REMARKS ON APPROXIMATE CONTROLLABILITY

By

J. L. LIONS

Dedicated to Professor Shmuel Agmon

1. Introduction

Let us consider in a bounded domain $\Omega \subset \mathbb{R}^n$ with smooth boundary Γ the wave equation

(1.1)
$$\frac{\partial^2 y}{\partial t^2} - \Delta y = 0, \quad x \in \Omega, \quad 0 < t < T$$

with boundary control v.

More precisely let Γ_0 be a subset of Γ , and let us define

(1.2)
$$\Sigma_0 = \Gamma_0 \times (0,T), \quad \Sigma_0^* = \Sigma \setminus \Sigma_0, \quad \Sigma = \Gamma \times (0,T).$$

We shall assume that the control v is applied on Σ_0 , i.e.

(1.3)
$$y = \begin{cases} v & \text{on } \Sigma_0, \\ 0 & \text{on } \Sigma_0^*. \end{cases}$$

The problem of "*Exact Controllability*" can be stated *in a way that we shall have to make precise*, as follows: we are given *T*; we start from

(1.4)
$$y(0) = 0, \quad \frac{\partial y}{\partial t}(0) = 0 \quad \text{in } \Omega$$

(where y(0) denotes the function $x \to y(x, 0), ...$) and we are given two functions z^0 and z^1 , *in function spaces that we have to make precise*; we want to drive the system from $\{0,0\}$ to $\{z^0, z^1\}$, i.e. we want to find v (*in a function space that one has to make precise*) such that if y(x, t; v) denotes the solutions of (1.1), (1.3), (1.4), then

(1.5)
$$y(\cdot,T;v) = z^0, \quad \frac{\partial y}{\partial t}(\cdot,T;v) = z^1 \text{ in } \Omega.$$

JOURNAL D'ANALYSE MATHÉMATIQUE, Vol. 59 (1992)

The choices of the function spaces where v belongs and where z^0, z^1 belong are clearly related. In order to fix ideas¹ we choose

$$(1.6) v \in L^2(\Sigma_0)$$

(all functions are assumed to be real valued).

If there is one v (at least) to verify (1.1)...(1.6) for every couple $\{z^0, z^1\}$, one says that there is Exact Controllability (E.C). But of course this makes sense only if we make precise the space where $\{z^0, z^1\}$ belongs.

A first step is simple. Indeed it is known (J .L. Lions [13, 14]) that under (1.6) the unique solution of (1.1), (1.3), (1.4) satisfies

(1.7)
$$y \in C([0,T];L^{2}(\Omega)),$$
$$\frac{\partial y}{\partial t} \in C([0,T];H^{-1}(\Omega))$$

In (1.7), C([0,T];X) denotes the space of continuous functions from $[0,T] \rightarrow X$, and

$$H^{-1}(\Omega) = \text{dual space of } H^{1}_{0}(\Omega),$$

$$H^{1}_{0}(\Omega) = \text{Sobolev space} = \left\{ \varphi | \varphi, \frac{\partial \varphi}{\partial x_{1}}, \cdots, \frac{\partial \varphi}{\partial x_{n}} \in L^{2}(\Omega), \varphi = 0 \text{ on } \Gamma \right\}.$$

Therefore it is natural to choose

(1.8)
$$z^0 \in L^2(\Omega), \quad z^1 \in H^{-1}(\Omega).$$

We remark that *if* there is a solution, *then* there are *infinitely many* solutions, so that it is natural to look for "*the best control*" (*if it exists*). The final formulation of the problem is now:

(1.9) given
$$z^0$$
 and z^1 satisfying (1.8), find $\inf \frac{1}{2} \int_{\Sigma_0} v^2 d\Sigma$

among all v's such that (1.1)...(1.6) hold true.

This problem always make sense if we further agree that the inf = $+\infty$ is there is no v, i.e. if there is not E.C.

The E.C. problem depends on Σ_0 *.*

Because of the finite speed of propagation of singularities, it is obvious that the E.C. can take place *only if* T *is large enough*.

¹ cf. J. L. Lions [13] for other choices.

One can construct *exactly* the space where $\{z^0, z^1\}$ should belong in order to have *a finite minimum* in (1.9).

