we denote by S x the totality of 

f ~ X  ~ such that f & x  (that is, f ( x ) = 0 )  for all x E S .  S a- is a regularly 

closed (t~ linear manifold of X*. 

If M is a linear manifold of X and f ~ X ' * ,  we have 

4231) sup I f(") I --- II f If" ---- d(f, M~-), 
xEM 
ll,c]l=t 

where llfltM is the least upper bound of  the restriction of the linear 

functional f on M. (231) is an easy consequence of the Hahn-Banach 

extension theorem, and is dual to the following relationship: 

(232) sup I f ( x ) [  ---- d(x,  M). 
/ r  M ~- 
II/ll=t 

From these two formulas we conclude easily o~J 

L e m m a  231. F o r  t w o  l i n e a r  m a n i f o l d s . M , N  o f  X, w e  

h a v e  

(233) ~ ( M ,  N) = ~ (N a- , Ma-). 

For any linear manifold M of X, we denote by codim M the dimension 

of  the factor space X ---- X/M; thus codlin M is defined in a purely algebraic 

t0. See Banach |5], Chapter 8. 
11. Cf. GK, Theorem 6.2. 
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fashion. If  M is a closed linear manifold of a Banach space X, we have 

(234) codim M ---- dim M ~- . 

Applying Lemma 211 to the pair. M ' ,  N ~- and noting (231) and 

(234), we obtain 

L e m m a  232. L e t  M , N  be  t w o  c l o s e d  l i n e a r  m a n i f o l d s  

o f  X s u c h  t h a t  c o d i m M > c o d i m N .  T h e n  t h e r e  is  an  f e M "  

s u c h  t h a t  Ilfll = IlfllN > O. 

Similarly Lemma 213 gives 

L e m m a  233. L e t  M , N  b e  t w o  c l o s e d  l i n e a r  m a n i f o l d s  

s u c h  t h a t  c o d i m M - - c o d i m N <  co. I f  I l f l l N < ~ l l f l l  f o r  e v e r y  

f ~ M ' ,  t h e n  I I K I I M ~ 5 ( I - - 8 )  - t l lg l l  f o r  e v e r y  g ~ N ' .  

4. Factor  space.  

In what follows frequent use will be made of  the factor space 

= X/N, where N is a dosed linear manifold of X. As is well known 

(see, for example, Hausdorff [9]), X is a Banach space with the norm 

defined by 

( 2 4 1 )  Ilxll = inf Ilxll = inf l l x - - z l l -  d(x ,N) .  
xEx zEN 

In particular 

(242) ll.~ll s l lxl l .  

Lemma 211 can now be given the foUowing form. 

L e m m a  241. I f  dim M > dim N, t h e r e  is  an  x e M  s u c h  t h a t  

II;'11 = I lx l i>0,  w h e r e  (N is closed by d i m N < o o ) .  

L e m m a  242. I f  llxll<llxlt f o r  e v e r y  x~M,  x~O,  w h e r e  

x~f~=X/N, t h e n  d i m M _ ~ d i m N .  

w 3. NULLITY, DEFICIENCY AND LOWER BOUND OF A LINEAR OPERATOR 

1. Nullity and  deficiency.  In this paragraph we consider linear 

operators from an arbitrat T vector space X into another vector space X'. 
By this we mean that the operator A under consideration has its domain 

D[A]  in X and range R[A] in X"  where D[A] need not be the whole 

space X. For convenience we express this by saying that A is a linear 
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operator (X--~ X'). I f  X0,  X'o are linear manifolds of  X ,  X" respectively, 

we can define a linear operator A0 (X0->-X'0) by setting Aox= Ax for 

every x ~ X 0  such that x ~ D [ A ]  and AxEX'o. We shall say that A0 is 

i n d u c e d by A in the pair Xo, X'o. I f  in particular X'o = X', Ao will be 

called a r e s t r i c t i o n  o f  A t o  X0. In case D[A]cXo, the restriction 

of  A to X0 will be said to be t r i v i a I ; in such a case A0 is not essentially 

different from A. 

The n u l l  s p a c e  of A, denoted by N[A] ,  is the linear manifold 

consisting of all x ~ D [A] such that Ax = o. We set02) 

(311) ~t (A) = dim N [A], [B (A) = codim R [A] = dim X'/R [A].  

a ( A )  is called the n u l l i t y  of  A and ~(A) the deficiency of  A. It  should 

be noted that none of tz(A) and ~(A)  is changed when A is replaced by 

its trivial restriction. On the other hand ~(A),  but not a(A), will be 

changed if A is replaced by A0 induced by A in the pair X ,  X'0,  where 

R [A] c x'0 r x ' .  
For any subset S of  X, we denote by AS the image under A of the 

set S f~D[A]. In other words, AS is the set of  Ax for all xESf~D[A]. 
In particular A N  = R [A], and we ahall often write AX in place of  R [A]. 

Also we use the symbol A -1 S'  to denote the inverse image under A of 

a subset S'  of  X' ,  even when the inverse operator A - I  does not exist. 

I f  A -1 exists, the set A -1 S'  coincides with what is defined above as the 

direct image of  S '  under the map A -1. Obviously we have 

N [,4] = A - '  {o I . 

It is easy to verify that, for any SCX, 

(312) A (BS) = (AB) S, 

where B is a linear operator (X  ~ X'),  A is a linear operator ( X ' - > - X * ) ;  

the product AB is defined as usual as (AB) x = A (Bx) with domain D [AB] 
consisting of all x ~ X such that Bx and A (Bx) make sense. 

The following lemmas are easily proved, though not quite trivial 

because of  the circumstance that the domain of  the operator A need not 

be the whole space X. 

L e m m a  311. I f  M , N  a r e  l i n e a r  m a n i f o l d s  o f  X s u c h  

12. Thus our definition of a (A) and fl (A) is again purely algebraic, and slightly 
differs from that employed in GK. 
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t h a t  N e D [ A ] ,  t h e n 0 3 )  

(3t3)  A ( M + N )  = AM + AN.  

L e m m a  312. F o r  a n y  l i n e a r  m a n i f o l d  M' o f  X', we  h a v e  

(314) dim A - I M  ' ~ dim M' + a (A)  

w h e r e  t h e  e q u a l i t y  h o l d s  i f  M'CR[A], a n d  

(315) codim A - 1 M '  < cOdim M'  + codim D [A] 

w h e r e  t h e  e q u a l i t y  h o l d s  i f  R [ A ] + M ' = X ' .  

L e m m a  313. F o r  a n y  l i n e a r  m a n i f o l d  M o f  X, we h a v e  

(316) codim AM < codim M + ~ (A) 

w h e r e  t h e  e q u a l i t y  h o l d s  i f  N[A]CM.  

We now define the operator 2i which will be used extensively in the 

following. Let N =  N [A] and consider the factor space X = X / N .  Since 

N e D  = D [A], a c o s e t ' x E J ~  which contains at least one x~.D consists 

entirely of elements of D. The totality of such x will be denoted by /). 

On setting 

(317) Ax = Ax for x E L ) ,  

we define a linear operator A (X + X').  We have 

(318) D[A]= D, R[A]=R[A], N[,4]= {0/. 
The inverse A - t  exists and is a linear operator ( X ' - ~ ) ~ ) .  

In general, for any subset S of X, we denote by S the totality of 

x E X containing at least one x E S. Then it can easily be proved that 

(319) / IS  = AS.  

2. Lower  bound  of  a closed l inear opera tor .  We now consider 

a dosed linear operator A ( X - ~  X') where X and X'  are Banach spaces. 

The null space N =  N[A] is then closed, so that the factor space X = X / N  

is also a Banach space (see w 2.4). 

L e m m a  321 . . 4  is  a " c l o s e d  l i n e a r  o p e r a t o r  (X->-X') .  

The proof is simple and may be omitted. 

We now introduce a quantity 7(A), which may be called the l o w e r  

b o u n d  of  A;  it is defined as the least upper bound of  numbers r > 0  

13. As usual we denote by M + N t h e  set of all x + y  with xE/~I, yEN.  
If M fl N = {0} in addition, we write M (~ N for ~1 + N. 
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such that 

(321) IIAxll >- j" Ilxll = ~'d(x, N) for all x~D[A]. 

It should be noted that ~ ' (A)=  ~o if and only if A x = o  for every 

x~D [A]. In other cases j ' (A) is actually the largest number ~" with the 

property (321). Obviously we have 

(322) r(A) = r(A). 

We note that y (A)  is unchanged by 

Lemma 322. I f  A is  a c l o  

c l o s e d  i f  a n d  o n l y  i f  T ( A ) > 0 .  

Proof. Since R [A] = R [,~] and 

the lemma for .~ instead of A. Since 

a trivial restriction (see w 3.1) of A. 

s e d  l i n e a r  o p e r a t o r ,  R[A] i s  

~, ( A ) =  T(.4), it is sufficient to prove 

.~- t  exists and is closed, the lemma 

is a direct consequence of the closed graph theorem. 

When A is a bounded linear operator (X ->- X') with D [A] ---- X ,  

it is known that 7 ( A ' ) =  ~'(`4) where A ~ is the adjoint of A and is 9 

bounded linear operator (X"-->-X~ For general closed linear operators `4 

we are dealing with, the adjoint A" need not exist. But we can introduce 

an operator A + which is essentially equivalent to the adjoint. Let X0 be 

the closure of  D[A]  and let A0 be the trivial restriction of  A to Xo. 

X0 is a Banach space and A0 is a closed linear operator (X0-~-X') with 

domain dense in X0, so that the adjoint A o exists. We define .4+ by 

(323) A+ _-- a ~ 

Thus A + is a closed linear operator (X".-~ Xo). 
The domain of  A + is not necessarily dense in X'*. However, it is 

weakly dense in the sense that x 'E  X" and f'(x')----0 for all f ' E  D [A +] 

imply x ' =  0. This can be proved by considering the graphs of the operators 

A and A +, but we shall not give the proof here since we do not need 

this fact in the following. 

A+f ' =  0 is equivalent to f'(Ax)----f'(Aox)=O for every 

x E D [A]. Hence 

(324) N [a+] = R [a] 

Thus it follows from (231) that d( f ' ,  N [ A + ] ) =  IIf'll~,, where R ' =  R[A]. 
This proves 

L e m m a  323. y(A +) is  t h e  l e a s t  u p p e r  b o u n d  o f  n u m b e r s  

r > 0  s u c h  t h a t  (R'=R[`4]) 
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(325) IIA+f'rl>yIIfllw f o r  a l l  f'(~D[A+]. 

We shall now prove the following lemma, which is basic in the 

present work. 

L e m m a  324. F o r  a n y  c l o s e d  l i n e a r  o p e r a t o r  A, we  h a v e  

(326) y(A +) = yCA). 

I n  p a r t i c u l a r  A h a s  a c l o s e d  r a n g e  i f  a n d  o n l y  i f  A + h a s  a 

c l o s e d  r a n g e .  

Proof. For simplicity we write y =  y(A),  y+ = y(A+). We first 

show that y + > y .  I f  y = o %  we have Ax-=O for all x ~ D [ A ]  and so 

D[A+J=X "*, A + f ' = 0  for all f '~X'*,  hence ~ '+=  co. We may therefore 

�9 assume that 0 < y < c o ,  for y+>y is trivial if f = 0 .  Thus R[A] is 

closed by Lemma 322. I.et f '~D[A+].  For any e > 0 ,  there is an 

x ' E R ' = R [ A ]  such that x ' ~ 0  and If'(x')l 2 - ( 1 - - e )  llf'llR, llx'll, x' has 

a form x ' = A x ,  x (~D=D[A] ,  so that 

[l'(Ax)[ 2_ (x-Ol l f ' l i . . l I  Axll 2 (~ - 0  r II/'l[.. II ~i[. 
where 

because 

we have 

x E X = X / N ,  N =  N[A] and x : # 0  

Ax = Ax = x" ~ O. Since 

i f '(Ax)i = lA+/'(x)! ~_ iiA+ f'fi !Ix!i, 

IIx]l ))A+I'))2_ O - - O ~ ! ] ] ' ) ) ~ , i ) ; l )  �9 

Here lixli can be arbitrarily near to !Ix!!, since the only requirement on x 

is that x E x .  Thus we have 

;iA+ f'H 2- ( 1 - - E ) y l i f ' l [ e , .  

In view of  Lemma 323, this shows that ~ + ~  y.  

We next prove 04) the opposite inequality y+ ~ y .  Since this is trivial 

if y+-= O, we shall assume that y + > 0 ,  We shall now show that, denoting 

by S the unit sphere ilxli ~ 1 of  X, the closure of  AS contains the sphere 

I! .~' II < r + 
argument 

the latter 

14. 
n the case 

of  the subspace [R'] which is the closure of  R ' ;  then a standard 

(see, for instance, Hausdorff [9]) shows that AS itself contains 

sphere and that !]Axll> r+ l lx l ! ,  leading to the desired result 

The proof given below is an adaptation of a proof given by Yosida [14] 
in which A is bounded with DIAl  = X and A* has a bounded inverse�9 
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y ~ ' + .  It should be noted that this argument is valid if A is closed, 

even if it is not bounded. 

Let y" be a point of [R'] with a positive distance from AS. Since 

AS is a convex set, there is a g '~[R']* such that O5) Reg ' ( y ' )>Reg ' (Ax )  

for all x ~ D I3S.  This g" can be extended to an element, again denoted 

by g', of  X'* with Hg~176 By replacing x by eiOx with a 

suitable real $, it is easy to see that 

I g'(ax)I < Reg' (y5  _ I g'(Y)l 
for all x E D ( 3 S .  This implies that x-.~.g'(Ax) is a bounded linear 

functional defined for x ED. Hence A+g" exists and 

[IA§ g'(ySI-<-II g'll Ily'[I-  II g'lIR, I[Y'H. 
On the other hand we have JIA+g'll>r'llg'llR, for any r ' < r  + by 

Lemma 323. Thus we must have ] ]y ' [ l~y+,  which shows that the closure 

of  AS contains the sphere H x' II of [R'].  

3. Closed l inear ope ra to r  with closed range.  Let X and X'  be 

Banach spaces. We are particularly interested in a closed linear operator 

A (X ->- X') with closed range R [A]. As we have shown above, this is 

equivalent to the condition that T ( A ) > 0 ,  and A has closed range if and 

only if A + has closed range. 

L e m m a  331. L e t  A be  a c l o s e d  l i n e a r  o p e r a t o r  (X.->-X') 

w i t h  c l o s e d  r a n g e .  F o r  a (not necessarily closed) l i n e a r  m a n i -  

f o l d  M o f T ,  A M  is  c l o s e d  i f  M + N [ A ]  i s  c l o s e d .  

Proof. Construct the factor space X ' =  X / N ,  N = N [,4], and the 

linear manifold M of .~ as in w 5.1. We have A M  = A2~/" by (319). A" has 

a bounded inverse ~ - t  with bound T(A) - t ,  so that ~12~1 r is closed if 2t7/" 

is closed, for it is the inverse image of  -~ under the continuous map ~/-1. 

It remains to show that ~/' is closed if M + N is closed. 

Suppose that there is a sequence x,  E 217/ such that x,  -->- x E X .  

This implies that d (x,  --  x ,  N) -->- 0 and so there is a sequence zn E N 

such that x , , - - x - - z , - ~ - O .  Since we may assume that x,,EM, this shows 

that x E M + N  if M + N is dosed. Thus we have :~ E.~/" and 2~r is closed. 

15. We denote by Re the real part of a complex number. 
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L e m m a  332. I f  A i s  a c l o s e d  l i n e a r  o p e r a t o r  ( X + X ' )  

w i t h  ~ ( A ) < o o ,  t h e n  A h a s  c l o s e d  r a n g e .  

Proof. Let ~ (A) = m < oo. Take an m-dimensional Banach space Y 

with a basis yt . . . . .  ym and construct the direct sum Z - - - X ( ~  Y .  Z may 

be regarded as a Banach space. Since codlin R [A] = m <  oo, we can find 

m elements x't . . . . .  x'm of X '  which are linearly independent modulo R [.4] 

and which span the linear manifold X" with R [A]. Define a linear operator 

B (Z -~ X')  by setting Bx = Ax for x E D[A]  and Byk = x', for k =  1 .... , m. 

B is a closed linear operator, for its graph has a finite dimension modulo 

the graph of  A, which is closed because A is dosed. The range of B is 

the whole space X" and hence closed. Furthermore, it is easily seen that 

N[B ] = N [ A ] c X .  Hence X + N  [B] = X is closed in Z. It  follows from 

Lemma 331 that R [ A ] = A X = B X  is dosed. 

L e r n m a  333. L e t  A b e  a c l o s e d  l i n e a r  o p e r a t o r  ( X + X ' )  

and let  M be a c l o s e d  l i n e a r  m a n i f o l d  o f  X w i t h  c o d i m M <  oo. 

L e t  A1 b e  t h e  r e s t r i c t i o n  o f  A t o  M. T h e n  At i s  a c l o s e d  

l i n e a r  o p e r a t o r  (M->.X'). A1 h a s  a c l o s e d  r a n g e  i f  a n d  o n l y  

i f  A h a s  a c l o s e d  r a n g e .  

Proof. That A1 is closed is obvious. Since codim M <  oo, M+N[A] 

is dosed. Hence R [A,] = A I M  = AM is closed by Lemma 331, if R [A] 

is dosed. Conversely, if R [AI] is closed, R [A] = A X  is closed because 

dim (AX/AM) ~_ codlin M < oo.  

