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Introduction 
1. Let f(z) be regular near z =  0 and put 

(1.1) M(p) = M[p, f ]  = max [ f ( z ) l  . 
[~J=p 

It is well known that if f(z) is regular for [ z [ ~  p, M(p) is an increasing 

function o f  p, and it was proved by H a d a m a r d [2] (i) that log M (p) is a 

convex function o f  log p. B 1 u m e n t h a I [1] further showed that M (p) is 

itself an analytic function o f  p, except at an isolated number o f  points 

pl < pz < ... < pn < ..., so that M (/9) is represented by distinct analytic 

functions in the intervals pn ~ p ~ pn+l �9 

The fact that M (p) need not be given by just one analytic function 

makes the problem of  its characterization for instance for the class o f  entire 

functions f (z) very difficult. W e  shall solve here a simpler problem, namely 

the local characterization o f  M(p) near p =  O. This amounts to characteri- 

zing a certain class o f  functions M (p) ,  regular at p = 0 and real for real p, 

corresponding (by 1.1) to the class o f  all f(z) regular at z =  O. 

W e  shall see that for z lying on a certain analytic arc z = a (p) ,  the 

maximum modulus is attained. Since a (p) is regular at p =  O, we shall be 

able to make p complex and obtain a locally 1 : 1 correspondence between z 

and p. Using this approach we shall show that M(p) is itself a regular 

function o f  p, which attains its maximum modulus on the positive real 

axis, so that M(p) is its own maximum modulus (Theorem 1). W e  shall 

also obtain an equivalent criterion for this to happen in terms of  the coef- 

ficients o f  the power series expansion o f  M (p) near' p = 0 (Theorem II). 

In Part II  we shall study the class o f  functions M(p) having this 

property, with a view to obtaining all functions f(z) such that (1.1) holds 

1. N u m b e r s  in brackets refer to the bibl iography at the end of  the paper. 

18S 
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for small p. It turns out that if 

(1.2) M(p)  = 1 + a,/0 k + . . . .  ak :~6 0 ,  

with k =  1 or 2, then f ( z )  exists uniquely, satisfying (1.1) and f ( 0 ) =  1,  

and attaining its maximum modulus for small p on an assigned analytic 

arc through the origin (Theorems III and IV). This result fails to hold, 

however, whenever k => 3 in (1.2) (Theorem V). 

Par t  1. 

2. The following two lemmas are fundamental to our theory. 

Lemma 1. Suppose that f (z) is regular on the circle Izl -= r ,  and that 

0 
O0 I f (  rei~ l = O , at 0 = 0 o .  

Then i f  Zo = re i~ and f (zo) ~ 0 Zo f"  (Zo) is real. 
' f (Zo) 

We put 

u (z) = log ] f (z) ].  

Then u (z) is harmonic at z = Zo, since f (Zo) ~ O. Also we have at 0 = Oo 

O 
O0 u(re~• O. 

Expressing u (z) in terms of  x ,  y this gives 

Ou Ou oo~ .t. osO, .sinOl--.lycosO-- s,nO]-- o 

_ l m { , : o  Oy ]J o ,  

im z o ~ l o g f ( z  = 0 ,  z = z o ,  

/' 0o) 
so that Zo / ( zo )  is real as required. 

We  deduce immediately 

L e m m a  2. Suppose with the hypotheses of lemma 1, that z approaches zo 

along a curve 'y ,  z = a (p) where p = [ z ], and that y has a tangent making a 

positive angle with the circle I z l  = r at zo. Then we have at p = r ,  

d f" (zo) 
~ -  log J f [~ to)] [ r Zo 

f (zo) 

i .e. ,  at Z = Z o ,  
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W e  write z ---- pe ie, 

u(z)  = log I f ( z )  [ = u ( p ,  O) .  

Then if p ,  O are close to r ,  O0, we have 

Ou Ou 
~(,o, o ) - ~ ( r ,  Oo)-- -5~p O -  ~) + ~ - ( o - O o ) +  o l l p - ,  J + I o -  Oo11. 

I f  further re ie lies on y, so that ] 0 - - 0 0 [ =  O I p - - r ] ,  

Ou 
and since also 00------O,  0 = 0 o ,  this becomes as z->-zo along j" 

u ( z )  - ~ (Zo) Ou 

p - -  r Op 

i . e ,  

d Ou 0 
(2.1) dp l ~  [a ('~ - -  0,o -- Op l~ 

Also we have from the C a u c h y - R i e m a n n equations and our hypothesis 

at O = O0 

O 1 O 
- -  arg f (p#e) _ p O0 log I f (, ~ t = 0 .  ap 

Thus (2.1)  may be written 

or  

d log l f  [a (p)] [ = 0 ~ -  log f (pdeo) 
dp 

= e~eo f '(zo) 
f (Zo) 

d r ~ log I / [ a  O)]1 = z0 f '  (z0) 
f (z0) ' 

which proves the lemma. 