This has been introduced in J. L. Lions [13, 15], using the HUM method (Hilbert Uniqueness Method). The construction is as follows (and we refer to the quoted papers to see *why* this is so): we consider the wave equation

(1.10)

$$\frac{\partial^2 \varphi}{\partial t^2} - \Delta \varphi = 0 \quad \text{in } \Omega \times (0, T),$$

$$\varphi = 0 \quad \text{on } \Sigma,$$

$$\varphi(0) = \varphi^0, \quad \frac{\partial \varphi}{\partial t}(0) = \varphi^1 \quad \text{in } \Omega$$

and we define

(1.11)
$$\|\{\varphi^0,\varphi^1\}\|_F = \left(\int_{\Sigma_0} \left(\frac{\partial\varphi}{\partial\nu}\right)^2 d\Sigma\right)^{1/2}.$$

By virtue of Holmgren's uniqueness theorem (cf. L. Hörmander [11]), $\|\{\varphi^0, \varphi^1\}\|_F$ is a norm on, say, $\mathcal{D}(\Omega) \times \mathcal{D}(\Omega)$ ($\mathcal{D}(\Omega) = C^{\infty}$ functions in Ω with compact support) provided *T* is large enough. We define next *F* as the Hilbert space obtained by completion of $\mathcal{D}(\Omega) \times \mathcal{D}(\Omega)$ for (1.11). Then one proves that *there is* E.C. *iff*

(1.12)
$$\{z^1, z^0\} \in F' = \text{dual space of} F$$

The next step is then to make F precise.

If Γ_0 is "large enough" and if T is large enough depending on Γ_0 , then

(1.13)
$$F = H_0^1(\Omega) \times L^2(\Omega),$$

and in this case (1.12) amounts to (1.8): one has E.C. in the "natural" function spaces.

After a solution was found for many particular cases (Lop Fat Ho, V. Komornik, E. Zuazua; cf. Bibliography of J. L. Lions [13]), *the necessary and sufficient condition on* Σ_0 *for* (1.13) *to hold true* has been given by C. Bardos, G. Lebeau and J. Rauch [1] using microlocal analysis. In short, every light ray should meet Γ_0 in a time $\leq T$, a condition that Bardos, Lebeau and Rauch call *geometrical control*.

Let us now consider a situation where one does not have geometrical control.

Let Ω be the shaded region on Fig. 1, i.e. a square minus two small squares.

Let us assume that Γ_0 is the *outside* boundary. Then there is *not* E.C. if z^0 and z^1 satisfy (1.8). Indeed a ray can go back and forth for ever between the two small

D

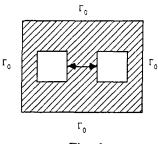


Fig. 1.

squares without ever crossing Γ_0 . In such a situation the space F defined as above (since (1.11) is a norm if T is large enough) is *larger* than $H_0^1(\Omega) \times L^2(\Omega)$ (and it may contain elements which are *not* distributions in Ω), so that the dual F' is *smaller* ("much smaller"...) than $H^{-1}(\Omega) \times L^2(\Omega)$. This remark is general. Let Γ_0 be given arbitrarily "small" in Γ , and let T be given such that

(1.14) $T > 2d(\Omega, \Gamma_0), \quad d(\Omega, \Gamma_0) = \sup_{x \in \Omega} \text{ distance } \{x, \Gamma_0\}, \text{ with curves inside } \Omega.$

Then (1.11) defines (by completion of $\mathcal{D}(\Omega) \times \mathcal{D}(\Omega)$) a "very large" Hilbert space F.²

One has E.C. in the sense: problem (1.9) admits a unique solution iff

$$(1.15) {z1, z0} \in F'. \Box$$

Let us consider now a *perforated domain* (Fig. 2), i.e. a situation analogous to the one in Fig. 1 but *with a large number* of holes (a situation which arises in many applied problems) and let us assume (as in the situation of Fig. 1) that we can act *only* on the *external boundary* (a very natural assumption).

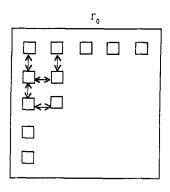


Fig. 2.

² The characterization of F is in general an open question. Particular cases have been solved by A. Haraux [10].

Then of course there are an even "larger" number of rays which are trapped without ever reaching Γ_0 .

It means that *F* is getting "larger and larger", and that the precise construction will become more and more complicated. On the other hand, from a practical viewpoint, we apply the control only on Γ_0 , the external boundary.