L e m m a  334. L e t  A b e  a c l o s e d  l i n e a r  o p e r a t o r  (X-~X ' )  

w i t h  c l o s e d  r a n g e .  F o r  a n y  f E N [ A ]  x ,  t h e r e  is  a n  f l e X ' *  

s u c h  t h a t  f ' ( A x ) = f ( x )  f o r  a l l  x~D[A].  H e r e  f" c a n  f u r t h e r  

s a t i s f y  o n e  o f  t h e  f o l l o w i n g  c o n d i t i o n s .  

i) I I f ' l l  r ( a ) - ' l l f l l  
ii) f" EM "4-, w h e r e  

X '  s u c h  t h a t  M'+R[A]  

M'  i s  a c l o s e d  l i n e a r  m a n i f o l d  o f  

is  c l o s e d  a n d  fE (A- 'M ' )a - ;  t h e  l a s t  

c o n d i t i o n  i s  s a t i s f i e d  i f  M ' I%R[-4]={0} .  

Proof. Ax.= o implies that x E N [A], f (x) ---- 0 .  We  can therefore 

define a linear functional f" by setting f ' ( A x ) - - f  (x); f '  is thereby defined 

on R ' =  R [A] and is bounded. In fact, we have 

I II/11 I1 11, 
but as x may be any element of  x E 2( = X / N ,  N = N [A], containing x, 
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it follows that 

i/'(a~)l<llfiillxll<llfllr--'ilAxii, r =  r (A).  
f '  can now be extended on the whole space X'  without changing its bound 

r - '  II f II, this proves i). 

To prove ii), we set L ' =  M'f~R'.  L' is a closed linear manifold of 

X" and f '  (x') = 0 if x' ~ L'. In fact, x' ~ L" implies that x' = Ax for some 

x fi O [A] and Ax ~ M' ; hence x ~ A - I  M" and 1" (x') = f" (Ax) = f (x) = o 

by hypothesis. 

We now introduce the factor space 2~ '=  X'/L'  and its subspaces 

~t'=M'lZ,', k'=l~'/z,'. Obviously we have / I [ /"Ok '= {01 and 

.~'o = .~" ~ R" = ( M" + R') / L" 

is closed because X ' o = M ' + R "  is closed by hypothesis. Thus X'0 is a 

Banach space and there is defined a bounded projection E from X'0 onto i~' 

along /'1~'. 

The linear functional f '  defined on R" induces a linear functional 

/ "  on R' defined by ] ' (k5 = / ' (x ' ) ;  the definition is justified because 

x ' =  0 implies x '~  L" and so f ' ( x ' ) =  0 by what is proved above. Further- 

more, .[' is bounded. In fact, we have 

I ] ' tx ' ) l  = If '(xSI < r " ' l t f  Ii ii x'il 
and hence 

[ ]'(07)1 z r - '  II.r II II#Ji 
because x" can be, replaced by any other element of x'. 

We can now extend the linear functional f" to a linear functional, 

again denoted by f ' ,  defined on X'0. We set f '  (x 5 = ] '(Ex')  for x 'E  X'o. 

It is easy to see that f '  is a bounded linear extension of  the original f '  

with bound not exceeding r - " l lEI I  I I / l [ ,  and that f ' ( x ' ) = 0  for x 'EM' .  

This f" can finally he extended to an f ' E  X'* by the Hahn-Banach theorem. 

Remark.  f" (Ax) = f (x) implies that A + f" = fo ,  where f0 E X 0 is 

the restriction of the functional f on X0, X0 being the closure of  D [A]. 

Lernmn 335. I f  A is  a c l o s e d  l i n e a r  o p e r a t o r  (X.->.X') 

w i t h  c l o s e d  r a n g e ,  we  h a v e  

(33X) N [ A  + ] = R [ A ] ' ,  R [ a  + ] = N [ A Y - ,  . ( a + ) = f ~ ( A ) .  

H e r e  N [ A ] "  is  t o  b e  c o n s t r u c t e d  f r o m  N[A] r e g a r d e d  as 
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a s u b s e t  o f  t h e  s p a c e  X0 w h i c h  i s  t h e  c l o s u r e  o f  D[A] ,  s o  

t h a t  N [ A ] "  C X  o. 

Proof .  The first equality has already been proved, see (324). Hence 

a (A +) = dim N [A +] = codim R [A] = [3 (A) 

in virtue of  the closure of  R [ A ] .  The second equality of  (331) follows 

from the remark after Lemma 334, which implies that N[A]-~CR[A+] ,  

while the opposite inclusion is obvious. 

4. P r o d u c t  of  c lo sed  l inear  o p e r a t o r s .  W e  shall prove a lemma 

concerning the closure of  the products o f  two closed linear operators. 

L e m m a  341. L e t  X , X ' , X "  b e  B a n a c h  s p a c e s .  L e t  24 b e  

a c l o s e d  l i n e a r  o p e r a t o r  ( X ' + X ' )  w i t h  a c l o s e d  r a n g e  a n d  

w i t h  a ( A ) < o o ,  a n d  l e t  B b e  a c l o s e d  l i n e a r  o p e r a t o r  

( X ~ X ' ) .  T h e n  A B - i s  a c l o s e d  l i n e a r  o p e r a t o r  ( X + X " ) .  

I f  i n  a d d i t i o n  B h a s  a c l o s e d  r a n g e .  ,A B  h a s  a c l o s e d  

r a n g e .  

Proof .  Suppose that there is a sequence x~ r D [AB] such that 

x , , . ~ . x E X ,  A B x n . - ~ x " E X ' ,  n . ~ o o .  W e  have to show that 

x(~D[AB]  and A B x =  x".  

Consider the factor space ) C ' =  X ' / N ' ,  N ' =  N[A],  and the operator  

,4 (X ' - - ) -X" )  defined by A y ' =  Ay ' .  On s e t t i n g  x ' ,  = Bx,,, we have 

~4x',, = Ax',, = ABx,, -->- x" E R [A l since R [A] is closed. / l  has a bounded 

"' A-,  ;r  �9 inverse and so we have x , ~  x ' .  Set [ 4 - ' x ' ,  then 

x" = = A x ' ,  

" t  ~ t  �9 p 
Since x ~ ~ x ,  there is a sequence z'n E N" such that x'n - -  z ,  --)- x . 

Assume first that the sequence z ' ,  is bounded. In virtue of  the 

assumption that d im N ' =  a ( A ) <  0% we may assume that z ' ,  -~ z' for some 

z ' ~  N ' ;  otherwise we need only to replace the sequence z ' ,  by its suitable 

subsequence. Thus Bx,, = x',, ~ (x',, - -  z',,) + z',, ~ x" + z' .  Since x ,  --)- x and 

B is closed, we see that x ( ~ D [ B ]  and B x = x ' + z ' .  Hence B x ~ D [ A ]  

and ABx  = A (x" + z') = Ax" = x ' ,  as we wished to show. 

Assume now that the sequence z ' ,  is not bounded. W e  may assume 

as above that ~'. = 11 z ' .  l] "-)" co. Set u ' .  = ~'~-t z ' . .  Then II II = x and 

~'~Ix 'n--u' , ,  = ~ . '~ l (x ' , , - - z 'n )~  O. Again, choosing a subsequence if 
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necessary, we may assume that u'~ o- u '  ~ N ' .  Thus 

B = + , , ' .  

Since ~-~-t x,  ->- 0 and B is closed, we have u '  ---- B0 ---- 0, which contradicts 

the fact that u',, + u', I[ u's [] = 1 . This excludes the possibility that the 

sequence z'n is unbounded, and completes the proof of  the closure of  AB. 
If  B has closed range, R[AB]-~ ABX = A(BX) is closed by 

Lemma 331, since BX+N[A] is closed in virtue of dim N [ A ] <  co. 

w APPROXIMATE EIGENVALUE AND SOME STABILITY THEOREMS 

t .  P tpprox imate  nullity and  deficiency.  Let X ,  X" be Banach 

spaces and let A be a closed linear operator (X--~ X'). a ( A ) =  dim N [A] is 

equal to the multiplicity of  the eigenvalue 0 of  .4. (If  a ( A ) =  0, 0 is 

usually not called an eigenvalue of A, but we may regard 0 as an eigen- 

value with multiplicity zero). We now introduce the multiplicity a'(A) of 

the a p p r o x i m a t e  e i g e n v a l u e  0 of  A. 

Let there be a number m = 0, 1, 2 . . . .  or oo with the property that, 

given any e > 0 ,  there is an m-dimensional closed linear manifold N, CD [A] 

such that 

(411) IIA II  _ llxll for every xcNe,  
while this is not true if m is replaced by a larger number. In such a case 

we set a ' ( A ) =  m by definition, a '  (,4) takes the values 0, 1, 2, ... or oo 

as well as a (.4). a" (A) will be called the a p p r o x i m a t e n u I I i t y of  A. 

We  define the a p p r o x i m a t e  d e f i c i e n c y  of  ,4 by 

(412) = a ' ( A + ) .  

It is by no means obvious that a ' (A)  is defined for every closed 

linear operator A ; it would be a priori possible that there is no finite m 

with the required property while the condidon is not satisfied by m-- -co .  

However, the following lemma shows that actually a'(A), and hence also 

~ ' (A),  is defined for every A. 

L e m m a  411. A s s u m e  t h a t  f o r  e a c h  f i n i t e  m a n d  ~ > 0 ,  

t h e r e  i s  a n  N~(:D[A] w i t h  dimNs=m a n d  w i t h  t h e  p r o p e r t y  

(411). T h e n  w e  h a v e  a ' ( A ) = c o .  

Proof. Let M be a dosed linear manifold of  X with codlin M <  oo. 

Then there is a linear manifold N,  with dim N ,  >codim M and with the 
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property (411). The linear manifold MI'~Ne has a positive dimension, and 

each x~MON~ satisfies the inequality I1Axl] ~ ~[[x[[. Thus Lemma 411 

is reduced to the following 

L e m m a  412. A s s u m e  t h a t ,  f o r  a n y  e > 0  a n d  a n y  c l o s e d  

l i n e a r  m a n i f o l d  M o f  X w i t h  c o d i m M < o o ,  t h e r e  is  an  

x~M(~D[A] s u c h  t h a t  [Ix[[=1, HAxII~_~. T h e n  a ' ( A ) =  ~ .  

Proof. We have to show that, for each ~>0 ,  there is a closed linear 

manifold NsCD[A] with d i m N ~ = ~  and with the property (411). For 

this purpose, we construct two sequences xn E D [A] and fn E X* with the 

following properties : 

[ [xnH= 1, l l f - ] [ =  1,  fn(zn)= 1, 

(413) f , ( z , ) = O ,  k = l ,  2 ..... n - - l ,  

[IA~.[l___ 3--"~, n =  1 , 2 , 3  . . . . .  

Supposing that xk,  f ,  have been constructed for k = 1 . . . . .  n -- 1, x ,  and 

fn  can be found in the following way. Let M C X  be the set of all x such 

that fk ( x ) =  0, k : 1, ..., n - - 1 .  Since M is a closed linear manifold of  X 

with c o d i m M < o c ,  there is an x, EMf~D[A] such that ]]x,]] = 1,  

I[Axn[]<_~ 3-n8 .  For this xn there is an f ~ E X *  such that [[f,[[ = 1 

and f , ( x~)= 1. 

Obviously xn are linearly independent, so that the linear hull Ls of 

the set xn is of  infinite dimension. Each x E L8 has the form 

(414) x-= ~lxt  + ... + ~nXn. 

Hence for k =- 1, 2, ..., n ,  

(415) fk(x) = Stfk(xt)  + ... + Sk--tfk(xk--t) + Sk, 

by (413), and we have 

(416) I~kl ~-- 2 '-111~[1, k---- 1, 2 . . . . .  n .  

This can be proved by induction. For k =  1 this is obvious from (415) 

and (413). Assuming that (416) has been proved for k < r ,  we see from 

(415) that 

I~,1 _~ IA(~) I  + I~ ,11 / , (~ , ) I  + ... + I~ , - ,  I I f , ( ~ , - , ) l  

- - I I~ l l  + I1~11 + ... + 2"-~11 ~11 = 2'-111 x 11 �9 
It follows from (413), (414) and (416) that 

< ( 1 / 3 + 2 / 3 '  + ... + 2- - -1 /3- )~  IIx 11 <= ~ l l ~ l l .  
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Thus A is defined everywhere in Le and is bounded with bound not exce- 

eding ~. Since A is closed, A is also defined and bounded with the same 

bound in the closure N~ of L~. This proves that (411) is true with 

dim N~ = co . 

8. Closed l inear  ope ra to r  with non-closed range.  It is obvious that 

(421) a'(A) > a(A). 

L e m m a  421. I f  A is  a c l o s e d  l i n e a r  o p e r a t o r  w i t h  a 

c l o s e d  r a n g e  (that is, y(A)>o), t h e n  

(422) o." ( A ) =  el(A), ]] '(A) = ~ ( A ) .  

Proof. y(A)>o implies y ( A + ) > 0  and a ( A + ) =  ~ ( A ) ,  see Lemmas 

324 and 335. In view of (412), it is therefore sufficient to show that 

a'(A) = ct(A).  Suppose that there is a closed linear manifold N~ with 

dim N,>a(A) = dim N[A] and with the property (411). According to 

Lemma 241, there is an x e N e  such that IIxil = lixll = 1, where 

x ~ X = X/N[A]. Hence we have llAxll > y = y (A) on the one hand and 

[IAx[J ~ on the other, leading to the inequality E ~  y.  In other words, 

there is no N~ with the above property for E < y .  This proves that 

a'(A)~a(A). Combined with (421), the lemma is proved. 

L e m m a  422. I f  A i s  a c l o s e d  l i n e a r  o p e r a t o r  w i t h  n o n -  

c l o s e d  r a n g e  (that is, y ( A ) = 0 ) ,  t h e n  

(423) c((A) = ~ ' ( a )  = oo 

Proof. Since y ( A ) =  y(A +) and [3'(A) is given by (412), it is suf- 

ficient to prove that y ( A ) =  0 implies ct'(A)-= co. Let M be any closed 

linear manifold of X with codim M < o %  and let A t ( M - ~  X')  be the 

restriction of  A to M. Then R[A~] is not closed by Lemma 333. Thus 

y ( A t ) - - O  and there exists, for any ~ > 0 ,  an x~MI3D[A] such that 

I l x l [ = l  and ! l A x l l < ~ l l x l i _ ~ l l x l I - - E ,  where x~SC=X/N[A]. This 

shows that the assumption of Lemma 412 is satisfied. 

We note that Lemmas 421 and 422 imply the following inequality 

corresponding to (421) : 

(424) ~ '(A) ~ [3 (A). 
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3. Pt stability theorem.  

We now prove our first theorem on the stability of the property of 

a linear operator having a closed range. 

T h e o r e m  1. L e t  X a n d  X" b e  B a n a c h  s p a c e s  a n d  l e t  A be  

a c l o s e d  l i n e a r  o p e r a t o r  ( X ~ X ' )  w i t h  c l o s e d  r a n g e  (so that 

y ( A ) > 0 )  a n d  w i t h  at  l e a s t  o n e  o f  c~(A) a n d  13(A) f i n i t e .  L e t  

B be  a b o u n d e d  l i n e a r  o p e r a t o r  (X" ->-X') s u c h  t h a t  

D[B]~D[A] a n d  IIBII<y(A). T h e n  t h e  l i n e a r  o p e r t o r  A + B  
is  c l o s e d  a n d  h a s  c l o s e d  r a n g e  (y (A + B) > 0) . F u r t h e r m o r e ,  

we h a v e  

(431) a(A +B) <= a(A), I3(A + B) < 13(A). 

Remark  1. Also we have 

(432) a (A + B )  .-- ~(A +B)---- a(A)  --  13(A). 

T h e  p r o o f  o f  (432) w i l l  be  g i v e n  l a t e r  (Theorem 6). 

Proof. That A + B defined with D [A + /3]  = D [A] is a closed linear 

operator (X-->-X') is obvious. To show that A + B has closed range and 

that (431) holds, it is sufficient to show that 

( 4 3 3 )  a ' (A+B)<a(A) ,  f ;(A+B)<f3(A).  

In fact, (433) implies (431) by (421) and (424). On the other hand, 

(433) implies that at least one of  ~'(A4-B) and ~'(A+B) is finite; 

Lemma 422 then shows that A + B  has closed range. 

To prove (433), suppose that there is a closed linear manifold M~ 

such that ] ( A 4  B) u [ l ~ l l u l l  for every u E M s .  Then 

(liBII + ~)Ilull >-IIBull + II(A + B)ul[ ~ IIAuJl > y Iluli, 

where y = y ( A )  and u E X = X / N ,  N=N[A]. If  E is so small that 

0 < e < y - -  II B II, it follows that d (u , N) = II u Jl < II u II if 0 ~: u ~ Ms.  

Hence we have dim M ~ d i m  N =  ct(A) by Lemma 242, which means 

that a ' (A + B) ~ ct (A). 

To prove the second inequality of  (433), we may assume that 

D[B]-~ DIAl, for A + B  is not changed when we restrict B on the 

domain D[A]. Then both A + and B + are linear operators (X'*-->'X o) 

where X0 is the closure of D [A], and we have the obvious relationship 

(A +B)+=A++B + . Also it is obvious that IIB+II ~ IIBII because 
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B + = B o where Bo is the operator (Xo ~ X')  which is the restriction of 

B to X0. Since y ( A + ) = y ( A )  by Lemma 324, we have IIB+II<T(A+).  

Applying to the pair A + , B + what has been proved above, we obtain 

j3" (A + B) = a" ((A + B) +) ----- a" (A + + B +) ~_ a (A +) = ~3 (A), 

where we have used (412) and (331). 