The idea of  both these lemmas goes back to B l u m e n t h a l  [1], but 

he did not use the Function-theoretic formulation in terms of  f (z) ,  which 

is the main tool o f  our Theory. 

3. Lemma 1 shows us that the points where f (z) attains its max imum 

/ '  (z0) 
modulus lie among the points where Zo f ( z o ~  is real. W e  next investigate 

the set o f  points near the origin where a regular function is real. It  will 

appear that this set consists o f  a finite number of  regular arcs. To  make 

this concept precise we define 
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Def in i t ion :  A regular arc (R-arc) is defined to be the set of  points y, 

given by a function z = ~ ( t ) ,  0 <_t <--~, where a ( t )  is regular at t = O ,  

(o)=o 
W e  shall suppose E so small that y does not cross itself. Apart 

from this we do not distinguish between arcs given by the same function c~ 

and different e's. I f  a ( t ) ,  0=<_t--<e, [5(t), 0 ~ t _ < ~ l  yield the same set o f  

points y, we shall say that ~ (t),  [3 (t) are different representations o f  y. 

There is one representation applicable to every R-arc and for this 

reason particularly useful, in which I (t)l = t We  have 

L e m m a  3. Suppose ~" is an R-arc. Then for  some ~ > 0  there exists a 

representation of  y in the form 

z = Re ~~ , o ~ ,o ~ e 

where 0 (p) is real for real 19, and regular at p = O. Conversely such an expres- 

sion always yields an R-arc. 

The converse part is trivial. To prove the lemma let 

z = t~b(t) 

be a representation of  y, where ~b ( 0 ) ~ 0 .  Then log~b(t) is regular at 

t = 0 ,  and we may write 

log ~ (0 = r (0  + i ~ (0  

where ~bl(t), ~2(t) are regular at t =  0 and real for real t. Thus we may 

write for z on f 

z = te~ (t). ei~p2 (0 

W e  put 

p = geCPl(O. 

Then p is a regular function o f  t at t = O ,  real for real t and 

dp _ i r  
dt 

at t = O .  Thus we may invert and put 

t = Z(p) 

where ~. (p) is regular at p ~ O, and real and positive for real and positive p. 

Hence 

z ~ pe ~ tP2 [z (P)] 
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gives the required representation, since o (/9)= [x(/9)] is real for real /9 

and regular at /9 = O. 

4. We next show that the set near the origin, where a regular function 

is real consists o f  a finite number o f  R-arcs. 

L e m r n a  4. Let 

g (z )  : ak z k + ak+l z ~+1 + . . . .  k > O,  ak :t: O,  

be regular at z : O. Then i f  ~ is a su~ciently small positive number there exist 

exactly 2k R-arcs, i'1, ~2 . . . .  , j'2k with the following properties : 

(i) The function g (z) is real at those points of  I z ] ~ e which lie on the 

arcs i'v and only those. 

(ii) On the arcs y~, y3 . . . . .  y2~- , ,  g (z) is negative, while on y2, y4 . . . . .  y2k 

g ( z )  is positive. 

(iii) The arcs i v ,  yv+l, v = 1 . . . . .  2 k - - 1  and y2k, yx intersect at an 
OX 

angle ~ -  with each other at z = o and do not intersect elsewhere in I z [ <= ~. 

The lemma is almost trivial. We  include a p roof  merely for complete- 

ness. W e  put 

e (z) = a~ w~, 

so that 
1 

(4 .1)  w ~-g(1 -]- ak+lz_~ak ...)~. 
Then g ( z )  is real, when akw k is real, and this occurs on 2k halflines in 

the w-plane o f  the form 

w = re~v ,  v = 1 ,  . . . ,  2 k .  

where r is real and 
7X 

@~+, - @~ = ~-. 

Also adding ~ -  to t9 changes the sign o f  a k w  k. Thus if 19 = 192 makes 

f ( z )  positive, so do 194, 196 . . . . .  192h and 191, 193 . . . . .  192k-1 make f ( z )  

negative. 
dw 

Since w given by (4.1) is a regular function o f z  near z =  O, dz - - 1 ,  

we may choose r so small, that w is univalent in I z ] ~ ,  so that the 
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correspondence is 1 : 1 and both ways regular. Let Yv be the set of  those 

points in I z I ~ e ,  which correspond to w =  rei%. Then it is clear that 

the yv have the properties (i), (ii) and (iii) of  l emma 4, since the z ,  w 

correspondence is 1 : 1 and conformal, 

Let z = q~(w) be the inverse of  (4.1). Then the set yv consists of  all 

points of  the form z = q ~ ( r e i % ) ,  which lie in ] z ]<~e .  W e  may choose 

so small that yv consists of  a single R-arc corresponding to 0 <--_ r <_ ~lv. 

