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§1. INTRODUCTION
The present paper is concerned with some spectral properties of linear
operators between (complex) Banach spaces. We are mainly interested in
the stability of the nullity and deficiency and other related quantities under
small perturbation and its relationship to the spectral theory. Our seming of
the problem is rather general : we consider the eigenvalue problem of the form

Ax = ABx

where A, B are in general unbounded linear operators from a Banach space
X to another Banach space X’. A is assumed to be closed, but its domain
need not be dense in X. B is mostly assumed to be “bounded relative
to A”.

In this introduction, which is intended for a brief account of the
ptoblems dealt with in the sequel and the main resuits, we shall for simplicity
restrict ourselves to bounded linear operators A, B with domain X. We
denote by N [A] the null space of A and by R[A] the range of A. The
dimensions of N [A] and X’/R[A] are respectively called the nullity and the
deficiency of A, and will be denoted by a(A) and B(A) (see §3.1). It has
been known some time that a«(A), f(A) bave a certain kind of stability
(see Atkinson [3,4],V Dieudonné [6], Friedman [7], Gokhberg and Krein
[8], Sz.-Nagy [11,12], Yood [13]). a(A) and B(A) have a difference
(called the index of A) which is not changed when A is subjected to a
small perrurbation under certain conditions. More precisely, we have
——1.—;umbets in brackets refer to the Bibliography at the end of the paper.
Unfortunately we have not been able to sec Dieudonné {6]). We have come to notice
the comprehensive work of Gokhberg and Krein {8] only after the completion of the
present work. This paper, hereafter quoted as GK, contains many results in common

with ours, though their methods are rather different from outs. The present paper has
been revised to avoid as far as possible the repetition of the material contained in

their paper.
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a(A+B)—B(A+B) = a(d) — B(A)

provided R[A] is closed, at least one of a(A), P(A) is finite and || B
is sufficiently small. @(A) and B(A) themselves may decrease under such
a perturbation, but they never increase as long as the perturbation is small
(the first stability theorem). A different kind of perturbation is given by a
completely continuous operator B, for which ||B|l need not be small.
Here the index a(A) —P(A) is again unchanged, but a(A), B(A) may
change in either direction (the second stability theorem).

Here the assumption that R[A] is closed is essential. The same is
true with the assumption that at least one of a(A), B(A) is finite, as will
‘be seen from an exampie in Remark 3 to Theorem 1, §4.3.

The main object of the present paper is to generalize the above
results in several directions. In the first place we aim at a quantitative
treatment @ of the problem by giving as large a limit as possible for the
magnitude [|Bll of the pertutbation for which the first stability theorem is
true. For this purpose we introduce the quantity y(A) which may be called
the lower bound of the operator A. Consider the factor space X = X/N,
N = N[A], which is a Banach space since N is a closed linear manifold
of X. The operator A defined by Ax=Ax for each x€X is a bounded
linear operator on X to X’ and the inverse A—' exists. 7 (A) is now defined
by v(A) = A-1)=1 if A~ is bounded and 7 (A) = 0 otherwise. It is well
known that y(A)>0 if and ooly if R[A] is closed. Also we shall show
that y(A")= y(A), where A* is the adjoint of A (see §3).

The first stability theorem is now shown to be valid if (Bl <y(A),
see Theorem 1, §4.3. This result is of some interest in view of the fact
that in general Banach spaces there does not exist the notion of the ortho-
gonal complement of a given subspace. The proof of this result depends
essentially on an important lemma (see Lemma 211)® proved by Bohnenblust
to the effect that, given any linear manifolds M, N of X with dim M >dim N
(so that dim N < o), there exists an * €M such that

d(x,N)=llzll>0

2. Such a quantitative result is important for applications.
3. Lemma 211 is the first lemma of §2.1. The formulas are numbered in a
similar way.
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(d(x, N) is the distance of ¥ from N). In many problems this lemma can
make up for the lack of perpendicularity in the Banach space.

The proof of Theorem 1 also makes use of the notions of approximate
nullity ’(A) and approximate deficiency B'(A) of the operator A. Roughly
speaking, these are defined as the multiplicity of the approximate eigenvalue
0 of A resp. A%, see §4.1 It is shown that a'(A)=p'(A)= o if and
only if either a(A)=B(A)=o0 or R[A] is not closed.

The introduction of the approximate nullity and deficiency enables us
to formulate the second stability theorem in a somewhat different form.
Instead of the completely continuous operators, we consider a class of
linear operators which we shall call strictly singular operators (§4.5). It is
easily seen that the complete continuity implies the strict singularity, but the
question is open whether the converse is true except for the case in which
both X and X’ are Hilbert spaces (§4.6). The second stability theorem is
now seen to hold for a strictly singular perturbation B (Theorem 2, §4.5).

Another generalization of the stability theorem we consider is concerned
with the case a(A)=f(A)=oc. As was remarked above, this is not
possible without some additional condition. In order to introduce such a
condition, we define a positive integer v(A:B) for any pair A,B of
linear operators. This is defined in a purely algebraic fashion in terms of
wwo sequences M, , N, of linear manifolds of X (§5.1). In the special case
in which X=X’ and B=1 (the identity operator of X), these sequences
reduce to R[A"] and N [A"] respectively ® and, in particular, v(A:I) = oo
means that N[A] CR[A*] (or, equivalently, N[A*] C R[A]) for all
n=1,2,3,... Some lemmas on V(A : B) are given in §5, and the results
are applied to prove Theorem 3, §6.1, in which the stability of a(A),
B(A) themselves is established, including the case a(A) =B(4)= =,
under the assumption that R[A] is closed and that the perturbation B has
the property v(A:B)= oo . At the same time the stability of v(A: B)
itself and the Lipschitz-continuity of the lower bound y(A) is proved.

A nawral question arises as to what happens when v(A : B) is finite.
§7 is devoted to this case. Here we have a reduction theorem: the spaces

X, X’ are decomposed into several “finite parts” and “residual

4. This part of our theory has some contact with the work of Hukuhara [10].
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parts” in such a way that, in the finite parts, the operators A, B have
a canonical structure similar to the Jordan form, while in the residual part
we have v(A : B)= oo and the situation of Theorem 3 prevails (Theorem
4, §7.1). Unfortunately we have to assume here that, among others, at
least one of a(A), B(A) is finite. This theorem leads to a better under-
standing of the situation expressed in Theorem 1.

§8 is devoted to some of the conclusions that can be drawn from
these theorems. The classiffication of complex numbers into several parts
according to the spectral properties of the operator A —AB is discussed.
In the special case in which X =X’ and B =1, this gives a finer partition
of the complex plane than the usual partition into the resolvent set and the
point, continuous and residual spectra. In particular it follows from our
classification that a linear operator A on X to itself has a spectrum of
Fredholm type provided there are at most a countable number of points
A (singular points) for which «' (A— AI) = f'(A—AI) = oo (Theorem 9).
This leads to a simple proof of the Riesz-Schauder theorem for a strictly
singular operator, which implies the same theorem for a completely
continuous operator.

As we have mentioned in the begining of this introduction, most of
these theorems are actually proved for unbounded operators A, B.

§2. LINEAR MANIFOLDS OF A BANACH SPACE

1. Lemmas on dimensions of linear manifolds.

Let X be a Banach space ® with the norm denoted by || |l. For any
x€X and any subset S of X, we denote by d(x,S) the distance of x
from S. For any two linear manifolds M ,N of X, we introduce the
‘number @

(211) d(MqN) = sup d(x,N)= sup d(x,N)/|x].
xeM 0F£xeM
lls]l=1

5. In this paper we consider complex Banach spaces. But our results are valid
in real Banach spaces as well with slight obvious modifications.

6. Throughout the present paper, X, X',... denote Banach spaces and M, N,...
linear manifolds, unless otherwise stated positively.

7. Max[3(M,N), 3(N,M)] is called the “opening” of M, N and employed
extensively in GK. But we find it convenient to consider 3 (M , N) separately.
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Obviously
(212) oM, N)<1.

We use the symbol dim M to denote the dimension of a linear
manifold M; it is defined as the greatest number of linearly independent
vectors of M. Thus dim M takes only the values 0, 1, 2, ... or oo, (Thus
dim M > dim N implies dim N< o). We are not interested in distin-
guishing between different infinite cardinal numbers as the value of dim M
as is done in GK, although many of our results would be valid in this finer
definition of dim M. Thus defined, dim M is a purely algebraic notion
independent of the topology of X.

The following lemma® is fundamental throughout the present paper.

Lemma 211. If dim M >dim N, there exists an *€M such
that d(x ,N) = [lx} >0. In particular 3(M,N)=1.

The following is a direct consequence of this lemma.

Lemma 212. 1f (M, N)<1, then dim M < dim N.

(M ,N) is not symmetric with respect to M and N. In this
connection the following lemma is of some interest.

Lemma 213. If dim M =dim N< oo, then
(213) S(N.M)Sd(M,N)[1-d(M, N)]

The proof can be given on the basis of a theorem of Borsuk ® as
in the case of Lemma 211. We shall not give the details, for this lemma
is not needed in the following. We only note that the inequality (213) is
the best possible, as is seen from the following example. Let X be the
two-dimensional Banach space consisting of vectors x = (§1,£2), where
the norm is defined by %}l = [£+|&2|. Let M, N be the one-dimensional
linear manifolds defined by the equations £2=af; and &>=0 respectively,
where |a/<1. Then it is easily seen that the equality holds in (213).

Lemma 214. Let M, N be closed linear manifolds of X.
For any x€X and €>0, there is an %=x (mod M) such that

214) d(x%, N2 —e)[1=3WN,M][1+3(N, M)~ lixoll .

8. This lemma is proved in GK, Theotem 1.1, so we shall not give a proof
here. It may be remarked, however, that this lemma was proved independently by
H. P. Bohnenblust in 1952 in a private communication to the writer. The proof is
the same as in GK.

9. See Alexandroff and Hopf [2], p. 485.
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Proof. If x€ M, we need only to take %o =0. We assume therefore

that x& M. Then there exists an xo=x (mod M) such that
d(xo, M) 2 (1 —g) Izl >0.

For this xo there is a y€N such that [jxo—y[| £4d +¢| %!, where
d=d(% ,N). In particular ||yl £(1+¢) %l +4. On the other hand
we have d(y, M)< 3 llyll, where 8 =3(N , M). Hence

(1—e)lIxll S d(xo, M) < lIxo—yIl +d(y, M)
Sd+elixl + d[ +¢) lx! + 4]
and
d(xo ,N)=d 2[(1—e—38)(1 +8)~" —g] lixol .
This is equivalent to (214) since €>0 is arbitrary. (Note that (214) is
trivial if &= 1).

From Lemma 214 follows immediately

Lemma 215. Let MCM, and let M not be dense in M,.
Then
(215) SM , N2 —-dWN , M1+, M.

Remark. If N is finite-dimensional, we have a stronger result to the
effect that 8 (N, M)<1 implies d(M;, N)=1. This follows directly from
Lemma 212. The same is true even for infinite-dimensional N provided X
is a Hilbert space (see Lemma 222). We¢ have not been able to obtain
the same result in the general case.

Lemma 216. Let M ,N be closed linear manifolds of X,
and for every Yy€N let there exist a P(¥)€M such that
1y —@@I <3livll, where 8<1 is independent of . If

(216) 3(M,N)< (1—8) (1+8)y",

then the closed linear manifold M, spanned by all @(y),
Y€N, coincides with M.

Remark. If dim N< oo, (216) can be replaced by a weaker condition
8(M,N)<1. The same is true if X is a Hilbert space. See the remark
after Lemma 215.

Proof. For every y€N we have d(y, M) < iy — () < 8 1yl
so that 8(N , M) <3, If My were a proper subset of M, we must have
d3(M,N)2(1—8)(1+ 8" by Lemma 215.
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2. The special case of Hilbert space. If X is a Hilbert space,
we can sharpen some of the lemmas stated in the preceding paragraph.

Lemma 221. Let M,N be closed linear manifolds in a
Hilbert space X with the corresponding (perpendicular)
projections E,F, If 3(N,M)<1, there are two pos-
sibilties. Either

i) (M ,N)=3(N,M)=E—F| <1; E maps N onto M
and F maps M onto N, both mappings being one-to-one. Or

ii) (M ,N)=1; E maps N onto an M¢CM one-to-one,
the image Mo beingaclosed linear manifold and a proper
subset of M, and 8(Mo,N)=3d(N,M)=3(N,M)= |E.—F|I<1,
where E; is the projection on My; there exists an x€M
such that d(x, N) = |zl >0.

Proof. For each y€N, we have |y—Eyl|=4d(y, M)<d|yl,
where 8 =08 (N, M). Hence ||Ey]l 2(1—398) [yl and the map N >ENCM
is one-to-one and bicontinuous by < 1. Set Mo=EN; M, is thus a closed
linear submanifold of M.

Each x € M, has the form x=Ey, ye€N. x7#0 implies ¥£0 and
a simple calculation gives
he — Iyl=2(x, ) yII=2 = =) UylI~2 ly — Eyi? = |[x1? ly)—?d (y , M)

< a2,

This shows that 4(x, N) < 8 l|lx||. Since this is true for every x € Mo,
we have 8 (Mo, N)< 3. On the other hand it is obvious that

SN, My)=0(N,M)=3.
It follows from a known theorem (see Achieser and Glasmann [1], §34)
that |Eo—F|l =3<1 and in turn this implies that F maps M, onto N
one-to-one. Thus we conclude as above that

d=08(N,M)<d(M,, N).
Combined with the above inequality, this proves that

S(My,N)=d=3(N, M).

We now distinguish between two cases: Mo=M and Mo#M.
In the former case, the proposition i) follows immediately. In the latter
case, it remains to prove the last statement of ii); this implies in particular
d(M,N)= 1. Take an *€M which does not belong to M,. Since
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FxeN, thete is an %€ M, such that Fxo= Fx because FMy=N. Thus
F(x—2x)=0 and so d(x—x,N) = |lx—%]. Since * ~x#0, we
obtain the required result by writing * in place of ¥ —x,.

Lemma 222. Let M ,N be closed linear manifolds of a
Hilbert space such that 3(N,M)<1, and let M, be a linear
manifold such that Mi\DM, MM, Then there is an xE€M,
such that d{x ,N)= {{x(1>0. In particular §(M,,N)=1,

Proof. We have two possibilities i), ii) of Lemma 221. If the case
ii) happens, the required ¥ exists already in M. If i) happens, we choose
an x€M,, x¢M, and apply the same argument as in the proof of
Lemma 221 to find an % €M such that 4(x — %, , N) = }|x — x,]| >0.

3. Dual lemmas.

We now consider the lemmas which are dual of the foregoing ones.
Let X* be the adjoint space of X consisting of all bounded linear funct-
ionals on X. For any subset S of X, we denote by S the totality of
feX* such that f L% (that is, f(x)=0) for all x€S. S* is a regularly
closed ¥ linear manifold of X°.