Remark  2. Theorem 1 gives rise to two questions. The first is whether 

we can give some estimate of  j ' (A + B )  in terms of  y(A) and IIBH. 

Since Theorem 1 implies that ~" (A + B) > 0 if [[ BJl < je (A),  one might 

suspect that something like the inequality j" (A + B) ~ T (A)- -  ]] B I[ holds. 

But this is not correct. By its very nature j" (A) does not have such a lower 

semi-continuity, y (A) is defined as inf I] Ax  II / l i x II where x E X = X / N  [A] ; 

�9 but N [ A ]  may change quite discontinuously with A, leading to lower 

discontinuity of r (A). In fact, let A be a linear operator in a finite-dimensional 

Banach space X and let r (A) 2> 0. Then it is easily seen that j" (A--~.I) ~ IJ~l 

for suffidendy small J~-# 0, whereas T (A) > 0 .  

We shall see later, however, that there is a case in which we have 

the inequality T (A + B) ~ T (A)- -  [I B II (see Theorem 3). 

Remark  3. The second question is whether Theorem 1 remains 

true when ct ( A ) =  ~ ( A ) =  oo. The answer is again in the negative as is 

seen from the following example. Let X be a Hilbert space with a complete 

orthonormal set x t ,  x2 . . . .  , Yl ,y2 . . . . .  Define an operator A by 

(434) Axs  = O, Ay,, = a n x ,  + f 3 , y , ,  n --- 1, 2 . . . . .  

where an, ~, are constants such that 

(435) ! 2 + 18. I' - -  1 ,  8 .  0 .  

Assume further that the set ~n is dense in the unit circle of  the complex 

plane. 

It is easily seen that A can be extended uniquely to a bounded linear 

operator defined everywhere in X, which will be again denoted by 21. 

It is also easy to see that 21 is a partially isometric operator with 

a (A) ---- [3 (A) = 00, T (21) = 1. On the other hand, it can be verified without 

difficulty that a ( A -  ~ / ) =  0 for ~ which is different from 0 and all ~ , ,  

whereas a (A --  ~ , / )  ----- 1, N [A --  ~n/] being spanned by the single 

vector Ay, , .  

Set u,,,----- am X,n + ~Y,n. Then 
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J l - . ,  = I o ~  - I~1 
If ~.~:0 and ~:~[3~ for every n, we have [lu.,ll = liu,.[I because ~(A--k/')-----0, 

where u ~ X = X { N [ A - - ~ I ] .  I{ ~ . = ~ . ,  we have still {[u,.l[=llu.,ll 

for m ~ n because (urn, u . ) =  0 and u.  coincides with Ay~ which spans 

N [ A - - ) d ] .  In each case (436) shows that 

v (.<l - u )  = infll (m - -  XS) ul' / I1'71l < inf II ( A -  xr),,,,, II/I1,,.,11 = o 
#lri :.2~ #'1 

provided ] ~ l ~ l ,  for the set ~. is dense in the unit circle. Thus ~ . = 0  

is the only point in the unit circle for which A -  ~l/ has closed range. 

4. Extension to u n b o u n d e d  perturbat ion.  Theorem 1 can be 

extended to unbounded B in the following fashion. 

T h e o r e m  la. T h e o r e m  1 is  t r u e  i f B  is  a l i n e a r  o p e r a t o r  

(X->-X ' )  s u c h  t h a t  D[B]DD[A] a n d  

(441) !IBxll ~ o Ilxll + z IIAxll f o r  a l l  x~D[A],  

w h e r e  o a n d  z a r e  n o n - n e g a t i v e  c o n s t a n t s  s u c h  t h a t  

(442) o + T r (A)  < r (A ) .  

Remark  1. As is well known, such constants o,  ~ exist if D[B]DD[A] 
and B has a closed extension. 

Remark  2. Again the equality (432) is true, as will be proved later 

(Theorem 6). 

Proof. First we show that A + B  is a closed linear operator. We 

note that D[A + B] =D [A] = D  and that (441) implies 

(443) II(A + B)xll 7> - -  o Ilxll + (1 - - 0  IIAxII, x ~ D ,  

where 1 - - T ~ 0  by (442) and 7"(A)~0.  Suppose there is a sequence 

x , ~ D  such that x , - - > - x ~ X  and (A+B)  x,,--~x'EX'. Then x~ and 

(A+B)x,, are Cauchy sequences. Applying (443) to x,--x,,, in place of x 

and noting that l - - z > 0 ,  we see that Ax,, is also a Cauchy sequence. 

Since A is closed, it follows that x ED and Ax,,.-~ Ax. Applying (441) 

to x n - - x  in place of x, we see then that Bx,,.-~Bx. Thus we obtain 

x'= (A q.-B)x. This proves the closure of A-bB.  It should be noted that 

so far we have only used the assumption that z <  1. 

We now introduce in D a new norm by 

(444) I[10,111 = ( o +  e)Ilxll + (z + ~)Ilaxll 7> e Ilxll, 
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where ~ is an arbitrary but fixed positive constant. In view of the closure 

of A, it is easy to see that D becomes a Banach space by the new norm, 

which will be denoted by X. We can now regard A and B as linear 

operators (X-) -X ' ) ;  in this new interpretation they will be denoted by 

and B respectively. A and B are defined everywhere in X and bounded as 

(445) IIAli ~ (T + 0 - ' ,  IIBII ~_ 1. 

It is obvious that R [2 ]  = R [ A ]  is closed and that 

(~)  = ~ CA), 13 (3)  = f3 CA), 
(446) 

a ( A ' +  B ) =  a ( A + B ) ,  ~ ( 2 +  B ) =  ~ ( A + B ) ,  

so that at least one of c~ (A) and [5 (-~) is finite. 
A 

Let us now see how y(A) is related to ~" (A). By definition 

r (A~)= inf II ~lxll/[[!x!H---inf II Axla/[[[~ll! 

where ~ ~ } ' =  X/N, N = N [A]. But 

(447) lii•l[I = inf !i]x-z[!l --- inf [(o+~) [ix-zll + ('v-be)li A (x--z)!i] 
zEN zE N 

= (~ + ~) II x II + (~ + e) I1Ax II 

(note that Az = 0). Hence 

ii Ax II ir (A) 
(448) r ( A ) =  inf = 

I ' x ~ D  ( .  +~) [[xJI + (T+e) l,axh o + F, + (T+0 r ( a )  

in virtue of the definition ~'(A) = inf llAxll / Ilxll . 

In view of the assumption (442), we can make y ( ~ ] ) > l  by taking 

e small enough. Since [I/~t1 .<S 1 by (445), we can thus apply Theorem 1 

to the pair ] ,  2 ,  with the result that R [7t + ~]  = R [A + B] is closed 

and that (431) holds for A , B  replaced by "A, B .  Considering (446), this 

proves Theorem la. 

S. Second stability theorem.  

For convenience a closed, bounded linear operator B (X->-X' )  will 

be said to be s t r i c t l y  s i n g u l a r  if there is no linear manifold MCD[B] 
with dim M = co such that the map M->-BM is a homeomorphism. r 

In other words, a closed, bounded linear operator B is striclty singular if 

16. Since B is bounded, it is sufficient to consider only closed M. 



PERTURBATION THEORY FOR NULLITY, DEFICIENCY... 285 

and only if the existence of a [ ~ 0  such that [IBxJJ~ y JJxj[ for all 

x ~  M implies that dim M ~  oo. 

As is easily seen, a completely continuous operator is strictly singular. 

The converse is true if both X and X '  are Hilbert spaces, as will be shown 

below. But the question is open whether the same is true in the general 

case. Also we do not know whether the strict singularity of  B implies 

the same for B +. 

We can now prove our second stability theorem. 

T h e o r e m  2. L e t  X , X "  b e  B a n a c h  s p a c e s .  L e t  A b e  a 

c l o s e d  l i n e a r  o p e r a t o r  (X-->-X') w i t h  c l o s e d  r a n g e  a n d  

w i t h  (x(A)~oo a n d  l e t  B b e  a s t r i c t l y  s i n g u l a r  o p e r a t o r  

(X-) ,X ' ) .  T h e n  A q-B i s  a c l o s e d  l i n e a r  o p e r a t o r  w i t h  

c l o s e d  r a n g e  a n d  a. (A+B)~oo.  

Proof.  It  is easy to verify that A-b  B is a closed linear operator; 

note that D [A + B] ----- D [A] f ~ D [ B ]  and D[B]  is closed because B is 

bounded and closed. 

Set N = N [ A ] .  Since dim N ~  oo, there is a closed linear manifold 

)fro of X such that X ~ Xo ~ N.  Let A0, Bo be respectively the restrictions 

of  A , B  to X0. Then c~(A0)~-0 and, since R [ A 0 ] ~ R [ A ]  is closed, 

we have i]Axll-~ flAoxJJ~ yo Iixll for every x~D[Ao]-~ D[A]f~ Xo, 

where 7 0 = y ( A 0 )  ~ 0 .  

Suppose that there is a closed linear manifold M~ C D[Ao q-B0] 

such that [E(A0 + B0) ull _~ ~ flulJ for every u ~ M~. Then 

[i Bu II = I! B o u  Jf ;> rl Aou Jl -- ]I (Ao q- Bo) u [F ~> ('1"o - -  ~) 11 u II �9 

I f  e is so small that i ' 0 m ~ 0 ,  this shows that dim M ~ o o  because B 

is strictly singular. Thus we have proved that ct'(Ao-b13o)~ co. This implies 

on the one hand that R[Ao + B0] is closed (see Lemma 422);  then 

R [ A + B ]  is also closed by dim R [ A q - B ] / R [ A o + B o ] ~ d i m N (  oo 

On the other hand we have a (Ao-bB0)~  oo and hence 

a (A q- B) ~ a (A0 -k Bo) q- dim N ~ oo. 

Theorem 2 can be extended to unbounded B. We shall say that a 

closed.linear operator B (X->-X') is s t r i c t l y  s i n g u l a r  r e l a t i v e  t o  

a c l o s e d  l i n e a r  o p e r a t o r  A (X--)-X*) if D[B]2)D[A] and there is 

no linear manifold M(7.D [B] with dim M - - - - ~  such that 
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IIBxll/(llxll + Ilaxll) ~ y > 0 

for all x E M. If  we introduce the norm Illxll! = Ilxll + IlAxli in O = D [h i ,  

D becomes a Banach space )t ~. Let .4, B be the operators A ,  B regarded 

as operators ( , Y ~  At'). As is easily seen, B is strictly singular. 

We can now prove 

Theorem 2a. L e t  X,  X" be B a n a c h  s p a c e s .  L e t  A be  a 

c l o s e d  l i n e a r  o p e r a t o r  (J(--~X') w i t h  c l o s e d  r a n g e  a n d  

w i t h  ~t(A)<oo. L e t  B be a c l o s e d  l i n e a r  o p e r a t o r  (X--~X')  

s t r i c t l y  s i n g u l a r  r e l a t i v e  t o  A. T h e n  A + B  is  a c l o s e d  

l i n e a r  o p e r a t o r  (X-->.X') w i t h  c l o s e d  r a n g e  a n d  c t (A+B)< oo. 

Proof. Let ~ ' ,  A , / ~  be as above. Both A and B are bounded and 

defined everywhere in ~'. Since B is strictly singular, a ( A ) = a ( h ) < o o  

and R [A] = R [A] is closed, Theorem 2 is applicable to the pair ,4 ,  B,  

with the result that R [A + BJ = R [~ + B] is closed and 

a ( A T B )  = a ( A ' + B )  < ~ .  

It only remains to show that A + B  is a closed operator. To see this, it 

is convenient to apply Lemma 341. Let E be the operator which maps 

every x ~ D onto the same element x ~ J[. The inverse E -1 is defined on 

~" and bounded by I1E-llt ~ 1. Hence E is a closed linear operator 

(X-->-X'). Since A + B = (.4 + B)E ,  it follows from Lemma 341 that 

A + B is closed. 

6. Properties of strictly singular operators. This paragraph is 

devoted to proving some lemmas on strictly singular operators introduced 

in the preceding paragraph. 

L e m m a  461. I f  B is  a s t r i c t l y  s i n g u l a r  o p e r a t o r ,  t h e  

s a m e  is  t r u e  f o r  AB a n d  BC w h e n e v e r  t h e  p r o d u c t s  a r e  

s i g n i f i c a r t t  a n d  A,C a r e  c l o s e d ,  b o u n d e d  l i n e a r  o p e r a t o r s .  

Proof. Both AB and BC are bounded, closed linear operators. Suppose 

that we have a linear manifold MCD[AB] such that ]1ABx]I~_ YIIx!i, 
~'>0, for all xEM.  Then we'have llBx[I>rllAll-' Ilxl[ s o  that d i m M < o o ,  

which shows that AB is strictly singular. Suppose again that I]BCx[I ~ y I!xjl, 
r > 0. for .It x M C D  [BC]. Then IIBO, II _ r I l c f l - '  IIc-#l and so we  must 
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have dim CM<~o. But since Cx=o  and x ~ M  imply x = 0 ,  we have 

dim M =  dim CM< oo. This shows that BC is strictly singular. 

L e m m a  462. I f  B~,Bz a r e  s t r i c t l y  s i n g u l a r  o p e r a t o r s  

(X->.X'),  t h e i r  l i n e a r  c o m b i n a t i o n  ~.1B~4-3.2B2 is  a l s o  

s t r i c t l y  s i n g u l a r .  

Proof.  It is obvious that we may assume that k~=~.2= 1. Set 

B = B I + B z  and suppose that there is an MC.D[B]=D[B,]&D[B2]  

such that 118,,ll_ rl!,,rl, r > 0 ,  for every x m. We have to show that 

dim M<~oo.  As remarked above, we may assume that M is a closed 

linear manifold. 

Let B ~  B ~ B ~ be respectively the restrictions of  B ,  B I ,  Bz to M. 

B ~ , B ~ are strictly singular. [[B~ > yIIxll shows that B ~ has closed range 

with a(B ~ 0. It  follows from Theorem 2 that B ~  B ~  B ~ has closed 

range with a ( B ~  oo. ~.et N=N[B~ Since dim N <  co, there is a closed 

linear manifold L such that M = L ~ N .  Let B0 be the restriction of B ~ 

to L. Then a ( B 0 ) = 0  and R[B0] = R[B ~ is closed. Thus we have 

ItB~ x[I = IIBoxl[ ~ yo IIXl[ , yo = r(Bo) >O, for all x E L. Since B ~ is strictly 

singular, we must have dim L <  oo. Hence dim M <  oo as we wished 

to show. 

L e m m a  463. L e t  Bn, n ~ l ,  2 ,3  . . . . .  b e  a s e q u e n c e  o f  

s t r i c t l y  s i n g u l a r  o p e r a t o r s  (X.-~X') w i t h  c o m m o n  d o m a i n  

D s u c h  t h a t  IIB,,--BI}.->-O, n.-~.oo, f o r  s o m e  b o u n d e d  l i n e a r  

o p e r a t o r  B w i t h  d o m a i n  D. T h e n  B is  s t r i c t l y  s i n g u l a r .  

Proof.  Let M C D  be a closed linear manifold such that IIBxll~ rltxlt, 
y > 0 ,  for x ~ M .  We have to show that d i m M < e ~ .  Let n be so large 

that IIB,,--BI[=r Then [[B~x[[ > IlB~II--IICB.--B),,II ( r - 0 l l x l l  

for x E M. Since Bn is strictly singular, we must have dim M <  oo. 

Remark .  The above lemmas show that the set of  all strictly singular 

operators ( X - ~  X)  with domain X is a closed two-sided ideal of  the ring 

of all bounded linear operators. From this and the fact that the identity, 

operator I of J (  is not strictly singular if dim X = o% it follows that the 

strict singularity implies complete continuity if X ' =  X and X is a Hilbert 

space. But this is true even if X ' #  J(  provided X" and X '  are Hilbert spaces. 

A simple proof  of  this fact is given by considering the operator ]B] = (B ~ B)92 

which is a self-adjoint operator on X. (Note that here we use B* in the 
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sense of the "Hilbert adjoint", deviating from the general usage in the 

present paper of the adjoint operator in the sense of "Banach adjoint", see 

Zaanen [15].) As is well known, there is a partially isometric operator 

C ( X o - X ' )  such that B =  C IBI, IBI=C*B. Thus, by Lemma 461, B is 

strictly singular if and only i f [ B  I is strictly singular. But it is easily seen 

that a self-adjoint, strictly singular operator is completely continuous. Thus 

we see that IB! and hence B = C IB} are completely continuous. 

w v(A : B) 

1, Definition. 

In this paragraph we consider two vector spaces X ,  X '  and two 

linear operators A ,  B (X.-~-X'). We define by induction two sequences of 

linear manifolds of X 

M , , = M , ~ [ A : B ] ,  N , , = N , , [ A : B ] ,  n = 0 ,  1, 2, .. 

in the following way. 

(511) Mo = X ,  M, = B-I(AM~.. t ) ,  n =  1, 2 .... 

(512) No = {0}, N.  = A - '  (BN. - t ) ,  n = 1, 2 . . . . .  

Here A - I s '  denotes the inverse image of S' under the map A, see w 3.1. 

It is easy to see by induction that 

X = Mo :::) D [B] ~ M, :::) M2 :::) ... ~ N [B], 
(5t3) 

{0} = No C: Nt (:: N, C ... C DIAl .  

It should be noted that 

(514) N, = lV, [A: B] = N[A].  