This proves that the yv are R-arcs and completes the proof  of  l emma 4. 

W e  next investigate the behaviour of  g (z) on the yr. W e  have 

L e m m a  5. Let Yv, v = 1, ..., 2k be the arcs of the last lemma and let 

gv (p) be the value necessarily real which g (z) takes at the intersection of y~ and 

]z [ = p  (The intersection is unique i f  p is small enough). Then 

(i) g~ (p) = ( -  ~).j a, I P + . . . .  

is a regular function of p near p = o,  real for real p. 

(ii) There exists a strictly increasing function 

small e > O, such that we have for each v either 

a) g~ (p) = ~ (p) 

or b) g~ (p) < ~ ( p ) ,  

Further a) holds for at least one index v. 

Let j'~ be given as in lemma 3 by 

z = pei~v( m . 

Then we have 

(p) , o <= p < ~ for su/fimntly 

o<p<~. 

g~ (,o) = g De '%r  

which is dearly regular near p-----O. Also from the definition of  the 

yv,  gv (p) is teal for real positive p. Further 

gv (p) 
I 

] g[peiOvCm] .~a~ as p - ~ O ,  
- ~  = ,oh 

since I pe'~vcp)l = p[ for real p. Thus since gv(,o) is real for real positive p, 

negative for v odd and positive for v even, l emma 5 (i) follows. 

Consider next 

(p) = g ,  (p) - -  g,, (,o) 

for two indices v ,  v ' .  Then k (p )  is real for small positive p ~ ,  and if 
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is small enough ~(p) has either constant sign or is identically zero. 

Thus, if gv (p) ,  gv, (p) are not identical, one of them is larger than the other 

for small positive p. We may thus find a greatest among the gv (p) ,  for 

small positive p, which has the properties required of IX (p) in lemma 5 (ii). 

In fact 

( p ) =  [ a , l ~ + . . .  

and hence Ix(p) is necessarily strictly increasing for small positive p. 

This completes the proof of  lemma 5. 

We shall call the gv (p) the real values of g (z) (on the circle [z I = P for 

small positive p being understood). We shall say that the function Ix (p) of lemma 

5 (ii) is the greatest real value of g (z). 1Ve shall also say that g (z) attains the 

value gv (p) on all arcs gv,, for which gv, (p) =-- gv (p).  

5. We can now relate our problem of the maximum modulus to the 

preceding work. In studying the maximum modulus of  f (z) near z = 0 ,  

we may suppose without loss in generality that f ( 0 ) =  1. For if 

q~ ( z )  = a z  ~ + . . .  

has maximum modulus M ( p ) ,  then q~lz----~ = f ( z )  has maximum modulus (2g 2 

M ( p )  We shall always presuppose this normalization in future. We " 

f ( z )  = 1 q- akz k-t- ... 

be regular near z =  O , and let M ( p ) = M [ p , f ] =  m a x [ f ( z )  l. 
Ixl=p 

M" (p) is the greatest real value Then for some ~ > 0 and Iz[ <= e, IX(p) = p M (p) 

of g (z) = z f'f (z)(Z) . Further the points of I z I = < e for which 

(5.1) [ z j = p ,  If(z)l = M(p) 

consists of those R-arcs, where g (z) attains its greatest real value. 

We know from lemma 1, that the points on which (5.1) holds lie 

on the arcs rv, v = 1 . . . . .  2k on which g(z)  is real. Let f v (P)  be the value 

of I f ( z ) [  at the intersection of gv and I z l = p .  Then M ( p )  is the largest 

of  f v ( p ) ,  v =  1 . . . . .  2k. 

then have 

L e m m a  6. Let 
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The arc yv is not tangential to I z l=p  for small p. 

Thus we may use lemma 2 and obtain for 0 ~ p ~ 

d 
to ~ log /v  (p) = g~ (p).  

Since f v ( o ) - - - 1 ,  we deduce that 

P 

(5.2) f v ( p )  = exp {~;  g v ( t ) ~ } .  

