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By 
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D e d i c a t e d  to Pro fessor  Shmue l  A g m o n  

1. Introduction 

Let us consider in a bounded domain ~ C ~"  with smooth boundary F the wave 

equation 

02y 
(1.1) Ot-- - ss -~y=O,  x C ~ 2 ,  0 < t < T  

with boundary  control  v. 

More precisely let Fo be a subset of  F, and let us define 

(1.2) Eo = F0 x (0, T), E~ = )2 \ E0, E -- F x (0, T). 

We shall assume that the control v is app l i ed  on E0, i.e. 

(1.3) Y = / 

1' o n  Z0, 

t 0 on r~. 

The problem o f " E x a c t  Control labi l i ty"  can be stated in a w a y  that w e  shal l  have  

to m a k e  precise ,  as follows: we are given T; we start from 

(1.4) y(O)=O, ( 0 ) = 0  inf2 

(where y(O) denotes the function x ~ y(x,  O) . . . .  ) and we are given two functions 

z ~ and z I , in f unc t ion  spaces  that w e  have  to m a k e  precise;  we want to drive the 

system from {0, O} to {z ~ z n }, i.e. we want to find v (in a f io l c t ion  space  that one  

has  to make  prec ise)  such that ify(x, t; v) denotes the solutions of  (1.1), ( 1.3), ( 1.4), 

then 

(1.5) y ( . , T ; v ) = z  ~ ( . , T ; v ) = z  n inf2. n 
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The choices of the function spaces where v belongs and where z ~ z 1 belong are 

clearly related. In order to fix ideas 1 we choose 

(1.6) v E L2(~0) 

(all functions are assumed to be real valued). 

If  there is one v (at least) to verify (1.1)...(1.6) for every couple {z ~ Z1), o n e  says 

that there is Exact Controllability (E.C). But of course this makes sense only if we 

make precise the space where {z~ Z 1 } be longs .  [] 

A first step is simple. Indeed it is known (J .L. Lions [13, 14]) that under (1.6) 

the unique solution of  (1.1), (1.3), (1.4) satisfies 

(1.7) 
y C C([0, T];L2(f2)), 

Oy 
0 t  E C([0, T];H-I(12)). 

In (1.7), C([0, T];X) denotes the space of continuous functions from [0, T] ---+ X, 

and 

H - I  (f2) = dual space of  Hg(f2), 

H~(f2) = Sobolev space = ~l~, Oxl' " ""Ox,  - -  C L2(f2),F = 0 on F} .  

Therefore it is natural to choose 

(1.8) z~ z I EH- l ( f2 ) .  

We remark that if  there is a solution, then there are infinitely many solutions, so 
that it is natural to look for "the best control" (if it exists). The final formulation 

of the problem is now: 

(1.9) 
given z ~ and z I satisfying (1.8), find inf ~ v2dE 

0 

among all v's such that( 1.1 )...( 1.6) hold true. 

This problem always make sense if we further agree that the inf = + , . ,  is there 

is no v, i.e. if there is not E.C. [] 

The E.C. problem depends off E0. 

Because of  the finite speed of propagation of  singularities, it is obvious that the 

E.C. can take place only i fT  is large enough, a 

1 cf. J. L. Lions [13] for other choices. 
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One can construct exactly the space where {z ~ z ~ } should belong in order to 

have a finite minimum in (1.9). 

This has been introduced in J. L. Lions [ 13, 15], using the HUM method (Hilbert 

Uniqueness Method). The construction is as follows (and we refer to the quoted 

papers to see why this is so): we consider the wave equation 

( l . lO) 

02<p 
Ot 2 A ~ = 0  i n Q •  T), 

~ = 0  o n E ,  

~(0)=~~ ~t(O )=~l in~2 

and we define 

( l . l l )  

By virtue of  Holmgren's  uniqueness theorem (cf. L. H6rmander [ 1 1 ]), I I { ~0, ~ }llr 
is a norm on, say, 29(~) • D(f2) ('D(f2) = C ~ functions in ~2 with compact  support) 

provided T is large enough. We define next F as the Hilbert space obtained by 

completion of  :D(~2) x D(~2) for (1.1 1). Then one proves that there is E.C. iff 

(1.12) {z 1 , z ~ E F '  = dual space ofF.  

The next step is then to make F precise. 

If Fo is "large enough" and if T is large enough depending on Fo, then 

(1.13) F -- HI(Q) • L2(~2), 

and in this case (1.12) amounts to (1.8): one has E.C. in the. "natural" function 

spaces. 

