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11. In t roduct ion.  

Let 

(1.1) / ( z ,  u) = o 

be an irreducible algebraic or analytic equation connecting two complex 

variables z and u, and let ~ /  be the associated Riematm surface. We regard 

~ f  as a branched covering surface (i) of a connected domain ~R,, which is 

a 'subset of the extended z-plane, and write o for the projection mapping 

from ~ /  to ~ , ,  so that ~ ; =  o (~ /~ .  Let ~ ,  denote a set of isolated points 

of ~ ,  which includes as a subset the set of images of branch-points of 9If 

with respect to 9t, ; in most cases, ~ ,  will consist entirely of these image 

points. We denote by ~ a subset of ~ ,  to be specified later, and put 

~B ~ = ,~8,--~8~. We also write ~B/, ~B~ and ~8~ for the sets of all points 

of ~ /  which lie over 83, ~B~ and ~B ~ respectively, and put & ,  

( t .2)  m ' / =  m / -  m~ ~ m', -- m, - m? = m, - o(~B~~ 

We denote by ~ a universal (i. e. simply-connected) covering surface 

of ~R'/ (and therefore of !R',), which is branched over ~R'+, and possibly 

also branched over ~R'/, at points lying over points of  the set ~B ~ but 

which is otherwise smooth. We shall demand further properdes of ,~ later; 

it may be possible to choose ~ in several different ways. Since ~R is simply- 

connected, there is a conformal one-to-one mapping 1: of ~ onto a domain 

of the t-plane, where @ is either (i) the extended t-plane, (ii) the finite 

t-plane, or (iii) the unit circle It I< I .  These three cases are called the 

elliptic, parabolic and hyperbolic cases, respectively. 

The equation (1.1) can be uniformized by functions z = z (  0 and 

u = u (t), which are defined and meromorphic on @. They are automorphic 

functions for a properly discontinuous group 1"/ of bilinear transformations 

S defined by 

1. The terminology used is that of [12J. 
1 n o  
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02 + [3 ( , ~  - (3r = ~) ,  
(~.3)  s ( t )  = ts = r t  +----f 

so that Z( t s )~Z( t )  and U(ls)=u(t), for all S ~ F I  and t e l l ;  further, 

s @  = @ for all S r r / .  

When (1.1) is an algebraic equation of  genus p > l ,  and ~ is taken 

to be the smooth universal covering surface of  ~R/, the functions z(t) and 

u(t) are simple automorphic functions (see [2, p. 86]) for 1"/, which is 

then horocyclic (Fuchsian); in this case @ is hyperbolic and each funda- 

mental region D (I'I) for the group is bounded by a finite number of  sides. 

There are no elliptic or parabolic cycles and the closure of D ( r / )  lies in ~ .  

When (1.1) is not algebraic, the automorphic functions need not be 

simple; in particular, the fundamental regions D(F/ )  may have infinitely 

many sides and the number of poles and zeros of the functions z(t) and 

u (t) may be infinite in each fundamental region. 

The Schwarzian derivative {t, z I is defined by 

( 1 , 4 )  {t ~} = z " ( t )  3 [ z " ( t ) } '  
, {z , ( t ) }  3 -k- 2 { z ' ( / ) }  4 " 

It follows that 

0.~) {t, ~} = {t ,  c ' ] ,  + {c' ,  ~}. 
dz ! \ 

It is easily checked from (1.4) that {t, z} is an automorphic function for 

any group for which z(t) is automorphic. Also {t, z} is unaltered when t 

is subjected to a bilinear transformation and so does not depend upon the 

choice of  the mapping 3. 

Our object is to obtain as much information as possible about the 

form of the Schwarzian derivative, since the explicit construction of  the 

uniformizing functions z(t) and u (t) depends on this. We show, in parti- 

cular, that {t, z} can be evaluated explicitly for certain types of  equation 

(1.1). Before this can be described the surfaces ~ ,  ~R I and !Rz must be 

considered in greater detail. 

Points of  ~ ,  9~1 and !R, will be denoted by P ,  P and z, respectively. 

The projection mappings of  ~ onto ~R'/ and 9~', are denoted by p and 

respectively, so that ~ =o,o (see diagram). 

Let A denote the group of  all conformal one-to-one mappings of  

onto itself, and let A be a subgroup of  A. Thus, for ~.~ A, 'c~x -'* is a 
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conformal mapping of �9 onto itself, and so 

(z .6 )  (t) = ( t ) ,  

where S~ is a bifinear transformation. Thus A is isomorphic to a group 

rfA) of bilinear transformations Sx which map �9 onto itself. In particular, 

if A is the group A! of covering transformations of !R over ~ ' / ,  i.e. if 

p{~.(P)}=p(P') for all ~,~A/ and ~ s ~ ,  then F ( A / ) = F / .  