0 

Now since gv ( p ) ~  ~t (p) with the notation of lemma 5, with equality for 

one or more indices v, we deduce from (5.2) that 
P g _ _  _ ) l h  

(5.3) M ( p )  : max f v ( p ) - ~ e x p {  t '~ t ( t )  u-~-~ } 
V ~ I ,  ..., 2 k  ~ t . J  ~ P  

0 

and further that M ( p ) =  f v  (p),  if and only if g (z) attains the real value 

V(P) on yr. Thus the points of ] z l - ~ p  for which ] f ( z ) ] - ~ M ( [ z [ ) ,  are 

just those points which lie on the yv on which g( z )  attains the value Ft (p). 

The rest of  the lemma follows from (5.3) and the proof of lemma 6 

is complete. 

6. We can now state our first main Theorem, characterizing the 

function M (p). We have 

T h e o r e m  I. Suppose that 

f ( z ) =  1 + a k z k +  .... a k ~ O  

is regular at z ---- O. Let 

Then we have 

(i) 

M ( p ) = M [ p , f ]  = max [ f ( z ) [ .  
I~I=P 

M (p) : l + la~l /~  + .... 

is a regular function of p near p-----O. 

(ii) I f  M (p) is continued into the complex domain then for some ~ ~ O, 

and 0 <= p <= ~, 0 <-- 6) <_ 2~ we have the inequality 

I M ~ ' ~  < M (p) .  

(iii) The points z in [ z [ ~ e , such that [ z l = p , [ f (z) [ -~ M (p) , form 
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at most k R-arcs, which make angles of ..... k--- with each other at z = 0, where 

p is a positive integer. 

The important property is (ii), which shows that the maximum modulus 

functions M ( p ) ,  are just those functions, regular at p = 0 ,  and real for 

real p, which attain their maximum modulus on the positive real axis, i.e., 

those which are their own maximum modulus. 

W e  know from lemma 6 that for small p 

M '  (p) 
(6.1) P M O) = 

f ' ( z )  By lemma 5, bt(p) is where gt (p) is the greatest real value of  z - . / ( z ) - "  

regular at p =  0 and has there an expansion of  the form 

O )  = k la ,  l + . . .  (6.2) 

since 

f '  (z) z~ z --  kak + ... 
f (z) 

near z =  O. From (6.1), (6.2) we infer that M ( p )  is regular near p =  0 ,  

and has a power series expansion of  the form 

M ( p ) =  1 + I ak ]/o* + ... 

This proves (i). Again by lemma 6, f (z) attains its maximum modulus on 

z f '  just those R-arcs on which - f ~ -  attains its greatest real value, and these 

arcs have the properties required in Theorem I (iii) by lemma 4. In fact 

the arcs of  Theorem I must be among the arcs ~'v o f l e m m a  4 with v even. 

7. It remains to prove Theorem I (ii) and the proof  uses the whole 

of  our preceding theory. Suppose that (ii) is false, so that for small p 

M ( p )  does not attain its maximum modulus on the positive real axis. 

Then it follows from lemma 6, that ~ (p )  given by (6.1) does not have 

its greatest real value on the positive real axis. Thus for all small positive k, 

we can find a complex p such that [ p [ = k ,  and bt(p) is real and satisfies 

For each small k choose such a value p = pt and put p2 = pl. Then since 
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~t(p) is real for real p, we have 

so that 

(7.1) 

and 

(7.2) p~ = p , ,  Ip,)=lp=l=k. 
Now let y be an R-arc on which f ( z )  attains its maximum modulus 

for small positive p. We write y in the form 

(7.3) z = pe~p~, 

where O(/9) is real for real p, as we may do by lemma 3. Also if z, p are 

related as in (7.3) and p is real and positive, it follows from lemma 6 

that we have 

f '  (z) M" (p) 
(7.4) z f ( z )  -- to M ( p )  = V(P)- 

It  follows by analytic continuation that the identity (7.4) continues to hold 

when z,  /9 are complex numbers related as in (7.3). In particular if  

z = z l ,  z2, zk, correspond to the numbers t o = p 1 ,  p2, k of (7.2), we have 

from (7.1) 

f"  (zl) f"  (z2) f '  (zk) 
(7.5) z, f(~-----T-=~ / ( ~ - >  ~ f ( z ~ )  " 

Since k > 0 ,  the point zk is the intersection of the arc y of (7.3) and the 

circle l z t =  k. Also p l ,  p2 are reflections of  each other in the real p axis. 

Hence we have 

o (p,) = o (p2) 

since the function 0(/9) of  (7.3) is real for real p and so 

using (7 .2 )and  (7.3). Thus at least one of z l ,  z2, z = z j  say, satisfies 

i f ( z )  I z, I<= k.  Combining this with (7.5) we see that z ~ ) -  does not attain 

its greatest real value on the arc y for small k, since we can find a point 

z~ no further from the origin than the point on I z l = k  and F, where 
f '  (z) 

z f - f ~  takes a larger real value. From this it follows by lemma 6, that 
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f ( z )  cannot attain its max imum modulus on y, for small z, contrary to 

hypothesis. Thus our original assumption, that M (p) is not its own max imum 

modulus for small p must have been incorrect, and Theorem I (ii) is proved. 