In the particular case in which X ' =  X and B is the identity operator 

I of  X, we have 

(515) M,,[A: I] --- R[A"], N,,[A: I1 = N[A"]. 

The following inequalities can be proved easily by the definition (511), 

(512) and the inequalities (314), (315), (316), 

(516) dim N~ ~_ n a(A),  dim BN~ ~ n a(A).  

codim M.  ~ n [3 (A) + n codim D [B], 
(517) 

codim AM. ~ (n + 1) ~ [A] + n codlin D [B]. 

The following lemma is basic in our work. 
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L e m m a  511. L e t  n be  a p o s i t i v e  i n t e g e r .  T h e  f o l l o w i n g  

n + l  c o n d i t i o n s  a r e  e q u i v a l e n t  t o  o n e  a n o t h e r .  

(1) Nt C M',, (2) N2 C M' , - ! ,  ..., (n) N,, C M~, 

(*) AN~+t=BN, ,  N, C D [ B ] ,  k = l ,  2 . . . . .  n .  

W h e n  t h e s e  e q u i v a l e n t  c o n d i t i o n s  a r e  s a t i s f i e d ,  we h a v e  

(518) dim Nk+, = dim BN, + a(A) ,  
k .= O, 1, ..., n .  

(519) codim AMk = codim Mh + 13 (A),  

Proof. First we prove the equivalence of the n conditions ( t )  to (n). 

For each r = 1 , 2  . . . .  , n - - l ,  (r) implies ( r + l ) .  In fact, if N, CM, ._ ,+I ,  

then07, by (513) and (514) 

N,+t = A- ' (BN, )  C A- '  (BM,,.._,+,) C. A- ' (AM,_ , )  C M , _ , + N ,  

C M._,  + N, C M._,  + M,~.~+I = M....,. 

Conversely ( r + l )  implies (r). In fact, if N.+, C M....~, then 

N, C N,+, C M._r = B- '  (AM._,_,) 

so that each x E N ,  has the property that B x = A y  with a y E M n _ , _ , .  

Then y ~ A -~ (BN,) = N,+~ C M...~ and x ~ B -I (AM._,) = M,,...,,+~. This 

proves N, C M,~..,§ 

Next we prove that t*) is equivalent to other conditions. Suppose 

that (n) is satisfied. This implies that Nh C N', C Mt = B - t  (AX)  C D [B] 

for k ~ n ,  so that each x E N k  has the property that B x = A y  for some 

y ~ X .  Then y E A - I ( B N k ) = N , + t  and so BxEANt,+,. This shows that 

BNk C ANk+,. But the definition (512) of N~+! implies the opposite 

inclusion. Thus (n) implies (*). 

Conversely (*) implies BN', = AN.+1 and hence 

N. C B- '  (AN,,+,) C B- '  (AX)  = M, ,  

that is, (*) implies (n). 

(518) now follows from Lemma 312 because Nk+t = A -~ (BNk) and 

BNk = ANk+t C R [A] . Similarly (519) follows from Lemma 313 because 

N [A] = NI C Mk. 

Since M.  is a non-increasing sequence by (513), the conditions of  

17. Note that, for any linear manifolds 11t ~ X, /14'~ X ~ and any linear 
operator ~/(X--~ g~ we have 

A (A- '  M') C M',  A- '  (AM) C, M + N [A]. 
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Lemma 511 are satisfied for all n'~_n if they are satisfied for n. The 

smallest number n for which these conditions are n o  t satisfied will be 

denoted by v ( A : B ) .  If  there is no such n, we set v ( A : B ) =  

Obviously we have v ( A : B ) ~ I  for any pair A , B .  It should be noted 

that v ( A : B ) = e o  if either a ( A ) = 0  or ~5(A)=0  and D [ B ] = X  (see 

(516) and (517)). 

If X ' =  X, v ( A : I )  is the smallest n for which N[A]  is not a 

subset of A ~X" or, what is the same thing, for which N [ A  ~] is not a 

subset of R[A] .  

2. L e m m a s  on v ( A : B ) .  

The following lemmas are required later. 

L e m m a  521. L e t  S be  a n o n - e m p t y  s u b s e t  o f  N[A]  a n d  

d e f i n e  Sh, k ~ l ,  2 . . . . .  s u c c e s s i v e l y  by  S t = S ,  S k + t = A - ' ( B S , ) .  

T h e n  Sk is  n o t  e m p t y  f o r  k < v = v ( A : B ) .  L e t  Lk b e  t h e  

l i n e a r  h u l l  o f  Sk. T h e n  

(521) Sk C Lk C Nk "--- Nk [A : B] ,  k = 1, 2 . . . . .  v ,  

(522) N[A]  e L ,  == A - t ( B L , _ , ) ,  / k = 2 ,  3 . . . .  , v .  

(523) AS~ = BSk_, , A L ,  = BLk-~,  I 
Proof. It is obvious that S, C Nk, compare the definition of Sk 

and N~. Thus the argument used to deduce (*) from (n) in the proof of 

Lemma 511 is applicable to show that $1,-~ BSk--t as long as 2 :~k ~ v .  

In particular this shows successively that $ 1 , . . . ,  S~ are non-empty. (Note 

that S~_, C Nk_, C M, C D [B] for k ~ v and that S~ C D[A] for all k.) 

Also it follows that ALk = B L A - , .  This proves (523). 

(523) implies that A - '  (BLk-,)  = A - '  (ALk) = Lk + N [A]. Thus (522) 

will be proved if we only show that N----- N[A]  e L k  for 2 ~ k ~ v .  

But this is an easy consequence of the fact that Sk is not empty. In fact, 

let x E S k .  If k~"~2, we have A ( x + z ) ~ - A x E B S ~ _ t  for any z E N .  

Thus x + z E A - I  (BS,.-I) = S~ and so z = (z + z) --  x E L k ,  which shows 

that N C Lk. 

L e m m a  522. L e t  S be  a s u b s e t  o f  N[A] an d ,  f o r  e a c h  

z ~ S  l e t  t h e r e  e x i s t  a s e q u e n c e  zj,  .... z~ s u c h  t h a t  z t = z  a n d  

Azk+t=Bz , ,  k ~ - 1 , 2  . . . .  , n - - l ,  w h e r e  n is  i n d e p e n d e n t  o f  z. 

I f  t h e  l i n e a r  h u l l  o f  S is  i d e n t i c a l  w i t h  N [ A ] ,  we h a v e  
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v ( A : B ) > n .  I f  S , , L k  a r e  d e f i n e d  as in L e m m a  521, we h a v e  

L, =Nk(A:B)  f o r  k = l ,  2 .... n.  

Proof.  Az. = Bz._l implies that zn.-t E B  - I ( A X )  = M I . Then 

Az._t=Bz~. . ,  implies that z ._xEB - I (AM*)=M2,  and so on. In this 

way we see that z = z~ ~ M . _ , .  Thus S C M._ t  and so N~ = N [A] C:M.- t  

by hypothesis, which proves that v(A : B ) ~  n .  Then (522) shows succes- 

sively that L h = N k ,  k = l ,  2 . . . . .  n because L , = N I .  

3, Restriction of opera to rs .  

The definition of v (A : B) depends, at least formally, on the underlying 

spaces X and X' ,  for this is certainly the case with the linear manifolds 

M,,[A:B] and N, ,[A:B] .  Let us now inquire how these are changed 

when A and B are restricted. For later application we need *o consider 

rather a simple case. 

L e m m a  531. L e t  A , B  b e  l i n e a r  o p e r a t o r s  ( X - ~ X ' )  a n d  

l e t  X0 b e  a l i n e a r  m a n i f o l d  o f  X s u c h  t h a t  D [ A ] C X o C D [ B ] .  

L e t  A0,B0 (Xo '~X ' )  b e  r e s p e c t i v e l y  t h e  r e s t r i c t i o n s  o f  

A , B  t o  X0. T h e n  

(530 M.[Ao:8o] = M.[A :B] n xo, 
(532) N,  [Ao : Bo] : -  N .  [A : B] C Xo, 

(533) v (Ao : Bo) : :  v ( a  : B ) .  

Proof.  For simplicity we write M .  = M.  [ A , B ] ,  M ~ = M.  [Ao : Bo] 

and similarly for N . .  First we note that D[Ao] = D i A l  C Xo and 

D [Bo]-= Xo. It is also obvious that 

N,, C D[A]CXo,  N ~ C D[Ao] --- D[A] C Xo. 

Since m ~  Xo-~ mo f'~ Xo and m ~  {0} = No, we employ induction 

to prove (531) and (532). Suppose that (531) has been proved for n -  1 

instead of  n. Then AoM~ = 

Ao (M~ f3 D[Ao]) = Ao (M.._, n Xo n D[Ao]) = A(M._, t3 DiAl) :: AM~._t, 

hence m ~ - B - '  (Ao m~ t (AM._ , ) :  B- ' (AM._t)  n D[B0] = m .  r X0. S - -  0 

Again suppose that (532) has been proved for n - -1  instead of n. Then 

Bo N ~  = BN ...t and N ~ = Ag"' (BoN~ ,) --- A - '  (BN,,_a) ~ D [Ao] ~= 

= N~ tq D[A] = N,, C Xo. 

This completes the induction, 
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Now it can be seen that the conditions of  Lemma 5 i t  are equivalent 

whether applied to the pair A , B  or to the pair A0,B0. To see this it is 

sufficient to observe that N1 (Z M, is equivalent to NI C M,  n x 0 ,  since 

we know that N~ C X0. But the latter condition is exactly N O C M  ~ by 

(531) and (532). This leads immediately to (533). 

4. Closed linear operators. 

The linear manifolds M.  --~ M,  [A : B] ,  N,  = N ,  [A :B] and the 

number v = v (A : B) have been defined in a purely algebraic fashion without 

reference to any topology. We shall now consider their relation to the topo- 

logy of the spaces and the closure of  the operators A, B. 

Let X ,  X '  be Banach spaces and let A , B  be dosed linear operators 

(X-~-X') .  Then Nt=N[A] is a closed linear manifold of X, but other 

linear manifolds M,*, N,*, n > 1, are not necessarily dosed without further 

assumpdon. Our furst lemma in this connection is 

[ . emma 541. L e t  A be  a c l o s e d  l i n e a r  o p e r a t o r  (X-~X')  
w i t h  c l o s e d  r a n g e  ( T ( A ) ~ > 0 ) a n d  w i t h  a ( A ) < o o .  L e t  B b e  a 

c l o s e d ,  b o u n d e d  l i n e a r  o p e r a t o r  (X'--~X'). T h e n  M,*,AM, a n d  

N,  a r e  c l o s e d  l i n e a r  m a n i f o l d s  o f X a n d  d i m N , < o o  f o r  

a l l  n. 

Proof. dim N, ,<oo  follows from (516), so that N ,  are closed. To 

prove the closure of  M,  and AM,, it is sufficient to show that AM and 

B -1 (AM) are closed whenever M is closed. Since dim N[A]~-a(A)< o% 
the linear manifold M + N [A] is closed with M, and this implies that AM 
is closed (Lemma 331). Since B is a continuous function, the inverse image 

B -'-* (AM) of the closed set AM is closed in D [B], which is dosed in X 

because B is closed and bounded. Thus B -~ (AM) is dosed in .R'. 

L e m m a  542. L e t  A be  a c l o s e d  l i n e a r  o p e r a t o r  (X->.X') 
w i t h  ~ ( A ) < o o .  L e t  B be  a c l o s e d ,  b o u n d e d  l i n e a r  o p e r a t o r  

(X.->.X') w i t h  c o d l i n  D [ B ] < c o .  T h e n  M,,AM, a r e  c l o s e d  a n d  

c o d l i n  M,*<oo, c o d l i n  AM,<oo f o r  a l l  n ( in  p a r t i c u l a r  R(A) 
is  c l o s e d ) .  

Proof. R(A) is closed by Lemma 332. That codlin M', and codlin 

AM, are finite follows from (517). The closure of  M,  and AM,, is obvious 

for n = 0. Suppose that this has been proved for n. Then M,*+, = B ' ' t  (AMs) 
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is closed as the inverse image of A M ,  as in the preceding lemma. Since 

cgdim M~+I is finite, it follows that M ~ ,  + N [A] is closed. Hence AM,,+, 

is closed by Lemma 331. This completes the induction. 

In the special case in which X ' =  X and B =  I, these lemmas take 

the following form by (515). 

L e m m a  543. L e t  A be  a c l o s e d  l i n e a r  o p e r a t o r  (X-~-X)  

w i t h  c l o s e d  r a n g e  a n d  w i t h a ( A ) < ~ .  T h e n ,  f o r  e v e r y  

n = 1 , 2  . . . . .  A" is  a c l o s e d  l i n e a r  o p e r a t o r  ( X - > . X )  a n d  N[A"], 

R [ . P ]  a r e  c l o s e d  w i t h  dim N [ A " ] < o o .  

Proof. Only the proposition that A" is closed needs a proof. This can 

be proved by successive application of  Lemma 34l.  

L e m m a  544. L e t  A b e  a c l o s e d  l i n e a r  o p e r a t o r  ( X ~  X) 

w i t h  [3(A)< oo. T h e n ,  f o r  e v e r y  n = 1 , 2  . . . . .  R[A' ]  is c l o s e d  

a n d codim R [A ~] < co. 

Remark.  There is not a complete duality between Lemmas 543 and 

544. It should be noted that much less can be asserted in Lemma 544 than 

in Lemma 543. (A similar relation exists between Lemmas 541 and 542). 

In Lemma 544 N [A ~] need not be closed if n ~ 2 and, consequently, A ~ 

need not be dosed. This can be seen from the following example in which 

X is a Hilbert space and N [A 2] is not closed. 

Let X be a Hilbert space with a complete orthonormal set 

x t ,  j ~ - o  , +-t , =]=2 . . . . .  

Define the operator A (X-->-X)  by 

(540 a 
i - - - -~  i=' i=t  

The domain of  A is by definition the set of all x = ~ j x ~ ,  of X 

such that Xy'zl~',i_, (z< oo. 

In particular we have 

Ax t = O  f o r  j = o ,  - - I ,  --2 . . . . .  

(542) A x t  = Xo,  A x 3  ~'~ 2x_t , Ax5  = 3 x - ,  . . . . .  

Ax2 = x t ,  Ax ,  -~ x , ,  Ax6 = x3, . . . .  

Let N ,  Xt , X2 be the mutually orthogonal closed linear manifolds of X 

spanned respectively by {x0, x_ , ,  x_2 .... }, {xt, x3 .... }, {x2, x4 . . . .  I. Obviously 

X =  N ~ ) X t  (~  X2 and N [A] : N. As is easily seen, we have 
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a x l  = N , A X ,  = X,@Z,,A(Xt@X2)= X 

and the restriction of A to Xt @ Jfz has a bounded inverse (with bound 1) with 

domain X. Thus A is closed, has closed range X and ~ ( A ) =  0, y (A)-----I. 

Now N [ A  2] is not closed. In fact, it i s ea sy  to see that 

N [A'] ---N ~ (Xt n D[A]) ,  

which is not closed because X~ ~ D [A] is not closed. 

In this example we have ct(A*)= ~ ( A ) =  0, and A* has closed range 

by Lemma 324 (actually we have R[A*] = Xt ( ~  X2). Thus (A*) ~ are closed 

linear operators by Lemma 543. That A z is not closed implies, therefore, 

that A 2 #- ( (A ' ) ' )  ~ But this is not surprising since A is not bounded. 

S. /An estimate of v(A:B). 

The following lemma is, in a certain sense, a generalization of Lemma 522. 

L e m m a  551. L e t  A b e  a c l o s e d  l i n e a r  o p e r a t o r  ( X - , X " )  

w i t h  c l o s e d  r a n g e .  L e t  B b e  a b o u n d e d ,  c l o s e d  l i n e a r  

o p e r a t o r  ( X + X ' ) .  L e t  S b e  a s u b s e t  o f  N a N [ A ]  s u c h  t h a t ,  

f o r  e a c h  z ~ S ,  t h e r e  i s  a s e q u e n c e  zl . . . . .  z~ w i t h  t h e  p r o -  

p e r t i e s  z , = z ,  A z k + t = B z k , k = l , 2  . . . .  , n - - l ,  w h e r e  n i s  i n d e p e n d e n t  

o f  z. F u r t h e r  a s s u m e  t h a t  t h e  l i n e a r  h u l l  L o f  S is  d e n s e  

in N. T h e n w e  h a v e  v ( A : B ) ~ n a n d  L~ i s  d e n s e  in  N k = N k [ A : B ]  

f o r  k =  1,2 ..... ~t, w h e r e  Lk a r e  d e f i n e d  as  in  L e m m a  521. 

Proof. We prove the lemma by induction. The proposition is obvious 

for n = I. Suppose that the proposition has been proved for n replaced by 

n - - 1  and assume that the assumptions are satisfied for n. 

By induction hypothesis it follows immediately that v = v (A : B ) ~  n - -  1 

(which is equivalent to N~_2 C M t) and that Lk is dense in N~ for k =  1, 2 . . . . .  n - -  1. 

We have to prove that Nm-t C Mt and that L~ is dense in N~. 

Let u~-.l ~ S , , - t ,  where Sk are defined as in Lemma 521. By definition 

u~-t  ~ A - t  (BS,,...2) so that there is a u~--2 E S,_2 such that Au~..t ---- But~..2. 