P 

< i 

We now depart from the completely general situation just described 

and make certain simplifying assumptions. We recall that a smooth covering 

manifold ~[R" of a manifold ~ is said to be regular if its group of  covering 

transformations i,s transitive, i.e. if there is a covering transformation 

mapping /~t onto /~2, where P~ and P~2 are any two points of ~ *  lying 

over some point P of ~ .  We shall say that a branched covering manifold 

~ ~  of a manifold ~ is regular, if [IR*--~~ is regular over ~ F t -  ~,  where 

~5" is the set of all points of ~Ft" which lie over the set ~ of projections 

of branch-points on ~ ;  any covering transformation of ~ ~  over 

- - ~  can then be extended uniquely to a covering transformation of  ~ "  

over ~ .  We now assume that the equation (1.1) is such that !R/ is an 

unlimited branched covering surface of  ~ , ,  and that ~R is a regular covering 

surface of JR', ; ~ is then automatically a regular covering surface of ~ ' / ,  

but [R/ will not in general be regular over [RX. Such a surface ~ can usually 
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be chosen in several different ways by making different choices of ~ ,  and 

its subset ~ST. For example, if we take ~3~-----~,, then ~ is merely the~ 

smooth universal covering surface of ~R',. On the other hand, if ~R I is 

regular over ~R,, we can take ~8 ~ -- ~ ,  and take ~ to be the smooth universal 

covering surface of  ~RI. In these two cases ~ ,  may be chosen to consist 

entirely of  images of branch-points of ~ i  with respect to 9~,. 

In other cases, where ~RI is not regular over ~R,, it may be possible to 

construct ~ as a regular branched surface over ~R', without taking ~3~ to 

be the whole of  ~ , .  To each P E ~RI there corresponds a unique finite 

positive integer q(P) such that P is a branch-point of order q ( P ) -  1 
of  ~R/ with respect to ~R,; if q(P)= 1, P is a regular point of ~1 with 

respect to 9~,. We now assign, by some rule, a positive integer r (P) such 

that the product q(P)r(P) is the same for all points P lying over the 

same point z of  ~R,. Thus 

(1.7) q ( e ) ,  (P) = p 0 ) ,  

say, for all P E~R! such that o ( P ) = z .  We make the restriction that 

the set of points P of  ~Rr at which r(P)>I is isolated. On the other 

hand, we allow r(P) to be infinite, in which case p(z) is also infinite; 

it may not, in fact, be possible to satisfy (1.7) for finite r(P). It follows 

that r ( P )  is either finite for all points P lying over a given z ~ ~R,, or 

r ( P )  is infinite for all such points. We take ~8, ~ to be the set of points 

z for which p (z) is infinite and ~0 to be the set of points for which p(z) 

is finite and greater than unity. This defines ~R'/ and ~R',, and the regular 

covering suthce ~ is to be constructed (2) so that all the branch-points 

lying over P on ~R'/ are of order r ( P ) -  1, while all the branch-points 

lying over z on ~ ' ,  have order p ( z ) -  1.  

The covering transformations ~. or ~R over ~R', form a subgroup A, 

of  A which contains AI as a subgroup. If l ' , =  F(A,) ,  then z ( 0  is an 

automorphic function for F, ,  which is properly discontinuous. O) Any other 

automorphic function q~ (t) for F, is uniquely determined by the value of. 

z(t) and so is a single-valued function of  z = z (t).  In particular, {t, z}, 

2. For constructions of regular branched covering surfaces of closed Riemann 
surfaces see Four/~s [4] and Rankin [LI];  see also Four~s 13]. 

3. This may be proved as in Theorem 9--5 of [12]; the neighbourhood 
can only covet S a finite number of times iv. 
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which is an automorphic function for F, ,  is a single-valued meromorphic 

function of z on ~R',, and we may therefore write 

(1.O ~(0 --It, ~(0l = 2RO) ( ~ ; ) .  
The coefficient 2 stems from the fact that t can be expressed as the quotient 

of two linearly independent solutions of  the differential equation 

d 2 
dz---- T- + R (z) 72 = O; 

if, therefore, R(z)  can be determined explicidy and this equation can be 

solved, F, can be found and the uniformizing functions can be set up 

explicidy. 

We now make one further assumption regarding the form of  equation 

(1.1). Let G denote a properly discontinuous group of bilinear transformations 

T for which T ~ ,  = ~R,. Usually G will be finite or Fuchsian. We write 

a z +  b 
0.9) ~ = T z  . . . .  ( a a  - -  bc = 1) 

cz + d  

We suppose that there exists a group Q~ of conformal transformations ~T 

( T E  G) of ~ /  onto itself such that 

(I.I0) a{Ar(P)} ---- ~" = rz = Ta(P) (Pe~RI). 

When this happens we say that the equation (1.1) is i n v a r i a n t  u n d e r  

t h e g r o u p G. Every equation is invariant, in particular, under the group 

consisting of  the identity transformation only. This situation arises, for 

example, when the variables z and u can be replaced, by means of a 

birational transformation, by variables ~" = Tz and w such that 

(1.11) f ( ~ ' ,  w) = p ( z ) f ( z ,  u ) ,  

where p(z )  is a meromorphic function. 

A fundamental region for G in ~ ,  with boundary points identified 

can be regarded as a manifold ~ ;  for which ~ ,  is a regular covering 

manifold. If  G contains no elliptic transformations, ~ ,  is a smooth covering 

manifold of ~R,. If, however, a0 is an elliptic fixed point of  G of  period k, 

then z0 is a branch point of order k -- I with respect to ~u;. (4) We denote 

by ~R'o the projection of  ~R', on ~ r  We suppose that ~ is constructed so 

that it is also a regular covering manifold of ~'G. For example, in (1.7) 

4. Coverings of this type for Fuchsian groups with elliptic transformations 
have been considered by Four~s [5]. 
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we have q (~2"P) = q (P), and must take r (~2" P) ---- r (P) for all ).r E t ic.  