This completes the p roof  of  Theorem I. 

8. In Theorem I we have characterized those functions, which are 

the maximum modulus of  some other function. W e  now prove an equivalent 

criterion, which depends only on the power  series expansion of  M ( p )  near 

p - ~  0 .  This is 

T h e o r e m  II.  Let 

(8.1) m ( p ) =  l + a k p k + . . . ,  a a ~ O  

be real for real p. Then M (p) is the maximum modulus M JR, f (z)] of some 

function regular for [ z I ~= ~ , where e is some positive number i f  and only i f  

the following conditions are satisfied: 

(i) The series (8.1) has a positive radius of convergence; 

(ii) ak > O; 

(iii) for every positive integer j ,  let ~ ( j )  be the function defined as follows: 

let v be the smallest positive integer i f  any such that vj is not a multiple of k 

and av ~ 0 ; then 

( j )  = a ~ .  

I f  no such integers exist, we put ~ ( j )  = O. 

Then ~ ( j )  >= 0 for every positive integer j. 

The criterion of  Theorem II,  although we shall deduce it f rom 

Theorem I, does not use any properties of  M (p)ou ts ide  its original domain 

of  definition 0 _<_ p ~ ~. 

9. To  prove the Theorem we need two further lemmas.  

L e m m a  7. Let 

M ( z ) =  l + a k z  k +  ....  a k > O ,  

be real for real z, and let 

(p) ---- max ]M(z) l. 
Ixl=p 

Then given e > O, there exists 8 such that if 0 < 19 < ~ and 0 is real, 

z = p e  i~ [M(z)]  = ~(Io) 



146 W.K.  HAYMAN 

we have 

k < ~ '  

where j is an integer. Further i f  j = O, 0 = O. 

We know from lemma 6 that M (z) attains its maximum modulus on 
m '  ( 0  M' (~) 

those R-arcs on which ZM~(z  ) attains its greatest real value. Now Z . m ( z )  

is certainly real and positive on the positive real axis for small z, hence 
M'  (z) 

the other R-arcs on which z ~ 0 ( z  ) is real and positive must by lemma 4 
2~j  

make an angle k with the positive real axis, where j is a non-zero 

integer. This proves lemma 7. 

We have next 

L e m m a  8. Suppose the power series (8.1) has a positive radius of conver- 

gence and let M (z) be its sum for p ~-z (possibly complex). Let ~ ( j )  = ~ be 

2ztj Then there exists e > O, defined as in Theorem II (iii) and put ~ -  k 

such that for ]z] < s,  ] argz] < ~ we have 

(i) IM(z)  l > [ M ( z e ' ~ ) l  i f  ~ > o ,  

(ii) ] M ( z ) [ <  ]M(ze 'a)] i f  ~ <  O, 

(iii) M (z) ---- m (ze '~) i f  ~ = O . 

We put 

(9.1) M (z) ~ M1 (z) + M2 (z) 

where Ml(z)  is the sum of all those powers avZ v for which k is a factor 

of vj. 

(9.:2) M, (z) = E avzV" 
klvj 

If ~ = 0 ,  then M2(z)=--0 and in this case M (z) --= M, (z) . Also we have 

clearly always 
2~/j 

M, (z) = M, (ze'~) = M1 (~e k ) .  (9.3)  

Thus (iii) follows. 

Suppose next ~ 0.  In this case we have for some v > k ,  

Ms (z) = ~z~ + . . . .  
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We put 

so that 

and 

(9.4) 

z = p (cos  O + i s i n O ) ,  

z v = pv (cos v O + i sin vO) 

M~ (~) = ~ y  [cos ~ o  + i sin ~ O + o (1~] ,  

where o (1) denotes a function of  z, which tends to zero uniformly as z ~ o .  

We may write using (9.3) 

(9.5)  M, (z) = M, (ze,~) = u (z) + iv (~). 

We have from (9.1), (9.4), (9.5) 

[M (z)[ ~ : {u (z) + ~pv [cos v O + o (1)]} e + {v (z) q- ~pv [sin v O + o (1)]} ~ . 