If M is a linear manifold of X and f€X?* we have

(231) sup [f(¥)| = ||fn=2d(f, M),

xeM

il=]l=1
where [ fily is the least upper bound of the restriction of the linear
functional f on M. (231) is an easy consequence of the Hahn-Banach
extension theorem, and is dual to the following relationship:

(232) sup | f(x)| = d(x, M).
reM+

1l711=t
From these two formulas we conclude easily !
Lemma 231. For two linear manifolds M ,N of X, we

have
(233) S(M ,N)=>d(N*+,M*Y).

For any linear manifold M of X, we denote by codim M the dimension
of the factor space X = X/M; thus codim M is defined in a purely algebraic

10. See Banach [3], Chapter 8.
11. Cf. GK, Theorem 6.2.
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fashion. If M is a closed linear manifold of a Banach space X, we have
(234) codim M = dim M+ .

Applying Lemma 211 to the pair . M™, N* and noting (231) and
(234), we obtain

Lemma 232. Let M,N be two closed linear manifolds
of X such that codimM > codim N. Then there is an feM™*
such that [ fll=Ifllx>0.

Similarly Lemma 213 gives

Lemma 233. Let M ,N be two closed linear manifolds
such that codimM = codim N < oo. If |flIn<dUfIl for every
feM™, then |lgiun<d(1—d) gl for every geN*,

4. Factor space.

In what follows frequent use will be made of the factor space
}2=X/N , where N is a closed linear manifold of X. As is well known
(see, for example, Hausdorff [9]), X is a Banach space with the norm
defined by
(241) 1%l = iof Ixll = inf lx—zl =d(x,N).

XEX zZe€N
In particular
(242) 10 < nxll .

Lemma 211 can now be given the following form.

Lemma 241. If dim M > dim N, there is an *€M such that
|%|| =||%]|>0, where x&X=X/N. (N is closed by dim N < o).

Lemma 242. If Iz <lxll for every €M, x7#0, where
x€X=X|N, then dim M <dimN .

§3. NULLITY, DEFICIENCY AND LOWER BOUND OF A LINEAR OPERATOR

1. Nullity and deficiency. In this paragraph we consider linear
operators from an arbitrary vector space X into another vector space X'.
By this we mean that the operator A under consideration has its domain
D[A] in X and range R[A] in X', where D[A] need not be the whole
space X. For convenience we express this by saying that A is a lineat
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operator (X > X'). If Xo, X' are linear manifolds of X , X’ respectively,
we can define a linear operator Ao (Xo > X'0) by setting Aox = Ax for
every x€ X, such that ¥ €D[A] and Ax€X’'y. We shall say that 4, is
induced by A in the pair Xo, X'0. If in particular X'o=X', A, will be
called a restriction of A to X,. In case D[A]CX,, the restriction
of A to X, will be said to be trivial; in such a case A, is not essentially
different from A.

The null space of A, denoted by N[A], is the linear manifold

consisting of all x€ D |A] such that Ax=0. We set ()
(311) a(A) = dim N[4], B (4) = codim R [A] = dim X'/R[A4].
a(A) is called the nullity of A and P(A) the deficiency of A. It should
be noted that none of a(A) and B(A) is changed when A is replaced by
its trivial restriction. On the other hand PB(A4), but not a(A), will be
changed if A is replaced by Ao induced by A in the pair X, X%, where
R[AlCc X, C X'

For any subset S of X, we denote by AS the image under A of the
set SND[A]. In other words, AS is the set of Ax for all x€SND[A].
In particular AX = R[A], and we ahall often write AX in place of R[A].
Also we use the symbol A~'S’ to denote the inverse image under A of
a subset S’ of X', even when the inverse operator A-' does not exist.
If A—' exists, the set A~'S’ coincides with what is defined above as the
direct image of S under the map A~'. Obviously we have

N[4] = A-'{o}.
It is easy to verify that, for any SCX,
(312) A(BS)= (AB)S,
where B is a linear operator (X > X’), A is a linear operator (X' > X");
the product AB is defined as usual as (AB)x = A (Bx) with domain D [AB]
consisting of all ¥€X such that Bx and A(Bx) make sense.

The following lemmas are easily proved, though not quite trivial
because of the circumstance that the domain of the operator A need not
be the whole space X. »

Lemma 311. If M, N are linear manifolds of X such

12. Thus our definition of & (A) and B(A) is again putely algebraic, and slightly
differs from that employed in GK.
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that NCD[A], then®?

(313) AM+4N)= AM + AN,
Lemma 312. For any linear manifold M’ of X', we have
(314) dim A='M’ < dim M’ + a(d)
where the equality holds if MCR[A], and
(315) codim A= M’ £ codim M’ + codim D [4]

where the equality holds if R[A]+ M =X".

Lemma 313. For any linear manifold M of X, we have
(316) codim AM < codim M + B (A)
where the equality holds if N[A]JCM.

We now define the operator A which will be used extensively in the
following. Let N =N [4] and consider the factor space X = X/N. Since
NCD=DJ[A4], a coset* x€X which contains at least one € D consists
entirely of elements of D. The totality of such x will be denoted by D.
On setting
(317) Ax = Ax for %€D,
we define a linear operator A (X > X’). We have
(318) D[A)= D, R[A]=R[4], N[4]=lo}.

The inverse A= exists and is a linear operator (X' > X).

In general, for any subset S of X, we denote by S the totality of
reX containing at least one x €S. Then it can easily be proved that
(319) AS = 4s.

2. Lower bound of a closed linear operator. We now considet
a closed linear operator A (X > X') where X and X’ are Banach spaces.
The null space N = N[4] is then closed, so that the factor space X = X/N
is also a Banach space (see §2.4).

Lemma 321. A is aclosed linear operator (5{->X’).

The proof is simple and may be omitted.

We now introduce a quantity vy (4), which may be called the lower
bound of A4; it is defined as the least upper bound of numbers y =0

13. As usual we denote by M + N the set of all x + y with xeM, yEN.
If M N=1{0} in addition, we write M@ N for M+ N.
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such that

(321) IA%| 2 y %) = yd(x, N) for all xeD[A].

It should be noted that y(4)=co if and only if Ax=0 for every
x€D[A)]. In other cases y(4) is actually the largest number y with the
property (321). Obviously we have

(322) 7(4) = r(4).
We note that y(4) is unchanged by a trivial restriction (see §3.1) of 4.

Lemma 322. If 4 is a closed linear operator, R[4] is
closed if and only if y(4)>o0.

Proof. Since R[4]=R[A] and y(4)=y(4), it is sufficient to prove
the lemma for A instead of A. Since A-1 exists and is closed, the lemma
is a direct consequence of the closed graph theorem.

When A -is a bounded linear operator (X > X) with D[4]=X,
it is known that y(A4*)=y(4) where A* is the adjoint of 4 and is 2
bounded linear operator (X™* > X*). For general closed linear operators A
we are dealing with, the adjoint 4® need not exist. But we can introduce
an operator A+ which is essentially equivalent to the adjoint. Let X, be
the closure of D[A] and let A, be the trivial restriction of 4 to Xo.
X, is a Banach space and A, is a closed linear operator (Xo>X') with
domain dense in X, so that the adjoint A] exists. We define 4+ by
(323) A+ = 42,

Thus A~ is a closed linear operator (X'* > X7).

The domain of A* is not necessarily dense in X". However, it is
weakly dense in the sense that ¥’ € X" and f'(*)=0 for all f'€D[4%]
imply "= 0. This can be proved by considering the graphs of the operators
4 and A*, but we shall not give the proof here since we do not need
this fact in the following.

A*f =0 is equivalent to f'(4x)= f'(do¥) =0 for every
x€D[A]. Hence
(324) N{A+] = R[A]".

Thus it follows from (231) that d(f, N[4+])= || f'|lz, where R"'= R [4].
This proves

Lemma 323. y(4*) is the least upper bound of numbers

7v20 such that (R"=R[A4))
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(325) AN 2y 0 f e for all f'eD[4*].
We shall now prove the following lemma, which is basic in the

present work.
Lemma 324. For any closed linear operator A, we have

(326) r(4%) = y(4).
In particular A has a closed range if and only if A* has a
closed range.

Proof. For simplicity we write y=y(4), r*=r(4%). We first
show that y+>y. If y= oo, we have Ax=0 for all ¥€D[A] and so
D[A*]=X", A*f =0 for all f'€X"™, hence y* = co. We may therefore
. assume that 0<y< oo, for y*>y is trivial if y=0. Thus R[A4] is
closed by Lemma 322. Let f'€D[A*]. For any €>0, there is an
¥’ €R = R[A] such that ¥ %0 and | F/ ()| 2(1—&) I/ Nr %l . % has
a form = Ax, x€D=D[A4], so tha

|/ (4x) | 2 1 =8)|| [ el A= 2 1 =) 7 || ]

SR

where

x€X=X/N, N=N[A4] and £#0
because Ax = Ax = ¥’ # 0. Since

A= [A*f )] < AT fill=l,
we have

2l 1A £ 2 =y | F lledl =]l -
Here [[%|| can be arbitrarily near to || %], since the only requirement on ¥
is that €. Thus we have
1A f2a—=er|f k.

In view of Lemma 323, this shows that y*27.

We next prove ™ the opposite inequality 7+ <. Since this is trivial
if y+=0, we shall assume that y*>0. We shall now show that, denoting
by S the unit sphere [2!i <1 of X, the closure of A4S contains the sphere
['x’l|<y* of the subspace [R’] which is the closure of R’; then a standard
argument (see, for instance, Hausdorff [9]) shows that AS iwself contains
the latter sphere and that [|Ax||=r* |£]l, leading to the desired result

14. The proof given below is an adaptation of a proof given by Yosida [14]
n the case in which A is bounded with D[A] = X and A* has a bounded inverse.
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vy27*. It should be noted that this argument is valid if 4 is closed,
even if it is not bounded.

Let y" be a point of [R7] with a positive distance from AS. Since
AS is a convex set, there is a &' €[R’]® such that®® Re g (¥')>Reg (4%)
for all x€DNS. This & can be extended to an element, again denoted
by &, of X™* with

suitable real &, it is easy to see that

>0. By replacing x by e®x with a

for all x€DNS. This implies that % > g’ (4Ax) is a bounded linear
functional defined for x € D. Hence 4% g’ exists and

il

for any y'<y* by
Lemma 323. Thus we must have ||y’ || = y*, which shows that the closure
of AS contains the sphere |[x'||<y* of [R].

3. Closed linear operator with closed range. Let X and X' be
Banach spaces. We are particularly interested in a closed linear operator
A(X » X) with closed range R[A]. As we have shown above, this is
equivalent to the condition that y(4)>0, and A bas closed range if and
only if A* has closed range.

Lemma 331. Let 4 be a closed linear operator (X > X))
with closed range. For 2 (not necessarily closed) linear mani-
fold M of X, AM is closed if M+ N[A4] is closed.

Proof. Construct the factor space X =X/N, N=N[A], and the
linear manifold M of X as in §3.1. We have AM = AM by (319). A has
a bounded inverse A—' with bound r(A)' , so that AM is closed if M
is closed, for it is the inverse image of M under the continuous map A,
It remains to show that M js closed if M + N is closed.

Suppose that there is a sequence %€M such that %, >x€X.
This implies that d(x,.—):, N)> 0 and so there is a sequence z,€N
such that %y—2%—2,> 0. Since we may assume that x,€ M, this shows
that €M +N if M + N is closed. Thus we have €M and M is closed.

15. We denote by Re the real part of a complex number.
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Lemma 332. If A is a closed linear operator (X > X)
with f(4)<oo, then 4 has closed range.

Proof. Let f(A)=m< oo. Take an m-dimensional Banach space Y
with a basis 1, ..., ¥m and construct the ditect sum Z=X@QY. Z may
be regarded as a Banach space. Since codim R[A]=m< oo, we can find
m elements %'y, ..., ¥'» of X' which are lineatly independent modulo R [A]
and which span the linear manifold X’ with R[A4]. Define a linear operator
B(Z > X') by setting Bx = Ax for x € D[A] and Byy = s for k=1, ..., m.
B is a closed linear operator, for its graph has a finite dimension modulo
the graph of A, which is closed because 4 is closed. The range of B is
the whole space X’ and hence closed. Furthermore, it is easily seen that
N[B]=N[A4]CX. Hence X+ N[B]=X is closed in Z. It follows from
Lemma 331 that R[A]=AX =BX is closed.

Lemma 333. Let 4 be a closed linear operator (X > X')
and let M be aclosed linear manifold of X with codimM< oo,
Let A; be the restriction of A to M. Then A, is a closed
linear operator (M > X'). A, has a closed range if and only
if A has a closed range.

Proof. That A, is closed is obvious. Since codim M < oo, M+-N [A4]
is closed. Hence R[A]=A4:M =AM is closed by Lemma 331, if R[A]
is closed. Conversely, if R[A4,] is closed, R[4] = AX is closed because
dim (AX/AM) < codim M < oo,

Lemma 334. Let A be a closed linear operator (XX
with closed range. For any f€N[A]*, there is an f€X™
such that f(Ax¥)=f(%¥) for all ¥x€D[A]. Here f can further
satisfy one of the following conditions.

D SNSr@ 1l

i) f/eM”*, where M’ is a closed linear manifold of
X' such that M'"+R[A] is closed and fe€(A~'M)*"; the last
condition is satisfied if M'AR[A4]={o}.

Proof. Ax=0 implies that x €N [A], f(x)=0. We can therefore
define a linear functional f* by setting f'(Ax)=f(x); f is thereby defined
on R'=R[A] and is bounded. In fact, we have

[ Fdn)| = f @<=
but as x may be any element of x€X=X/N, N=N[A], containing %,
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it follows that

AN IfII= S B/ 4=, 7 =7(A).
S’ can now be extended on the whole space X’ without changing its bound
7 I fl; this proves i).

To prove ii), we set L'=M'NR". L' is a closed linear manifold of
X and f'(x)=0 if ¥ €L’ In fact, '€ L’ implies that x"= Ax for some
x€D[A) and Ax€M’; hence x€ A~'M’ and f' (¥)=f'(A¥)=f(x)=0
by hypothesis.

We now introduce the factor space X = X’/L’ and its subspaces
M =ML, R=FR/L. Obviously we have M'AR = {0} and

Xo=M@R =M +R)/L
is closed because X'o=M'+R is closed by hypothesis. Thus X’ is a
Banach space and there is defined a bounded projection E from X’s onto R’
along M

The linear functional f° defined on R’ induces a linear functional
f* on R defined by F(x) = f'(®); the definition is justified because
% =0 implies ¥ €L’ and so f'(*)=0 by what is proved above. Further-
more, [’ is bounded. In fact, we have

P IRV OIES ot FATIES
and hence
VAOIE Sl FANES
because #’ can be. replaced by any other element of x'.

We can now extend the linear functional f’ to a linear functional,
again denoted by f’, defined on X'. We set f'(x)= f(Ex) for ¥ €X%.
It is easy to see that f’ is a bounded linear extension of the original f’
with bound not exceeding y—'||E ||| f||, and that f'(2)=0 for x’ € M".
This f’ can finally be extended to an f’'€X™ by the Hahn-Banach theorem.