In order to avoid (at least for some time in the arguments) the difficulty of the complicated nature of the space F, we propose now a "slight" change in the formulation of the problem. This will be the goal of Section 2 below, the solution of this modified problem being presented in Sections 3 and 4.

Before proceeding further, a few Remarks are in order.

Remark 1.1 The first systematic report on E.C. for distributed systems has been given by D. L. Russell [23]. Among many other things, the connections between E.C. and stabilization were shown in this paper. (For the question of stabilization, not addressed here, we refer also to J. Lagnese [12], J. L. Lions [15] and E. Zuazua [25].)

The question of "how well" one can *stabilize* by acting *only* on a "tiny" part Γ_0 of Γ seems to be an interesting *open problem*.

Remark 1.2 What has been said above is *not* restricted to second-order hyperbolic operators. For many other situations of *reversible* operators (and also with *other boundary conditions*) we refer to J. L. Lions [13, 16]. All we are going to say extends to these situations, but it is not presented here.

Remark 1.3 The situation is quite different for *irreversible systems*, such as the heat equation. But what we are going to say applies to parabolic systems. cf. J. L. Lions [17].

Remark 1.4 The questions of E.C. (or of Approximate Controllability as presented in Section 2 below) lead to many very interesting problems in the case of *perforated domains*. How is it, in particular, possible to pass to the limit when the number of holes increases? For interesting results, we refer to D. Cioranescu, P. Donato and E. Zuazua [4].

Remark 1.5 One can deduce from HUM an *optimality system* which leads to *numerical algorithms*. We refer to R. Glowinski, C. H. Li and J. L. Lions [9], R. G. Glowinski, W. Kinton and M. Wheeler [7] and R. Glowinski and C. H. Li [8].

2. Approximate Controllability

Let Γ_0 be an *arbitrary* open subset of Γ and let y(x, t; v) = y(v) be defined by (1.1), (1.3), (1.4). It follows from Holmgren's theorem that if

(2.1)
$$T > T_0 = 2d(\Omega, \Gamma_0)$$
 (cf.(1.14))

then

(2.2)
$$\begin{cases} y(T;v), \frac{\partial y}{\partial t}(T;v) \end{cases} \text{ spans a dense subset of} \\ L^2(\Omega) \times H^{-1}(\Omega), \text{ when } v \text{ spans } L^2(\Sigma_0). \end{cases}$$

This is the *approximate controllability*. Suppose then we are given

$$\{z^0, z^1\} \in L^2(\Omega) \times H^{-1}(\Omega)$$

and let us introduce:

(2.4)
$$B_0 \text{ (resp. } B_1\text{)} = \text{unit ball of } L^2(\Omega) \text{ (resp. } H^{-1}(\Omega)\text{)}.$$

Then, for every α_0, α_1 given > 0, it follows from (2.2) that there exists $v \in L^2(\Sigma_0)$ such that

(2.5)
$$y(T;v) \in z^0 + \alpha_0 B_0, \quad \frac{\partial y}{\partial t}(T;v) \in z^1 + \alpha_1 B_1.$$

Actually there exist infinitely many v's satisfying (2.5). It becomes now natural to replace problem (1.9) by

given $z^0, z^1, \alpha_0 > 0, \alpha_1 > 0$ and given T satisfying (2.1), find $\inf \frac{1}{2} \int_{\Sigma_0} v^2 d\Sigma$ among all v's such that (2.5) holds true.

Remark 2.1 Problem (2.6) is identical to (1.9) if $\alpha_0 = \alpha_1 = 0$.

We know that in that case it admits a unique solution for every couple $\{z^0, z^1\}$ satisfying (2.3) if Γ_0 and T are large enough, and for couples such that $\{z^1, z^0\} \in F'$ otherwise. When $\alpha_0, \alpha_1 > 0$, problem (2.6) admits a unique solution for every couple satisfying (2.3) (assuming (2.1)).

In what follows we are going to characterize (by an optimality system) this unique solution.

108

(2.6)

3. Duality Method

We introduce the operator

(3.1)
$$L: v \in L^{2}(\Sigma_{0}) \to \left\{ y(T; v), \frac{\partial y}{\partial t}(T; v) \right\} \in L^{2}(\Omega) \times H^{-1}(\Omega)$$

which is linear and continuous from $L^2(\Sigma_0) \to L^2(\Omega) \times H^{-1}(\Omega)$.