This gives 

(9.6) [M (z)l' - - I M  (geic~)] ' = 2~p v" (z) [cos v O - -  cos v (O q- ct) q- o (1)1, 

since from (9.2) u ( z ) - - 1 ,  v (z)---. 0 as z - - 0 .  Now by hypothesis vet is 

not a multiple of  2st, so that cos vet< 1.  Hence if e is sufficiently small 

and I o l  < e,  o < p < e  then 

2 j  ,, (~) [cos ~ o - cos ~ ( o  + et) + o (1 ] 

is positive, so that from (9.6) 

I M (z)l ~ I M (,,,e'~) 1 

according as 

~ > 0 .  

This completes the proof  of  lemma 8. 

10. We  can now prove Theorem II. We  know from Theorem I, 

that M (p) is the maximum modulus of  some function f (z) if and only if 

M ( z )  attains its own maximum modulus on the positive real axis. Let 

M (z) be the function of  Theorem II and suppose that for ]z] < r ,  Iarg z I < 

2ui j  for j = 1, 2 . . . . .  k - -  1,  the results of  lemma 8 hold. and every a = k 

Next choose ~ < ~  so small that the points z = p e  is ,  0 < # < 8  such that 

J M (~) 1 = r~ (p) 
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in the notation of  lemma 7 all satisfy 

(10.1) { 0 - -  o.i I < 

2~j  for some j ~ 0 ,  1, 2, ..., k - - 1 .  where a i = k 

Then if ~ ( j ) ~  0 for every j ,  we have from lemma 8, if z = p d  ~ 

and (10.1) is satisfied with 

(10.2) I M ( ze'-i~'i ) l  ~ ] M (z) [, 

so that the maximum modulus is certainly also attained for some O with 

[ O [ < ~ ,  and hence O =  0 by lemma 7. Thus if the conditions (i), (ii) 

and (iii) o f  Theorem II are satisfied M (z) attains its maximum modulus 

for small z on the positive real axis, so that M (p) is the maximum modulus 

o f  the function M (z).  

Conversely (i) and (ii) are also necessary for this, by Theorem I. 

Suppose next that (iii) is not satisfied, so that [3 ( j ) <  0 for some j .  Then 

we have from lemma 8 for small positive p 

I 2~i j !  

so that M (z) does not attain its maximum modulus on the positive real 

axis for small z, and hence by Theorem I, M (p) cannot be the maximum 

modulus o f  any function f ( z ) .  This shows that the conditions ( i i i ) o f  

Theorem II are also necessary in order that M (p) should be the maximum 

modulus of  any function f (z). This completes the proof  o f  Theorem II. 

R e m a r k :  IVe note that M (z) attains its maximum modulus on the positive 

real axis and nowhere else i f  and only i f  ~ ( j )  > O, for j ----- 1 ,  2 . . . . .  k - -  1.  

For in this case we cannot have ~(j)  = 0 since otherwise, by lemma 8, we have 

M (D = M (pe2~u/k). 

Conversely if [3 ( j )  > 0 for j = 1, 2 . . . . .  k - -  l ,  and 

I M ( m ' )  l = M (p) 

for some small p and 0 _< O ~ 2z~ we have from lemma 7, for some j ,  

2~j O--q-<~.  

and hence if j is not a multiple o f  k we deduce from lemma 8 
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I M (.-2,=i/k)] ] > M (p) 

which gives a contradiction. Thus we must have j =  0,  I O ] <  e and hence 

from lemma 7, O = 0 .  This proves the remark. 

Part II. 

11. We have now solved our first problem, namely the characterization 

of  the functions 

M ( p ) =  max I f ( z ) ]  
" I * l = p  

which are for small positive p the maximum modulus of some function 

f (z), regular at z = 0.  The conditions are that M (p) is for small positive 

p the sum of a convergent power series in p, some of whose coefficients 

(depending on the index of the first non-vanishing coefficient) must be 

positive. 

We now attack the problem of  characterizing all functions with a 

given maximum modulus of this type. Let 

( 11. I) M (p) = 1 "[-" akp ~ -}" ..., ak ::fi: 0 

satisfy the conditions of Theorem II. Then we shall see (Theorem IV) that 

it is always uniquely possible to find a normalized function f ( z )  having 

maximum modulus M (p) and attaining it on an assigned R-arc T for small 

positive p, when k = l  or 2. However if (11.1) holds with k ~ 3 ,  this 

result is false (Theorem V). 

We first prove the following result: 

T h e o r e m  III. Let M(p), regular near p = 0 and real for real p, be given 

by (11.1). Let g be an R-arc given by 

(I  1.2) Z = pe iO(p) 

where 0 (p) is regular near p =  0 and real for real p. Then there exists a 

unique function f (z) regular near z = 0 and having for some e > 0 the following 

properties : 

(i) I f  [P e'8ip)] I --- M (p) , 
0 

(ii) ~ - 0  I f  (P ei~) 1 = O, 

(iii) f ( O ) =  1, 

O < p < r ,  

o = o (p ) ,  o < p < e ,  
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If  there exists f(z) having max imum modulus (or minimum modulus !) 