Remark. f'(A4x)=f (%) implies that A* f = fo, whete fo€X} is
the restriction of the functional f on X,, X, being the closure of D[A4].

Lemma 335. If A is aclosed linear operator (X > X’')
with closed range, we have
(331) N[A+*]=R[A]l", R[A*]=N[A]", a(4*)=B(A).

Here N[A]* is to be constructed from N[A] regarded as
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a subset of the space Xo which is the closure of D[4], so
that N[4]"CX}.
Proof. The first equality has already been proved, see (324). Hence
a.(A*) = dim N [4*] = codim R[4] = B (4)
in virtue of the closure of R[A]. The second ef;uality of (331) follows
from the remark after Lemma 334, which implies that N[A]"-CR[A4+],

while the opposite inclusion is obvious.

4. Product of closed linear operators. We shall prove a lemma
concerning the closure of the products of two closed linear operators.

Lemma 341. Let X,X’, X" be Banach spaces. Let 4 be
aclosed linear operator (X">X") with a closed range and
with a(A)<oo, and let B be a closed linear operator
(X >X). Then AB is a closed linear operator (X >X"),
If in addition B has a closed range, ,AB has a closed
range.

Proof. Suppose that there is a sequence x,€D[AB] such that
%, >x€X, ABx,>x"€X", n > o, We have to show that

x€D[AB] and ABx ==x".

Consider the factor space X'=X'|N', N'=N[A), and the operator
A (X > X") defined by Ay = Ay'. On seting %', = Bx,, we have
Ax', = Ax', = ABx, > x" € R[A] since R[A] is closed. A has a bounded
inverse and so we have ', > A—'x". Set x'=A-'x"

x" = Ax = Ax’, ¥’ eD[A].

; then

Since 92’,.-):;', there is a sequence 2z, € N’ such that %', —2’, > 2.

Assume first that the sequence 2, is bounded. In virtue of the
assumption that dim N'=a(4)< oo, we may assume that z’y > z° for some
7 €N’; othérwise we need only to replace the sequence 2’y by its suitable
subsequence. Thus Bx,=1x",=(x",—2,)+ 2 > 2"+ 2. Since %, > % and
B is closed, we see that *€D[B] and Br=x"+2. Hence Bx€D|[A]
and ABx=A (¥ +2') = Ax’ = x", as we wished to show.

Assume now that the sequence 2', is not bounded. We may assume
as above that {y=||2,]| > . Set #,={7'Zz,. Then ||#s]|=1 and

{7y — W, = (71(x's—2,) > 0. Again, choosing a subsequence if
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necessary, we may assume that %', > #%'€N’, Thus
B(([ %) = {2 p >0,
Since {.'%,>0 and B is closed, we have u' = B0 =0, which contradicts
the fact that ', >, | =1. This excludes the possibility that the
sequence z’, is unbounded, and completes the proof of the closure of AB.
If B has closed range, R[AB] = ABX = A(BX) is closed by
Lemma 331, since BX + N [A] is closed in virtue of dim N [4] < oo.

%,

§4. APPROXIMATE BIGENVALUE AND SOME STABILITY THEOREMS

1. Approximate nullity and deficiency. Let X , X’ be Banach
spaces and let A be a closed linear operator (X » X'). a(A4)=dim N [4] is
equal to the multiplicity of the eigenvalue 0 of A. (If a(4) =0, 0 is
usually not called an eigenvalue of 4, but we may regard 0 as an eigen-
value with multiplicity zero). We now introduce the multiplicity a’(A4) of
the approximate eigenvalue 0 of A.

Let there be 2 number m = 0,1, 2, ... or o with the property that,
given any €>0, there is an m-dimensional closed linear manifold N.CD [4]
such that
(411) |Az|| < €| =] for every x€ N,,
while this is not true if m is replaced by a larger number. In such a case
we set o' (A)=m by definition. o (4) takes the values 0,1, 2, ... or o
as well as a(A4). a’(A) will be called the approximate nullity of 4.
We define the approximate deficiency of A by
(412) p'(4) = a’(4%).

It is by no means obvious that a'(4) is defined for every closed
linear operator A ; it would be a priori possible that there is no finite m
with the required property while the condition is not satisfied by m = oo.
However, the following lemma shows that actually a’(A), and hence also
B’ (A), is defined for every A.

Lemma 411. Assume that for each finite m and £>0,
there is an N,CD[4] with dim N;=m and with the property
(411). Then we have a’(4)=oo.

Proof. Let M be a closed linear manifold of X with codim M < oo.
Then there is a linear manifold N, with dim N.>codim M and with the
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property (411). The linear manifold M NN, has a positive dimension, and
each x€ MNN, satisfies the inequality || Ax||<¢|/%]]. Thus Lemma 411
is reduced to the following

Lemma 412. Assume that, for any €>0 and any closed
linear manifold M of X with codimM<oo, there is an
x€MND[A] such that |x]|=1, ||4x]|<e Then o’ (4)= oo .

Proof. We have to show that, for each £€>0, there is a closed linear
manifold NeCD[4] with dim Ne= oo and with the property (411). For
this purpose, we construct two sequences %, € D[A4] and f,€X* with the
following properties :

lwll=1, [fall=1, falm)=1,
(413) frax)=0, k=1,2,...,n—1,

A%, ]| < 37", n=1,2,3,...
Supposing that %x, f& have been constructed for k=1, ..,72—1, %, and
Jf» can be found in the following way. Let M CX be the set of all £ such
that fa(*)=0, k=1, ..,n—1. Since M is a closed linear manifold of X
with codim M<oc, there is an x,€ MNAD[A] such that ||x,]| =1,
|| A%s|| £ 3~"¢. For this %, there is an f,€X* such that || fu||=1
and f,(%,)=1.

Obviously %, are linearly independent, so that the linear hull L, of

the set x, is of infinite dimension. Each ¥ € L, has the form

(414) g=452%+ ..+ Eny.

Hence for k=1, 2, .., n,

(415) fe@ =& fi(x) + ... + G fa(Bamr) + &,
by (413), and we have

(416) [&| S 2|2, k=1,2,.,n.

This can be proved by induction. For %2=1 this is obvious from (415)
and (413). Assuming that (416) has been proved for k<7, we see from
(415) that
&N S| f @)+ & fr@@) ] + oo + [E=t| ]| fr(2=1)]

szl + =]+ + 272 2] = 27| =] -

It follows from (413), (414) and (416) that
A%l S [&] [ A%l + .. + [ &a] | A2l
<(1/342/32 + ...+ 2 /3Me| x| < e x].
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Thus A is defined everywhere in Le and is bounded with bound not exce-
eding €. Since A is closed, A is also defined and bounded with the same
bound in the closure N. of L.. This proves that (411) is true with

dimNg=0°.

2. Closed linear operator with non-closed range. It is obvious that
(421) o« (4) 2 a(A).

Lemma 421. If A is a closed linear operator with a
closed range (that is, y(4)>0), then
(422) o' (A) = a(d), F(4)=p(4).

Proof. y(A4)>0 implies 7(A*)>0 and a(A4*)=B(A4), see Lemmas
324 and 335. In view of (412), it is therefore sufficient to show that
a’(4) = a(A). Suppose that there is a closed linear manifold N, with
dim N¢>a(A) = dim N [A] and with the property (411). According to
Lemma 241, there is an %€N, such that [|#{ = ||#| = 1, where
x€X=X/N[A]. Hence we have || Ax]l 2 y=7(A) on the one hand and
I Azl ¢ on the other, leading to the inequality €>7. In other words,
there is no Ne with the above property for €e<v. This proves that
o’ (4) < a(4). Combined with (421), the lemma is proved.

Lemma 422. If 4 is a closed linear operator with non-
closed range (that is, y(4)=0), then
(423) @ ()= (4) = .

Proof. Since y(A)=y(A4*) and B’(4) is given by (412), it is suf-
ficient to prove that y(4) =0 implies a’(4) = co. Let M be any closed
linear manifold of X with codim M<oo, and let 4,(M > X) be the
restriction of A to M. Then R[A] is not closed by Lemma 333. Thus
7(41)=0 and there exists, for any €>0, an *€MND [A] such that
Ixll=1 and 4AxI<elxli <ellxl =¢, where ;65{=X/N[A]. This
shows that the assumption of Lemma 412 is satisfied.

We note that Lemmas 421 and 422 imply the following inequality
corresponding to (421):

(424) B'(4) 2 B(4).
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3. A stability theorem.

We now prove our first theorem on the stability of the property of
a linear operator having a closed range.

Theorem 1. Let X and X’ be Banach spaces and let 4 be
aclosed linear operator (X > X') with closed range (so that
7(4)>0) and with at least one of a(4) and B(4) finite. Let
B be a bounded linear operator (X »X') such that
D[B]>DI[A] and |IBII<y(4). Then the linear opertor A+ B
is closed and has closed range (y(A+B)>0). Furthermore,

we have

(431) a(A+B)<a(d), B(A+B)<B(4).
Remark 1. Also we have

(432) a(4+B) — (4 +B)=a(4) —p(4).

The proof of (432) will be given later (Theorem 6).

Proof. That A+ B defined with D[A+ B] = D[A4] is a closed linear
operator (X > X') is obvious. To show that A+ B has closed range and
that (431) holds, it is sufficient to show that

(433) a’(A+B) < a(4), f(A+B)<B(4).

In fact, (433) implies (431) by (421) and (424). On the other hand,
(433) implies that at least one of o’ (A +B) and f'(A+ B) is finite;
Lemma 422 then shows that A + B has closed range.

To prove (433), suppose that there is a closed linear manifold M,
such that (44 B)ull < e |lu|l for every #€M.. Then

(Bl +€) llwl] = I1Bull + (4 + Byull 2 | Aull Z 7 lul,

where y=7(4) and w€X=X/N, N=NJ[A]. If € is so small that
0<e<y—|IBll, it follows that d(# ,N)= lull < le] if 0FueM,.
Hence we have dim M¢<dim N = a(A) by Lemma 242, which means
that o' (44 B) £ a(4).

To prove the second inequality of (433), we may assume that
D[B]=D[A], for A+B is not changed when we restrict B on the
domain D[A]. Then both A+ and B* are linear operators (X* > X7)
where Xo is the closure of D[A], and we have the obvious relationship
(A+B)*=A+4+B*. Also it is obvious that [[B+]| < |IBil because



282 TOSIO KATO

Bt =B; where By is the operator (X, > X’) which is the restriction of

B to Xo. Since y(4*)=7y(4) by Lemma 324, we have [B*|<y(4%).

Applying to the pair A%, B* what has been proved above, we obtain
f'(4+B) = «((4+ B)*) = o’ (4* + B*) < a(4%) = B (4),

where we have used (412) and (331).

Remark 2. Theorem 1 gives rise to two questions. The first is whether
we can give some estimate of y(4+B) in terms of y(4) and |B].
Since Theorem 1 implies that y(A+B)>0 if [|B|<y(4), one might
suspect that something like the inequality y(4+ B)Z>=y(4)— I|B| holds.
But this is not correct. By its very nature y(A4) does not have such a lower
semi-continuity. 7 (A4) is defined as inf | A%|| [ ] where x € X = X/N[4] ;

but N[4] may change quite discontinuously with 4, leading to lower
discontinuity of y(4). In fact, let 4 be a linear operator in a finite-dimensional
Banach space X and let a(4)>0. Then it is easily seen that y(4—AI) < |A|
for sufficiently small A£0, whereas 7 (4)>0.

We shall see later, however, that there is a case in which we have
the inequality y (44 B)= y(4)— ||Bll (see Theorem 3).

Remark 3. The second question is whether Theorem 1 remains
true when a(4)=p(4)= co. The answer is again in the negative as is
seen from the following example. Let X be a Hilbert space with a complete
orthonormal set ¥i,%z, ..., ¥1,¥2, .... Define an operator 4 by
(434) A%, =0, Ayu=0u%u+Buys, n=1,2,..,
where a,, [, are constants such that
(435) |aal? + [Bal?=1, Ba#o0.

Assume further that the set P, is dense in the unit circle of the complex
plane.

It is easily seen that 4 can be extended uniquely to a bounded linear
operator defined everywhere in X, which will be again denoted by A.
It is also easy to see that A is a partially isometric operator with
a(4)=Pp(4)= oo, y(4A)=1. On the other hand, it can be verified without
difficulty that a(4—AI)=0 for A which is different from 0 and all f,,
whereas a(4—f,I)=1, N[4—B,I] being spanned by the single
vector AY,.

Set %hp = Op X + AYm. Then
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(A — AT) | — IAI 'Bm"’” < ,ﬁm—ll

4 [om|?+ [2]7 = |4
If A0 and A£B, for every n, we have |[%|| = |[#m|| because a(4—AI)=o,
where %€X = XIN[A—AI]. If A=B,, we have still [Uml = [t
for m£n because (%m,%,)=0 and %, coincides with 4y, which spans

N[A—}I]. In each case (436) shows that
Y(4—M) = iaf | (4 —ADull/|[u]| < inf (| (A—AT) tm ||/ [[tm]] = 0
u m=£n

(436)

provided |A] <1, for the set P, is depse in the unit circle. Thus A=0

is the only point in the unit circle for which A — Al has closed range.

4. Extension to unbounded perturbation. Theorem 1 can be
extended to unbounded B in the following fashion.

Theorem 1a. Theorem 1 is true if B is a linear operator
(X > X) such that D[B]DD[A] and
(441) IBx|| Sollxll + T4zl for all xeD[A],
where 0 and T are non-negative constants such that
(442) o + 1y (4) < r(4).

Remark 1. Asis well known, such constants o, T exist if D[B]DD[4]
and B has a closed extension.

Remark 2. Again the equality (432) is true, as will be proved later
(Theorem 6). ‘

Proof. Fitst we show that A+ B is a closed linear operator. We
note that D[A + B]=D[A]=D and that (441) implies
(443) I1(A+B)zll 2 —olxll + (1 —1) 1 4%), =x€D,
where 1—1>0 by (442) and y(4)>0. Suppose there is a sequence
%, €D such that x,>x€X and (44 B)x,>2x€X’ . Then x, and
(A4 + B) x, are Cauchy sequences. Applying (443) to x,—%w in place of x
and noting that 1—1>0, we see that Ax, is also a Cauchy sequence.
Since 4 is closed, it follows that x €D and Ax,-> Ax. Applying (441)
to %, — % in place of x, we see then that Bx, > Bx. Thus we obtain
%" =(A4+ B)x. This proves the closure of 4+ B. It should be noted that
so far we have only used the assumption that t<1.