We shall need its adjoint:

(3.2)
$$L^*: L^2(\Omega) \times H^1_0(\Omega) \to L^2(\Sigma_0)$$

The operator L^* is defined as follows. Let $\{a^0, a^1\}$ be given in $L^2(\Omega) \times H_0^1(\Omega)$. We define φ as the solution of

(3.3)

$$\frac{\partial^2 \varphi}{\partial t^2} - \Delta \varphi = 0 \quad \text{in } \Omega \times (0, T),$$

$$\varphi(T) = -a^1, \quad \frac{\partial \varphi}{\partial t}(T) = a^0 \quad \text{in } \Omega,$$

$$\varphi = 0 \quad \text{on } \Sigma.$$

Then

(3.4)
$$L^*\{a^0, a^1\} = \frac{\partial \varphi}{\partial \nu}\Big|_{\Sigma_0}.$$

We remark that if $\{a^0, a^1\} \in L^2(\Omega) \times H_0^1(\Omega)$ then it is known that $\partial \varphi / \partial \nu \in L^2(\Sigma)$ (cf. J. L. Lions [14]), so that (3.4) defines an operator which is linear and continuous from $L^2(\Omega) \times H_0^1(\Omega) \to L^2(\Sigma_0)$. If now we multiply (3.3) by $y(\nu)$ and if we apply Green's formula (which is valid by definition of weak solutions, cf. J.L. Lions and E. Magenes [19]), we obtain:

$$\left(\frac{\partial\varphi}{\partial t}(T), y(T; v)\right) - \left(\varphi(T), \frac{\partial y}{\partial t}(T; v)\right) - \int_{\Sigma_0} \frac{\partial\varphi}{\partial\nu} y(v) d\Sigma = 0$$

i.e.

(3.5)
$$\int_{\Sigma_0} \frac{\partial \varphi}{\partial \nu} v d\Sigma = \langle Lv, \{a^0, a^1\} \rangle$$

hence (3.4) follows.

We introduce now two functionals:

(3.6)
$$F(v) = \frac{1}{2} \int_{\Sigma_0} v^2 d\Sigma \quad \text{on } L^2(\Sigma_0),$$

109

J. L. LIONS

(3.7)
$$G(\{f^0, f^1\}) = \begin{cases} 0, & \text{if} & f^0 \in z^0 + \alpha_0 B_0, \\ & & f^1 \in z^1 + \alpha_1 B_1, \\ +\infty & \text{otherwise.} \end{cases}$$

Using these notations, problem (2.6) can be reformulated as:

(3.8)
$$\inf_{v} F(v) + G(Lv), \quad v \in L^{2}(\Sigma_{0}).$$

We now apply duality theory in the sense of Fenchel. Using a general result of R. T. Rockafellar [22] (cf. also I. Ekeland and R. Temam [6]), we have

(3.9)
$$\inf F(v) + G(Lv) = -\inf F^*(L^*\{a^0, a^1\}) + G^*(-\{a^0, a^1\}), \\ \{a^0, a^1\} \in L^2(\Omega) \times H^1_0(\Omega)$$

where

(3.10)
$$F^*(v) = \sup \langle v, v \rangle - F(v)$$

and an analogous definition for G^* . One has

(3.11)
$$F^*(v) = F(v)$$

and

$$G^*(\{a^0, a^1\}) = \sup[(a^0, f^0) + (a^1, f^1) - G(f^0, f^1)]$$

=
$$\sup_{B_0 \times B_1} (a^0, z^0 + \alpha_0 B_0) + (a^1, z^1 + \alpha_1 B_1),$$

i.e.