The group of transformations fao on ~R/ can then be extended to ~ to 

form a group Ar which contains "A and A= as normal subgroups, and we write 

r~ = r (^~) .  

For any T E G  take SEFG such that z ( S O = T z ( O .  Then, by (t.8), 

(1.~) and 0.9), 
2R (TO = 2R {a (so~ = ~ ( s o  = {st, z ( s o l  

(1.12) --~ {t, z(S0} = {g, Tz(t)} = (ca+d)' {i~, z(t)} 

= 2 (ca + d)* R 0). 
It follows that R (a) is an automorphic form of dimension --4 for G (with 

multiplier system 1). 

t~n equation which is invariant under G is invariant under any sub- 

group H of G, and there exist corresponding manifolds ~ n  and ~ ' n .  

We write An for the group of covering transformations of ~ over 8t'n 

and put Fn----- F(Au).  

The algebraic equations considered in [10] are invariant under certain 

cyclic or polyhedral groups. For them ~ /  is regular over ~=, so that 

could be chosen to be the universal covering surface of ~1 .  The group FI 

is then a subgroup of  a group of Riemann-Schwarz triangle functions and 

R(z) is a rational function. The theorems which we prove in the following 

sections enable us to deal with equations of a more general type and with 

different choices of groups F/ .  They also make dear what was not apparent 

from the ad  h o c  arguments used in [10], namely that, for the majority 

of  the algebraic equations considered there, the explicit determination of 

the Schwarzian derivative was possible because the points of ~3, were 

elliptic fixed points of G. 

2. Boundary points. 
We assume in this section that the equation (l.l) is invariant under 

a properly discontinuous group G, and that ~ is a simply-connected regular 

covering surface of ~R', and ~'/ of the kind described in w t. By trans- 

forming z by a suitable bilinear transformation, which merely replaces G 

by a conjugate group, we can arrange that either (i) the point at infinity 

is not in the dosure (s) of ~R',, or, if this is not possible, that (ii) z = oo 

5. Here and elsewhere ~'j is regarded as a subset of thb extended z-plane, 
i.e. the Riemann-Neumtnn sphere, with the appropriate topology. 
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is a point of ~ ' , ,  but does not belong to ~ ,  and is not a fixed point of G. 

We now define an accessible boundary point. The definition differs 

from that given by Nevanlinna ([8, p. 184], [6]) in that we make incisions 

in ~ rather than ~ '1 .  This difference is necessitated by the fact that 

may be branched over ~ ' / ,  but for a smooth covering surface ~ the two 

definitions are equivalent. Also the homotopic properties required in Nevan- 

linna's .definition can be omitted since ~ is simply-connected. See also 

Ohtsuka [9] and Kuramochi [7]. 

Let z0 be a point on the boundary of ~ ' , .  We define an i n c i s i o n 
/ - .  

y in ~ over z0 to be a continuous mapping y(x) of the interval 0 < x <  1 

into ~ which is such that 

r ,  = {r (x)} zo as x 1 - .  
j - .  

It foll6ws, in particular, that ~ contains no interior point which is a point 

of accumulation of y (x) as x -~ 1--. Two incisions y and y' in ~ ate said 

to be e q u i v a I e n t if (i) they are incisions over the same boundary point 

�9 z0, and if (ii), for every non-negative x <  1, there exists a curve a ,  in 

joining y(x) to ~(x) ,  such that a ( a , )  tends uniformly to z0 as x -~  1--. 

The first of these two conditions is a consequence of  the second. An 

a c c e s s i b l e  b o u n d a r y  p o i n t  of ~ lying overz0 is then defined to 

be a class S (z0) of equivalent incisions y in ~ over z0. There is no loss 

of generality in assuming that no incision y" passes through a branch-point, 

i.e. a point lying over a point of ~o,  since this can always be achieved 

by a suitable deformation. This assumption is useful when covering trans- 

formations are applied. 

If  ~(z0) is an accessible boundary point of ~ lying over z0, we shall 

say that ~(z0) is a s i m p l e  b o u n d a r y  p o i n t  of ~ when T{y(x)} 

tends to a point to as x->-1-- ;  such a point t0 is necessarily on the 

boundary of ~.  

For any covering transformation ~ of A,, ~, (y) is an incision which 

lies over the same boundary point z0 as y does, and we denote by ~$ (Zo) 

the set of all incisions ~(y) for y'fi ~ (z0). It is clear that ~ (z0) is also 

a class of equivalent incisions and that ~,2 (z0) and ~(zo) are either identical 

or disjoint. When ~(zo) is a simple boundary point so is ~l~(z0), the 

corresponding boundary point of �9 being Sx (to), where Sx is given by (1.6). 