We now inttoduce in D a new norm by
(444) il = (6 + ) 2l + (x+ ) Azl Z e ol
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where & is an arbitrary but fixed positive constant. In view of the closure
of A, it is easy to see that D becomes a Banach space by the new norm,
which will be denoted by X. We can now regard A4 and B as linear
operators (x » X'); in this new interpretation they will be denoted by
4 and B respectively. 4 and B are defined everywhere in X and bounded as

(445) 1AnS G+, 1BI<.
It is obvious that R[:‘I\]=R[A] is closed and that
4)=a(4 A) = p(4),
(446) a(4) = a(4), B (4) = B(4)

a«(A+B)=a(4+B), BA+B)=B(4+B),
so that at least one of «(4) and ﬁ(.’/i\) is finite.
Let us now see how ;’(2) is related to y(A4). By definition

where x€ X=X/N, N=N[4]. Bu

(447) izl = inf |ix—2| = inf [(o+€) [x—2] + (r+e) [| A (x—2) ]
zeN 2eN

=(c+&) Izl + (v +€) 1| A=

(note that Az = 0). Hence

(448) 7(A) = inf Az _ r(4)
xeD (a+e) |2l + o) Azl o+e+ (t+e)r(4)

in virtue of the definition 7 (4)=inf}Ax| /%] .

In view of the assumption (442), we can make 7(2)>1 by taking
¢ small enough. Siace || Bi<a by (445), we can thus apply Theorem 1
to the pair 4, B, with the result that R[4 +§] = R[A+ B] is closed
and that (431) holds for 4,B replaced by ?1,2\? Considering (446), this

proves Theorem 1a.

8. Second stability theorem.

For convenience a closed, bounded linear operator B (X > X) will
be said to be strictly singular if there is no linear manifold MCD [B]
with dim M = oo such that the map M > BM is a homeomorphism. (')

In other words, a closed, bounded linear operator B is striclty singular if

16. Since B is bounded, it is sufficient to consider only closed M.
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and only if the existence of a y>0 such that |Bx| =y lxil for all
x€M implies that dim M< oo.

As is easily seen, a completely continuous operator is strictly singular.
The converse is true if both X and X' are Hilbert spaces, as will be shown
below. But the question is open whether the same is true in the general
case. Also we do not know whether the strict singularity of B implies
the same for B*t.

We can now prove our second stability theorem.

Theorem 2. Let X, X be Banach spaces. Let 4 be a
closed linear operator (X> X') with closed range and
with a(4)<oo and let B be a strictly singular operator
(X>X). Then A+ B is a closed linear operator with
closed range and a(d+B)<oo.

Proof. It is easy to verify that A+ B is a closed linear operator;
note that D[4+ B]=D[A] N D[B] and D[B] is closed because B is
bounded and closed.

Set N=N{[A4]. Since dim N< oo, there is a closed linear manifold
Xo of X such that X=Xo@ N. Let Ao, Bo be respectively the restrictions
of A,B to X,. Then a(A;))=0 and, since R[4o]=R[A] is closed,
we have [ Ax|| = ||Aox|| Z yo llx|| for every x€D[4]= D[4l N Xo,
where 70 =7 (4o) > 0.

Suppose that there is a closed linear manifold M. C D[4+ Bo]
such that [[(do+ Bo) %l < € |lull for every €M . Then

1 Bul = 1| Boull Z Il Aoll ~ 1I(Ao + Bo) ull Z (yo—28) li%ll .
If € is so small that yo—&>0, this shows that dim M.< oo because B
is strictly singular. Thus we have proved that (4o 4 Bo)< oo. This implies
on the one hand that R[4, + Bo] is closed (see Lemma 422); then
R[A+ B] is also closed by dim R[4+ B]/R[4o+ Bo] <dim ¥ < oo,
On the other hand we have o (4o + Bo)< oo and hence
a(A+B) < a(do+ Bo) +dim N< oo

Theorem 2 can be extended to unbounded B. We shall say that a
closed . linear operator B (X > X') is strictly singular relative to
aclosed linear operator 4 (X > X°) if D[B]DD[4] and there is
no linear manifold M CD[B] with dim M = o= such that
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Bl /(llxll + 1Ax[) =7y >0

for all x€ M. If we introduce the norm |||||| = (|x]| 4 ||4%]] in D=D[4],
D becomes a Banach space X. Let 4, B be the operators A , B regarded
as operators (:\\’ > X'). As is easily seen, B is strictly singular.

We can now prove

Theorem 2a. Let X, X’ be Banach spaces. Let 4 bea
closed linear operator (X> X’) with closed range and
with a(4)<co. Let B be a closed linear operator (X > X")
strictly singular relative to A Then A+B is a closed
linear operator (X > X') with closed range and a(4+B)< .

Proof. Let X , 4 , B be as above. Both 4 and B are bounded and
defined everywhere in X. Since B is strictly singular, a(2)=a(A)<°°

and R[A]=R[A4] is closed, Theorem 2 is applicable to the pair 4, B,
with the result that R[4 + B]=Rf;1 +§] is closed and

a(A+B)=a(A+B)< .

It only remains o show that 44 B is a closed operator. To see this, it
is convenient to apply Lemma 341. Let E be the operator which maps
every ¥*€D onto the same element x€X. The inverse E~ is defined on
X and bounded by IETYi<1. Hence E is a closed linear operator
(X > 1?’). Since A+ B = (2 + E)E, it follows from Lemma 341 that
A+ B is closed.

6. Properties of strictly singular operators. This pasagraph is
devoted to proving some lemmas on strictly singular operators introduced
in the preceding paragraph.

Lemma 461. If B is a strictly singular operator, the
same is true for AB and BC whenever the products are
significant and A,C are closed, bounded linear operators.

Proof. Both AB and BC are bounded, closed linear operators. Suppose
that we have a linear manifold M CD[AB] such that ||4ABx||Z7r|lx],
7>0, for all x€M. Then we have |[Bx|| =y || 4| ||#]| so that dim M < oo,
which shows that AB is strictly singular. Suppose again that ||[BCx|| = 1 |'x]|,
7>0, for all *€ MCD[BC]. Then ||BCx|| 2 r||C||~'||Cx|| and so we must
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have dim CM < oo. But since Cx=0 and ¥*€M imply * =0, we have
dim M = dim CM < oo. This shows that BC is strictly singular,

Lemma 462. If B,, B, are strictly singular operators
(X> X'), their linear combination MB;+ 4B, is also
strictly singular.

Proof. It is obvious that we may assume that Ay=2X=1. Set
B=B,+ B, and suppose that there is an M CD[B]=D[B] N D[B,]
such that |[B¥|| 2 r(l*||, >0, for every x€M. We have to show that
dim M<oo. As remarked above, we may assume that M is a closed
linear manifold. '

Let B°, BY, BY be respectively the restrictions of B, B, By to M.
B}, BY are strictly singular. ||B%|| > y||*|] shows thac B° has closed range
with @(B% =0. It follows from Theorem 2 that B°— B%= B} has closed
range with a(BJ)< co. Let N = N [BY]. Since dim N < oo, thete is a closed
linear manifold L such that M =L@ N. Let B, be the restriction of B}
to L. Then a(B))=0 and R[Bo] = R[BY] is closed. Thus we have
IBS || = iBox|| Z 1o |#]|, 7o=7(Bo)>0, for all x€L. Since BY is strictly
singular, we must have dim L<oo. Hence dimM<oo as we wished
to show.

Lemma 463. Let B,, n=1,2,3, ..., be a sequence of
strictly singular operators (X > X") with common domain
D such that ||[B,—B]| >0, n> o, for some bounded linear
operator B with domain D. Then B is strictly singular.

Proof. Let M CD be a closed linear manifold such that ||Bx|| = 7|#,
v>0, for x€M, We have to show that dim M < oo, Let # be so large
that |[B,—Bl|=s<7y. Then [B.xl| 2 [1Bx]—[(BamB) 2l Z (v — )]
for x€ M. Since B, is strictly singular, we must have dim M < oo,

Remark. The above lemmas show that the set of all strictly singular
operators (X > X) with domain X is a closed two-sided ideal of the ring
of all bounded linear oper'ators. From this and the fact that the identity
operator I of X is not strictly singular if dim X = oo, it follows that the
strict singularity implies complete continuity if X'= X and X is a Hilbert
space. But this is true even if X'# X provided X and X" are Hilbert spaces.
A simple proof of this fact is given by considering the operator |B| = (B* B)'?
which is a self-adjoint operator on X. (Note that here we use B* in the
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sense of the “Hilbert adjoint”, deviating from the general usage in the
present paper of the adjoint operator in the sense of “Banach adjoint”, see
Zaanen [15).) As is well known, there is a partially isometric operator
C(X> X') such that B=CB), |B/=C*B. Thus, by Lemma 461, B is
strictly singular if and only if | B| is strictly singular. But it is easily seen
that a self-adjoint, strictly singular operator is completely continuous. Thus
we see that |B| and hence B =C|B| are completely continuous.

§5. v(4:B)

1. Definition.

In this paragraph we consider two vector spaces X , X’ and two
linear operators A, B (X > X'). We define by induction two sequences of
linear manifolds of X

M,=M,[A:B], N,=N,[4:B], n=0,1,2, .
in the following way.
(511) My=X, M,=B-'(AM,_,), n=1,2,..
(512) No= {0}, Ny,= A"'(BN,_), n=1,2,...
Here A™'S’ denotes the inverse image of S* under the map 4, see §3.1.
It is easy to see by induction that

X=MyDD[B]DM,DM;D>..DNI[B],
fo}=No,CN,CN,C..CD[4].

It should be noted that
(514) Ny=N,[A:B)= N[4].

In the particular case in which X'= X and B is the identity operator
I of X, we have
(515) M,[A:I]=R[A"), N,[4:1]=N[4].

The following inequalities can be proved eésily by the definition (511),
(512) and the inequalities (314), (315), (316),

(516) dim Ny, < na(4), dim BN, < na(d).
codim M, < n B (4) + # codim D [B],
codim AM, < (n+1) B[A] + % codim D [B].

The following lemma is basic in our work.

(513)

(17)
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Lemma 511. Let # be a positive integer. The following

n+1 conditions are equivalent to one another.
Q)yNCcM,, 2)N,.CM,,,..,(n) N,CM,,
(*) ANy = BNy, N:CD[B], k=1,2,..,n.

When these equivalent conditions are satisfied, we have
(518) dim Ngs = dim BN, + a(4),
(519) codim AM; = codim M, + B (4), k=0,1,.,m.

Proof. First we prove the equivalence of the 7 conditions (1) to (»).
For each =1, 2,..,n—1, (r) implies (r +1). In fact, if N, C Mp—py,
then 7> by (513) and (514)

Ny =A-'(BN,)C 4" (BM, ) C A~ (AM ) C M,_, + N,
CMyy + N, CMuey 4 Mpyy1 = My,
Conversely (r+1) implies (7). In fact, if Nuyr C My, then
N, C Nr+l C Mn—r = B-! (AMH—l)

so that each ¥ €N, has the property that Bx= Ay with a yeM, .
Then y€A~'(BN)=N,., CM,, and x€B~'(AM,_,) = Mn_,..1. This
proves N, C My ;1.

Next we prove that {*) is equivalent to other conditions. Suppose
that (n) is satisfied. This implies that Ny C N, C M, =B-'(4X) C D[B]
for k<n, so that each ¥ € Ni has the property that Bx = Ay for some
y€X. Then y€ A~ (BN.)= N4y and so Br€ ANy, . This shows that
BN, C ANyyi. But the definition (512) of Ni;1 implies the opposite
inclusion. Thus (n) implies (*).

Conversely (*) implies BN, = AN4;1 and hence

N, C B='(4AN,y\) C B-' (4X) =M,

that is, (*) implies (n).

(518) now follows from Lemma 312 because Niy1 = A~'(BN4) and
BN, = AN,y C R[A4] . Similatly (519) follows from Lemma 313 because
N[4] = N; C M,.

Since M, is a non-increasing sequence by (513), the conditions of

17. Note that, for any linear manifolds M X, M' QX' and any linear

operator A (X > X'), we have
A(A'MYC M, A—'(AM)C M + N[4].
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Lemma 511 are satisfied for all #'<n if they are satisfied for 7. The
smallest number 7 for which these conditions are not satisfied will be
denoted by v(4 :B). If there is no such 7, we set v(4:B)= oo .
Obviously we have v(4:B)=1 for any pair A, B. It should be noted
that v(4:B)= oo if either «a(A)=0 or f(A)=0 and D[B]= X (see
(516) and (517)).

If X=X, v(A:1I) is the smallest # for which N[A] is not a
subset of A" X or, what is the same thing, for which N[4"*] is not a
subset of R[4].

2. Leinmas on v(4:B).

The following lemmas are required later.

Lemma 521. Let S be a non-empty subset of N[A] and
define Sy, k=1, 2, ..., successively by S$1=S, Siz1=A4""(BS).
Then Si is not empty for RSv=v(4:B). Let Ly be the
linear hull of Si. Then

(521) Sk C Ly CNy=Ns[4: B], kR=1,2,..,v,
(522) N[4] € Ly = A='(BLs-1), E=2 3 v
(523) AS, = BSy—., ALy=BL,,, T

Proof. It is obvious that Si € Ni, compare the definition of Sk
and N,. Thus the argument used to deduce (*) from (n) in the proof of
Lemma 511 is applicable to show that S, = BS;.. as long as 2<k<v.
In particular this shows successively that S, .., Sy are non-empty. (Note
that Sy C Nay C M, € D [B)] for k< v and that S C D[A] for all k.)
Also it follows that ALy = BLi_.. This proves (523).

(523) implies that A='(BLy—) = A—"(ALs) =Ly + N[4]. Thus (522)
will be proved if we only show that N = N[A]JCLs for 2Lk <y,
But this is an easy consequence of the fact that Sy is not empty. In fact,
lee x€Ss. If K22, we have A(x+z)=Ax€BS,_, for any z€N.
Thus x4+ 2€ A~ (BS4—;) = Sk and so 2= (x+2) — x€Ls, which shows
that N C Li.

Lemma 522. Lec S be a subset of N[A] and, for each
z€S let there exist a sequence z,...,2 such thatz=zand
Azpyv=Bu, k=1,2,..,#2—1, where n is independent of z
If the linear hull of S is ideatical with N[4], we have



PERTURBATION THEORY FOR NULLITY, DERICIENCY... 291

v(A:B)2n. If Si, Ly are defined as in Lemma 521, we have
Ly =Ny(A:B) for k=1,2,..n.

Proof. Az, = Bz, implies that 2,1 € B~'(4AX) = M,. Then
Azy_y= Bz,_» implies that z,2€B~'(AM\)=M,, and so on. In this
way we see that 2=2€M,_,. Thus S C M,_; and so N, = N[4]CM,_,
by hypothesis, which proves that v(4:B)=n. Then (522) shows succes-
sively that Ly = Ny, k=1,2, .., n because L, = N,,

3. Restriction of operators.

The definition of v (A4 : B) depends, at least formally, on the underlying
spaces X and X', for this is certainly the case with the linear manifolds
M,[A:B] and N,[A:B]. Let us now inquire how these are changed
when 4 and B are restricted. Por later application we need 1o consider
rather a simple case.