(3.12)
$$G^*(\{a^0, a^1\}) = (a^0, z^0) + \alpha_0 ||a_0||_{L^2(\Omega)} + (a^1, z^1) + \alpha_1 ||a_1||_{H^1_0(\Omega)}.$$

We can now write down explicitly the *dual problem* of the right-hand side of (3.9). We (hopefully) simplify notations by setting $\rho^0 = -a^1$, $\rho^1 = a^0$. We define ρ as the solution of

(3.13)

$$\frac{\partial^2 \rho}{\partial t^2} - \Delta \rho = 0 \quad \text{in } \Omega \times (0, T),$$

$$\rho(T) = \rho^0, \quad \frac{\partial \rho}{\partial t}(T) = \rho^1, \quad \rho = 0 \text{ on } \Sigma,$$

$$\rho^0 \in H_0^1(\Omega), \quad \rho^1 \in L^2(\Omega).$$

Then (3.9) becomes

(3.14)
$$\inf F(v) + G(Lv) = -\inf \mathcal{J}(\rho^0, \rho^1)$$

where

$$(3.15) \ \mathcal{J}(\rho^{0},\rho^{1}) = \frac{1}{2} \int_{\Sigma_{0}} \left(\frac{\partial\rho}{\partial\nu}\right)^{2} d\Sigma + (\rho^{0},z^{1}) - (\rho^{1},z^{0}) + \alpha_{1} ||\rho^{0}||_{H_{0}^{1}} + \alpha_{0} ||\rho^{1}||_{L^{2}(\Omega)}.$$

Remark 3.1 It is not obvious a *priori* that the problem

(3.16)
$$\inf \mathcal{J}(\rho^0, \rho^1), \quad \rho^0 \in H^1_0(\Omega), \quad \rho^1 \in L^2(\Omega)$$

admits a unique solution. It is true because of the Rockafellar duality theorem and the use of Holmgren's uniqueness theorem, i.e. by *reversing* the argument, we transform (3.16) back into (3.8).

Remark 3.2 If Σ_0 is "large enough" then

(3.17)
$$\int_{\Sigma_0} \left(\frac{\partial \rho}{\partial \nu}\right)^2 d\Sigma \ge c[||\rho^0||^2_{H^1_0(\Omega)} + ||\rho^1||^2_{L^2(\Omega)}]$$

(cf. J. L. Lions [13] and the Bibliography therein). In this case the fact that (3.16) admits a unique solution is obvious and remains true even if $\alpha_0 = \alpha_1 = 0$.

Remark 3.3 If $\{\rho^0, \rho^1\}$ is the unique solution of (3.16), then the optimal control v is given by

(3.18)
$$v = \frac{\partial \rho}{\partial \nu}$$
 on Σ_0 ,

where ρ is given by (3.13).

Remark 3.4 The dual formulation has been used in numerical computations (cf. Glowinski, Li and Lions [9]) for $\alpha_0 = \alpha_1 = 0$ and Σ_0 "large enough".

Remark 3.5 If

(3.19)
$$\alpha_0 \ge ||z^0||_{L^2(\Omega)}, \quad \alpha_1 \ge ||z^1||_{H^1(\Omega)}$$

then the optimal solutions are $\rho^0 = 0$, $\rho^1 = 0$ and v = 0.

Remark 3.6 Let us denote by $v_{\alpha} = v_{\alpha_0,\alpha_1}$ the optimal control given by formula (3.18).

111

If (3.17) holds true then one can show that

$$v_{\alpha} \rightarrow v \quad \text{in } L^2(\Sigma_0)$$

when $\alpha \rightarrow 0$, where v denotes the solution of (1.9) under conditions (1.5).

If (3.17) does not hold true, then the behaviour of

$$\inf(F(v) + G(Lv)) = F(v_{\alpha}) + G(Lv_{\alpha}) = \mu(\alpha)$$

as a function of α when $\alpha \rightarrow 0$, depends on the properties of z^0 and z^1 .

If $\{z^1, z^0\} \in F'$ (with the notations introduced in Section 2) then one has again the *same* convergence result as above.

If $\{z^1, z^0\} \notin F'$ then $\mu(\alpha) \to +\infty$ as $\alpha \to 0$. The behaviour of $\mu(\alpha)$ near $\alpha = 0$ could be an indication of "how far" $\{z^1, z^0\}$ stands from F', but this is at this stage purely formal.