If  z0 is an isolated boundary point of ~ ' , ,  the accessible boundary 
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points of ~ which lie over it are all of  the form ~ ( Z o ) ,  for ~ A , ,  

where ~(z0) is any one such accessible boundary point. It follows that 

these 'points' are either all simple boundary points or none of  them are; 

in the former case we say that z0 is a s i m p l e  i s o l a t e d  b o u n d a r y  

p o in  t of  ~ ' , ,  simplicity being measured with respect to ~.  

If  z0 is a simple isolated boundary point of  ~R', and to is any point 

on the boundary of  @ which is associated with it, then to is a fixed point 

of  a parabolic transformation S of F, [6, p. 50], and we can construct 

a fundamental region D (F,) for r ,  which has sides 8 and 8" terminating 

at to for which 8 ' =  S (8).  We can do this, for example, by taking D (F=) 

to be the image in @ of  a copy of ~R', which has been slit to make it simply- 

connected. One such slit will emanate from Zo and its two sides map into 

and fi'. This holds, in particular, when z0 ~- ~,~ and is simple. 

We now suppose that z0 is a parabolic fixed point for a group G under 

which (1.1) is invariant. Let D(G) be a fundamental region for G having 

z0 as a cusp. It may happen that D(G) has t w o  cusps at zo, but we then 

regard these two cusps as different and confine our attention to one of  them 

only. We may suppose that the sides y ond y" of  D (G) which meet at the 

cusp z0 are arcs of circles which touch at z0 and are orthogonal there to the 

line l which joins their centres. Let Kp be a circle of  radius p which touches 

l at z0 and lies on the same side o f l  as the cusp in question. I f p  is 

sufficiently small, p < p0 say, the part Ap of  Kp which lies between y and 

y" will be a curvilinear triangle forming a subset of  D (G). Let P be the 

parabolic transformation of  G for which 

(2.1) T'----- PY and z0 = P(z0). 

Then Kp is the union of  the sets P~(Ap) for r----- 0 , 4 -  1 , • 2 . . . . .  

We now make the additional assumption that the parabolic fixed point 

z0, is a boundary point of  ~R', (it cannot be an interior point) and that, 

for some positive pl < p0, the interior of  A o, is contained in ~ ' ,  and contains 

no points of  ~,.  The same is then true of  the interior of  Kp I. Let ~(z0) 

be a class of  incisions y" in .~ whose projections T, in ~R', are entirely 

contained in Kp 1. These incisions are all equivalent and define an accessible 

boundary point over z0. As before, each ~. ~ A ,  defines a different or 

the same accessible boundary point ~.~(z0), and these accessible boundary 

points are all simple whenever one of them is. When they are simple, 
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we shall say that g0 is a s i m p l e  p a r a b o l i c  f i x e d  p o i n t  of 

G (with respect to ~). 

It may be noted that this situation is essentially the same as for a 

simple isolated boundary point, since Zo lies over an isolated boundary point 

of ~ ' n ,  where H is the subgroup of G generated by P. For we can find 

a bilinear transformation T, not necessarily unique or in G, such that 

oo = Tzo  , and 

(2.2) 
where 

P =- T - I  U T ,  

Write 

(2.3) ~" = T g ,  w --- Ix(g) = e ~gi;  , 

so that IX(Pg) = Ix(g). We may suppose T chosen so that Ix(z) ->- 0 as g -->- go 

through Ap. If we define ~ to be the subset of the ~v-plane given by 

~' .  = {w : w = ~ z ) ,  g e ~',}, 

then ~'= is a covering manifold of ~ and projects into ~'t t  under the 

projection mapping IX. The region Ap projects onto a deleted circular neigh- 

bourhood of w = 0. When g0 is a simple parabolic fixed point, the point 

= 0 is a simple isolated boundary point of ~ .  As before, each of the 

associated boundary points t 0 of 1~ is a parabolic fixed point for a parabolic 

transformation Sp of I'tt (and also of F~). 

A condition for a boundary point to be simple has been given by Ohtsuka [9, 

p. 105] generalizing work of Nevanlinna [8] and Kaila [6]. Suppose that ~R is a 

covering surface of a Riematm surface 8 such that the closure of the projec- 

tion ~ of ~ in 3 is compact. Then, in the hyperbolic case, accessible boun- 

dary points of ~ are simple, except possibly when ~ is a closed surface 

of genus (i) zero or (ii) one, and 3 --  ~ contains (i) less than three, or (ii) 

no points, respectively. This result, which is slightly more general than that 

given by Ohtsuka since ~ may be branched, is most simply applied when 

and ~ can be taken to be ~'= and the extended z-plane, respectively. 

3. The $chwarzian derivative as an automorphic form for G. 

Under the assumptions made, the Schwarzian derivative {t, z} is holo- 

morphic on ~ , ,  except possibly at the points of ~5,. On a deleted neigh- 
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bourhood of a point z0 E ~3, ~ we can write 

( 3 . O  R ( z )  = ~ { t ,  ~1 = o ( O  0 - * 0 )  - ~  , 

where r is holomorphic at z0 and 

( 3 . 2 )  r  = u 1 - . 

Here p - - I  = p(zo)--1 and is the (positive) order of the branch-points of 

which lie over z0, with respect to ~R',. 