Lemma 531. Let A, B be linear operators (X > X') and
iet Xo be alinear manifold of X such that D{4]C Xo C D[B].
Let Ao,By, (Xo> X) be respectively the restrictions of
A,Bto X;. Then

(531) M, [4o: Bo] = M,[4:B]N Xo,
(532) N,[4;: B)) := N,[4: B] C Xo,
(533) v(A4y: By) := v(4: B).

Proof. For simplicity we write M,=M,[A,B], M2=M,[4, : B)
and similarly for N,. First we note that D[4)]=D[4] C X, and
D[B)]= Xo. It is also obvious that

N, C D[A]CX,, N°C D[d) = D[4] C Xo.

Since M= Xo=M, N X, and N = {0} =Ny, we employ induction
to prove (531) and (532). Suppose that (531) has been proved for # —1
instead of #. Then 4o M?_ =
Ao(M2_, N D[A)) = Ao My N Xo N\ D[Ao)) = A(Mp—r D[A]) == AM .y,
bence M?°=B;'(AoM,_)=B;"'(AM,_,)= B~'(AM._.) ND[B]=M,N X, .
Again suppose that (532) has been proved for #—1 insteac of 7. Then
B,N°_ =BN, , and N°= A7 (BN°_,) = A~' (BNu—1) N D[4o] =

=N, D{A]=N, C X..

1 1

This completes the induction,
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Now it can be seen that the conditions of Lemma 511 are equivalent
whether applied to the pair 4,B or to the pair 4o,By. To see this itis
sufficient to observe that N\ C M, is equivalent to N, C M, N X,, since
we know that Ny C X,. But the latter condition is exactly N° C M? by
(531) and (532). This leads immediately to (533).

4. Closed linear operators.

The linear manifolds M,=M,[A:B], N,=N,[A:B] and the
anumber v = v (A4:B) have been defined in a purely algebraic fashion without
reference to any topology. We shall now consider their relation to the topo-
logy of the spaces and the closure of the operators 4, B.

Let X, X" be Banach spaces and let 4, B be closed linear operators
(X> X). Then Ny =N[A] is a closed linear manifold of X, but other
linear manifolds M,,N,,n2>1, are not necessarily closed without further
assumption. Our first lemma in this connection is

Lemma 541. Let 4 be a closed linear operator (X > X)
with closed range (y(4)>0) and with a(4)<o. Let B be a
closed, bounded linear operator (X>X'). Then M,,AM, and
N, are closed linear manifolds of X and dim N,< o for
all n.

Proof. dim N,< o follows from (516), so that N, are closed. To
prove the closure of M, and AM,, it is sufficient to show that AM and
B~ (AM) are closed whenever M is closed. Since dim N [4]=a(4)< oo,
the linear manifold M + N [A4] is closed with M, and this implies that AM
is closed (Lemma 331). Since B is a continuous function, the inverse image
B—'(AM) of the closed set AM is closed in D[B], which is closed in X
because B is closed and bounded. Thus B='(AM) is closed in X.

Lemma 542. Let 4 bea closed linear operator (X > X")
with B(4)<o. Let B be a closed, bounded linear operator
(X> X') with codim D[B}]<o. Then M,,AM, are closed and
codim M,<oo, codim AM,<c for all # (in particular R(A)
is closed).

Proof. R(A4) is closed by Lemma 332. That codim M, and codim
AM, are finite follows from (517). The closure of M, and AM, is obvious
for #=0. Suppose that this has been proved for n. Then M,,; = B-'(4AM,)
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is closed as the inverse image of AMx as in the preceding lemma. Since
codim My, is finite, it follows that My, + N [4] is closed. Hence AM,,,
is closed by Lemma 331. This completes the induction.

In the special case in which X'= X and B=1, these lemmas take
the following form by (515).

Lemma 543. Let A be aclosed linear operator (X » X)
with closed range and witha(4d)<c. Then, for every
n=1,2,.., A" is a closed linear operator (X > X) and N[4"],
Rl4%] are closed with dim N [A"])< co.

Proof. Only the proposition that 4% is closed needs a proof. This can
be proved by successive application of Lemma 341.

Lemma 544. Let 4 be a closed linear operator (X > X)
with B(4) < oo. Then, for every #=1,2,.., R[4") is closed
and codim R[A4"]< oo.

Remark. There is not a complete duality between Lemmas 543 and
544. It should be noted that much less can be asserted in Lemma 544 than
in Lemma 543. (A similar relation exists between Lemmas 541 and 542).
In Lemma 544 N [A*] need not be closed if #=2 and, consequemtly, A*
need not be closed. This can be seen from the following example in which
X is a Hilbert space and N[4?] is not closed.

Let X be a Hilbert space with a complete orthonormal set

x,7j=0,%1, %2, ...
Define the operator A(X > X) by
[ o] ao 2]
(541) A Z 5;x5=252,'xj+2j511—1 Xi—j.
j— = =
The domain of A is by definition the set of all x = Z&%; of X
such that 22| &y—1 [*< oo,
In particular we have
Ax; =0 for j=0, —1, —2,..,
(542) Ax, =%y, Ax3=2x_, Axs=3x_,, ...,
Ax,=x, A% =%, Axe=1x;, ....
Let N, Xi, X: be the mutally orthogonal closed linear manifolds of X
spanned respectively by {0, Xe1, Xmz, oy {20, %3, 00, {%2, %, ..t Obviously
X=N@OX @ X: and N[4] = N. As is easily seen, we have
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Ay =N, A, =X X2, AX.PX)=X
and the restriction of A to X, @ X: has a bounded inverse (with bound 1) with
domain X. Thus 4 is closed, has closed range X and B(4)=0, y(4)=1-
Now N[A4%] is not closed. In fact, it is easy to see that
N[£]=Ne(X, n D [4]),

which is not closed because X; N D[A4] is not closed.

In this example we have a(4*)=f(4)=0, and A* has closed range
by Lemma 324 (actually we have R[A®] = X, @ X;). Thus (A*)* are closed
linear operators by Lemma 543. That A4’ is not closed implies, therefore,

that 4?7 ((A°)?)°. But this is not surprising since A is not bounded.

5. An estimate of v(4:B).

The following lemma is, in a certain sense, a generalization of Lemma 522.

Lemma 551. Let 4 be a closed linear operator (X > X)
with closed range. Let B be a bounded, closed linear
operator (X> X'). Let S be 2 subset of N=N[4] such that,
for each z€S, thereis asequence 2z1,.., 2z, with the pro-
perties z21=2, Az =Bz, k=1,2,..,n—1, whete n is independent
of z. Further assume that the linear hull L of S is dense
in N. Thenwe have v(4:B)2nand L, is dense in Na=N,[A: B]
for k=1,2,..,n, where L, are defined as in Lemma 521.

Proof. We prove the lemma by induction. The proposition is obvious
for n=1. Suppose that the proposition has been proved for n replaced by
n—1 and assume that the assumptions are satisfied for n.

By induction hypothesis it follows immediately that v=v(4:B) > n—1
(which is equivalent to N,_2 C M,) and that Ly is dense in Nx for k=1, 2, ..., n—1.
We have to prove that N, C M, and that L, is dense in N,.

Let #4,~1 € Sn—1, where Sy are defined as in Lemma 521. By definition
tia1 € A~ (BSa_;) so that there is a #y_; € S,_2 such that A%, ;= By, _,.
Proceeding in this way, we see that there is a sequence %y, %z, ..., %y
such that

Au,=Bu,, Aus=Bu,, ..., At,_, = Bu,_,
where #, € S=3S,. Then it follows from the assumption that there is a
sequence 2i,..., 2z such that 2, =%, Az, =Bz, Az;=Bz,.., Azq=Bz, ;.
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On setting A =%prv— %1, R=1, 2, .., n—2, we see that
vi € N, Av;=Bv,, Av;=Buv:, .., Avsy =By, ;.

Thus we have successively v;€ A~'(BN)=N:, ..., v, 1€ A~ (BN, 3)= N, _, .
Since we know that Ns_2 € M, as noted above, we see that v,—, € M, .
Also we have z,.1 € B—'(AX)=M,. Heace #n1=v, 1+24_, € M, .
Since #,—. was an arbitrary element of Su—1, we conclude that S,_, e M,
and hence L,—; C M, because L, is the linear hull of S, ., (see Lemma
521). But L,_, is dense in Nno—1 as we remarked above and M, is closed
as the inverse image of R[A] under the map B. Hence we have that
Nyi €M, and 50 Y22

It remains to show that L, is dense in N,. Let x € N, be arbitrary.
Since No=A='(BNa_), there is a y € Ny, such that Ax = By. Since
L.\ is dense in Np—i, there is a sequence s € L,y such that ¥, >y,

k> co. We may assume without loss of generality that
[m=—yall<27*, k=1, 2, 3, ...;
otherwise we need only to replace the sequence ¥x by its suitable subsequence.

Setting wx = Y — Yk—1, we (an write

]
y=y|)+zwh, nwkﬂsz_k, U’keL”—lv

A=1
Since Ly—y € Npey € M1=B~'(AX) as jusc proved, there is for each
k an %, € D[4] such that Bwy= Ax,. We have

IBI| w2 || Bewll= I} Az || 2 7 ]| %],
where %3 € X= X/N aad y==7(4) > 0 by hypochesis. Obviously we may
choose #: in such a way that |'x}l S (1+g)}| % ll, where £ is any given

positive number. Then we have
[zl s+e) =" B[ [fwalsO+e) r{| B 27

and the series 2, is absolutely convergent.
Since yo€ L, .« C M,, we can take an %€ D [A4] such that Ax, = By,.

Now we set
[+ -}
x = %o+ Z Xp
R=1

Then
Ax’ = Axy + 2 Axy = By, + 2 Bwy = By;
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the term-by-term application of A can be justified easily by considering the
closute of 4 and B and the boundedness of B.

Since i € Ly—, 2 belongs to A~'(BLs—;)= L, by (522); note that
we have already proved that v=#. Similarly we have %€ L.. It follows
that ¥’ belongs to the closure [L.] of L,. On the other hand, we have
Ax' =By =Ax and so x—x'€N CL, by (522). Thus we see that
% €L, + [La) = [La]. Since x was an arbitrary element of N,, we conclude

that L, is dense in N,, thereby completing the induction.

6. Adjoint operators.

Let A, B be closed linear operators (X > X’) with domains D [4],
D[B] dense in X so that the adjoints A°, B® exist and are closed linear
operators (X* > X*). We consider the sequences
(561) M*=M,[A*:B*], N*',=N,[4": B’]
defined for the pair A*, B*. M*®,, N°, are linear manifolds of X",

Lemma 561. Under the above conditions we have
(562) M*, C(BN,)", N%,uC(AMY)*, n=o0,1,2,..,..

Proof. (562) is true for = 0: the first inclusion is trivial by M* = X**
and No={0}, and the second inclusion follows from

N* = N[A4°] = R[A]* = (AMy)* (see (324)).
We shall therefore assume that (562) has been proved for #—1 in place
of # and prove it forn. Lec f'€ M*, and x€ D[B]A\N,. By definition
[ e(B)1(A*M*,_)) and x€ A—'(BNx—~1). Hence there ate a g€ M*,_,
and a ¥ € Na—; such that B*f'= A*g" and Ax = By. Consequently
J'(B)=B*f'\)=A4"g (x) =g (4x) =¢'(By)=0
because M*,_, C (BNa—1)" by induction hypothesis. This proves the first
inclusion of (562). The second inclusion can be proved in the same way.

It should de observed that in general the inclusion C in (562) cannot
be replaced by the equality except for the case #= 0. The condition under
which the equality holds in (562) does not seem to be simple and we shall
not consider it in detail. We only note the following

Lemma 562. Let A be a closed linear operator (X> X)
with domain dense in X and with close'd range. Let B be a
bounded linear operator (X > X') with D[B]=X. Then
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(563) M* = (BNi)*.
(564) v(A*:B*)=v(A:B).

Proof. Let f'€(BN))* and f=B*f. Then fe&N;”=N[A4]" and
so f€R[A4*] by Lemma 335. It follows that f' €(B*)~'(4* X"*)=M:.
This shows that (BN\)"~ € M}. Since the opposite inclusion holds by (562),
this proves (563).

According to the definition of v=v(4:B), we have N, C M, for any
n<v. Since My,=B-'(AM,_,), we have BN: C BM,C AM,_, and hence
(AM,_)* C (BN))*. In virtue of (562) and (563), it follows that N} C M.
This implies that v*=v(4*:B*)>n, and proves that v* 2> v.

To prove the opposite inequality, let #<v*. Then we have N; C M
and this implies (AX)*C(BN,)" by (324) and (562). Since 4X is closed,
this implies in turn that BN, CAX. Since D [B]= X, this finally implies that

N. CB-'(AX)=M,.

This shows that v># and hence that v 2> v*.

§6. STABILITY THEOREM IN THE CASE v(A:B)=o>

1. Theorem.

In what follows we are interested in the eigenvalue problem of the form
(611) Ax=ABx
where A, B are linear operators (X > X) and also in the associated equation
(612) A*f =AB*f’
when the adjoints 4%, B* exist. (611) means that x€ N[A—A B] and (612)
means that f € N[A*—AB*]=R{A—AB]*. We are thus interested in the
bebavior of the linear manifolds N[4—AB], R(A-ABl"

The main purpose of the present section is to prove the following
theorem.

Theorem 3. Let X, X be Banach spaces, lec 4 beaclosed
linear operator (X > X') with closed range not identical
with {0} (so that 0<y(4A)<cc)and let B be alinearoperator
(X> X) such that D[B]DD[4] and
613 [Bel|solx]+ldx] for every zeD[4],
where o,varenon-negative constants. Furthermore let
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v(A:B)=o. Then there is a constant p>0 such that, for
|[A\|{<p, A—AB is a closed linear operator (X> X') with
closed range, a(A—AB) and $(A—AB) are constant,
v(A—AB:B)=

and y(A—AB) is finite, positive and Lipschitz-continuous.
The closed linear manifolds N(A—AB)CX and R[A—-AB]*CX"”
depend on A analytically: by this we mean that each o,
[lo]<po, has 2 neighborhood with the following propertys,
For each z€ N[A—AB], there is a regular analytic function
A>z(A)eN[A-AB] defined in this neighborhood such that
2(Md) =2 and the closed linear hull of all these z(X) for
fixedAcoincides with NJA—AB)]. Similar proposition holds
for R[A—A B}

For the constant 0 we can take in general
(614) p=7/Gs+ty) (r=r(4)>0)
and the Lipschitz continuity of y(A)=y(4—AB) can be ex-

pressed by
(615) [(@[d) log[30 + vy (W] | < t/(1—1|R]),
(616) T— B+t ASrR) (7 +30(A])/(1—1|A)]),

where |d/d)| denotes the upper derivative. If t=0, (615)
should be replaced by

(617) |47 (dA| < 30.
Thenumber 36 in (614), (615), (616) and (617) can be replaced

by 6 if at least one of the following conditions is satis-
fied: (i) a(A)<oo, (ii) P(A)<oo, (iii) X is a Hilbert space,
(iv) X’ is a Hilbert space.