4. Optimality System

The function \mathcal{J} is not differentiable. Therefore the solution of (3.16) is characterized by a variational inequality instead of an Euler equation:

(4.1)

$$\int_{\Sigma_{0}} \frac{\partial \rho}{\partial \nu} \frac{\partial (\hat{\rho} - \rho)}{\partial \nu} d\Sigma + (z^{1}, \hat{\rho}^{0} - \rho^{0}) - (z^{0}, \hat{\rho}^{1} - \rho^{1}) \\
+ \alpha_{1}[||\hat{\rho}^{0}||_{H_{0}^{1}(\Omega)} - ||\rho^{0}||_{H_{0}^{1}(\Omega)}] + \alpha_{0}(||\hat{\rho}^{1}||_{L^{2}(\Omega)} - ||\rho^{1}||_{L^{2}(\Omega)}) \ge 0 \\
\forall \{\hat{\rho}^{0}, \hat{\rho}^{1}\} \in H_{0}^{1}(\Omega) \times L^{2}(\Omega).$$

In (4.1) $\hat{\rho}$ denotes the solution of (3.13) where ρ^i is replaced by $\hat{\rho}^i$, i = 0, 1. We can now transform (4.1) in a more "classical looking" Variational Inequality.

Let ρ be defined by (3.13), and let y be defined by

(4.2)

$$\frac{\partial^2 y}{\partial t^2} - \Delta y = 0 \quad \text{in } \Omega \times (0, T),$$

$$y(0) = 0, \quad \frac{\partial y}{\partial t}(0) = 0 \quad \text{in } \Omega,$$

$$y = \frac{\partial \rho}{\partial \nu} \quad \text{on } \Sigma_0,$$

$$0 \qquad \text{on } \Sigma_0^*.$$

We define $\Lambda : H_0^1(\Omega) \times L^2(\Omega) \to H^{-1}(\Omega) \times L^2(\Omega)$ by

(4.3)
$$\Lambda\{\rho^0, \rho^1\} = \left\{-\frac{\partial y}{\partial t}(T), y(T)\right\}.$$

Multiplying (4.2) by $\hat{\rho} - \rho$ and integrating by parts, one obtains

(4.4)
$$\int_{\Sigma_0} \frac{\partial \rho}{\partial \nu} \frac{\partial (\hat{\rho} - \rho)}{\partial \nu} d\Sigma = \langle \Lambda \{ \rho^0, \rho^1 \}, \{ \hat{\rho}^0, \hat{\rho}^1 \} - \{ \rho^0, \rho^1 \} \rangle$$

Observe that (4.4) *implies that* Λ is ≥ 0 , and that

 $\Lambda^* = \Lambda.$

We now use (4.4) in (4.1). We introduce

(4.5)
$$j(\rho^0, \rho^1) = \alpha_1 \|\rho^0\|_{H^1_0(\Omega)} + \alpha_0 \|\rho^1\|_{L^2(\Omega)}$$

We obtain

(4.6)
$$< \Lambda\{\rho^{0}, \rho^{1}\}, \{\hat{\rho}^{0}, \hat{\rho}^{1}\} - \{\rho^{0}, \rho^{1}\} > +j(\hat{\rho}^{0}, \hat{\rho}^{1}) - j(\rho^{0}, \rho^{1}) \\ \ge < \{-z^{1}, z^{0}\}, \{\hat{\rho}^{0}, \hat{\rho}^{1}\} - \{\rho^{0}, \rho^{1}\} >$$

The optimality system is now as follows: one solves (3.13), one solves (4.2) next and one defines Λ as in (4.3); the variational inequality (4.6) admits a unique solution { ρ^0, ρ^1 }. Then the optimal solution v is given by $\partial \rho / \partial v$ on Σ_0 .

Remark 4.1 The variational inequality (4.6) has a standard form (cf. H. Brezis [2], F. Browder [3], G. Stampacchia [24], J. L. Lions and G. Stampacchia [20]) but the fact that it admits a unique solution is not obvious *a priori*, for the same reasons as in Remark 3.1.

Remark 4.2 If $\alpha_0 = \alpha_1 = 0$, (4.6) reduces to an *equation* (the non-differentiability disappears):

(4.7)
$$\Lambda\{\rho^0, \rho^1\} = \{-z^1, z^0\}.$$

This is HUM (J. L. Lions, *loc. cit.*). Equation (4.7) admits a unique solution in F for $\{-z^1, z^0\} \in F'$, and F is $H_0^1(\Omega) \times L^2(\Omega)$ iff Σ_0 is "large enough", as we have said before.

Remark 4.3 What has been made here is *constructive*. Numerical computations are therefore possible along these lines. They have not yet been made.