Proceeding in this way, we see that there is a sequence u t ,  uz . . . . .  u~.. t 

such that 

Au~ = Bul  , Au3 = Bu,  . . . . .  A u , - i  = Bu~_z 

where ut E S = S t .  Then it follows from the assumption that there is a 

sequence zt ..... z~ SUch that lt~---ut, A z z = B z t ,  Az3=Baz  . . . .  , Az**=Bz, ,_t .  
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On setting Vk=U&+~--Zk+I, k =  1, 2, . . . ,  n - - 2 ,  we see that 

vl E N ,  AV2 = B y e ,  Av3 = By2 . . . .  , Av.,--2 = B v n _ 3 .  

Thus we have successively v2~ A - I ( B N ) = N 2  . . . .  , v ._a ~ A - I  (BN,~-3) = N,~--2. 

Since we know that N~_2 E MI as noted above, we see that v._2 E Mr .  

Also we have z,~..t E B - t  ( A X ) =  M , .  Hence u ._ l  = v,,--2 + z ._ t  E M , .  

Since u,,..-, was an arbitrary element o f  S . - t ,  we conclude that S ._ t  • M, 

and hence L.--, C M~ because L,~..x is the linear hull of  S..._, (see Lemma 

521). But L,~.-a is dense in N . - t  as we remarked above and M, is closed 

as the inverse image of  R [ A ]  under the map B. Hence we have that 

N~_t C MI and so v ~ n .  

It remains to show that L~ is dense in N~. Let x r N .  be arbitrary. 

Since N , , = A - t ( B N , , _ t ) ,  there is a y r N~- t  such that Ax = By.  Since 

L ._ t  is dense in N . - ~ ,  there is a sequence y ,  6 L ._ t  such that y~ * y ,  

k + oo. We  may assume without loss o f  generality that 

J l y k - y ~ . _ t l l ~ 2  - h ,  k = l ,  2, 3 .... ; 

otherwise we need only to replace the sequence y~ by its suitable subsequence. 

Setting wk = y ~ - - y * - t ,  we can write 

y =  y,, + E w ,  , i] w,  ]} ~ 2-k  , w ,  ~ L,,_, . 

I t = l  

Since L,,-t  C N . _ ,  C Mt = B -* ( A X )  as just proved, there is for each 

k an x, ~ D [ A ]  such that Ow, = A x , .  We have 

II s II II ,~, II ~ II Sw, II = II mx, Ii ~ r II ,,~ If, 
where x', ~ .~"= X / N  and Y := T (A) > o by hypochesis. Obviously we may 

choose x ,  in such a way that I !xk l l~(~ '+~) ] lx* l l ,  suhe:e ~ is any given 

positive number. Then we have 

[IXkI[=~-(]'+8)[--t[IB[[ [iW/t[[-~(I"~E) [ - '  [[ B f[ 2-* 

and the series Y. Xk is absolutely convergent. 

Since yo ~ L,,..-t C Mr ,  we can take an xo ~ D [A] such that Axo = Byo. 

Now we set 

Then 

e ~  

k = l  

Ax" = Axo + X Ax, = Byo + ~. Bw, = By ,  
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the term-by-term application of A can be justified easily by considering the 

closure of A and B and the boundedness of  B. 

Since w~ ~/-~--1, x, belongs to A -~ (BL,,-t) --- L,o by (522) ; note that 

we have already proved that v ~  n. Similarly we have x0 E L~. It follows 

that x' belongs to the closure [L~] of  Z~. On the other hand, we have 

A x ' = B y = A x  and so x - - x ' ~ N C L , ~  by (522). Thus we see that 

x ~ L, + [L.] ---- [L,,]. Since x was an arbitrary element of Ns ,  we conclude 

that L,  is dense in N , ,  thereby completing the induction. 

6. /Adjoint operators .  

Let A, B be closed linear operators ( X +  X') with domains D [A], 

D [B] dense in X so that the adjoints A ~ B" exist and are closed linear 

operators (X"  -->- X').  We consider the sequences 

(561) m' , ,  = M,  [A' :  B'] ,  N~ --- N,, [A' :  B ~ 

defined for the pair A ~ , B ~ M~ N ~ are linear manifolds of  X'*. 

L e m m a  561. U n d e r  t h e  a b o v e  c o n d i t i o n s  w e  h a v e  

(562) m'~ C (BN,) ~-, N%+~ C (AM,)*, n = O, 1, 2 . . . . . . . .  

Proof. (562) is true for n --  0 : the first inclusion is trivial by M~ = X '~ 

and No =~ {0}, and the second inclusion follows from 

N ~ = 5/[A'J = R [a ]*  ---- (AMo)* (see (324)). 

We shall therefore assume that (562) has been proved for n - - 1  in place 

of  n and prove it fo rn .  Let j '~M*, , .and  x~D[B]f3N,~. By detlnidon 

f '  ~ (B') -* (A ~ M~ and x ~ A- '  (BN,~..t). Hence there are a g" E M~ 

and a y ~  N~-t such that B'f" = AOg" and A x =  By. Consequently 

f" (B,,) = B" I" = A "  g" ( , , )  = g" = g" (By) = o 

because M',.--t C (BN,,-t)* by induction hypothesis. This proves the first 

inclusion of (562). The second inclusion can be proved in the same way. 

It should 'tsz observed that in general the inclusion C in (562) cannot 

be replaced by the equality except for the case n = 0. The condition under 

which the equality holds in (562) does not seem to be simple and we shall 

not consider it in detail. We only note the following 

L e m m a  562. L e t  A be  a c l o s e d  l i n e a r  o p e r a t o r  ( X ~ X ' )  

w i t h  d o m a i n  d e n s e  in  X a n d  w i t h  c l o s e ' d  r a n g e .  L e t  B b e  a 

b o u n d e d  l i n e a r  o p e r a t o r  (X.->.X') w i t h  D [ B ] = X .  T h e n  
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(563) M ' ,  = (BN,)'.  
(564) v (A': B')  = v (A: B). 

Proof. Let f'E(BN~)" and f=B~  '. Then fEN~'=N[A]"  and 

so fER[A']  by Lemma 335. It follows that / 'E (B ' ) - t (A 'X")=M~.  
This shows that (BN,)" C M~. Since the opposite inclusion holds by (562), 

this proves (563). 

According to the definition of v = v (A : B), we have N, C M,` for any 

n q v .  Since M~-~B-'(AM,_I), we have BN; C BM,,CAM,`._, and hence 

(AM,,_,)" C (BNj)'. In virtue of  (562) and (563), it follows that N" C M~. 

This implies that v" = v (A" : B ' )  > n ,  and proves that v" > v. 

To prove the opposite inequality, let n < v ~ Then we have N~I C M~ 

and this implies (AX)~'C(BN,`) • by (324) and (562). Since AX is closed, 

this implies in turn that BN, CAX. Since D [B] ----- X, this finally implies that 

N,, C B-' ( AX) = M,. 

This shows that v > n  and hence that v ~ v  ~ 

w STABILITY THEOREM IN THE CASE v(,4 : B)-----c~ 

1, Theorem. 
In what follows we are interested in the eigetivalue problem of the form 

(611) Az = kBx 

where A, B are linear operators (X'->- X')  and also in the associated equation 

(612) A"  f"  = ~. B ' I "  

when the adjoints A ~ B" exist. (611)means  that xEN[A--ZB] and (612) 

means that / '~N[A'--kS"] = R[A--kB]'. We are thus interested in the 

behavior of  the linear manifolds N[A--kB], R(A--kB]'. 
The main purpose of the present section is to prove the following 

theorem. 

T h e o r e m  3. L e t  X,X"  "be B a n a c h  s p a c e s ,  l e tA b e a c l o s e d  

l i n e a r  o p e r a t o r  (X->-X] w i t h  c l o s e d  r a n g e  n o t  i d e n t i c a l  

w i t h  {0} (so  t h a t  0 < T ( A ) < o  o) a n d  l e t  B b e  a l i n e a r  o p e r a t o r  

(X-~X')  s u c h  thatD[B]~D[A] a n d  

(613) IIB~ll~ollxll+~llAzH for every x~D[A], 
w h e r e  o , ~  a r e  n o n - n e g a t i v e  c o n s t a n t s .  F u r t h e r m o r e  l e t  
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v(A:B)=oo.  T h e n  t h e r e  is  a c o n s t a n t  p > 0  s u c h  t h a t ,  f o r  

[ ~ ' I < P ,  A--~.B i s  a c l o s e d  l i n e a r  o p e r a t o r  ( X - ~ X ' )  w i t h  

c l o s e d  r a n g e ,  a(A--~.B)  a n d  ~(A--~.B) a r e  c o n s t a n t ,  

v(A--~B:B) = oo 

a n d  "f(A--~B) i s  f i n i t e ,  p o s i t i v e  a n d  L i p s c h i t z - c o n t i n u o u s .  

T h e  c l o s e d  l i n e a r  m a n i f o l d s  IV(A--~B)CX a n d  R[A--~,B]J-CX " 

d e p e n d  o n  ~. a n a l y t i c a l l y :  b y  t h i s  we  m e a n  t h a t  e a c h  ~ ,  

]~0[<,o, h a s  a n e i g h b o r h o o d  w i t h  t h e  f o l l o w i n g  p r o p e r t y  (ts~, 

F o r  e a c h  z~N[A--2~>B], t h e r e  i s  a r e g u l a r  a n a l y t i c  f u n c t i o n  

~,+z(~)EN[A-s  d e f i n e d  in  t h i s  n e i g h b o r h o o d  s u c h  t h a t  

z(~o)=z a n d  t h e  c l o s e d  l i n e a r  h u l l  o f  a l l  t h e s e  zOO f o r  

f i x e d ~ . c o i n c i d e s  w i t h  N[A--XB]. S i m i l a r  p r o p o s i t i o n  h o l d s  

for/r [A--~ B] ~-. 
F o r  t h e  c o n s t a n t  p w e  c a n  t a k e  in  g e n e r a l  

(614) p = r / ( 3 o + ~  r) ( r = r ( a ) > 0 )  

a n d  t h e  L i p s c h i t z  c o n t i n u i t y ' o f  yQ.)=y(A--~.B) c a n  b e  e x -  

p r e s s e d  by  

(616) r-C3o+ r)lXl _rcX) _Cr§ 
where  la/aXl d e n o t e s  t h e  u p p e r  d e r i v a t i v e .  I f ( = 0 ,  (615) 

s h o u l d  b e  r e p l a c e d  by  

(617) I a y (X)Id X I ~_ 30. 

T h e  n u m b e r  30 in  (614), (615), (616) a n d  (617) c a n  b e  r e p l a c e d  

b y  o i f  a t  l e a s t  o n e  o f  t h e  f o l l o w i n g  c o n d i t i o n s  is  s a t i s -  

f i e d :  (i) a ( A ) < c o ,  (ii) ~ ( A ) < ~ o ,  (iii) X is  a H i l b e r t  s p a c e ,  

(iv) X '  i s  a H i l b e r t  s p a c e .  

Before going into the proof of  this theorem, we note that A -  ~,B is 

a closed linear operator for [~ . l< t  - t  , as is seen from the proof of  Theorem 

la, w In what follows ~e  consider only such ~.. 

For brevity we use the notations 

t8. If  " (A)< oo, it follows that there is a basis of H IA--XB] consisting of 
a (A) vectors zi (~.), l ,= 1 .... , a (A), which are regular analytic in the neighborhood 
o f  ~ .  Similar result holds for R[A--XB]"*" if 15(A)< co. 
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D = D [A] = D [A--~. B], 

N(),) =N[A--XB], 
R (~) =- R [A--~ ~],  

a (~) = a(A--~B), 
(~.) = (3 ( A--~t B), 

r (~) = r ( A - ~ B ) ,  
v (~) = v (A--Z B:  B), 

~= X/N[A], 

N (o) = N [A] = N 

R (0) ---- R [A] = R', 

(0) = - ( a )  = a, 

( o ) = / 3  (A) = ~, 

r (o)  = r ( A ) - -  r, 
v ( o )  = v ( A :  B ) =  oo. 

Note that N( t )  is a closed linear manifold of X as the null space of the 

closed linear operator A--~,B. 
Also we note that ~'(~.)<oo for ] t l < p .  In fact, y ( l ) =  oo implies 

that (A--ZB)x = 0 for all x E D. Hence 

1t A ~  II = Ixl II B~ II _~ I x l(~,tl ,, It + ,  I1 a ~  ll) 
and $O 

r l l i l l~_ li a,~ll__ II~ll o l x l / ( x - r  Ix i), 
where ; ~ Z Since �9 can vary fr~ly in ;, it follows that r~_o tXt/0-~ tXJ) 
and hence that { X 13> y/(o+r y) 3> p. Here we made use of  the fact that there 

is at least one x ~  0 because R [A]:/={0} by hypothesis. 

2. Stability of a. 

The proof of Theorem 3 will be given in several steps. We shall first 

show that 

(620 8 (N (~), tO ~_,~ I x I / (~-~ I ~. I) r. 
Let u E NQ.). Then Au = }tBu and the calculation given at the end of the 

preceding paragraph shows that r II ;, JJ _~ H ~ 11 o I xl / ( 1 - ,  Ix I). Recalling the 

definition (211) of  ~3(M,N) and that I lu l l=d(u ,N) ,  this proves (621). 

The right side of (621) is smaller than one if I•!< ~'/(o-l-r y). Thus 

Lemma 212 shows that 

(622) ct(Jl)<ct for Ixl<r/(o+,r). 
We next prove the opp9site inequality to (622) by an explicit cons- 

t.ruction. Let us consider a sequence zk with the following properties: 

(623) Zk r Ark = N~ [A : B], Azk+t = B;:k, 
ol lz ,+, l l  <llAz*+'l}, k = 1 , 2 , . . . ,  

where co is a positive constant. For brevity such a sequence zk will be called 

an o - s e q u e n c e .  
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We shall show that, for each z E N  and each 00<y, there is an 

to-sequence such that zt = z. We set zt = z and construct zk by induction. 

Suppose that zt . . . . .  z~ have been constructed with the properties (623). 

Since z h ~ N k C M t = M t [ A : B I = B  - I (AX)  in virtue of v ( A : B ) = z o ,  

there is a zk+1E D such that Azk+1 = Bzk. This implies that ril~+,l]___!lA,~+,rl 
and that z~+l may be replaced by any other element of zh+l. Thus we can 

choose zk+l in such a way that co ]] zk+, []--~ II m~+, II. On the other hand we 

see that zk+t E A- '  (BNk) = Nk+t. This completes the induction. 

Each co-sequence zk satisfies the following inequalities: 

(624) II B~. II = II az.+, [I < o t o - ~ - ' ( o + ~  to)~-= [[z, [[. 
I1~§ II < o 00-' (o+~ toy'- '  I[~= II, k = 1, 2 . . . . .  

To se~ this, we note that IIA~+,l[ = IIB~,,ll -~ o IIz, ll + �9 I[A~[[. For k ---- I this 
gives IIA~2ll~ollz, l[ in virtue of Azt----O. For k > 2  we have by (623) 

IP A~.+, II < ( o o - *  +~)II  A~.II. This leads immediately to the first inequality 

of  (624), and the second follows by another use of (623). 

For each to-sequence zk we can now construct the series 
QO 

(625) uQ.) = E ~.k--, Zk. 
# = 1  
I 

In virtue of (624) this series is absolutely convergent for [~.]<c0/(o+r 

The same is true for the series obtained from (625) by term-by-term appli- 

cation of A and B. In view of the closure o f  A and the inequality (613), 

it follows easily that uQ.)ED and by (623) that AuQ,)=~Bu(~,). This 

shows that u Q,) ~ N(~). Furthermore, 
OO 

[I u (~)-zffi  II < ~ ,  I ~ !"-ffi II~, II ~_ 8~ (~)H ,,  I1, 
k = 2  

where 

(626) 8e~ 03 ---- o 1~1/[to -- (o+r 00)I ~. 11. 
Since thereis such a u(?OEN(k ) for each z = z l f N  and 00< 7, we 

conclude that 

(627) 8 (N ,  N(~)) < a (Z) = o I x I / [ r - (  o+~ r) I~ I]. 

The right side is smaller than one if 1~, 1< r / (2o+r  r). Then we have a~_a(~,) 
by Lemma 212. Combined with (622), we have thus proved that 

(628) a(X)----a for IXl<rl(2o+rr). 
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Although the vector u(~.) given by (625) belongs to N0-), it is not 

clear whether every vector of N().} can be expressed in this form by means 

of an t0-sequence. (This is true if ct< 0% at least for small [).i.) In any 

case let S ~ Q.) be the set of these u Q.) and let L t~ 0.) be the linear hull of 

S~~ We shall show that Lo().) is dense in N().) for 

(629) I X I< rI(3o+~ r) 
provided co is sufficiently near to i'. A simple calculation shows that (6291 

implies that (see (621)) 

(to (x), N) < o l X l / ( , - ~ 1  x I) r<  [~ - ~  ().)1/[! +~ (x)]. 
The same inequality holds with ~0-) replaced by b,, ().) if to is sufficiently 

near to T. Since there is a u().)~ L s0 . )  C N(h) such that 

I1 z -  u (x)II < s0, ().)II z !1 
for each zEN,  it follows from Lemma 216 that L~ is dense in N(2t). 

This proves the analytic dependence of NQ,) on ). at the particula~ point 

~ .=0.  

3. Continuity of T. 

According to Theorem la, w R(~.) is closed (that is, ~,().)>0) 

if I).]qT/(o+r and at least one of a, ~3 is finite. But there we could 

not give any estimate of ~' 0"), see Remark 2 after Theorem t. We shall 

now show that we can give an estimate of y ().) under the present assumption 

v(A : B ) =  oo. 