Before going into the proof of this theorem, we note that A —AB is
a2 closed linear operator for |A|<t=', as is seen from the proof of Theorem
1a, §4.4. In what follows we consider only such A.

For brevity we use the notations

18. If a (A) < oo, it follows that there is a basis of N[A—A B] consisting of
« (A) vectors 2z (X), i = 1,..., a(A), which are regular analytic in the neighborthood
of A. Similat resule holds for R [A—A B} if B(A) < co.
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D=D[4]=D[A—AB], X = X/N[4],
N(})=N[4—AB], N(0)=N[4]=N
R(A) = R[A—AB), R(0)=R[4] =R,
a () =a(A—AB), a(0) =a(d)=q,

B (A)=pB(4—1B), B(0) =p(4)=8,

7 (}) =y (4—1B), () =rA)=7y,
v(A) =v(4—AB:B), v(0) =v(4d:B)= .

Note that N(}) is a closed linear manifold of X as the null space of the
closed linear operator A—A B.
Also we note that y(A)< oo for |A|<p. In fact, y(X)= oo implies

that (A—AB)x =0 for all x&€ D. Hence

| x| = )| Bx | < 2] ol 2] + 5] Ax )
and so

7zl < | 4=l < )% llo A}/ (1—T|AD,
where * € X. Since ¥ can vary freely in %, it follows that y<o [A|/(1—7|A))
and hence that [A| 2> y/(c+ty) 2 p. Here we made use of the fact that there
is at least one ¥ 0 because R[A]{0} by hypothesis.

2. Stability of a.
The proof of Theorem 3 will be given in several steps. We shall first
show that

(621) S(NM), NI So|A[/(—|A]D 7.

Let € N(A). Then Au=21Bu and the calculation given at the end of the

preceding paragraph shows that 7|l%]|<||#]lo|A]/(1—7|L|). Recalling the

definition (211) of 8(M,N) and that ”i”zd(u,N), this proves (621).
The right side of (621) is smaller than one if |A|<y/(c+Ty). Thus

Lemma 212 shows that

(622) aM)sa for |A|<y/(c+Ty).

We next prove the opposite inequality to (622) by an explicit cons-
truction. Let us consider a sequence z; with the following properties:
(623) 2 € Ns=Na[4:B], Azzyr= Bz,

oflzan || €| 42y |, kB=1,2,...,
where @ is a positive constant. For brevity such a sequence z; will be called
an w-sequence.
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We shall show that, for each z€N and each w<y, there is an
w-sequence such that 2z, =2 We set 21 =2 and construct zx by induction.
Suppose that 2;,..., 2z have been constructed with the properties (623).
Since 2%2€N: CM,=M,[A:B]=B-'(AX) in virue of v(A4:B)= oo,
there is a z4+1€ D such that Az, = Bz . This implies that 7{jzas||< || Azep|!
and that zx41 may be replaced by any other element of Zy41. Thus we can
choose 241 in such a way that ®© | 2zx41 || S || Azas1||. On the other hand we
see that Zp41 € A~' (BNy) = Ni41. This completes the induction.

Each w-sequence 2 satisfies the following inequalities :

(624) [ Bza || = || Azass [| S 0 0= =1 (04T @)= |21 |,
241 ]| S o0 * (o +t0P~ |z, k=12, ...
To see this, we note that ||Azay|| = [|Bzs|| < o ||z + t{|Az]| . For k=1 this

gives || Az ||< o[z | in virtue of Az =0. For k=2 we have by (623)
| Azp1 || S (6@=" +1) || Aza||. This leads immediately to the first inequality
of (624), and the second follows by another use of (623).

For each w-sequence zy we can now construct the series

-]

(625) u(h) = Z M=z,

=
In virtue of (624) this series is absolutely convergent for [A|<®/(c+Tw).
The same is true for the series obtained from (625) by term-by-term appli-
cation of A and B. In view of the closure of A and the inequality (613),
it follows easily that #(A)€D and by (623) that A% (A)=21Bu (). This
shows that # ()€ N (X). Furthermore,

le@==ll<Y AP [a] <8 W2,
k=2

where
(626) S W) =0[A|/[0 —(c+Tw)|A[}
Since there is such a #(A)é N(A) for each z2=2z€N and 0<y, we
conclude that
(627) S(IN,NW)S8A) =0|A|/f[r—(c+T | ]).
The right side is smaller than one if |A|<y/(20+t 7). Then we have aZa(d)
by Lemma 212. Combined with (622), we have thus proved that
(628) a@@)=a for |A|<y/(20+4t7).
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Although the vector % () given by (625) belongs to N(2), it is not
clear whether every vector of N (A} can be expressed in this form by means
of an w-sequence. (This is true if @< oo, at least for small [AL) In any
case let S®(L) be the set of these #(A) and let L®(A) be the linear hull of
S®(A). We shall show that L®(}) is dense in N(A) for

(629) |A|<7/Go+ty)
provided o is sufficiently near to y. A simple calculation shows that (629)
implies that (see (621))

SN, )< oA/ (=] AD7<[1-3W)]/[1+3 )],
The same inequality holds with 3(A) replaced by dw(3) if ® is sufficiently
near to 7. Since there is a #(A)€L® () CN(A) such that

[z =4 M) <3u@)| 2]

for each z€N, it follows from Lemma 216 that L”(}) is dense in N ®.
This proves the analytic dependence of N (A) on A at the particular point
A=0.

3. Continuity of 7.

According to Theorem 1a, §4.4, R(X) is closed (that is, y(A)>0)
if |A|<y/(6+ty) and at least onme of a, f is finite. But there we could
not give any estimate of v (A), see Remark 2 after Theorem 1. We shall
now show that we can give an estimate of Y (1) under the present assumption
v(A:B)= oo,

According to Lemma 214 there is, for each € X and £€>0, 2 %€ NQ)
such that, for y =x—1u,

e Iil=d0.0z TSN gyl

Suppose that x€ D. Since (A—AB)u =0, we have

(632) [(A—AB)x||=|[(A-AB)y[| 2 || Ay || — || || By ||
2(—[A) | Ay||—a|A[]i¥]l
(- A)ylyll—old|[»]

and, by making use of (631) and (627), obtain the inequality

(633) |A—AB)x|| 2 [(y—(20+tY) [A)(1—€)—o|A[] || ¥ ]

We now consider the factor space X=X/N(@), whose elements will
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be denoted by %, ¥, .... Since x—y=u e N(X), we have iy |2 iy =}*i
so that the ||y]| on the right of the inequality (633) can be replaced by
| %||. Recalling the definition of y(A) =y (A—AB), we see that y (A) is not
smaller than the number in the brackets of (633). On letting € > 0, we thus
arrive at the inequality

(634) YA Zy—(@otry)[A].

This shows that y(A) >0 and hence that R(}) is closed for |A|<y/(30+ty).
It should be noticed that this is true even if @ =f§ = oo,

As we shall see below, (634) is the most important one among vatious
inequalities derived above. We shall now show that it can be replaced by
a sharper estimate
(635) TN Zy—(ot+ry)[}]
at least for [A|<y/(20+1ty) in the special cases in which either (i)
a< oo or (iii) X is a Hilbert space.

For this purpose, we note that (631) can be improved as follows: for
each x€ X and |A|<y/(20+TY), there isa #€N(X) such that y=x—u
has the property

(636) (¥l =d(, N)=l5].
This is obvious if x€ N(A), for then we need only to set ¥ =2x so that
¥=0. So we may assume that x& N(1). Let N°(X) be the linear hull of
x and N (). Then there is a y&€ N°(A) such that ||¥!|=|¥[>0. In fact,
this is a direct consequence of Lemma 222 in the case (iii), for we bave
d(N,NM)<1 for [A|<y/(20+17Y), see (627). Also this is true in the
case (i) in virtue of Lemma 211, for we have dim N°(A)= a + 1 >a=dim N.
Now this ¥ cannot belong to N(A) because d(N(X), N)<1 by (621).
Hence we may assume that y has the form y=x—wu, u€ N(X). This
proves (636).

As is easily seen, the use of (636) instead of (631) in the calculation
(632) to (633) leads to the improved result (635). We shall show later
that (635) is true for |A|<y/(c+17Y).

4. Stability of v and 8.
We now tutn to the proof of v(A) == oo. For this proof it is convenient

to consider first the case in which B is bounded (that is, T := 0). Since nothing



PERTURBATION THEORY FOR NULLITY, DEFICIENCY... 303

changes when B is replaced by its closure, we may assume that B is
bounded and closed (note Lemma 531).

We have proved above that R(}) is closed for [A|<y/30=y/3||B]|. There-
fore, we can apply Lemma 551 to the pair A—AB, B. Let S=S”(}) be
the set of #(A)€ N(A) given by (625). As we have seen above, the linear
hull L® (A) of S®(A) is dense in N() if |A]<y/3!|B|| (see (629)) and ®
is sufficiently close to y. To apply Lemma 551, it is therefore sufficient to
construct, for each #(A)€S®(A), a sequence ua(}), k=1, 2,..., such that
#(A) =% (1) and
(641) (A—AB) g1 (A} =Buy (), k=1,2,...

Such a sequence is given by

(642) n@®=Yy (k :: ‘) K.

In fact, these series are ¢onvergent for [A|<w/oc=w /|| B| as well as the
series of #(A) and it is obvious that % (A)=%(}). The term-by-term ap-
plication of A to these series is justified as before and leads to (641) after
a simple calculation. This proves that
(643) v)=oo for [A|<y/3]B]
provided B is bounded.
The general case can be reduced to the above case by the device used
in the proof of Theorem 1a. We introduce 1® the new norm || ||| by (444),
thereby converting D into a Banach space X and the operators A, B into
bounded linear operators :‘1\, Bon X to X'. We note that (see (446))
a(d)=a(A—AB)=a(A—AB)=a(}),
(644) B(})=B(4-1B) =p(a-LB)=B (M),
YA =v(A—AB:B)=v(4—AB:B)=v(});
for the last equality see Lemma 531 and note that v{(A:B) is defined in a
purely algebraic fashion.
Since R[}\l] = R[A] is closed and v (/1\1 :’E) = v (A:B)= o, the assump-
tions of Theorem 3 are satisfied for A, B replaced by A B By what is

19. We could have done this in earlier stages of our proof, but we have avoi-
ded it because it appears that this device leads to less sharp estimates of Y (1) then
those obtained in the preceding paragraph by a more direct method. In particular, there
is the inconvenience that X is in general not a Hilbert space even if X is.
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proved above, it follows that v(A) =v(})= oo for |A|<7/3]| B]||. Here
we have || B]|< 1 By (445) and 7 is given by (448). Since £€>0 is arbitrary,
we conclude that
(645) V)= oo for [A[<y/3(o+T)).

Next we show that ($(A) = . For this proof we again make use of
the operators A, B. Since these are bounded and defined everywhere on X,
theit adjoints ?1‘, B* exist and are bounded linear operators on X™ to X
Since R[Z'] is closed by Lemma 324 and v(A*:B*) = oo by Lemma 562,
the assumptions of Theorem 3 are also satisfied by the pair A®, B*. Hence
we see that a (A°*—AB*) = a(A*) for |A|<7(4%)/2||B*||, see (628). Here
[]§'H=H§H <1 as noted above and 7 (A*) = r(;l\)'—'; by (326), where/)\’
is given by (448). Also we have u(ﬁ'—lﬁ‘)=f3(}i-—l§)= B (A) by (331)
for |A|<y/(36+1y), since R(A) is then closed. Thus we have proved that
(646) BA)=P for |A[<r/3(s+ 1)),
Also we see that R(1)* = R[A—AB]* = N[A*—1B"] depends on analyti-
cally at least at A=0.

5. Special cases (ii), (iv).

We shall show that the estimate of y(A) can also be sharpened to
(635) in the special cases in which either (ii) B< oo or (iv) X’ is a Hilbert
space. Since a(;‘\l')= < oo in case (ii) and X™* is a Hilbert space in case
(iv), we see that (636) is applicable to the pair 2’, B®. Thus we see that,
for each /'€ X” and |A|<y(A%)/2|/B*|, there is an

K€ N(A*~AB*"] = R[A—AB]* = R()*
such that g'= f —A" has the property that d(g’,N[:i'])=|
N[A4%] = R[A]* = R*, we have by (231)

(651) &' llr=2d(g,R*)=]¢g].
Noting that || B*||<1 and 7(4*)=7 as above, we see that (651) is true
at least if [A|<y/2(c+1p).

For every x€ D we have B’ ((A—AB)x) =0 so that

(652) [ (A-AB)x) = ¢’ (A—A B)x = g’ (Ax) — A ¢’ (Bx).

g |l. Since

Since || & [l is the least upper bound of |g’ (¥)|/ ]! %' || for '€ R’ = R[A],
there is for each €>0 an x€D such thar g (A%) 2 (1—-¢)|lg ||l Ax ||
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and Ax# 0 (note that R':£{0} by hypothesis). In view of (651), (652) and
(613), we thus obtain
|/ ((A=AB)x) |2 (1—¢) g [r | Ax[i—{A] ]| &' || Bx]]

2| g i [(1—e—t[A]) {{ Ax ][ — oA | % ]].
Here we may assume that || Ax || =7 *|=(1—€) v !|x!l, for x may be rep-
laced by any other element of %. Also we may assume that x 7 0 because
X#£0 by Ax#0. On the other hand, f —g =H€ R(A)*" implies that
|/l < |l Furthermore, we have |/"(A—AB)x)| < [;(A—A B)* /1! x|
provided f’ € D[(A—AB)*]. Hence we obtain
(653)  [[(A=AB)y* £l z[(1—e~|A) (1 =€) y—a |A[] || /" [lr.n)-
Recalling the characterization of y+(X)=y((4-AB)*) by Lemma 323, we
see that y*(A) is not smaller than the number in the brackets on the right
of (653). Since y (&)= y+*(A) by Lemma 324, we obtain, on letting € > 0,
(654) rMZr—(c+tp)|A]
which is identical with (635). We note that (654) has been proved for
A<r/2(o+77).

6. Completion of the proof.

We have so far proved that a(}) =a, f(1) =8, v(1) = co and that
y(X) satisfies the inequality (634) in the general case and (635) in the
special cases (i) to (iv), at least in a certain region [A{<7. For the radius
7 of this circle we can safely take 7 = y/3 (6 + t7), as is seen by considering
various conditions imposed on A for the inequalities proved above. We shall
now show that this circle can be extended to the larger circle A[<p,
where p is as given in Theorem 3, namely o =7y /3(c+1y) in the general
case and p= y/(o+ty) in the special cases. The value of p is given as the
value of {A| for which the right side of (634) resp. (635) becomes zero.

We shall give the proof only for the general case; the special cases
can be dealt with quite in the same way. Let po be the radius of the
largest circle ||<po in which the above results are valid; we have to
show that gy = p.