Remark 4.4 As is usual in these matters, one can derive the optimality system directly, by a *penalty method*. One starts with

(4.8)
$$\inf \frac{1}{2} \int_{\Sigma_0} v^2 d\Sigma + \frac{1}{2\varepsilon} \left\| \frac{\partial^2 y}{\partial t^2} - \Delta y \right\|_{L^2(\Omega \times (0,T))}^2$$

where

$$y = \begin{cases} v & \text{on } \Sigma_0 \\ 0 & \text{on } \Sigma_0^*, \end{cases} \qquad y(0) = \frac{\partial y}{\partial t}(0) = 0$$

and

$$y(T) \in z^0 + \alpha_0 B_0, \quad \frac{\partial y}{\partial t}(T) \in z^1 + \alpha_1 B_1.$$

One writes the Euler equation for (4.8) and one next lets $\varepsilon \rightarrow 0$.

5. Final Remarks

We conclude by raising a certain number of questions related to the above Remarks.

Remark 5.1 The question of Exact Controllability for *non-linear* distributed systems leads to a large number of open questions. Interesting results have been obtained by E. Zuazua [27]. It would be interesting to see how the above considerations extend to non-linear wave equations.

Remark 5.2 It would be of some interest to look for similar problems for the equation

(5.1)
$$\varepsilon \frac{\partial^2 y}{\partial t^2} + \frac{\partial y}{\partial t} - \Delta y = 0$$

and to see what happens when $\varepsilon \rightarrow 0$ (and $\alpha_1 \rightarrow 0$).

Remark 5.3 Let us consider a perforated domain as in Fig. 2. More precisely let Ω_{ε} be a domain Ω minus the set of holes $\mathcal{O}_{\varepsilon}$ arranged in a periodic manner and with period ε in all directions. We assume that these holes never meet $\partial \Omega = \Gamma_0$ and we denote by $\mathcal{S}_{\varepsilon}$ the union of the boundaries of all the holes inside Ω . We consider then the state $y = y_{\varepsilon}(x, t; v)$ given by

(5.2)

$$\frac{\partial^2 y}{\partial t^2} - \Delta y = 0 \quad \text{in } \Omega_{\varepsilon} \times (0, T), \\
y = \nu \quad \text{on } \Gamma_0 \times (0, T), \\
\frac{\partial y}{\partial \nu} = 0 \quad \text{on } \mathcal{S}_{\varepsilon} \times (0, T), \\
y(x, 0) = \frac{\partial y}{\partial t}(x, 0) = 0 \quad \text{in } \Omega_{\varepsilon}.$$

We consider again the same problem as above, namely

(5.3)
$$\inf \frac{1}{2} \int_{\Sigma_0} v^2 d\Sigma$$

114

_

for all v's subject to

(5.4)
$$y(T;v) \in z^0 + \alpha_0 B_0, \quad \frac{\partial y}{\partial t}(T;v) \in z^1 + \alpha_1 B_1$$

[where B_0 and B_1 depend in fact on ε , since they are here the unit balls in $L^2(\Omega_{\varepsilon})$ and in $H^{-1}(\Omega_{\varepsilon})$ and of course realizing that in the present situation, because of the Neumann condition on $S_{\varepsilon}, H^{-1}(\Omega_{\varepsilon})$ is not necessarily the most appropriate space here].

Let v_{ε} be the solution of (5.3). Do we have convergence of v_{ε} towards v, where v would solve the following problem; let A be the *homogenized* operator in Ω (cf. D. Cioranescu and J. Saint Jean Paulin [5], J. L. Lions [18], O. A. Oleinik, A. S. Shamaev and G. A. Yosifian [21] and the Bibliography therein). Let y be given by

(5.5)
$$\begin{aligned} \frac{\partial^2 y}{\partial t^2} + \mathcal{A}y &= 0 \quad \text{in } \Omega \times (0, T), \\ y &= v \quad \text{on } \Gamma_0 \times (0, T), \\ y(x, 0) &= \frac{\partial y}{\partial t}(x, 0) = 0 \quad \text{in } \Omega. \end{aligned}$$

Then is v (if it exists as the limit of v_{ε}) the solution of (5.3), where v is subject to (5.4) with y now the solution of (5.5), and where B_0 (resp. B_1) is now the unit ball of $L^2(\Omega)$ (resp. $H^{-1}(\Omega)$)? Questions of this type—but technically very different—are solved in D. Cioranescu, P. Donato and E. Zuazua [4].