M (,o) and attaining the maximum (or minimum) modulus on T, it must 

certainly satisfy (i) and (ii). By further multiplying by a constant e ~l we may 

assume (iii) satisfied also. Thus the conditions (i) to (iii) o f  Theorem III  

are certainly necessary for the result we are seeking. In order that the function 

f(z) of  that Theorem ~hould in effect have its max imum modulus M ( p ) ,  

it is further necessary that M (p) should satisfy the conditions (ii) and (iii) of  

Theorem II. W e  shall see that when k = 1 or 2 this further condition is 

also sufficient, but not when k :> 3 �9 There is thus a sharp distinction between 

these two cases. 

(12.1) 

and 

12. W e  proceed to prove Theorem III .  Let z be related to p by ( t l . 2 ) ,  

where p ,  z are small complex numbers and let p =  p(z) be the inverse 

function of  (11.2) clearly regular at z =  0. W e  put 

M'  (p) 
g ( 0  = g Lo (~)] = p - ~  ( p )  

Z 

(12.2) f (Z) -- e x p j  ~ g (z) dz--z 
0 

Then f(z) is the required function in Theorem III .  

In fact g (z) is clearly regular and vanishes at z---= 0 ,  and 

regular at z-----0 and satisfies (iii). 

Again we have from (12.1), (12.2) 

f '  (z) , , M" (p) 
(~2.3) ~?~z)  = g t z )  = p M ( p )  ' 

if z ,  p are related as in (11.2) and so in particular z 

on T, and the argument of  l emma 1 shows that this 

Lastly it now follows from lemma 2, that if  

~t (p) = I f  L oe'~p)] i 

then we have for small positive p ,  z = pe i~p), 
~' (o) _ I '  (z) M' (p) 

p ~ ( p )  z f ( z ~ - -  p M ( p ) '  

using (12.3), and hence 

M (o) = k~ ~) 

so f(z) is 

f '  (z) 
f(z)-- is real for z 

is equivalent to (ii). 
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where k is a constant. Since M ( 0 ) =  f ( 0 ) =  1, we deduce k-----1, which 

proves (i). This completes the existence part of Theorem II1. To prove 

uniqueness, note that by lemmas 1 and 2 any function f ( z )  satisfying (i) 

and (ii) must satisfy (12.3) when (11.2) holds, and this condition together 

with (iii) implies (12.1), (12.2) and determines f ( z )  uniquely. 

13. Lastly we investigate under what circumstances the function f (z) 

of Theorem III actually has the maximum modulus M ( p ) .  We have in 

this connection first 

Theorem IV. Suppose that M(p)  given by (11.1) satisfies the con- 

ditions of  Theorem I I  and k-=-1 or 2. Then i f  r is an R-arc, there exists 

a unique function f (z) such that f ( 0 ) =  1 and 

[f(z)l <= m(Izj)  
with equality for z on y. 

Let y be given by (11.2). Then by Theorem III, if f ( z )  exists having 

the properties required in Theorem IV, then f (z) is unique. We know also 

that f ( z )  must be given by (12.1)and (12.2). Let us investigate this function 

f (z). The R-arcs where f (z) attains its maximum modulus must lie among 

z f '  (z) those where ~ -  is real and positive, by lemma 6. The arc y certainly has 

this property by (12.3), (11.2) and Theorem II (ii). If k = 1 it is by lemma 4 

the only arc with this property so that in this case Theorem IV follows. 

If  k-----2 and (11.2) holds, we have from (12.3) 

f '  (z) M' (p)  --_ a2p2 + . . .  
03.1) z f ( z ~ - P  M(p) " 

By condition (ii) of Theorem II, a2>  0,  so that the right hand side of 

(13.1) is positive for small real and positive or negative p. It follows from 

M" (p) is real and positive on only two R-arcs near p-----O, lemma 4 that p M(p)  

and since the positive and negative real axis give two such R-arcs, there 
f'  (z) 

can be no others. Thus the only points on [ z ]= /9 ,  where z - f ~  can 

attain its greatest positive value are given by 

Z =  pe i~ , z = - -  pe ~~ , 

with real positive p. At these points we have respectively 
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If(01 = M(p),  I f ( 0 [  = M ( - - D  

and since M (z) is its own maximum modulus for small complex z we have 

M ( p )  > M ( - - p ) .  

Hence the maximum of If(z)l on [z ] =  p occurs at z-~ pe ~~ which, together 

with (i) and (iii) of  Theorem III,  proves Theorem IV. 