Suppose that po<p. Then (634) shows that y(A) has a positive lower
bound 7o in the circle [A|<go. For each A of this circle, the assumptions
of Theorem 3 are satisfied for the pair A, B replaced by the pair
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A— 1B, B; only the inequality (613) should be replaced by

(661) 1Bl < [o]l#l] + ©[[ (4 ~2B) =] / (1 —T[A))

which is itself a direct consequence of (613). The application of what has

been proved to the pair A —AB, B leads to the resulc that
a+V)=a@)=a, BA+M)=BM) =B, vA+1) =v(}) = o

and that

(662) rA+)2r® - (=t~ [3o+ Q)X
at least for
(663) <@ —tM) y®/3[c+7M).

(According to (661) we have to multiply the constants 6,t by the factor
(1 —t|A)~! when we apply Theorem 3 to the pair 4 —AB, B).

If we substitute (634) for y(A) of (662), we obtain after a simple
calculation
(664) y(A+M)2y—Go+) (A +N) =7 —Go+)[A+¥|
provided A’/A is real and positive. It should be noticed that (664) has the
same form as (634). On the other hand, the right side of (663) has a
positive lower bound for [A|<go because y(A) = yo>0. Thus it follows that

[A|<po is not the largest circle with the property described above, in contra-
diction to the definition of go. This gives the desired result po = p.

The inequality (615) or (617) expressing the Lipschitz-continuity of
Y(3) can be deduced easily from (662). Then (616) is obtained by integrating
(615). The calculation is a simple exercise and may be omitted.

The analytic dependence of N () and R(A)" on A now follows at each
point A of the circle [\|<p, since this was already proved for A=0. This
completes the proof of Theorem 3.

§7. FINITE v(A:B). REDUCTION THEOREM

1. Reduction theorem.

We now proceed to the consideration of two operators A, B for
which v(4 : B) is finite. The main problem here is the “reduction” of the
spaces X, X’. This means the decomposition of the domain space X and
the range space X’ into subspaces in such a way that 4 and B can be
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regarded as operators between the corresponding subspaces. Our result is
summarized in the following theorem.

Theorem 4. Let X and X' be Banach spaces. Let A be a
closed linear operator (X> X') with closed range and
with at least one of a(A) and B(A) finite. Let Bbea
bounded, closed linear operator (X > X’) with D[B] D D[A].
Furthermore, let v(4:B)=v be finite. Then the spaces
X,X canbe decomposed in the following manner.

711) X=X6p.. X DX, X=X'D..0BX.P X%.
Here all X;, X%, i=0,1,..7 are closed linear manifolds
and
(712) X, C D[A], dimX; =dim X’; - m< oo, 1=1,2,..7.
For each +=0,1,...,7, X, and X; form an “invariant pair” in
the sense that AX; C X’;, BX;C X';. Thus we can define tbe
linear operators A:,Bi (Xi> X') induced by A,B in the
pair X, X; of subspaces. For § 21, there exist bases
(%1, %2, oy %i,m and (¥, %, .., Xm] of X: and X', respec-
tively related to each other in the following way.
(713) Bxy =%y, Axia=%;1=1,

k=1,2,.,m, 1=12,..,7,
where we set ¥o=0 by convention. Thus B;, #21, is an
isomorphism of X; onto X’;, whereas
(714) a(Ad)=p(4) =1, v(4i:B)=m;, s=12,..,7.
The pair X;, X, does not permit any further decompo-
sition in the above sense. The “residual part” Ao of 4 is
aclosed linear operator (Xo> X%) with closed range, and
B, is a bounded, closed linear operator (Xo> X'0) with
D[B;] D D[A]. Furthermore

(715) a(4o) = a(A) -7, B(Ao) = B(A)—r, v(4o:Bo)= o,

so that at least one of a(4y) and B(Ao) is finite.
For each #=1,2,.. let 7, be the number of the sub-

spaces X;, 21, such that mi=n. Then

(716) r=r+r1+..,
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(717) dim N, = dim BNy_; 4+ a(Ao) + 70 + 7ps1 + ...,
codim AM,_, = codim M, + B(Ao) + 7o + 7uss + ...,
n=1,2,3,..,
where M,=M,[A:B] and N,=N,[A:B]. These equalities
determine 7 ,7:,... completely.

Remark. The decomposition (711) with the properties described
above is in general not unique, though it is unique up to isomorphism.
Even the decomposition of the spaces into the “finite parts” X, P...P X,
and X' @ .. X, on the one hand and the “residual parts” Xo, X' on
the other is in general not unique. See §7.5.

Before going into the proof, of Theorem 4, we note once for all that
we may assume that D[B]=X. Otherwise D[B]= X° is a closed linear
manifold of X. Let A°, B° be the trivial restrictions of A, B o X°.
Then the assumptions of the theorem are satisfied for 4°, B° (see Lemma 531).
If the theorem is proved for the pair A°, B® with the decompositions
X=X'D.DX’P X and X'=X"1P..0 X, D X%, it is easy to
find an XoD X7 such that X=X?D..P X’P Xo. We have only to
set X;=X], 121, to obtain the decomposition of the theorem.

2. Subspaces L;.

We now give the proof of the theorem. We introduce the linear
manifolds My=M,{A:B] and Ny=N,[A:B]. That v[4:B]=v<oo
means that N=N, CM,_, is true but NC M, is false. Set

(721) N=NnM,;
then we have
(722) 0<dimN/N°< oo,

the second inequality being true because either dim N=a(4)<oo or
codimM,< oo in virtue of P(A)< oo (see (517) and the remark at the
end of the preceding paragraph, according to which we assume that
D[B]=X). Hence there exists a finite-dimensional linear manifold L,
such that

(723 N=N'@L, LnMy,={0}, {0}#L CNCM,,.

We shall now construct a sequence of linear manifolds Ly, Ls,..., Ly

with the following properties :
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LicNCM,, LinM._,, =0},
(724) ALy = BLy, , (Lo = {0;), k=1,2.,v,

0<dimL; =dimL;=..=diml, = r<oo
and the mappings Ly > ALy, k=2,3, ..,v, and Ly > BLs, k=1,2,..,v,
are one-to-one.

We have already constructed L,. So we assume that L;, .., Ls
have been constructed and construct Liy: as follows. Ly € My—s implies that
Ly C B='(AM,_4_)) and hence that Bl: C AM,_,_.. Since dim Lx< co,
there is a linear manifold Lipi € My—p— which is mapped by A onto
BLy in a one-to-one fashion: ALy, = BLy. This shows that

Lygy C A= (BLy) C A= (BN.) = Nppt C My,
the last inclusion being true since &+ lgv. If x€Lyey N\ My_x, there
is a y€ Ly such that Ax=By and y € B~'(AM,_,) = M,_44, .Thus
ye€lisN My_ssr and hence ¥ =0 by (724). Then A¥*=0 and so x=0
by the one-to-one property of the map Las1 > ALsyr. This shows that
Lysy N M,y == {0}. Finally we have to show that also the map Layr > BLas
is one-to-one. Bx=0 implies x€ N [B] C M,_, by (513). Hence Bx =0
for an x€Ly,, implies that %€ Lyt N My_p=1{0}. This one-t0-one
property of the mappings finally shows that
dim Lis1 = dim ALy = dim B/ = dim Ly,

This completes the induction.

We note that, for each k2 = 1,2,...,v, the linear manifolds
Ly.Lyyr, ..o Ly and M,y are linearly independent. This follows im-
mediately from the fact that L, C M,_, but LN\ My_i;. = {0} and tha
X=M,DM,DM,D ...

Similacly the linear manifolds BLa, BLyyy, ..., BL, and AM,_, are

linearly independent. To see this, suppose that
Byy + Byf“ +..4+By+¥y =0
with %.€L; and y¥ € AM,_». Then we have
Vet o+ wE€BV(AM, ) = M4y

By the linear independence of Lai,..,L, and M, 4., noted above, it
follows that yx=..=% =0 and ¥ =0.
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3. Construction of bases.

So far our arguments have been purely algebraic. For the construction
to follow, we make use of the fact that M, and AM,, n=0,1, 2, ...,
are all closed by Lemmas 541 and 542.

We now introduce bases of the linear manifolds L,, ..., L,. We take
an arbitrary basis %1, %2, ..,%1 of L. In virtue of the relations
ALy = BL,_« and the one-to-one property of these mappings, we can then
choose the bases of Li, {xi, %2k, ..., za!, for £22 in such a way that
the following relations hold:

(731) Axp = Bxi vy, €L CNiCM,_,,

1 = 1,2,..,7, R=1,2,.. v,
whete we set %jo=0 by convention. According to the remarks above, the
(v—Rk+1)7 elements xa, .o, %y (=1, ..., 7) of X are linearly independent
modulo M+, and the (v — R + 1)r elements Bxy,..,Bx, (§=1,2,..,7)
ot X’ are linearly independent modulo AM, ;.

In particular Bx;,y, #=1,..,7, are lineatly independent modulo AX.
Since AX is closed, there exist 7 linear functionals fp€ X™, j=1, .., 7,
such chac
(732) F(Briy) =8y, fpe(AX)".

Here 8y is the Kronecker symbol.

We now construct by induction rv elements fz€X™, j=1,..,7,
l=1,.., v, with the following properties :

S a(Ax) = f4,141(Bx) = B°f.111(x), x€D[A],
fpeBLY" N (AM, ), I=1,.,v—1.
We shall show how to find f7,;_1, 7=1, ..., 7, when alteady [4, ..., S
7 =1, ..., 7, have been constructed, where 12> 2. Since NCM,_, C M.,
we have BN C AM,_;, (AM,))" C (BN)*. Hence f'y€(BN)* by (732)
or (733), and this implies that B*f’y€ N*. Furthermore, BL, is linearly
independent of AX as remarked above. Thus BL, N AX = {0} and
BL,4 AX is closed because AX is closed and BL, is finite-dimensional.
Thus Lemma 334 is applicable with f=B"f3 and M'=BL,, with the
result that there exists an f*; ;-1 € X such that

[1-1(4%) = B°f'3(x) = f'u(Bx) and f'j1-1€(BL))*>.
Purthermore, for any x € D [A] N\ M,;1 we have Bx€ BM,_ ;.. C AM,,;

(733)
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and [, 11 (Ax)= f'p(Bx)=0 because f['u€(AM,_)". This shows that
S1.1=1€(AMy_111)" . Thus we see that f'j, 11 satisfies all the requirements
of (733), and® the induction is complete.

~ The rv elements Bxy€ X’ and the rv functionals f's form a biot-
thogonal set:

(734) faBra)=0ydu, ¢,7=1,.,7r, k,I=1,.,v.

For k=yv this has already been proved, see (732), (733) and note that
%y €L, . This is also true for k<! because then

Brxa€BLyCBM, , C AM,_, « C AM,_,,
see (724) and (733). If v>k 21, (734) follows from
S a(Bxa) = fu(Axiae) = fjan (Brian) = ...
= [}, 14v—a (Bxi) = ;5 0y
by (731), (732) and (733).

4. Construction of projections.
We define rv operators Eu by
(741) Enx= fu(B%a, $=1,.,7r, k=1,.,v.
Ea are bounded linear operators (X > X) defined everywhere in X.
It follows easily from (734) that
(742) EpEp = 8;0uEy.
This shows that E are mutually orthogonal projections in X.
Similarly we define v operators E'u by
(741") Eax = fua(®)Bxy, t=1,..,7, R=1,.,V.
E'sx are bounded linear operatots (X > X7) defined everywhere in X",
Again it follows from (734) that
(742" Ey3FEa = 3;04E%.
Thus E’; are mutually orthogonal projections in X

It follows immediately from the definition that
(743) EuB=BE;, t=1,..,r; k=1,.,v.
Also we have by (731)

AEy x = f'u(Bx) Axi = ['u(Bx)Bx;, 4—1
for all x€ X, and by (733) or (732)
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‘aAx = fu(A%)Bxa = fian1(BYBra (f,541=0)
for all x€ D[A]. These equalities show that
(744) EaACAE 44y, t=1,..,7; B=0,1,.,V,
where we set E9=0 and E, ,,1=0 by convention.

We now set

( E;, = VE-, E;= VE' , E = 'E,-, E = ;E’,-,

It follows from (743) and (744) that
(746) E'B=BE;,, E'B-=-BE, EACAE;,, E'AC AE.

Let the ranges of E; and E’; be denoted réspectively by X; and X7,
These are v-dimensional linear manifolds of X and X’ and spanned by the
bases {%i, ..., %} and 2%, .., ¥! respectively, where
(747) o = Bxy .

Note that 2’y are linearly independent, as is seen from the fact that x7
and f'a form a biorthogonal set. Each of X, X’ is decomposed into the
direct sum of r 4+ 1 closed linear manifolds:

X=X..0X.PXo, X=X1D..DX,B X0,
where Xo, X'o are the ranges of I —E, I'—E’ respectively (I, I are
respectively the identity operators of X', X").

The bases of the subspaces X, X’; are connected with each other
Ly (747) and
(748) Axa = % 2= (%% =0).

Thus B induces an isomorphism of X; onto X';, whereas A4 acts in X;
in 2 way analogous to the Jordan canonical form.

The “residual spaces” Xo, X'o are also .invariant with respect to
A,B in the sense that AXo C X' and BXo € X’y. This is a direct
consequence of the fact that (I'—E)ACA(I—E) and (I'-E)B=B(I—E),

Let A;, B; be the linear operators (X; > X’;) induced by A4 ,B
respectively, §=0,1, 2, ...,7. For §21, B; bas the inverse B, and the
operator B;™' A; has exacly the Jordan canonical form with respect to the
basis {%ii, ..., %} of Xi. From this it is easily seen that

a(A)=pA)=1, v(Ai:B)=wv, i=1,..,7.
Hence we must have for the residual part Ao

(749) a(d))=a(A)—r, B(Ad)=p(A)—r.
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5. Completion of the reduction.

Let us now consider the residual parts Ao, By of the operators A, B
respectively. It is obvious that Ao is a closed linear operator with closed
range, for the same is true with A and Xo is a closed linear manifold of
X with codim Xy =1rv<co (see Lemma 333). Furthermore, it follows from
(749) thac at least one of a(Ao), P (Ao) is finite. Therefore, we can apply
the reduction procedure described above to the pair Ao, By, provided
v(Ao: Bo) is finite. This leads to a further reduction of the numbers
a(Aw), B(Aow) for the residual parts Ao, Bo of Ao, Bo. This process
can be continued only a finite number of times because at least one of
a(A), B(4) was finite, and must come to an end with the final residual
parts A%, B® such that v(A4°: B°) = co. With a slight change of notations,
this proves Theorem 4 except for the last equalities (717).