We can also determine the behaviour of {t, z} on a deleted neighbour- 

hood of a simple isolated boundary point z0 of  ~ ' , .  For, if the parabolic 

transformation S corresponding to one of  the associated boundary points to 

of �9 takes the form t'----S(t), where 

1 1 . . . . .  + p ,  
t' -- to t --  to 

then, within a cuspidal neighbourhood of  to we have 

--~176 {2~tin 1 } ~ t  t - - t o  z(t) --=- z0 + E an exp I 

From this we deduce that (3.1) holds on a deleted neighhourhood of z0, 

where ~(z) is holomorphic at So and 
1 

( 3 . 3 )  O 0 o )  = ~.  

Accordingly, if all the points of ~ are simple, the behaviour of R(z) at 

its singularities on ~R, is determined. 

We write ~R~ for the union of ~ ' ,  and the set ~3~ m" of simple isolated 

boundary points of  ~ ' , ,  and put 
~; _-~0 u ~ ' .  

Let ,~]~. denote the set of all automorphic forms F(z) of dimension --4 

(and with multiplier system 1) for G, such that (i) F(z) is holomorphic on 

~,e _ ~ , 0i) on a deleted neighbourhood of a point z0 E ~ 

F(z) = 0 ( 0  (Z-Zo) - '  , 

where ~(z) is holomorphic at z0 and (3.2) holds, where p = p(zo) for z0 ~ ~8 ~ 

and 1/p = O for z ~ ~B~'. We also denote by /~/C the set of  all automorphic 

forms F(z) of dimension - 4  for G, which are holomorphic on ~ .  

If  ~R," is the extended z-plane, 13"C is empty. On the other hand, if 

~ is the circle I z l <  1 and G is horocyclic with parabolic fixed points, g{~ 
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will not, in general, be empty, and will include automorphic forms which 

are not holomorphic at these cusps. 

We note that, if co ~ ~R', and z = I/~', then, by (1.5), 

{t ,  z} = r I t ,  r 

so that, since oo is an ordinary point, 

(3.4) R(z)-= ~.' ~(~) ,  

where ~F(() is holomorphic at ~ -  O. 

We are now in a position to state 

T h e o r e m  1. S u p p o s e  t h a t  t h e  e q u a t i o n  (1.1) is i n v a r i a n t  

u n d e r  G, t h a t  t h e  p o i n t s  o f  ~ a r e  a l l  e l l i p t i c  f i x e d  p o i n t s  

o f  G, a n d  t h a t  F(z)  is  a n y  f u n c t i o n  o f  ~]~.. T h e n  

R(z)  = ~'(z) + h(z), 

w h e r e  h(z) fi Zt~.. 

P r o o f .  I f  we write 

hO) = R(z) - gO),  

then h(z) is an automorphic form of dimension --4 for r ; it is holomorphic 

on s~," except possibly at points z0 • ~ ,  where 

h(z) = ( z - z o ) "  I t(z)  

for some integer m ~ -  1, H(zo):/: 0 and H(z) is holomorphic at z0. 

Now suppose that a point z0 fi ~ ;  is an elliptic fixed point of  G of  

period k:> 2 and that T is a transformanon of 6 of  period k for which 

Tzo:-= zo. We show that this assumption implies that m ~  0 (see 12, w 

The transformation ~" = Tz  may be taken in the form 

~" ~ z 0  z - -  Zo 
(3 .5 )  r - P  , ~. --  2t Z - -  Zt  

where p = e 2*ti/k and zl is the other elliptic fixed point and is finite. We 

have, by (1.5) and (3.5), 

d~ (c--,o) (~-~,) I c-z, \ '  (cz+d)-~ 
= - g z  = (z- -z0) ( z - z , )  = p / ~ z-f:-~z, / / �9 

I n  particular, 

(3.6) 

Now 

(czo +d)  - z  = ,o. 
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h(Tz) = (Tz--Tzo) "~ H(Tz) = (Z--Zo)m 
(czq-d) m (Czo+d)" H(Tz), 

and so 

h(Tz) = (cz-bd)' h(z) = (cz+d)' (Z--Zo)" H(z). 

On division we obtain 

1 = (=A-d)  " + '  (czo+d) m H(z)/H(rz). 

On letting z-->-z0, we deduce from this and (3.6) that 

1 = (cz+d) 2"+' =- p--4,,+,). 

I t  follows that m ~ - - 2  (rood k), and, since m > -  1, 

m > k - - e ~ o .  

Thus h(z) is holomorphic  at z0 and so h(z) E c~tg. 

In many cases functions F ( z ) E  ,.9|~, can be constructed as sums of  

Poincar6 series such as 

(3.7) F (z ; z0) = 4-k- 1 - -  (czh-d)' (Tz--zo) 2 ' 

and 

(3.8) F*(z;zo)= ~ t - -  (czq_d),(Tz_zo)2(rz_Pzoy 
I Ea 

Here k is the period of  the elliptic fixed point z0. In (3.7) we suppose that 

eo ~ ~ ; in (3.8), oo E ~," is allowed and /9 is a transformation o f  G for 

which z0 is not a fixed point. I t  is easily checked that both F(z;zo)  and 

F*(z;zo) are automorphic functions of  dimension - - 4  for G and that they 

behave in the required way in the neighbourhood o f  points congruent to zo. 