According to Lemma 214 there is, for each xE X and ~>0,  a uE  N().) 

such that, for y = x - - u ,  

(6311 iI~ll=dCY,N)> - 1 - - 5 ( N ,  NQ.)) (a--e)i':Yil. 
- i + 5 (N, N(~)) 

Suppose that xeD. Since (A--).B)u= O, we have 

(632) II (A--XB)xll = II (A--XB)YII > II AY f l -  1~111Byll 

Z ( t - ~  I ). I)II Ay 11 -- o I). I II Y II 

___(,-x Ixl)v II ~;11-o I xl Ilyll 
and, by making use of (631) and (627), obtain the inequality 

(6331 IIA--XB)xlI~_[(y--(2o+Tr)IXl)O--e)--olZl] IlY ll- 

We now consider the factor space A '=  X/NO,), whose elements will 
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be denoted by x , y , . . . .  Since x - - y = u E N ( X ) ,  we have l i Y ] ] ~ l i Y i i - ~ i x i i  

so that the I]Yll on the right of  the inequality (633) can be replaced by 

[] x ][. Recalling the definition of  y (~,) =: y ( A - - ~  B), we see that  y Q,) is not 

smaller than the number in the brackets o f  (633).  On letting e + O, we thus 

arrive at the inequality 

(634) v (;,) > v - (3o+~ v) I X l. 

This shows that y (~.) > 0 and hence that R (~) is closed for [ X ] < y / ( 3 o + *  y). 

I t  should be noticed that this is true even if ct -= ~ = co. 

As we shall see below, (634) is the most  important one among various 

inequalities derived above. We  shall now show that it can be replaced by 

a sharper estimate 

(635) ~ (x) _~ ~ -  (~§ ~) lx l  

at least for ] ~ . J < y / ( 2 o + t y )  in the special cases in which either (i) 

c t< oo or (iii) X is a Hilbert  space. 

For this purpose, we note that (631)  can be improved as follows: for 

each x ~ X  and I~ . l<r / (2o- I -Ty) ,  there is a u~N(~t) such that y = x - - u  

has the property 

(636)  I!Yll = d ( y ,  N ) =  HY l[- 

This is obvious if xEN(~),  for then we need only to set u = x  so that 

y = 0 .  So we may assume that x~:N(X). Let N~ be the linear hull of  

x and NO,).  Then there is a y~N~ such that II~rl=lly{l>0. In fact, 
this is a direct consequence of Lemma 222 in the case (iii), for we have 

N(X))<I for IXI<v/(Uo+ V), see (627).  Also this is true in the 

case (i) in virtue o f  Lemma 2t  l ,  for we have dim N O Q, )=  a + 1 ~ a =  dim N.  

N o w  this y cannot belong to N(~ )  because b(N(JD,  N ) < I  by (621). 

Hence we may assume that y has the form y = x - - u ,  u EN(~) .  This 

proves (636). 

As is easily seen, the use of  (636) instead of  (631) in the calculation 

(632) to (633) leads to the improved result (635). W e  shall show later 

that (635) is true for ! ~ . I < Y / ( o + T ' / ) .  

4. S tabi l i ty  o f  v a n d  [3. 

W e  now turn to the proof  of  v Q,) == oo. For this proof it is convenient 

to consider first the case in which B is bounded (that is, r == 0). Since nothing 
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changes when B is replaced by its closure, we may assume that B is 

bounded and closed (note Lemma 531). 

W e  have proved above that RQ,) is closed for I~.1 < r/3o=r/3 IlBir. There- 

fore, we can apply Lemma 551 to the pair A - - ~ B ,  B. Let S =  SO'0,) be 

the set of  u(~)EN(~)  given by (625). As we have seen above, the linear 

hull Lo" 0.) o f  So'(~.) is dense in NO.)  if IXl<r/311Bll (see (629)) and c0 

is sufficiently close to ~'. To  apply Lemma 551, it is therefore sufficient to 

construct, for each u 0.) ~ S~ ()'), a sequence uh (~,), k = 1, 2 . . . . .  such that 

ul 0 ' )  = u 0 ' )  and 

(641) (A--kB)  u,+I(k) = Buk(k), k = 1, 2 . . . . .  

Such a sequence is given by 

(642) u , ( ~ ) = ~ , (  k + i  1) ~/z,+,.  

i--o k - -  1 

In fact, these series are ~onvergent for I ~ l < ( o / o = ( o / l [ B H  as well as the 

series o f  u(~.) and it is obvious that ut (~.)--~ u(~.). The term-by-term ap- 

plication o f  A to these series is justified as before and leads to (641) after 

a simple calculation. This proves that 

(643) v ( ~ . ) = o o  for IXl<r/31lBll 
provided B is bounded. 

The general case can be reduced to the above case by the device used 

in the proof  of  Theorem la. W e  introduceCl~ the new norm III III by (444),  

thereby converting D into a Banach space Ji ~ and the operators A, B into 

bounded linear operators A, B on ) (  to X ' .  W e  note that (see (446)) 

= - -  B )  = a 

(644) 3 0.) = [3 (A--~.B) = ~ (A--~.B) = ~3 0.), 

v 0.) = v (A-- ;LB: B)  -~ v (A--~. B :  B) = v 0.) ; 

for the last equality see Lemma 531 and no t e tha t  v ( A : B )  is defined in a 

purely algebraic fashion. 

Since R[.~] = R [A] is closed and v ( A :  B)  = v (A:  B)  ---- ~o, the assump- 
A A 

tions of  Theorem 3 are satisfied for A, B replaced by A, B. By what is 

19. W'e could have done this in earlier stages of our proof, but we have avoi- 
ded it because it appears that this device leads to less sharp estimates of u then 
those obtained in the preceding paragraph by �9 more direct method. In particular, there 
is the inconvenience that .~ is in general not �9 Hilbert space even if X is. 
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proved above, it follows that v (3,) = v  (3`) = co for 13` I<7/3  I IBII-  Here 

we have IJ J~l ~ i by (445) and y is given by (448). Since ~ > 0  is arbitrary, 

we conclude that 

(645) v(3` )=oo for 13`l<r/3(o+,r). 
Next we show that [3(3`)= [~. For this proof we again make use of 

the operators A, B. Since these are bounded and defined everywhere on X', 
~ o  

their adjoints A ,  B~ exist and are bounded linear operators on X '~ to ~'~ 

Since R[A ~ is closed by Lemma 324 and v(A ~  Lemma 562, 
1~~ ,.%~ 

the assumptions of Theorem 3 are also satisfied by the pair A , B . Hence 

we see that r = a (A ' )  for 13`1<r(2")/2 [IB'I!, see (628). Here 

II B~ ii -- I[ B II ~- 1 as noted above and r (++') = r (A3 = ~ by (326), where 
is given by (448). Also we have r 3(JL)by (331) 

for I Xl<r / (3o+zr) ,  since R(3`) is then closed. Thus we have proved that 

(646) ~0 . )= [3  for IXl<r/3(.+~r), 
Also we see that R(3`)'=R[,'4--)~B]J-=N[A~ ~ depends on analyti- 

cally at least at ~. = 0. 

5. Special cases  (ii), (iv). 

We shall show that the estimate of y(3`) can also be sharpened to 

(635) in the special cases in which either (ii) 6 <  oo or (iv) X '  is a Hilbert 
A 

space. Since a (A ~ = [~< oo in case (ii) and X "~ is a Hilbert space in case 

(iv), we see that (636) is applicable to the pair A ,  B .  Thus we see that, 

for each f '~X '*  and 1 3 ` l < r ( A ' ) / 2 1 [ B ' ! l  , there is an 

h'~ N ( . ~ ' - ; ~ ' ]  = R [ .~ -~  BI* -- R(~)" 

such that g'----f'--h" has the property that d(g',N[~l~ Since 

N['A']=R[A]a-=R "a-, we have by (231) 

(651) I[ g' I1., = d(g', R'*) = II g' II. 
Noting that il~'ll~--X and r ( ~ ' ) = r  as above, we see that ( 6 5 1 ) i s  t r u e  

at least if I ~ l < r / 2 ( . + , r ) .  
For every x ~ D  we have h'((A--~B)x)=o so that 

(652) f ' ( (A -~B)x )  =g'((A--3`B)x --=g'(Ax)--3`g'(Bx). 

Since II g' IIw is the least upper bound of  Ig'(x')]/]] ~" t' .~ q for x '~R'=R[A],  
�9 ' ~  there is for each ~ > 0  an xED such that !g(Ax)!=(l-~)[]g'llw[[Ax!l 
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and A x e 0  (note that R'9s by hypothesis). In ~iew of (651), (652)and 

(613), we thus obtain 

If' ((A-~, B) x) I ~ (1-~) i! g" I'.e" ',' Ax I i -  ]~111 g' ii iI B~ il 

~ II g' il [ ( t - ~ - ,  I xl)[I Ax [ I - o  I ~,1 I1,~II1. 
Here w e  m a y  a s s u m e  that II Ax il >--- r II ; i ~ ( t - r )  y II x ,:!, for �9 may be rep- 
laced by any other element of x. Also we may assume that x:fi:0 because 

~ 0  by A x ~ o .  On the other hand, f ' - - g ' = h ' E R ( ~ . ) "  implies that 

]lf'l!R<x~_~l!g'il. Furthermore, we have ]f'((A-~,B)x)]~]i(A--~,B)§ Ilxll 
provided f ' E  D [(A--~.B)+]. Hence we obtain 

(653) II(A-ZB)+I'II->-[(I-~-, I ~l)(a-~)r-ol~l] ]1/' [I,~:.,. 
Recalling the characterization of y+ (~.)= y((A-~.B) +) by Lemma 323, we 

see that y+ (3.) is not smaller than the number in the brackets on the right 

of (653). Since f (~ . )=  j'+(~.) by Lemma 324, we obtain, on letting ~-~-0, 

(654) r(~,) ~- r -  (~+~ r) l~l 

which is identical with (635). We note that (654) has been proved for 

I~l < r12 (o + ,r) . 

6, Complet ion of the proof. 

We have so far proved that a ( ; , ) = a ,  [3(~.)-- {~, v(~.)= ~o and that 

7(~.) satisfies the inequality (634) in the general case and (6.55)in the 

special cases (i) to (iv), at least in a certain region ]~.[<r. For the radius 

r of this circle we can safely take r -= y/3 (o + ~?'), as is seen by considering 

various conditions imposed on ~. for the inequalities proved above. We shall 

now show that this circle can be extended to the larger circle [~.i<p, 

where p is as given in Theorem 3, namely P = ~'/3(0 + TT) in the general 

case and p = y/(o+Ty) in the special cases. The value of p is given as the 

value of i~.I for which the right side of (634) resp. (635) becomes zero. 

We shall give the proof only for the general case; the special cases 

can be dealt with quite in the same way. Let p0 be the radius of the 

largest circle ]~.]<p0 in which the above results are valid; we have to 

show that Po ~ p .  

Suppose that po<p. Then (634) shows that yQ.) has a positive lower 

bound Y0 in the circle ]~.l<P0. For each ~. of this circle, the assumptions 

of Theorem 3 are satisfied for the pair A ,  B replaced by the pair 
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A - - ~ B ,  B;  only the inequality (613) should be replaced by 

(661) [[Bxll _~ [o Ilxll § ~ II (A- -  XB)xlI ] / ( t  -- zlX[) 

which is itself a direct consequence of (613). The application of what has 

been proved to the pair A -  ZB, B leads to the result that 

a (~ + ~.') = a (~,) - -  a ,  13 (x + x') = 13 (~) = 13, v (~. + x~  = ~, (~)  = oo 

and that 

(662) r(X + x') ~ r(X) - ( x - z l X l ) - ,  [3o+r IX'l 

at least for 

(663) IX'l < (1 - ,  IXl) r (z) / 3 to + ~r (x) l  

(According to (661) we have to multiply the constants 0 , r  by the factor 

( 1 -  �9 I~,1)-' when we apply Theorem 3 to the pair A -  ~B,  B). 

If  we substitute (634) for ~" (~.) of  (662), we obtain after a simple 

calculation 

(664) rcx§247247 
provided ~.'/~. is real and positive. It should be noticed that (664) has the 

same form as (634). On the other hand, the right side of (663)has  a 

positive lower bound for L~l q p0 because ?'(~.)~ ~'0~0. Thus it follows that 

I~.l ~ p0 is not the largest circle with the property described above, in contra- 

diction to the definition of p0. This gives the desired result p0~_p. 

The inequality (615) or (617) expressing the Lipschitz-continuity of 

y(~) can be deduced easily from (662). Then (616) is obtained by integrating 

(615). The calculation is a simple exercise and may be omitted. 

The analytic dependence of N(k) and R(~.) "~ on ~. now follows at each 

point ~. of the circle I~1 <p,  since this was already proved for ~, = 0. This 

completes the proof of Theorem 3, 

w 7. FINITE v (A �9 B). REDUCTION THEOREM 

1. Reduction theorem. 

We now proceed to the consideration of  two operators A ,  B for 

which v (A : B) is finite. The main problem here is the "reduction" of the 

spaces X ,  X'. This means the decomposition of the domain space X and 

the range space X" into subspaces in such a way that A and B can be 



PERTURBATION THEORY FOR NULLITY, DEFICIENCY... 307 

regarded as operators between the corresponding subspaces. Our result is 

summarized in the following theorem. 

T h e o r e m  4. L e t  X a n d  X'  b e  B a n a c h  s p a c e s .  L e t  A b e  a 

c l o s e d  l i n e a r  o p e r a t o r  ( X + X ' )  w i t h  c l o s e d  r a n g e  a n d  

w i t h  a t  l e a s t  o n e  o f  a ( d )  a n d  ~(A) f i n i t e .  L e t  B b e  a 

b o u n d e d ,  c l o s e d  l i n e a r  o p e r a t o r  (X-*X')  w i t h  D[B]  ~ D[A]. 

F u r t h e r m o r e ,  l e t  v ( A : B ) = v  b e  f i n i t e .  T h e n  t h e  s p a c e s  

X , X '  c a n  be  d e c o m p o s e d  in  t h e  f o l l o w i n g  m a n n e r .  

(711) X =  X, ~ ... @ X, @ Xo, X ' =  X', ~ ... ~ X ,  ~ X'0. 

a l l  X~, J('~, i = o ,  1 . . . .  ,v, a r e  c l o s e d  l i n e a r  m a n i f o l d s  H e r e  

a n d  

(712) X ~ c D [ A ] ,  d i m X i - -  d imX' /  : m i < o %  i =  1 , 2 , . . . , r .  

F o r  e a c h  i =  0,1, ..., r, X, a n d  X'~ f o r m  an " i n v a r i a n t  p a i r "  in  

t h e  s e n s e  t h a t  A X i c X ~ ,  BX~CX'~. T h u s  we c a n  d e f i n e  t h e  

l i n e a r  o p e r a t o r s  A~,Bi(X~-~X'o) i n d u c e d  b y  A , B  in  t h e  

p a i r  X , , X ' i  o f  s u b s p a c e s .  F o r  i >  1, t h e r e  e x i s t  b a s e s  

{xit,xi2 . . . . .  x~,u~l a n d  {x'~t,x',2,...,x~,,,~l o f  X~ a n d  X'i r e s p e c -  

t i v e l y  r e l a t e d  t o  e a c h  o t h e r  in  t h e  f o l l o w i n g  way .  

(713) Bx/t = x '~,  Ax/t -- x'- t ,~--1  , 

k = 1, 2 , . . . ,m i ,  i~--- 1 , 2 , . . . , r ,  

w h e r e  we  s e t  x ' , 0=0  by  c o n v e n t i o n .  T h u s  B~, i > t ,  is  an  

i s o m o r p h i s m  o f  Xi o n t o  X' i ,  w h e r e a s  

(714) ca(A,) = ~3(A,) = t ,  v(A,:BI) = mi, i = I, 2, ..., r .  

T h e  p a i r  X~, X'i d o e s  n o t  p e r m i t  a n y  f u r t h e r  d e c o m p o -  

s i t i o n  in  t h e  a b o v e  s e n s e .  T h e  " r e s i d u a l  p a r t "  A0 o f  A is  

a c l o s e d  l i n e a r  o p e r a t o r  (X0-* X'0) w i t h  c l o s e d  r a n g e ,  a n d  

B0 i s  a b o u n d e d ,  c l o s e d  l i n e a r  o p e r a t o r  (Xo+X'o) w i t h  

D [ B 0 ] ~ D [ A 0 ] .  F u r t h e r m o r e  

(715) a(Ao)=a(A)- -r ,  ~ ( A 0 ) =  ~(A)--r,  v(Ao:Bo)= oo, 

so  t h a t  a t  l e a s t  o n e  o f  ct(Ao) a n d  {3(A0) is  f i n i t e .  

F o r  e a c h  n =  1, 2,. . .  l e t  re b e  t h e  n u m b e r  o f  t h e  s u b -  

s p a c e s  X~, i > 1 ,  s u c h  t h a t  mi=n. T h e n  

(716) r = rt + rz + ..., 
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(717) dim N .  = d imBN._ ,  + u(Ao) + r .  + r.+, + .... 

codlin AM,,_, = codim M~.., + ~ (Ao) + r .  + r.+, + .... 

n =  1,  2 ,  3 ,  . . . ,  

w h e r e  M . = M . [ A : B ]  a n d  N . = N , , [ A : B ] .  T h e s e  e q u a l i t i e s  

d e t e r m i n e  rt , r2 . . . .  c o m p l e t e l y .  

Remark.  The decomposition (711) with the properties described 

above is in general not unique, though it is unique up to isomorphism. 