Hereafter we use the notations of Theorem 4. To prove (717), we
note that for £ 21

dim N, [A4i: B)] = dim Ny—s [4;: B] + 20, m;
codim M, [A; : B;] = codim Mu—i [Ai : Bi] + 7in, m
where 7a,m=1 for #<m and 7, w=0 for n>m. This can be seen

most easily from the fact that M,[A4;: B;] and N, [A4;: Bi] are respectively

(751)

the range and the null space of the operator (B Ai)", where B{' A4, is a
linear operator in the #; dimensional space X; with a Jordan canonical

form with the eigenvalue 0.
Since M, [A;: B)] = B (Ai Mu_, [Ai : Bi]) and B, is an isomorphism
of X; onto X';, (751) can be written as
dim N, [4; : B] = dim B; Ne: [4i : Bi] + 7w, m, ,
codim A; M1 [A4;: B] = codim Mp_ [A;: B] + 7a,m, .
On the other hand, v(Ay: Bo) = oo implies by Lemma 511 that
dim N, [Ao : Bo] = dim By Nu—i [4o : Bo) 4+ w(Ay),
codim Ao My [Ao : Bo] = codim Ma_; [4o : By] + B(Ao).

But it is obvious that

(752)
(753)

dim N,[4 : B] = Ei(h"JAL[A‘:IL]

and similar relation holds also for dim BN,[A:B], codim M,[A : B]
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and codim AM,[A : B]. The addition of the corresponding equalities of
(752) and (753) thus leads to the required results (717).

Since at least one of a(4) and B(A) is finite, (717) determines the
pumbers 7,,7z,... For example if a{A)<o, we have a(Ag)< oo
and hence

7, = (dim Ny —dim BN,—) — (dim Na41 — dim BN,)
where all terms on the right are finite.

The fact that 7, are determined uniquely shows that the decomposition
of X and X’ in the manner described in Theorem 4 is unique up w0
isomorphism. This is obvious for the finite parts X;, X"y, §21. Then the
structure of Xy, X' with Ao, B, operating between them is also determined
as isomorphic to the factor spaces X/(X, D .. P X)), X'[(X D ... D X))
respectively.

However, even the finite part X1 @@ ... D X, and the residual part X,
need not be determined uniquely. For example let X be a Hilbert space
with a complete orthonormal set {%, %1, %2, ...}. Set B=1 and let 4 be
a bounded linear operator (X' > X) with D[A4] = X such that

Axy =0, Axy,=0, Ax:=x, Ax;=2x, ...
Then A is partially isometric (hence has closed range) and a(d) =2,
B(A)=1. A decomposition of the kind stated in Theorem 4 is given by
X=X, X,, where X, is the closed linear manifold spanned by {x:,*2, ...}
and X, is a one-dimensional linear manifold spanned by xo + £x1, where &
may be any number. Thus X is not uniquely determined.

In this example the adjoint A* of A is given by

Atzo=0, A'zy=2, A'%=1=x,,..,

(here A* is the Hilbert adjoint of A, again deviating from the general
usage of this paper). A* is again partially isometric with a(A4’)=1,
B(A)=2. A decomposition of Theorem 4 is given by X =X; D Xo,
where X; is the one-dimensional linear manifold spanned by % and X,
is & closed linear manifold spanned by x4 £%o,%:, %3, ... where £ is an
arbitrary number. Thus X, is not uniquely determined.

In this connection it will be remarked that the finite parts
XP..DX,, X', @..0D X, are uniquely determined if a(4o)=0.
Similarly the residual parts X,, X", are uniquely determined if f(A4o)=0
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and D [B] = X. This follows from the fact that we have

Xi®..0 X.=N,[4:B]
for sufficiently large # provided a(4o) = 0, and we have Xo=M,[A: B),
Xo=AX, for sufficientiy large n provided B(4))=0 and D[B]=X
(see (516) and (517)).

6. Instability of finite v.

We now prove a theorem which shows that the property v(4:B)< oo
is unstable or exceptional in & certain sense.

Theorem 5. Let X, X’ be Banach spaces, let A be a
closed linear operator (X> X") with closed range with at
least one of a(A) and B(A) finite. Let Bbe alinear operator
(X X") such that D[B] D D[A] and
(761) [Bxl| < ofl 2] + =] 42][,  xzeD[4].
Furthermore, let Y(4:B)<oo. Then there is a constant
p>0 and a positiveinteger r such that, for 0<|A|<p, A—1B
isaclosed linear operator (X > X") with closed range and
(762) a(A=AB)y=a(A)—r, B(A—-iB)=[B(4)~7,

(763) v(A—AB:B) = =,

Proof. We may assume that B is bounded with D[B]=X. The
general case can be reduced to this case by the device used in the proof
of Theorem 3; we need only to note (644).

Thus Theorem 4 is applicable, and we shall use the notations of
this theorem. For each pair A;, B;, 21, we have
(764) a(4;—AB)=pB(4:—AB) =0,

(765) v(A;—AB;: B,) = oo,

for every complex number A7 0. This is a direct consequence of the fact
that the operator B;™ A; in the finite-dimensional space X; bas the only
cigenvalue 0. On the other hand, Theorem 3 is applicable to the pair
Ao, By, for Ao is a closed linear operator with closed range (Y (A4o)>0)
and with v(A4o: By) = co. Thus we see that Ao —ABo is 2 closed linear
operator with closed range and

(766) a(do—1Bo) = a(4o), B(Ao—1By) = B(4o),

(767) Y(Ao —AB, : Bo) - 00,
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These equalities are true for [A|<y(Ao)||Bo|l~" because at least one of
a (Ao) and P (Ao) is finite.
It follows from (764) and (766) that
14
a(Ad—AB) = Za(A,-_w,.) = a(do) = a(A)—r
"=°
by (715). This proves the firss equality of (762). The second equality can
be proved similarly. On the other hand, it is obvious that (765) and (767)

imply (763).

1. Extension of stability theorem.

In Theorem 5 it is difficult to give an estimate of the constant p.
It is true that we can.take p =y (Ao)||Bof|~" 2 7 (Ao) ||B||~* if B is bounded,
as was mentioned in the proof; but there is no simple relationship berween
7(As) and 7(A). Note that Ao is not necessarily uniquely determined by
A as was remarked above.

In this connection the following theorem is of interest. It may be
regarded as an extension of Theorem la and, in part, of Theorem 3.

Theorem 6. Let X, X be Banach spaces. Let 4 bea
closed linear operator (X> X') with closed range and
with at least one of a(4) and Pf(A4) finite. Let B be a linear
operator (X—)X') such that D[B]DD[A] and (761) holds.
Then, for
(7171) AM<r(d)[o+r (A,
A—AB is aclosed linear operator with closed range and
both a(A—2AB) and PB(4—AB) are constant except at a
countable number of values of A which have no accumu-
lation point inside of (771). Let $,q be these constant
values of a,P respectively., Then, for each of these
exceptional points A there isa finiie, positive integer
r(A) such that
(772) a(d—AB)=p+r(), B(A—AB)=g+r(})
(773) o<r(A) < r(0).
There are no such exceptional points inthe circle (771)

unless Am 0 is itself such an exceptional point
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Proof. That A —AB is a closed linear operator with closed range for
(771) has been proved in Theorem 1a. Thus we can apply either Theorem 3
or Theorem 5 to the pairt A—2AB, B for each A, satisfying (771). The
result is that there is a neighborhood of 4 in which a(l) = a (4 —AB)
and B(R) =B (A —AB) are constant at least except for A = A. It follows
that these constant values must be the same throughout the circle (771),
and the theorem follows immediately. That 7 (A) < r(0) is a direct consequence
of Theorem 1a, according to which a(A) S« (0), f(A) < B(0). In particular
there can be no A for which 7 (A)>0 unless r(0)>0.

We note that (772) gives the proof of (432).

§8. CLASSIFICATION OF COMPLEX NUMBERS ACCORDING TO
SPECTRAL PROPERTIES

1. Classification of complex numbers.

This section is devoted to some results that can be deduced from
foregoing theorems.

Let X, X’ be Banach spaces, let A be a closed linear operator
(X > X') and let B be a linear operator (X > X”) such that D[B]D D[A]
and
(811) [Bx]| < ollzl| + v|l4%ll,  ze€D(4],
where 6,7 arc non-negative constants. Then the operator A —AB is a
closed linear operator (X > X*) for
(812) Al < vt
This follows from the proof of Theorem 1a as we have remarked there.

We shall denote by A the set of 4 satisfying (812). If B is bounded,
we can take T=0 and A coincides with the whole complex plane. In what
follows we consider only A belonging to A unless otherwise stated explicitly.
For brevity we write a(A)=a(4—AiB), N(A) = N[A —AB] and similarly
define R(A), B(A), a’R), B'(R), y(X) and v(A) =v(A—AB: B).

The set of all A such that 4 —AB has closed range and at least one
of a(X), B(R) is finite will be denoted by A. According to Theorem 1a
or 6, A is an open set. The components of A will be denoted by
A1, A, ... These are connected open sets.

The subset of A consisting of all points A with v(A)<oo [resp.
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v(A) = o] will be denoted by IT [resp. A"]. According to Theorem 3 and 6,
A’ is an open set and Il is an isolated set consisting only
of internal points of A. Hence each A€Il is an internal point of
some A;. We denote by II; the sec of all A€Il belonging to A;. Also it
follows that A, =A'NA;, i=1, 2, ..., are exactly the components of A’

Theorem 3 shows that a(A) and B(A) are constant in each A,
these constant values will be called the indices of A'; (and also of A))
and denoted by &, ;. By definition at least one of a;,f; is finite.
Theorem 3 shows further that y(A) is continuous in A’ and hence
also in each A%, and that N(A), R(A)* depend analitically
on A for Ae A’

Theorem 6 shows that, for each A€Il;, there is an integer 7 (1)
such that
(813) 0<r()<oo, a@) =0 +7@d), PR =Ph+r}).

Por this reason, each A€Il will be called a discrete eigenvalue
(of A with respect to B) and r(A) the multiplicity of this discrete
eigenvalue.

The complement of A in A will be denoted by ;X is relatively
closed in A. The points of = will be called singular points (of 4 with
respect to B). It follows from the definition that, for A€ X, either the
range of A —AB is not closed (y () = 0) or

a(d) =B@R)=oo.
Lemmas 421 and 422 show that A is a singular point if and
only if a'(A) =f' () = oo.

2 can be divided into two parts £’ and 2. I’ is the set of all
such that A —AB has closed range and a(A) =f (1) =v (&) = co. Theorem 3
shows that £’ is an open setand y(A) is continuous for A€’
Also N(A) and R(A)“ depend analytically on A for A€X’. 27 is the set
of all A such that either the range of A —AB is not closed or

a(d) =B@R)= o>Y(R).
2" isrelatively closed in A.

It is easily seen that the boundaries of A; and 2 are

subsets of 2.

We denote by p(A) the distance of a point A€l from Z°. In other
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words, p(A) is the distance of X from the boundary of A; to which A
belongs. Theorem 6 shows that

(814) oM ZrM)/[o+rr(R)] > o0, Aell.

For each A€ A’ let p'() be the distance of A from [IUZ". In other words,

P’ (A) is the distance of A from the boundary of A’; to which A belongs.

Theorem 3 shows that

(815) FMZyM)/[o+rr@d) >0, red'.

The two inequalities (814) and (815) have the same form, but it should

be noted that the meaning of o' (1) is somewhat different from that of p(A).

This is an expression of the discontinuity of y(A) at a discrete eigenvalue A
We can also define the distance p'(A) of a A€Z’ from 2 (or,

equivalently, from the boundary of Z’). It follows from Theorem 3 that

(816) PCMNZrM/[Bo+ry(M)] >0, AeX.
The factor 3 can be dropped if either X or X’ is a Hilbert space.

2. The case of countable singular points.

The number of the components A; of A may be 0,1,2,..., or o.
If there are more than one components, the boundary of A must have the
power of continuum. This is a simple consequence of the fact that A is an
open set. But the boundary of A consists only of singular points. Conse-
quently, there is one and only one component of A if there are at most a
countable number of singular points. Thus we have proved the following
theorem.

Theorem 7. Let A,B be as above. Assume that there
are at most a countable number of points A (singular points)
such that a'(A—AB)=f'(A—AB)= occ. Then the closed linear
operator A—AB has closed range for all A€A except
possibly for the singular points, and a(d—AB), B(A—AB)
are constant for all A€A except for the singular points
and the discrete eigenvalues. There are 2t most a count-
able number of discrete eigenvalues A, for which we have
(721) a(A—AB)=a+r(}), B(A-AB)=B +r(2),

0<r(A) < oo
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where u,f are the constant values stated above and at
least one of them is finite.

The simplest situation from our point of view is the case in which
there is no singular point. The following theorem is concerned with such
a case.

Theorem 8. Let X, X’ be Banach spaces. Let 4 be a
closed linear operator (X X’) with closed range and
with a(A)< oo. Let B be a strictly singular operator
relative to A (see §4.5). Then A—AB is a closed linear
operator with closed range for every complex number A
a(A—2AB)=a< o and B(A—AB)=Pf are constant except for
the (at most countable) discrete eigenvalues A for which we
have (721).

Proof. Thete is no singular point as is easily seen from Theotem 2a,

$§4.5. Hence the theorem follows from Theorem 7.

3. Fredholm spectrum and Riesz-Schauder theorem.

The foregoing theorems can be spplied to the case in which X' = X
and B=1I (the identity operator of X). In this case A is the whole
complex plane. The components A for which a;= ;= 0 are exactly the
components of the resolvent set of A. If in particular A is bounded
with domain X, its resolvent set is not empty. Hence we must have
a=f =0 in Theorem 7. This gives

Theorem 9. Let X be a Banach space and let 4 bea
bounded linear operator (X> X) with domain X. If there
is only s countable number of points A (singular points) for
which &' (A—A)=f((A—Al)=00, A has a Fredholm spectrum
except for these singular points.

By saying that 4 has a Predholm spectrum in a set T of the complex
plane, we mean that A —AI has closed range for all A€T and that
a(A—M)=B(A—Al) =0 except for at most countable number of
discrete eigenvalues A for which
(731) 0<a(A-A)=B(A—A)=r(A) < .

Suppose in particular that A =0 is the only possible singular point
in Theorem 9. Then A has a Fredholm spectrum with the single exception
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of the point A=0. In other words, the Riesz-Schauder theorem holds
for A. Thus we obtain

Theorem 10. Let X be a Banach space and let 4 bea
bounded linear operator (X>X) with domain X. The
Riesz-Schauder theorem holds for 4 if and only if A=0
is the only possible singulat point, thatis, if and onlyif
a’'(A—A)=p(A—A)= o is not true for any A#0.

Remark. This theorem shows that the Riesz-Schauder theorem holds
for a strictly singular operator B, for there is no singular point W for the
operator of the form I — B as is seen from the proof of Theorem 8.

Since the complete continuity implies the strict singularity (see §4.5),
our theory furnishes an independent proof of the Riesz-Schauder theorem
for a completely continuous operator. In this connection it should be
remarked that, in proving Theorems 7 to 10, we do not need the fact that
2’ is an open set or various estimates for the quantity 7(A4 —1B), to

which a greater part of the present paper is devoted.
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