By taking finite or infinite sums of  series of  the forms (3.7) and (3.8) it 

may be possible to construct a function F(z) belonging to ~]~.  Thus the 

problem of  determining the Schwarzian derivative is reduced to that o f  finding 

the holomorphic  function h(z). 

T h e o r e m  2. S u p p o s e  t h a t  t h e  e q u a t i o n  (1.1) i s  i n v a r i a n t  

f o r  a g r o u p  G f o r  w h i c h  z0 i s  a s i m p l e  p a r a b o l i c  f i x e d  

p o i n t .  T h e n  R(z) v a n i s h e s  a t  z0. 

P r o o f. W e  have already seen in w 2 that z0 lies over a simple isolated 

boundary point o f  ~R~ at w = 0, We then have, as shown at the beginning 

of  w 3, ,hat 
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' It w} = ~ (w)  w - ~  (3 .9 )  ~- , , 

where 4 ( w )  is holomorphic  at 0 and 4 ( 0 ) =  ~ .  

Put, in the notation of  (1.9), (2.1), (2.2) and (2.3), 

Rr (~) = (cz+d')' R(z). 

Then RT(~) is an automorphic form of  dimension - - 4  for the conjugate 

group T 6 T  - t  and has a parabolic fixed point at co in the upper half-plane. 

The statement that R (z) vanishes at z0 means that R r  (~') -->- 0 as Im ~" -~ + co, 

i.e. as w-->-O. N o w  we have, by (1.5) and (3.9), 

- - ' { t  :1 R ~ - ( O  = ~ - ( ~ + d ) '  I t ,  ~} 7 , 

' : }  

= (2 . , i ) '  { 4  ( ~ )  - '1, 
from which the desired result follows. 

4. P~pplications. 
In the applications of  Theorems 1 and 2 which we make we shall 

sometimes relax the restrictions made at the beginning o f  w 2 regarding the 

point z =: oo ; for it may be convenient to take G in a form such that co 

is a fixed point. W e  can still apply the Theorems provided that we ensure 

that the functions behave in the correct way at oo. For, i f  q~(z) is an 

automorpbic function for G o f  dimension --4,  then, in the notation of  (1.9), 

(4.1) q~r (z) = (cz+d)-' e# (Tz) 

is an automorphic form of  dimension - - 4  for the conjugate group Gr  = T-'GT. 

By choosing T suitably we can make  the restrictions on z-----eo hold for 

GT and then derive the information we require from Theorems 1 and 2 by 

making use of  (4.1). In particular, i f  oo is a branch-point o f  order p - -  1 

for ~ over ~R'~, we find from (3.1) and (3.2) that 

' 'C'{t C}--- U r  {t, ~} = T , 

where 4 (~') is holomorphic  at ~" = l/z == 0, and 

4 ( 0 ) =  ~ -  1 -  . 

W e  begin by considering equations of  the form 

(4 .2 )  - "  = g O ) ,  
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where m is an integer greater than unity and g(z) is an automorphic form of  

dimension - -k ,  and with multiplier system v, for a properly discontinuous of  

group G. Then 

(4.3) g (Tz) = v (T) (cz+d)k g (z), 

for all z ~ JR, and all T ~  G. The non-zero number  v (T) depends only on 

T and k ;  ~ is the domain on which g (z) is defined. Normal ly  we require 

k to be an integer divisible by m, but in certain cases this is inessential, 

for example if ~R, is simply connected and none o f  the points T - I  co = - -  d/c 

are interior points. The equation (4.2) is then invariant under the group G. 

I f  we take ~R', to be ~ , ,  the Riemann surface ~R/ is regular over ~ ,  
A 

and we can take ~ to be the universal covering surface o f  ~ / =  ~ .  How-  

ever, it is not necessary to do this. W e  now consider some particular cases. 

Let s (vl , v2 , v3 ; z) be the Riemann-Schwarz triangle-function which 

has elliptic fixed points o f  periods vt, v~ and v3 at the three vertices A1 , A2 

and A3 of  one of  the pairs o f  adjacent triangles which form a fundamental 

region for the associated group G (vl , v2 , v~) ; the values of  s (vt , v2 , v~ ; z) 

at these three vertices are 1, 0 and co, respectively. W e  take ~R, to be (i) 

the extended z-plane, (ii) the finite z-plane, and (iii) the circle I z l <  1, 

according as the  number  

_ L + I +  1 
Vl V2 V3 

exceeds, equals or is less than unity. Here v t ,  v2 and v3 are integers greater 

than unity. W e  also permit  them to take the value co, in which case the 

associated vertex Ai becomes a parabolic fixed point  o f  G (vt , v2,  v~). This 

can only arise in case (iii), when the group is horocyclic, o r  in case (ii), when 

vt , v2 and v3 are 2 , 2 , co, in some order, and the parabolic fixed point  is 

the  point at infinity. In  case (i) the groups are the dihedral, tetrahedral, 

octahedral and icosahedral groups, and equations invariant under these groups 

were considered in [10]. 