Even the decomposition of  the spaces into the "finite parts" Xt @)... (~  X, 

and X', (~)... ( ~ ) X ;  on the one hand and the "residual parts" X0, X'0 on 

the other is in general not unique. See w 7.5. 

Before going into the proof, of Theorem 4, we note once for all that 

we may assume that D [B]-- -X.  Otherwise D [B] = X ~ is a closed linear 

manifold of X. Let A ~  B ~ be the trivial restrictions of  A, B to X ~ 

Then the assumptions of the theorem are satisfied for A ~ , B ~ (see Lemma 531). 

If the theorem is proved for the pair A ~ , B ~ with the decompositions 

A t~ = X ~ (~  ... (~ X, ~ (~  X ~ and X'= X', (~ ... (~ X ,  (~ X'o, it is easy to 

find an X0: )  Xo ~ such that X = X t  ~  ~  We have only to 

set Xi = X ~  i > 1, to obtain the decomposition of  the theorem. 

2. Subspaees  Lk.  

We now give the proof of  the theorem. We introduce the linear 

manifolds M,,=M,,[A :B]  and N,,=N,,[A : B ] .  That v[A : B ] - ~ - v < o o  

means that N =  Art C M,,_, is true but N C My is false. Set 

(721) N O = N t 3  M , ;  

then we have 

(722) 0 < d i m  N / N ~  oo 

the second inequality being true because either d i m N = a ( A ) < o o  or 

c o d i m M , < o o  in virtue of  ~ ( A ) < o o  (see (517) and the remark at the 

end of the preceding paragraph, according to which we assume that 

D[B] ~ X) .  I, knce  there exists a finite-dimensional linear manifold L, 

such that 

(723) N =  N ~ @ Lt , Lt n Mv -- {0}, {0}=/=Lt C N C M ~ - - t .  

We shall now construct a sequence of  linear manifolds Lz, L , , . . . , L ,  ' 

with the following properties: 
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L k C N ,  C M , - , ,  Lk~M, ' . . .~+I  = {01, 

(724) A L , = B L k _ I , ( L o = { O I ) ,  k = 1 ,2  . . . .  , v ,  

0 < d i m  LI = dim L2 = ... -~ dim Lv = r <  oo 

and the mappings L k ' ~ A L k ,  k = 2 , 3  . . . . .  v, and L h + B L k ,  k = l , 2  ..... v, 

are one-to-one. 

W e  have already constructed L t .  So we assume that Lt . . . . .  Lk 

have been constructed and construct Lk+l as follows. L~ C 3I~-k implies that 

Lh C B - t  (AMv-..k-O and hence that BLk C AM, , - k_ , .  Since dim L,<. co, 

there is a linear manifold Lk+t C M~..~_, which is mapped by A onto 

BL, in a one-to-one fashion: ALk+t = B L h .  This shows that 

Lk+, C A -~ (BLh) C A - '  (BN,)  = N,+, C M , ' _ , _ , ,  

the last inclusion being true since k +  1 ~_v. I f  x ELk+t 0 M,,_k, there 

is a y ~ Lk such that Ax = By  and y ~ B -~ ( A M , , _ , ) =  Mv-k+, .Thus 

y E  Lk I'~ M~..,+t and hence y = 0 by (724). Then Ax  = 0 and so x-~  0 

by the one-to-one property o f  the map Lk+t-->-ALk+t. This shows that 

Lk+, ~ M , - ,  = {0}. Finally we have to show that also the map Lt,+, +BLk+t  

is one-to-one. B x =  0 implies x E N [ B ]  C M,,_, by (513). Hence Bx = 0 

for an x E L k + t  implies that x E  Lk+t (~ M,_~ = {01 . This one-to-one 

property of  the mappings finally shows that 

dim Lk+t ----- dim ALk+I = dim BLk = dim L , .  

This completes the induction. 

W e  note that, for each k =- 1, 2 . . . . .  v ,  the linear manifolds 

Lk .  Lk+t . . . . .  L ,  and M,..~+I are linearly independent. This follows im- 

mediately from the fact that Li C My_, but L~ ~ My_,- ,  = [0} and that 

X = M 0  ~ M I D  Ms D .... 

Similarly the linear manifolds BLk , BL,+, , ..., BL,, 

linearly independent. To see this, suppose that 

Bya + By,+~ + ... + By ,  + y" = o 

with y, ~ Li and y" ~ AM,_a  . Then we have 

y ,  + ... + y~ ~ B -~ ( A M , - k )  = M,'_k+t. 

M v ~ k  + I By the linear independence o f  Lk . . . . .  L," and 

follows that y k = . . . = y ~ = o  and y ' = 0 .  

and AMv_a are 

noted above, it 



310 TOSIO KATO 

3. C o n s t r u c t i o n  of  ba se s .  

So far our arguments have been purely algebraic. For the construction 

to follow, we make use of  the fact that  M ,  and A M , ,  n = 0 , 1 ,  2 . . . .  , 

are all closed by Lemmas 541 and 542. 

W e  now introduce bases of  the linear manifolds L, . . . . .  L , .  W e  take 

an arbitrary basis x,, , s u  . . . . .  z,, o f  s  In virtue of  the relations 

ALk = BL,...t and the one-to-one property o f  these mappings, we can then 

choose the bases o f  L h ,  {Xj~,X2k . . . . .  X,kl, for k :> 2 in such a way that 

the following relations hold :  

(731)  Axa  = B x i , , _ t ,  xa ~ Lh C N ,  C My_k,  

i =  1 , 2 , . . . , r ,  k = 1, 2 , . . . , v ,  

where we set xi0 = 0 by convention. According to the remarks above, the 

(v - -  k q- 1) r elements x~ ,  ..., ziv (i = 1, ..., r)  o f  X are linearly independent 

modulo M , . ~ + , ,  and the ( v - - k  + l ) r  elements Bxt, ..... Bz~  ( i =  I,  2 . . . . .  r )  

of X '  are linearly independent modulo AMv.--k. 

In particular Bxiv, i = 1 . . . . .  r, are linearly independent modulo  A X .  

Since A X  is closed, there exist r linear functionals f ~ E  X'*, j =  1 . . . . .  r, 

such that 

(732)  f ' tv  (Bxiv) = ~,j,  / ' i v  E ( A X )  ~ . 

Here b e is the Kronecker  symbol. 

We  now construct by induction rv elements f ' e E  X ~', j - - -1  . . . . .  r, 

1---1 . . . . .  v, with the following propert ies:  

f'~t (Ax) = f'~,,+, (Bx) = B'f'j.,+, (x), x ~ D[A], 
(733)  

f '~  ~ ( B L , ) "  (3 (AM,~.4) -~ , l = 1 . . . . .  v - -  1.  

~r shall show how to find f ' j , z , t ,  j = 1 . . . . .  r, when already f 'p ,  . . . . .  f ' g ,  

= 1 . . . . .  r, have been constructed, where l :> 2. Since N C M,,.., C M~.z+t ,  

we have B N  C AM, . . : ,  (AM,~.4)" C (BN)  -L �9 Hence f ' j , e ( B N y -  by (732) 

or (733),  and this implies that B * f ' ~ N ' .  Furthermore, B / ~  is linearly 

independent o f  A X  as remarked above. Thus  BLv 13 AX- - - - {0}  and 

B L , + A X  is closed because AX" is dosed  and BL,  is finite-dimensional. 

Thus Lemma 334 is applicable with f = B*f '~  and M ' = B L v ,  with the 

result that there exists an f ' / , l - t  E X'* such that 

f'j.t-~ (Ax) = B'f'~(x) = f'~,(Bx) and f'i.t-, ~ (BLv) ~. 

Furthermore, for any x E D [A] 13 M~.~+t we have Bz E BM,,._t+t C AMv...t 
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�9 ..k. 

and f ' j , t - ,  ( A x )  ----/'It (Bx) = 0 because f j, ~ (AMy_, )  . This shows that 

f ' L t _ a E ( A M , _ t + t )  ~ .  Thus we see that f ' L * - '  satisfies all the requirements 

of (733), and* the induction is complete. 

The rv elements B x a  E X" and the rv functionals f'js form a bior- 

thogonal set : 

(734) f ' j t ( B x a )  = 8~t8,t, i ,  j = t . . . . .  r ,  k ,  l = ! . . . . .  v .  

For k =  V this has already been proved, see (732), (733)and  note that 

x,vELv. This is also true for k < l  because then 

B x a  ~ B L ,  C BMv--t  C AMv- t - - t  C AMv...t, 

see (724) and (733). If v > k ~  l, (734) follows from 

f'# (Bxa) ----- f'# (Ax,. ~+,) = f'j.~+, (Bx,. t+,) = ... 

= f ' j , s + , , - ,  (Bx , , , )  = ~,t ~ 

by (731), (732) and (733). 

4. Construction of projections. 

We define rv operators EL by 

(74t) E,4x =/',,(Bx)x,,, i --= I ..... r, k = I, ..., v. 

Eob are bounded linear operators ( X - - ~ X )  defined everywhere in 

It follows easily from (734) that 

(742) Ejz EL = 5i~ b u E a .  

This shows that Eo~ are mutually orthogonal projections in X.  

Similarly we define rv operators E ~  by 

(741') E ~ x "  = f ~ ( x ' ) B x a ,  i = t . . . .  , r ,  k = t, ..., v .  

E'~t are bounded linear operatots ( X ' - ~  X') defined everywhere in 

Again it follows from (734) that 

(7423 E'~, E~ = ~,j ~,,, E'~ . 

Thus E'~k are mutually orthogonal projections in X'. 

It follows immediately from the definitioa that 

(743) E ' ~ B = = B E ~ ,  i =  1 , . . . , r ;  k - -  t . . . . .  v .  

Also we have by (731) 

A E ~  x = / ' ~  (Bx)  Ar t ,  = 1",, (Bz )  Bx~. , - ,  

for all x E X, and by (733) or (732) 

X'. 

X,. 
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E ' ~ A z  --- f '~ (Ax)Bx~  = f~.k+,(Bx)Bxi~ (f~.v+1 = O) 

for all x e D [A]. These equalities show that 

(744) E'~ A C AEi,~+I , i =  1 .... , r ; k = o, 1 ..... v ,  

where we set E',o= 0 and E,.v+t = 0  by convention. 

We now set 

(745) E i = E E ~ ,  E'~= E'~, E-~ E,. E ' =  E~. 
k-~-l ; = 1  th.~-I 

It follows from (743) and (744) that 

(746) E'~B = BE~, E'B = BE,  E'~A C AE~, E'A C AE.  

Let the ranges of Ei and E'i be denoted respectively by Xi and X~.  

These are v-dimensional linear manifolds of X and X" and spanned by the 

bases {xi, . . . . .  xiv} and Ix'~, . . . . .  X'~v} respectively, where 

(747) x'i~ = Bxa.  

Note that x',h are linearly independent, as is seen from the fact that x'~h 

and f'ik form a biorthogonal set. Each of X ,  J( '  is decomposed into the 

direct sum of r + I closed linear manifolds: 

x = x, ~ ... @ x, @ xo, x" = x', ~ ... ~ x; (3 x'o, 

where X0, X'0 are the ranges of I - - E ,  I ' - -E"  respectively ( I ,  I" are 

respectively the identity operators of X ,  X'). 

The bases of the subspaces X~, X'~ arc connected with each other 

by (747) and 

(748)  A~. .  = x'~.~-, (x% = 0) .  

Thus B induces an isomorphism of  Xi onto X'~, whereas A acts in Xi 

in a way analogous to the Jordan canonical form. 

The "residual spaces" Xo, X'o are a l s o  invariant with respect to 

A , B  in the sense that A X o C X ' 0  and B X ' 0 c X ' 0 .  This is a direct 
-aht 

consequence of  the fact that (I'--E') A (ZA ( I - -E)  and (I '--E') B = B (I--E) .  

Let A I , B ,  be the linear operators (X~o-X'~) induced by A , B  

respectively, i =  0, 1, 2 . . . . .  r. For i >  1, B~ has the inverse B~-~ t and the 

operator B7~ Ai has exactly the Jordan canonical form with respect to the 

basis {x~t . . . . .  xi, I of  X~. From this it is easily seen that 

a ( A ~ ) = ~ ( A , ) = l ,  v ( A , : B , ) = v ,  i = l  . . . . .  r .  

Hence we must have for the residual part A0 

(749) a ( A o ) =  a ( A ) - - r ,  ~(Ao) = ~ ( A ) - - r .  
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S. Comple t ion  of the  reduct ion.  

Let us now consider the residual parts A0, Bo of the operators A ,  B 

respectively. It is obvious that A0 is a closed linear operator with closed 

range, for the same is true with A and Xo is a closed linear manifold of 

X with codim X 0 =  r v <  cc (see Lemma 333). Furthermore, it follows from 

(749) that at least one of a(A0),  [3(A0) is finite. Therefore, we can apply 

the reduction procedure described above to the pair Ao,  B0, provided 

v(A0:B0)  is finite. This leads to a further reduction of  the numbers 

a(A0o), ~(Aoo) for the residual parts A0o, Boo of Ao, B0. This process 

can be continued only a finite number of  times because at least one of 

*x(A), I~(A) was finite, and must come to an end with the final residual 

parts A ~ , B ~ such that v ( A ~  ~ = co. With a slight change of notations, 

this proves Theorem 4 except for the last equalities (717). 

Hereafter we use the notations of Theorem 4. To prove (717), we 

note that for i > l  

dim N,  [A,:  B,] = dim N,_,  [A,: Bi] + r~,.m,, 
(751) 

codim M,, [Ai: B~] = codim M,~._t [Ai: Bi] + r/~,,,~ 

where r / , , , ,=  1 for n ~ m  and r / , . , , = 0  for n>m.  This can be seen 

most easily from the fact that M,  [Ai: Bi] and N,, [Ai:Bi] are respectively 

"B 'A'" the range and the null space of  the operator t ~'. o ,  where BTIA,  is a 

linear operator in the mi dimensional space Xi with a Jordan canonical 

form with the eigenvalue 0. 

Since M,, [A, : B~] = B - t  (A, M,,_, [Ai : BaD and B, is an isomorphism i 

of  Xi onto X'~, (751) can be written as 

dim N,, [A, : R ]  - dim BIN,-,  [A#: B~] + ~/ , ,~ ,  
(752) 

codim X~ M,,...t [A~ : B0] = codim M,,..., [A, : B0] + r/,,,,,~. 

On the other hand, v ( A o : B o ) = c o  implies by Lemma 511 that 

dim N,  [A0 : Bo] = dim Bo N , - t  [Ao : Bo] + tt (Ao), 
(753) 

codim A0 M._, [Ao: Bol = codim M ~ ,  [A0: Bo] + 13 (Ao). 

But it is obvious that 

dim N,  [,4 : B] -~ E dim N,  [A,: B,I 
i~----o 

and similar relation holds also for dim BN,,[A:B], codim M,,[A: B] 
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and codim A M , , [ A : B ] .  The addition of the corresponding equalities of 

(752) and (753) thus leads to the required results (717). 

Since at least one of a (A) and ~ (A) is finite, (717) determines the 

numbers r l , r z , . . . .  For example if a ( A ) ~ o o ,  we have a(A0)qoo 

and hence 

r. = (dim N~ - dim BN,~--,) - (dim N.+I -- dim BN.)  

where all terms on the right are finite. 

The fact that r, are determined uniquely shows that the decomposition 

of X and X" in the manner described in Theorem 4 is unique up to 

isomorphism. This is obvious for the finite parts X~, X'~, i ~ 1. Then the 

structure of X0, X'o with A0, B0 operating between them is also determined 

as isomorphic to the factor spaces X / ( X, (~  ... (~  X,), X'  / ( X'I (~  ... (~  X; )  

respectively. 

However, even the finite part XI f~ ... ~ X, and the residual part X0 

need not be determined uniquely. For example let X be a Hilbert space 

with a complete orthonormal set {x0, x t ,  xz . . . .  }. Set B-----I and let A be 

a bounded linear operator (X-~- X) with D [A] =- X such that 

Axo = O, Axe=O, Ax2 -- x , ,  A x e = x 2  . . . . .  

Then A is partially isometric (hence has closed range) and a ( A ) =  2, 

(A) = 1. A decomposition of the kind stated in Theorem 4 is given by 

X =  XI ~) X0, where X0 is the closed linear manifold spanned by {x,, x2 .... } 

and XI is a one-dimensional linear manifold spanned by x0 q-Sxl, where 

may be any number. Thus XI is not uniquely determined. 

In this example the adjoint A* of A is given by 

A*xo=0, A'xl=x2, A'x2=x~,..., 

(here A* is the Hilbert adjoint of A, again deviating from the general 

usage of this paper). A* is again partially isometric with ca(A*)= 1. 

~(A*) = 2. A decomposition of Theorem 4 is given by X -  XI ~ X0, 

where Xj is the one-dimensional linear manifold spanned by x0 and X0 

is a dosed linear manifold spanned by x~ + ~eXo, x~, x3 . . . . .  where ~r is an 

arbitrary number. Thus Xo is not uniquely determined. 

In this connect/on it will be remarked that the finite parts 

X~ ~ . . .  (~ X,, X', f~ ... (~ X ,  are uniquely determined if a (A0) = 0. 

Similarly the residual parts Xo, X'o are uniquely determined if {](/1o)= 0 
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and D [B] = X. This follows from the fact that we have 

x, E)... �9 x ,  = N. [ a  : B] 
for suflidendy large n provided ct(Ao)== 0, and we have 

X'o --- AXo for sufl~cientiy large n provided [3 (A0) = 0 

(see (516) and (517)). 

x 0 =  ~ . [ A  : B], 

and D [B] = X 

6. Instability of finite v. 
We now prove a theorem which shows that the property v ( A  : B ) <  oo 

is unstable or exceptional in a certain sense. 