REFERENCES

[1] C. Bardos, G. Lebeau and J. Rauch, Appendix in [13].

[2] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North Holland, Amsterdam, 1973.

[3] F. Browder, Non-linear monotone operators and convex sets in Banach spaces, Bull. Am. Math. Soc. 71 (1965), 780–785.

[4] D. Cioranescu, P. Donato and E. Zuazua, *Exact boundary controllability for the wave equation in domains with small holes*, J. Math. Pures Appl., to appear.

[5] D. Cioranescu and J. Saint Jean Paulin, *Homogenization in open sets with holes*, J. Math. Anal. Appl. **71** (1979), 590-607.

[6] I. Ekeland and R. Teman, Analyse convexe et problèmes variationnels, Dunod Gauthier Villars, 1974.

[7] R. Glowinski, W. Kinton and M. F. Wheeler, A mixed finite element formulation for the boundary controllability of the wave equation, Int. J. Numer. Methods in Engineering 27 (1989), 623–635.

[8] R. Glowinski and C. H. Li, Sur l'implémentation de la Méthode d'Unicité Hilbertienne pour la contrôlabilité exacte, par la frontière, de l'équation des ondes, C. R. Acad. Sci. Paris (1990).

[9] R. Glowinski, C. H. Li and J. L. Lions, A numerical approach to the exact boundary controllability of the wave equation. (1) Dirichlet controls: Description of the numerical methods, Japan J. Appl. Math. 7 (1990), 1–76.

[10] A. Haraux, To appear.

[11] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin, 1976.

[12] J. Lagnese, *Boundary Stabilization of Thin Plates*, SIAM Studies in Applied Mathematics, 1989.

J. L. LIONS

[13] J. L. Lions, *Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués*, Tome 1. Contrôlabilité Exacte, Collection R. M. A., Masson, 1988.

[14] J. L. Lions, *Contrôle des systèmes distribués singuliers*, Gauthier Villars, Collection MM1, Vol. 13, 1983.

[15] J. L. Lions, *Exact controllability, stabilization and perturbations for distributed systems*, 1986; Siam Review **30** (1988), 1–68.

[16] J. L. Lions, *Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués*, Tome 2, Perturbations, Collection RMA, Masson, 1988.

[17] J. L. Lions, *Exact controllability for distributed systems*. Some trends and some problems, Venice, October 1989.

[18] J. L. Lions, Some Methods in the Mathematical Analysis of Systems and their Control, Science Press, Beijing and Gordon and Breach, London, 1981.

[19] J. L. Lions and E. Magenes, *Problèmes aux limites non homogènes et applications*, Vols. 1 and 2, Dunod, Paris, 1968.

[20] J. L. Lions and G. Stampacchia, Variational Inequalities, Comm. Pure Appl. Math. 20 (1967), 493–519.

[21] O. A. Oleinik, A. S. Shamaev and C. A. Yosifian, *Mathematical Problems in Mechanics of Strongly Non-homogeneous Media*, North-Holland, Amsterdam, 1991.

[22] T. R. Rockafellar, Duality and stability in extremum problems involving convex functionals, Pac. J. Math. 21 (1967), 167–187.

[23] D. L. Russell, Controllability and stabilization theory for linear partial differential equations. Recent progress and open questions, SIAM Rev. 20 (1978), 639–739.

[24] G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris **258** (1964), 4413–4416.

[25] E. Zuazua, Robustesse des feedbacks des stabilisations par contrôle frontière, C. R. Acad. Sci. Paris **307** (1988), 587–591.

[26] E. Zuazua, Contrôlabilité exacte en un temps arbitrairement petit de quelques modèles de plaques, C. R. Acad. Sci. Paris **304** (1987), 173–176.

[27] E. Zuazua, Contrôlabilité exacte de systèmes d'evolution non linéaires, C. R. Acad. Sci. Paris 306 (1988), 129–132.

[28] E. Zuazua, *Exact controllability for the semi-linear wave equation*, J. Math Pures Appl. **69** (1990), 1–31.

COLLÈGE DE FRANCE

3, RUE D'ULM

75005 PARIS, FRANCE

(Received September 15, 1990)