Now take g(z) in (4.2) to be an automorphic form for G ( v j ,  v2,  v3) 

o f  dimension - - k  with multiplier system v, wherer for simplicity, m divides 

k. W e  take ~ ,  to be the set (assumed not  empty)  of branch-points o f  the 

equation and suppose that no branch-points are ordinary points for G (v t ,  v2, v3) ; 

i.e. they are elliptic fixed points. I f  vi is finite we suppose that there is a 

branch-point at Ai of  order q i -  1, where qi ~ 1. Then qi divides m, and 
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qi = I implies that there is no branch-point at A i .  I f  vi is infinite we take 

q~ to be infinite. W e  also choose positive integers rl , r e ,  r3, possibly infinite, 

and write p~ = qr ( i - - -  1 , z ,  3). Then ~0 is taken to be the set of  points 

congruent to vertices A, for which Pl is finite, while ~B~ is the set of  points 

congruent to vertices A~ for which vi is finite but p,  is infinite. We  take 

as a branched simply-connected covering manifold of  ~ ' ,  with branch-points 

o f  order p ~ - - 1  over the points of ~ B ~  is regular over  ~R'/ and ~R',. W e  

note that the equation (4.2) may not be irreducible, but when this happens 

we confine our attention to one of  the associated irreducible equations. 

W e  confine our attention to forms g ( z )  and groups G (vt , v2 , v3) for 

which {~ is hyperbolic, as in the other two cases the uniformizing functions 

are usually rational, tr igonometric or elliptic functions. I f  ~ is not null, 

its points are simple isolated boundary points o f  ~ ' , .  This is obvious in the 

case (iii), just mentioned, by the condition given at the end of w 2. I t  is 

also true in the parabolic case (ii), where G can be taken to be the group 

generated by the transformations z " - - Z + l  and z ' ~ - - - z .  To show this, 

however, we cannot take ~q to be the extended z-plane, but may proceed 

as follows. 

The automorphic form g (z) can be written as g (z) = gt (z) g2 (z), where 
1 

gt (Z) is a rational function of  e 2fciz having zeros or poles at z ~--- 0 or z = - f ,  

and g2 (z) is holomorphic  and non-zero for all finite z. I f  we put w ~ e 2*ti/zn , 

where n is a positive integer, gt (z) ~ g3 (w), where g3 is a rational function. 

Hence, if v = u {g2 (z)} - t /m,  the equation (4.2) become the algebraic equation 

v., = g~ (w),  

and we can project ~ ' /  into the compact Riemann surface ~ o f  this equation. 

I f  n is sufficiently large, the genus o f  .~ will exceed unity, so that the points 

o f  ~ are simple isolated boundary points o f  ~R',. Thus ~*  = ~ ,  and 

W e  now apply Theorem 1 taking 

(4 .4 )  F (z)  = ( s T  [ 1 - p , - ~  1 - p~-~ + 1 - ~ - ~  } 
4s(s--1) L v -~s - - -~  v,2s ~ v 3  x ' 

with obvious conventions when any of  P i ,  vl (i = 1 , 2 , 3) are infinite ; here 

s : - - - s ( v t , v 2 , v s ; z ) .  I t  is easily checked that  F ( z )  E r so that, by the 

theorem R (z) = F {z) + h (z), where h(z)  E ~{~. Also, by the same arguments 

as used above, parabolic fixed points for G ( v , ,  v2,  v3), when such exist, 
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are simple parabolic fixed points, so that, by Theorem 2, R(z)  vanishes at 

such points. So does F (z) and hence h(z) is a holomophic automorphic 

form of  dimension - -4  which vanishes at parabolic fixed points of  G (vl ,  v2, v3). 

N o  such forms can exist ; for if h (z) does not vanish identiczlly it has zeros 

at Ai of  multiplicity at least 1 - -  vi ' '1 ( i =  1 , 2 , 3) [2, p. 112] and the total 

number of  zeros in a fundamental region is only 2 ~ v / - 1  . Hence 

'{t z }=F(z) ,  (4 .5)  R ( 0  = ~ , 

where F (z) is given by (4.4). Thus {t, z} is explicitly evaluated. 

Further, since 

1 - -  V 1 - 2  1 - -  V2 - z  1 - -  V 1 - 2  - -  V2 - 2  ~ V3 - 2  
(4.6) 2 {z, s} = - -  + - -  

( s - O "  s ~ s ( s -  1) ' 

we conclude from (1.5), (4.4), (4.5) and (4.6), that 

(4.7) 2 I t ,  s} = 2 {z, s} -q-- 2 I t ,  z} (s') -2  

where 

(4.8)  

( 1 ) 1 (  1)1 
= 1 p , ~ , ~  ( s - S t y  + 1 p22-v~ ~ s~ 

-t- 1 t 
- I p,~v, 2 p , 'vz  2 ~ s ( s - O  

= 2 It , J } ,  

j = s ( p , v , ,  p2v2, p3v3 ; O. 

By subjecting t to a suitable bilinear transformation we may therefore take 

(4.9) j (z)= s (v t ,  v2, v3 ; z) = s (p,v,  , p~v~, p3v3 ; t) = J  (t). 

I f  S E G (p,vt , p2v2, ib3va), i {z (S/)} = j {z (01, so that z (S 0 ---- Ts {z (t)} 

where TsEG(vi  , v 2 ,  v3). From this we easily deduce that F, is a normal 

subgroup o f  G (p,v, , ~b2vz , pzv3) and that 

(4.10) G (v , ,  v , ,  v~) .o G (p,v, p2v2 ~v3)/r ,  

This therefore d~ermines l ' , .  