T h e o r e m  5. L e t  X,X"  b e  B a n a c h  s p a c e s ,  l e t  A b e  a 

c l o s e d  l i n e a r  o p e r a t o r  ( X ~ X ' )  w i t h  c l o s e d  r a n g e  w i t h  a t  

l e a s t  o n e  o f  a(A) a n d  I3(A) f i n i t e .  L e t  B b e  a l i n e a r  o p e r a t o r  

(X-~X') s u c h  t h a t  D[B]~D[A] a n d  

( 7 6 1 )  IIBx!l  < o i l " t [  + ~IIA~I[, x e D [ A ] .  

F u r t h e r m o r e ,  l e t  v ( A : B ) < o o .  T h e n  t h e r e  i s  a c o n s t a n t  

p > 0  a n d  a p o s i t i v e  i n t e g e r  r s u c h  t h a t ,  f o r  0~1~.]< p, A--~.B 
i s  a c l o s e d  l i n e a r  o p e r a t o r  (X.-~-X') w i t h  c l o s e d  r a n g e  a n d  

( ~ 6 2 )  a ( A  - -  ~,B) = a ( A )  - -  r ,  ~ ( A  - -  ~,B) = 13 ( A )  - -  r ,  

( 7 6 3 )  v (.4 - ZB : B )  = oo. 

Proof.  We may assume that B is bounded with D [ B ] =  X .  The 

general case can be reduced to this case by the device used in the proof 

of  Theorem 3; we need only to note (644). 

Thus Theorem 4 is applicable, and we shall use the notations of  

this theorem. For each pair A i ,  Bt, i >  1, we have 

(764) a (At - -  ),B~) = ~ (A, - -  ~Bt:) = 0 ,  

( 7 6 5 )  v (A,-  ~B, : B, )  = oo, 

for every complex number ~L:/: 0 .  This is a direct consequence of the fact 

that the operator B~ - t  At in the finite-dimensional space Xi has the only 

eigenvalue 0. On the other hand, Theorem 3 is applicable to the pair 

A0, B0, for A0 is a closed linear operator with closed range (y (A0)>o)  

and with v ( A o : B 0 ) - o o .  Thus we see that A0--J.Bo is a closed linear 

operator with closed range and 

(766) a (A0 - -  XB0) - a (A0), 13 (A0 - -  ZB0) = 13 (A0) ,  

(767) Y (Ao - -  ~B0 : Bo) '= oo. 
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These equalities are true for [~l<r(Xo)lIBol[-' because at least one of  

a(Ao) and ~(A0) is finite, 

It follows from (764) and (766) that 

a (A - ~LB) = ~ a ( A i - -  ~ i )  = a (Ao) = a (A) - -  r 
1 

/-_--o 

by (715). This proves the first equality of (762). The second equality can 

be proved similarly. On the other hand, it is obvious that (76~) and (767) 

imply (763). 

7. Extension of stability theorem. 
In Theorem 5 it is difficult to give an estimate of the constant p. 

It is true that we can.take p -- r(A0)IIBoll-* _~ r(Ao)IIBII-' ifB is bounded, 

as was mentioned in the proof; but there is no simple relationship between 

~'(A0) and ~'(A). Note that A0 is not necessarily uniquely determined by 

A as was remarke~t above. 

In this connection the following theorem is of interest. It may be 

regarded as an extension of Theorem ta and, in part, of Theorem 3. 

Theorem 6. L e t  X,X" be B a n a c h  s p a c e s .  L e t  A be  a 

c l o s e d  l i n e a r  o p e r a t o r  (X~X')  w i t h  c l o s e d  r a n g e  a n d  

w i t h  at  l e a s t  o n e  o f a ( A )  a n d  13(A) f i n i t e .  L e t  B be a l i n e a r  

o p e r a t o r  (X.-~X') s u c h  t h a t  D[B]~)D[A] a n d  (761) h o l d s .  

T h e n ,  f o r  

(77 i) I 'l < r (A) [o + (A)] - , ,  
A - - ~ '  is a c l o s e d  l i n e a r  o p e r a t o r  w i t h  c l o s e d  r a n g e  a n d  

b o t h  a ( A - - ~ B )  a n d  ~(A--~ ,B)  a r e  c o n s t a n t  e x c e p t  a t  a 

c o u n t a b l e  n u m b e r  o f  v a l u e s  o f  ~. w h i c h  h a v e  n o  a c c u m u -  

l a t i o n  p o i n t  i n s i d e  o f  (771). L e t  p , q  be  t h e s e  c o n s t a n t  

v a l u e s  o f  a , l ~  r e s p e c t i v e l y .  T h e n ,  f o r  e a c h  o f  t h e s e  

e x c e p t i o n a l  p o i n t s  l ,  t h e r e  is a f i n i t e ,  p o s i t i v e  i n t e g e r  

r0.)  s u c h  t h a t  

(772) ct(A--~.B)= p-t-r(~), ~(A--~.B)= q-l-r(~) 
(773) o < r 0 .  ) <~ r (o ) .  

T h e r e  a r e  no  s u c h  e x c e p t i o n a l  p o i n t s  in  t h e  c i r c l e  (771) 

u n l e s s  ~ . . .0  is  i t s e l f  s u c h  an e x c e p t i o n a l  p o i n t .  
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Proof. That A--~,B is a closed linear operator with closed range for 

(771) has been proved in Theorem Ia�9 Thus we can apply either Theorem 3 

or Theorem 5 to the pair A--;h~B, B for each ~o satisfying (771). The 

result is that there is a neighborhood of  ~ in which a 0 . ) -  a (A--~kB) 

and IB Q . ) -  IB ( A -  ~B) are constant at least except for ~ . -  ~ .  It follows 

that these constant values must be the same throughout the circle (771), 

and the theorem follows immediately. That r 0.) ~_ r(0) is a direct consequence 

of Theorem la, according to which a 0.) ~ (t (0), IB 0.) g-- 1B (0). In particular 

there can be no ~. for which r 0 . ) > 0  unless r (O )>0 .  

We note that (772) gives the proof of (432,). 

w CLASSIFICATION OF COMPLEX NUMBERS ACCORDING TO 
SPECTRAL PROPERTIES 

1. Classification of comp lex  numbers .  

This section is devoted to some results that can be deduced from 

foregoing thegrems. 

Let X ,  X '  be Banach spaces, let A be a closed linear operator 

(X-.~ X') and let B be a linear operator (X-~- X') such that D[B]DD[A] 
and 

(s11) [IB,,[[ < ~ I1~11 + ~IIA~II, x~D(A], 
where o ,  �9 are non-negative constants. Then the operator A--~.B is a 

closed linear operator ( X - ~  X') for 

(812) I~.[ < T--' 

This follows from the proof of  Theorem 

We shMl denote by A the set of  ~. 

we can take �9 = 0 and A coincides with 

follows we consider only ~. belonging to 

For brevity we write a 0.) --'-- a (A - -  ~.B), 

define R (~.), IB (X), a '  0.), 6' Q.), ~" 0.) and 

The set of  all ~. such that A--~.B 

of a 0.), IB 0-) is finite will be denoted 

or 6, A is an  o p e n  se t .  The components of  A will be denoted by 

A1, A2 . . . . .  These are connected open sets�9 

The subset of  A consisting of all points ~. with v 0 . ) < ~  [reap. 

la as we have remarked there. 

satisfying (812). If B is bounded, 

the whole complex plane. In what 

A unless otherwise stated explicitly�9 

N(~)-N[A--~,B] and similarly 

v O . )  - v ( A - - ~ B  : B).  

has closed range and at least one 

by A. According to Theorem la 
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v (it) -- oo] will be denoted by FI [resp. A']. According to Theorem 3 and 6, 

A' i s  a n  o p e n  s e t  a n d  I I  i s  an  i s o l a t e d  s e t  c o n s i s t i n g  o n l y  

o f  i n t e r n a l  p o i n t s  o f  A. Hence each ~ , ~ I I  is an internal point o f  

some A,. W e  denote by I I t  the set o f  all ~t ~ I I  belonging to A/. Also it 

follows that A~ ~ - A ' ~ A i ,  i =  I, 2 . . . . .  are exactly the components o f  A'. 

Theorem 3 shows that a0 . )  a n d  ~3(it) a r e  c o n s t a n t  i n  e a c h  A ' t ,  

these constant values will be called the i n d i c e s  of A'~ (and also o f  At) 

and denoted by oq, [3 t .  By definition at least one of  a~, J3t is finite. 

Theorem 3 shows further that ~'(~.) i s  c o n t i n u o u s  i n  A' a n d  h e n c e  

a l s o  in  e a c h  A't,  and that NO.),  R(~.) a- d e p e n d  a n a l i t i c a l l y  

o n  ~, f o r  ~ .~A' .  

Theorem 6 shows that, for each I t~  I-I~, there is an integer r(),) 

such that 

(813) 0 < , 0 , ) < o o ,  a(it) = a t + r ( i t ) ,  l](it) = l ] t+ r ( i t ) .  

For this reason, each ~.~l-I will be called a d i s c r e t e  e i g e n v a l u e  

(of  A with respect to B)  and r (~,) the m u I t i p I i c i t y o f  this discrete 

eigenvalue. 

The complement  of  A in A will be denoted by 2g;Y. is relatively 

closed in A. The points o f  ~. will be called s i n g u I a r p o i n t s (of  A with 

respect to B). It  follows from the definition that, for JLr Y, either the 

range of  A -  ~B is not closed (j" (~) = O) or 

a (~)-- f~ 0 , ) =  o o .  

Lemmas 421 and 422 show that ~. i s  a s i n g u l a r  p o i n t  i f  a n d  

o n l y  i f  a ' 0 , ) =  l Y ( ~ ) =  oo. 

Y- can be divided into two parts Y--' and Y.', Y~' is the set o f  all ~. 

such that A - -  kB has closed range and a (it) ---- [3 (it) ---- v (t)  = co. Theorem 3 

shows that X' i s  a n  o p e n s e t  a n d  ~'(it) i s  c o n t i n u o u s  f o r  ~ Y / .  

Also N(Jl) and R(it)  a- depend analytically on It for I t e~ : ' .  Y.." is the set 

o f  all It such that either the range of  A -  kB is not dosed  or 

a(it) = PO. )=  oo > v O , ) .  

Y--" i s  r e l a t i v e l y  c l o s e d  in  A. 

It  is easily seen that t h e  b o u n d a r i e s  o f  At a n d  2g" a r e  

s u b s e t s  o f  Y--~ 

W e  denote by p(i t)  the distance o f  a point tt ~ [1 from Y..'. In other 
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words, P0.) is the distance of  1. from the boundary of  As to which ~. 

belongs. Theorem 6 shows that 

(8 4) p(x)  > o, x n. 

For each ~.E A" let frO.) be the distance of g from I I U Z ' .  In other words, 

frO-) is the distance of ~. from the boundary of A'i to which ~. belongs. 

Theorem 3 shows that 

l ( 8 z 5 ) p �9 > l'O.)/[o + ,r(X)] > o ,  x A,. 

The two inequalities (814) and (815) have the same form, but it should 

be noted that the meaning of  p' (~.) is somewhat different from that of p (~.). 

This is an expression of the discontinuity of ~" (~,) at a discrete eigenvalue ~.; 

We can also define the distance p ' (~ , )o f  a ~.E]~' from X" (or, 

equivalently, from the boundary of 2~'). It follows from Theorem 3 that 

(8t6) p'O.) _>- r0 . ) / [3o  + *r0.)] > 0 ,  XeX'. 

The factor 3 can be dropped if either X or X '  is a Hilbert space. 

2, The case  of coun tab le  s ingular  points.  

The number of the components Ai of A may be 0, t, 2 . . . . .  or oo. 

If there are more than one components, the boundary of  A must have the 

power of continuum. This is a simple consequence of the fact that A is an 

open set. But the boundary of  A consists only o f  singular points. Conse- 

quently, there is one and only one component of A if there are at most a 

countable number of  singular points. Thus we have proved the following 

theorem. 

T h e o r e m  7. L e t  A , B  be  as a b o v e .  A s s u m e  t h a t  t h e r e  

a r e  a t  m o s t  a c o u n t a b l e  n u m b e r  o f  p o i n t s  ~. (singular points) 

s u c h  t h a t  a ' (A- - JkB)=~3 'CA- -~ .B)=  oo. T h e n  t h e  c l o s e d  l i n e a r  

o p e r a t o r  A - - ~ . B  h a s  c l o s e d  r a n g e  f o r  a l l  ~.~A e x c e p t  

p o s s i b l y  f o r  t h e  s i n g u l a r  p o i n t s ,  a n d  ct(A--~.B),  [5(A--~B) 

a r e  c o n s t a n t  f o r  a l l  L E A  e x c e p t  f o r  t h e  s i n g u l a r  p o i n t s  

a n d  t h e  d i s c r e t e  e i g e n v a l u e s .  T h e r e  a r e  a t  m o s t  a c o u n t -  

a b l e  n u m b e r  o f  d i s c r e t e  e i g e n v a l u e s  ~., f o r  w h i c h  we  h a v e  

(721) a ( A - - ~ B )  = a + r(X) ,  f J ( A - - ~ B )  = [3 + tO, ) ,  

0 < �9 0") < oo 
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w h e r e  a,13 a r e  t h e  c o n s t a n t  v a l u e s  s t a t e d  a b o v e  a n d  at  

l e a s t  o n e  o f  t h e m  is  f i n i t e .  

The simplest situation from our point of view is the case in which 

there is no singular point. The following theorem is concerned with such 

a case.  

Theo rem 8. L e t  X', X'  be  B a n a c h  s p a c e s .  L e t  A b e  a 

c l o s e d  l i n e a r  o p e r a t o r  (X.~X') w i t h  c l o s e d  r a n g e  a n d  

w i t h  a ( A ) < o o .  L e t  B be  a s t r i c t l y  s i n g u l a r  o p e r a t o r  

r e l a t i v e  t o  A (see w T h e n  A - I B  is a c l o s e d  l i n e a r  

o p e r a t o r  w i t h  c l o s e d  r a n g e  f o r  e v e r y  c o m p l e x  n u m b e r  7,. 

c t ( A - - ~ B ) = c ~ < c , o  a n d  J3(A--~.B)=J3 a r e  c o n s t a n t  e x c e p t  f o r  

t h e  (at most countable) d i s c r e t e  e i g e n v a l u e s  t f o r  w h i c h  we 

h a v e  (721). 

Proof. There is no singular point as is easily seen from Theorem 2a, 

w Hence the theorem follows from Theorem 7. 

3. Fredholm spectrum and Riesz-Schauder theorem. 
The foregoing theorems can be applied to the cue  in which X ' - X  

and B - I  (the identity operator of X). In this case A is the whole 

complex plane. The components A'/ for which ct~ = ~i-~ 0 are exactly the 

components of  the r e s o l v e n t  s e t  of A. If  in particular A is bounded 

with domain X,  its resolvent set is not empty. Hence we must have 

a = ~ *' 0 in Theorem 7. This gives 

Theorem 9. L e t  X be  a B a n a c h  s p a c e  a n d  l e t  A b e  a 

b o u n d e d  l i n e a r  o p e r a t o r  (X.~X) w i t h  d o m a i n  X. I f  t h e r e  

is  o n l y  a c o u n t a b l e  n u m b e r  o f  p o i n t s  i (singular points) f o r  

w h i c h  a'(A--~.I)=f3"(A--1I)=oo, A h a s  a F r e d h o l m  s p e c t r u m  

e x c e p t  f o r  t h e s e  s i n g u l a r  p o i n t s .  

By saying that d has a Fredholm spectrum in a set F of the complex 

plane, we mean that A- -~ . I  has closed range for-all  ~.~F and that 

a ( d - - h r ) =  ~ ( A - - ~ . / ) =  0 except for at most countable number of 

discrete eigenvalues I for which 

(731) 0 < a(A _h r )  = / 3 ( A  _~r)  = r(~) < oo. 

Suppose in particular that ~. = 0 is the only possible singular point 

in Theorem 9. Then A has a Fredholm spectrum with the single exception 
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of the point  ~. = O. In other words, the Riesz-Schauder theorem holds 

for A. Thus we obtain 

T h e o r e m  10. L e t  X b e  a B a n a c h  s p a c e  a n d  l e t  A b e  a 

b o u n d e d  l i n e a r  o p e r a t o r  ( X - ~ X )  w i t h  d o m a i n  X .  T h e  

R i e s z - S c h a u d e r  t h e o r e m  h o l d s  f o r  A i f  a n d  o n l y  i f  ~ . - 0  

i s  t h e  o n l y  p o s s i b l e  s i n g u l a r  p o i n t ,  t h a t  i s ,  i f  a n d  o n l y  i f  

a ' ( A - - h  r) = ~ ' ( A - - ~ I )  = oo i s  n o t  t r u e  f o r  a n y  ~ , : / :0 .  

Remark. This theorem shows that the Riesz-Schauder theorem holds 

for a strictly singular operator B, for there is no singular point Ix for the 

operator of .the form I -- IXB as is seen from the proof of Theorem 8. 

Since the complete continuity implies the strict singularity (see w 4.5), 

our theory furnishes an independent proof of the Riesz-Schauder theorem 

for a completely continuous operator. In this connection it should be 

remarked that, in proving Theorems 7 to I0, we do not need the fact that 

�9 ' is an open set or various estimates for the quantity ? ' ( A - ~ . B ) ,  to 

which a greater part of  the present paper is devoted. 

,, 
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