After a solution was found for many particular cases (Lop Fat Ho, V. Komornik,  

E. Zuazua; cf. Bibliography of  J. L. Lions [13]), the necessary and sufficient 

condition on Zofor  (1.13) to hold true has been given by C. Bardos, G. Lebeau and 

J. Rauch [1] using microlocal analysis. In short, every light ray should meet F0 in 

a time < T, a condition that Bardos, Lebeau and Rauch call geometrical control. [] 

Let us now consider a situation where one does not have geometrical control. 

Let f2 be the shaded region on Fig. 1, i.e. a square minus two small squares. 

Let us assume that F0 is the outside boundary. Then there is not E.C. if z ~ and 

z I satisfy (1.8). Indeed a ray can go back and forth for ever between the two small 
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[-o 

Fo ~ Po 

P o 

Fig. 1. 

squares without ever crossing I'0. In such a situation the space F defined as above 

(since (1.11) is a norm if T is large enough) is larger than Hi(f2) x L2(f~) (and 

it may contain elements which are not distributions in f2), so that the dual F '  is 

smaller ("much smaller",..) than H-l(~2) x L2(f~). This remark is general. Let Po 

be given arbitrarily "small"  in F, and let T be given such that 

(1.14) T > 2d(f~, Po), d(f2, Po) = sup distance {x, Po), with curves inside f~. 
xEI2 

Then ( 1.1 1 ) defines (by completion of  79 (f~) x 79 (f2) ) a "very large" Hilbert space 
F .  2 

One has E.C. in the sense." problem (1.9) admits a unique solution iff 

(1.15) {zJ,z ~ E F' .  [] 

Let us consider now a perforated domain (Fig. 2), i.e. a situation analogous to 

the one in Fig. 1 but with a large number of holes (a situation which arises in many 

applied problems) and let us assume (as in the situation of Fig. 1) that we can act 

only on the external boundary (a very natural assumption). 

[] [] 

[] 

[] 

F 0 

V q [ ]  n 

Fig. 2. 

2 The characterization of F is in general an open question. Particular cases have been solved by 
A. Haraux [10]. 
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Then of  course there are an even "larger" number of  rays which are trapped 

without ever reaching F0. 

It means that F is getting "larger and larger", and that the precise construction 

will become more a.nd more complicated. On the other hand, from a practical 

viewpoint, we apply the control only on F0, the external boundary. 

In order to avoid (at least for some time in the arguments) the difficulty of  

the complicated nature of  the space F,  we propose now a "slight" change in the 
formulation of the problem. This will be the goal of  Section 2 below, the solution 

of  this modified problem being presented in Sections 3 and 4. [] 

Before proceeding further, a few Remarks are in order. 

R e m a r k  1.1 The first systematic report on E.C. for distributed systems has 

been given by D. L. Russell [23]. Among many other things, the connections 

between E.C. and stabilization were shown in this paper. (For the question of  

stabilization, not addressed here, we refer also to J. Lagnese [12], J. L. Lions [15] 

and E. Zuazua [25].) 

The question of  "how well" one can stabilize by acting only on a "t iny" part F0 

of  F seems to be an interesting open problem. 

R e m a r k  1.2 What  has been said above is not restricted to second-order 

hyperbolic operators. For many other situations of  reversible operators (and also 

with other boundary conditions) we refer to J. L. Lions [13, 16]. All we are going 

to say extends to these situations, but it is not presented here. [] 

R e m a r k  1.3 The situation is quite different for irreversible systems, such as 

the heat equation. But what we are going to say applies to parabolic systems, cf. J. 

L. Lions [17]. [] 

R e m a r k  1.4 The questions of  E.C. (or of  Approximate Controllability as 

presented in Section 2 below) lead to many very interesting problems in the case 

of perforated domains. How is it, in particular, possible to pass to the limit when 

the number of  holes increases? For interesting results, we refer to D. Cioranescu, 

P. Donato and E. Zuazua [4]. [] 

R e m a r k  1.5 One can deduce from HUM an optimality system which leads to 

numerical algorithms. We refer to R. Glowinski,  C. H. Li and J. L. Lions [9], R. 

G. Glowinski,  W. Kinton and M. Wheeler  [7] and R. Glowinski and C. H. Li [8]. [] 
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2. Approximate Controllability 

Let I'o be an arbitrary open subset of  I" and let y(x, t; v) = y(v) be defined by 

(1.1), (1.3), (1.4). It follows from Holmgren's theorem that if 

(2.1) T > To = 2d([L 1"0) (cf.(1.14)) 

then 

(2.2) 

0y } 
y(T: v ) . /~- (T:  v) spans a dense  subset of  

L?(~) x H-l(f~) .  when v spans L2(2o) .  