Let H be the largest subgroup o f  G for which 

g (Tz) = e (z) for all T ~ n .  

Then H determines a subgroup l'* o f  G (pry1 , pzv2,  pay3) such that 

r*/r ,  :r H. 

' I  ~ need not be normal in G (00,vl, ibzv2, p3v3). Then g {z(t)l is an automor- 

"phic function for F* ,  and, when the equation (4.2) is irreducible, u=u(O 
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is an automorphic function for a normal subgroup I ~* of  F ' ,  where l-•/1 "* 

is isomorphic to the cyclic group C,, of order m. The equation is therefore 

uniformized by functions z ( 0  and u ( 0  belonging to the group 

(4.11) F l = F~ I'~ r , ,  

and I ' / ]F ,  ~o C,~ 

When g(z) is an automorphic function for G(vl, v2, v3), with mul- 

tiplier ~Tstem t, the group structure is simpler. For g(z) is then a rational 

function of  s (vj ,  v2, v3 ; t) and we have H = G (vl , v2, v3) and 

F* - -  G (/,lv~, p2v2, p3v~). 

Certain equations of the form 

(4. t 2) g* (u) = g (z) 
can be treated similarly. For example, take 

(4.13) g ' (u )  = s(~, , . ~ ,  ~ ; u) , g ( z ) = s ( v , ,  v~, v3 ;z), 

where we suppose that the numbers p~ and vi are so interrelated that the 

equation cannot be solved rationally or by elliptic functions. Let ~.1, ~,2, )-3 

be any three positive integers, possibly infinite, such that ~ is divisible by 

both pi and v~ (i = 1 , 2 , 3). We can then find R(z) and show similarly that 

we may take 

(4.14) g*(u)~-g(z)-=-s(k, , ~2, Jk3 ; t), 

so that F, and F. (the maximal group to which u(t)  belongs) are normal 

subgroups of G 0-1 , ~,* , ~3) and 

(4 . 15 )  G(Fq, ~ , ,  ~ )  ~' G(;~, ~.z ~.3)/r. G(v, ,v~,v3)mG0., ,~. , ,~.3)/r .  

We have FI---- F . /~  r, ,  and 

r , / r l  --~ G (1~, ,1~2, i~3). 
The associated surface ~ will be branched over ~R'I except when ~q is taken 

to be the least common multiple of  It/ and v~ (i = 1 , 2 , 3). 

These results extend and generalize some of  the results obtained in [tO]. 

The equations e ~ q- zP = 1 and e * -b e* ----- 1 considered by Dalzell [1], can be 

treated in the same way. Similar arguments may be used when triangle- 

functions are replaced by other automorphic functions g(z), such as polygon 

functions, although formulae for {z, g} analogous to (4.6) may only be known 

in special cases. 

In all the examples considered above, ~ could have been taken to be 

the unbranched universal covering surface of JR'/. We conclude by giving 
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an example where ~ must  be a branched covering surface o f  ~ ' / .  Suppose 

that the equation (1.1) is o f  the form (4.12) where g and g* are rational 

functions. At branch-points o f  ~ !  over ~ ,  we suppose that g (z) --- 1 , 0  or ~o ; 

similarly, at branch-points over the u-plane we suppose that g*(u) - - - - -1 ,0  

or ,o .  Then positive integers i , ,  Iz and 13 can be chosen so that the equations 

(4.14) determine u(0  and z(t) as single-valued automorphic functions for 

certain subgroups F, and r ,  o f  r = G (x,, z, ,  Let m be the number  of  

sheets o f  ~ i  over  the z-plane. The groups r ,  and F, will not, in general, 

be normal subgroups o f  F. However,  i f  r,~ is the subgroup of  F which 

leaves invariant each o f  the m solutions u o f  the equation, then F~ is normal 

in r and the factor group is isomorphic to the Galois group o f  the equation 

g* (u)-----s over the field of  its coefficients. A normal  subgroup r~ can be 

defined in a similar way. 

As an example take 

w 

0n+n-1) ! f v'- '  (i-v)'--' dr, (4.15) e'(u)=r (.,-1)!(,~-1)! 
0 

where m and n are positive integers. W h e n  g*" (u) ----- 0 , g* ( u ) =  1 or 0, 

so that the branch-points u yield g* (u) = 1 , 0 or  co. The function g (z) may 

be chosen similarly, or may be taken to be a triangle-function s (u Y2, va ; z), 

not necessarily rational. The branch-points need not necessarily be elliptic 

fixed points for some group G. 

For example, the equation ~b3, z (u) = r (z), i.e. 

4u 3 -  3 u ~ 3  z 2 -  2Z s ~ s ,  

can be uniformized by taking 

s--s(2,6,12 ;0.  
The uniformizing functions u ( 0  and z ( 0  belong to a subgroup o f  index 12 

in the group G ( 2 , 6 ,  12). The surface ~R is branched over ~R/ at two points 
1 3 

over z = - - T ,  at one point  over z = 0 and at two points over z = u The 

orders of  the branch-points are 1 (twice), 2, and 1,5,  respectively. 
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