We note incidentally that in Theorem IV strict inequality holds except 

when z is on y for small z, except that when k = 2  and M ( p ) ~ M ( - - p ) ,  

equality also holds at the point 

z -~ - -  pe i~ . 

where O(p )  is the function of (11.2). 

14. I f  k ~  3, the result of  Theorem IV breaks down, as we shall 

show in Theorem V below. In this case the problem of classifying all 

functions whose maximum modulus is M (p) appears much more difficult. 

T h e o r e m  V. Let M ( p )  be given by (11.1) with k>= 3.  Then there 

exists an R-arc, y such that no funct ion  f (z) exists satisfying for any 

> O, and all I z ] ~ E the inequality 

lf(z)[ <_- M(I*I) 
with equality for z on y. 

I f  contrary to this Theorem there is such a function f ( z )  we may 

without loss in generality assume that f ( 0 ) =  1, so that f ( z )  satisfies the 

conditions (i) to (iii) of  Theorem III.  We take for y the arc given by 

(14.1) z = peiC~a 

where a is a suitable large positive constant depending on M (p). Then if 

f (z) exists having maximum modulus M (p) and attaining it on y, it follows 

from Theorem III,  that we must have 

(14.2) f ' (z) M'(p) = (kakp~ + b~+, + ...) 
z f ( z )  --~~ M ( p )  

where b =  ( k + l ) a ~ + i .  We deduce from (14.1) that 

z = p + i ~ p 2 + . . .  

so that 
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(14.3)  p = z - -  i a z  2 + ... 

and substituting from (14.3) in (14.2)  we obtain 

z f "  ( z )  = kak  z t' (1 - -  kict  z + ...) + bz k+l + ... 
f ( z )  

----- kak  z k + (b ~ k 2 i~t ak) z k+l + ... 

whence 
b - -  k 2 i ~  ak ) zk+~ 

log f ( z ) =  akz ~ + k ~ - I  + . . . .  

W e  put z = pe i~ in the above and take real parts. This gives 

(14.4)  log I f  (pe i~ I : 

P~+' [b cos (k + l )  O + k2~x ak sin (k + l )  O] + akp ~ c o s k O  + k + ~  . . . .  

2z~ 
W e  now put (9 = - T - ~ - .  Then since k ~ 3 ,  we have s i n ( k +  1 ) O = s i n O ~ O .  

W e  may suppose a ak sin (k + 1) O > O. 

Hence a ak sin (k + 1) O can be made as large as we please by choosing 

sufficiently large. W e  obtain in (14.4) an expansion of  the form 

(14.5)  log l f ( pe /~  l ~ a~p k + f5 p~+* + ... 

where the constant ~ can be made as large as we please by a suitable choice 

of  a.  On the other hand when I zl--p and z lies on y, we have 

b 
log l f  (z) [ ---- log M (p) = akp k + ~ p~+l + .. . .  

where b is the constant in (14.2). Hence if ct is so large that ~ > b / ( k  + 1) 
2n 

we have for all small positive p, and one of  (9 : -T- k 

log I f  (pe  '~ 1 > log I f  (P e'~~ [ �9 

so that f (z) does not attain its max imum modulus on y. This contradicts 

our original assumption that Theorem V is false and completes the p roof  

of  that Theorem. 

IS .  In conclusion it may be worthwhile to point out some open 

questions. B 1 u m e n t h a 1 [ i ]  raised the prob lem of  characterizing the max imum 

modulus of  entire functions. A more modest  aim would be to obtain 

conditions for a function M ( p ) ,  regular at p = 0 and real for real p to be 
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the maximum modulus of  an entire function for sufficiently small p, and 

to decide in what way such a function M (p) can locally be the maximum 

modulus of  several entire functions. In this way it might be possible to 

settle the problem of whether two entire functions of  the form w = f (z) ,  

which have the same maximum modulus for all values of  p =  [zl are 

necessarily obtained from each other by reflections and rotations in the z- 

and w-planes ~2). 

A characterization of the maximum modulus of the smaller class of  

polynomials might also be of  interest. 

In connection with the preceding work i t  may be possible to genera- 

lize the Theorem I that a maximum modulus is always locally near the 

origin its own maximum modulus to a Theorem in the large. 

Further Theorem V opens the question of how to characterize all 

functions having a given maximum modulus 

M (p) = i + a k ~  + . . .  

in the neighbourhood of the origin, when k ~ 3,  

2. See also B. A n d e r s o n  [3], who used essentially lemmas 1 and 2 in an 
investigation of functions equivalent under rotation and reflection. 
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