This is the approximate  controllabili ty.  

Suppose then we are given 

(2.3) {z~  1 } G L2(Q)X H-I((~) 

and let us introduce: 

(2.4) B0 (resp. Bi) = unit ball of  LZ(f~) (resp. H-l([2)) .  

Then, for every ao. a I given > 0, it follows from (2.2) that there exists v E L2(~o) 

such that 

0y z l (2.5) y(T: v) C z ~ + aoBo, ~--~(T; v) C + aiB1.  

Actually there exist infinitely many v's satisfying (2.5). 

It becomes now natural to replace problem (1.9) by 

given z ~ z I , ~0 > 0. at > 0 and given T satisfying (2.1), 

(2.6) find i n f l  /,: v2d~ 
�9 0 

among all v's such that (2.5) holds true. [] 

R e m a r k  2.1 Problem (2.6) is identical to (1.9) if~r0 = al = 0. 

We know that in that case it admits a unique solution for every couple {z ~ z I } 

satisfying (2.3) if I'0 and T are large enough, and for couples such that {z I , z ~ E F'  

otherwise. When at), ~1 > 0, problem (2.6) admi ts  a unique solut ion f o r  every 

couple  sat is fying (2.3) (assuming (2.1)). 
In what follows we are going to characterize (by an optimality system) this 

unique solution. 
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3. Dual i ty  M e t h o d  

We introduce the operator 

(3.1) L : v E L2(Eo) -~ {y(T; v), ~-tt (T; v)} E L2(f2) • H-'(f2 ) 

which is linear and continuous from L2(Eo) ---+ Lz(Q) • H- I (Q) .  

We shall need its adjoint: 

(3.2) L* : L2(~2) • H I ( ~ )  ~ L2(Eo). 

The operator L* is defined as follows. Let {a ~ a I } be given in L2(f2) • Hol (f2). 

We define ~ as the solution of  

02~ 
Ot 2 A~ = 0 

(3.3) ~(T) = - a  I , 

~ = 0  o n E .  

Then 

(3.4) 

in f2 • (0, T), 

~ ( T )  = f2, a 0 in 

L* {a~ al } = -0~1~o 

We remark that if {a ~ a 1 } E L2(~) • n 1 (~) then it is known that 0 ~ / 0 u  E L2(E) 

(cf. J. L. Lions [ 14]), so that (3.4) defines an operator which is linear and continuous 
from L2(f2) • Hg(f2) --* L2(E0). If  now we multiply (3.3) by y(v) and if we apply 

Green's formula (which is valid by definition of  weak solutions, cf. J.L. Lions and 

E. Magenes [19]), we obtain: 

O~y(v)dE = 0 ( ~tt (T),y(T;v)) - (~(T), ~t (T;v)) - f~o-ff~ 

i.e. 

(3.5) /z O~vdE = (Lv, {a~ 
0 - 0 ~  ~ ' 

hence (3.4) follows. 

We introduce now two functionals: 

(3.6) F(v) = ~ v2dE onL2(Eo),  
o 
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(3.7) G({f~ = { O, 
+oo 

if 

otherwise. 

3 m E z ~ + aoBo, 

f l  E z I +,*lBi, 

Using these notations, problem (2.6) can be reformulated as: 

(3.8) infF(v)  + G(Lv), v C L2(~0). 

We now apply duality theory in the sense of  Fenchel. Using a general result of  

R. T. Rockafellar [22] (cf. also I. Ekeland and R. Temam [6]), we have 

(3.9) 
inf F(v) + G(Lv) = - i n f  F* (L* {a ~ a I}) + G* ( - { a  ~ a I}), 

{a~ I } E L2(~2) x H~(f~) 

where 

(3.10) F'(v)  = sup < v,v > - F ( i  0 

and an analogous definition for G*. One has 

F*(v) = F(v) (3.11) 

and 

i.e. 

G*({a ~ a I }) = sup[(a~ ~ + (a I , f ' )  - G ( f ~  1 )] 

= sup (a ~ z ~ + aoBo) + (a 1 , z 1 + ~lBi ), 
BoxBi 

(3.12) G*({a~ = (a~ z~ + aollaotlL2~ + (al,  zl) + ~l JlalltNo'r 

We can now write down explicitly the dual problem of the right-hand side of  
(3.9). We (hopefully) simplify notations by setting p0 = _ a  I ' pl = a 0. We define 

p as the solution of  

(3.13) 

02p 
012 Ap = 0 in f2 x (0, T), 

p ( T ) = p ~  ~_~Pt(T)=pl, p = 0 o n E ,  

p0 ~ Hi(n), fl ~ L2(n). 
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Then (3.9) becomes 

(3.14) infF(v)  + G(Lv)  = - i n f  j (p0 ,  pl) 

where 

(3.15) j ( p O  p l ) =  -2 ,, d +(pO, z )_(p ,zO)+a llpOll.,+aollP lb(a . 

R e m a r k  3.1 It is not obvious a pr ior i  that the problem 

(3.16) i n f j ( p 0 , p l ) ,  p0 E H(l(f~), p~ C L2(f~) 

admits a unique solution. It is true because of  the Rockafellar duality theorem and 

the use of  Holmgren's uniqueness theorem, i.e. by l evers ing  the argument, we 

transform (3.16) back into (3.8). a 

R e m a r k  3.2 If ~0 is "large enough" then 

L (0 )2 02 (3.17) ,, ~uu dE ___ c[llp +llplllL~tm] 

(cf. J. L. Lions [13] and the Bibliography therein). In this case the fact that (3.16) 

admits a unique solution is obvious a n d  remains  true even i f  ao = at  = O. [] 

R e m a r k  3.3 If {p0 p l } is the unique solution of  (3.16), then the optimal control 

v is given by 

(3.18) v = Op 01--S on E0, 

where p is given by (3.13). 

R e m a r k  3.4 The dual formulation has been used in numerical computations 

(cf. Glowinski, Li and Lions [9]) for a0 = al  = 0 and E0 "large enough". [] 

R e m a r k  3.5 If  

(3.19) a0 ___ IIz~ a t  >__ Ilztlln,~m 

then the optimal solutions are p0 = 0, pl = 0 and v = 0. [] 

R e m a r k  3.6 Let us denote by vo = v~o,~ , the optimal control given by formula 

(3.18). 
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If (3.17) holds true then one can show that 

v~ ~ v in L2(Eo) 

when ~r ~ 0, where v denotes the solution of  (1.9) under conditions (1.5). 

If (3.17) does not hold true, then the behaviour of  

inf(F(v) + G(Lv)) = F(v~) + G(Lv~) = i~(a) 

as a function of  a when a ~ 0, depends on the properties of z ~ and z 1 . 
If  {z I , z ~ E F ~ (with the notations introduced in Section 2) then one has again 

the same convergence result as above. 

If  {z I , z ~ ~ F '  then/~(~) ~ + ~  as a --+ 0. The behaviour of  #(~) near a = 0 

could be an indication of  "how far" {z 1 , z ~ stands from F ~, but this is at this stage 

purely formal. [] 

4. O p t i m a l i t y  S y s t e m  

The function ,7 is not differentiable. Therefore the solution of  (3.16) is charac- 

terized by a variational inequality instead of  an Euler equation: 

f OpO(p-p)  dE - fil pl o0" 0 .  + p o ) _ ( z  o, _ ) 

(4.1) 
+ ~, [[]t~~ -Ilp~ + ~0([rf  IIL2(~) - lip 111L2r _> 0 

v{p~ p ) • 

In (4.1) p denotes the solution of  (3.13) where pi is replaced by pi, i = 0, 1. [] 

We can now transform (4.1) in a more "classical looking" Variational Inequality. 

Let p be defined by (3.13), and let y be defined by 

02y 
Ot 2 Ay = 0 in ~ x (0, T), 

Oy 0 in fL (4.2) y(0) = 0, -~-(0) = 

y=Op/Ou onEo,  

0 on E~. 

We define A : H~(f~) x L2(~) ~ H- l ( f2 )  x L2(f~) by 

(4.3) A{p~ = ( - ~tt(T),y(T)}.  
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Multiplying (4.2) by/5 - p and integrating by parts, one obtains 

(4.4) /~  Op 0(/5 - P)dE = (A{p ~ pl}, {pO, pl)  _ {pO, pl }). 
o Ou Ou 

Observe that (4.4) implies that A is _> 0, and that 

A* = A .  

We now use (4.4) in (4.1). We introduce 

(4.5) j ( p0  fl) =  lllP~ +  0[[fl IIL2( ) 

We obtain 

< A{pO, pl} ,  {/50,/51} _ {pO, pl}  > +j(fio, pl)  _ j(pO pl)  
(4.6) 

> <  { _ z l  z0} ,{p0 , /51}_  {p0 ,p l}  > . 

The optimality system is now as follows: one solves (3.13), one solves (4.2) 

next and one defines A as in (4.3); the variational inequality (4.6) admits a unique 
solution {p0, pl }. Then the optimal solution v is given by Op/ Ou on E0. 

R e m a r k  4.1 The variational inequality (4.6) has a standard form (cf. H. Brezis 
[2], E Browder [3], G. Stampacchia [24], J. L. Lions and G. Stampacchia [20]) 

but the fact that it admits a unique solution is not obvious a priori, for the same 
reasons as in Remark 3.1. 

R e m a r k  4.2 Ifc~o = al  = 0, (4.6) reduces to an equation (the non-differentiability 

disappears): 

(4.7) A{pO, pl} = {_z l, zO}. 

This is H U M  (J. L. Lions, loc. cit.). Equation (4.7) admits a unique solution in 
F for { - z l , z  ~ E F ' ,  and F is Hg(f2) • L2(f2) iff E0 is "large enough", as we have 

said before. [] 

R e m a r k  4.3  What has been made here is constructive. Numerical compu- 
tations are therefore possible along these lines. They have not yet been made. 
13 

R e m a r k  4.4  As is usual in these matters, one can derive the optimality system 
directly, by a penalty method. One starts with 

1 f 1 02y - A 2 
(4.8) inf  v2dZ+  [Ib-7 YIIL2( • 

0 
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where 
v on E0 ~-~Yt ( 

y = y(O) = O) = 0 
V'*  0 on -~o, 

and 

y(T) C z ~ + aoBo, (T) E 21 q- oqB1. 

One writes the Euler equation for (4.8) and one next lets e ~ 0. 

5. Final  Remarks  

We conclude by raising a certain number of  questions related to the above Re- 

marks. 

R e m a r k  5.1 The question of  Exact Controllability for non-linear distributed 

systems leads to a large number  of  open questions. Interesting results have been 

obtained by E. Zuazua [27]. It would be interesting to see how the above consid- 

erations extend to non-linear wave equations. [] 

R e m a r k  5.2 It would be of  some interest to look for similar problems for the 

equation 

(5.1) 
02y Oy 

c - ~ -  + -~  - Ay = 0 

and to see what happens when c ---+ 0 (and a l ---' 0). [] 

R e m a r k  5.3 Let us consider a perforated domain as in Fig. 2. More precisely 

let f2~ be a domain f2 minus the set of  holes O~ arranged in a periodic manner  and 

with period c in all directions. We assume that these holes never meet 0f2 = F0 and 

we denote by S, the union of  the boundaries of  all the holes inside f2. We consider 

then the state y = y,(x, t; v) given by 

OZy 
Ot 2 A y = 0  inf2~ x ( 0 ,  T), 

y = v  o n F 0 x ( 0 ,  T), 

(5.2) Oy=o onS~ x ( 0 ,  T), 
Ou 

y(x,O)= ~(x,O)=O inf2~. 

We consider again the same problem as above, namely 

,s (5.3) inf ~ vZdE 
o 
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for all v's subject to 

(5.4) y (T ;  v) E z ~ + o'0B0, ~-Yt (T; v) E z 1 + ctlBl 

[where B0 and B1 depend in fact on c, since they are here the unit balls in L2(f2,) 

and in H-l(f2~ ) and of  course realizing that in the present situation, because of  the 

Neumann  condition on S~, H-I(f2~) is not necessarily the mos t  appropriate space 

here]. 

Let v, be the solution of  (5.3). Do we have convergence of  v, towards v, where 

v would solve the fol lowing problem; let .A be the h o m o g e n i z e d  operator  in f2 (cf. 

D. Cioranescu and J. Saint Jean Paulin [5], J. L. Lions [18], O. A. Oleinik, A. S. 

Shamaev and G. A. Yosifian [21] and the Bibl iography therein). Let y be given by 

02y 
Ot 2 + . d y = 0  i n f 2 •  T), 

(5.5) y = v  o n F 0 x ( 0 ,  T), 

y(x,  O) = ~ t  (x, O) = 0 in f~. 

Then is v (if it exists as the limit of  v~) the solution of  (5.3), where v is subject 

to (5.4) with y now the solution of  (5.5), and where B0 (resp. B1 ) is now the 

unit ball of  L2(f~) (resp. H - I  (f~))? Quest ions of  this t y p e - - b u t  technically very 

d i f fe ren t - -a re  solved in D. Cioranescu, R Donato and E. Zuazua [4]. 
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