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Introduction
1. Let f(z) be regular near z=0 and put

(1.1) M@)=Mlp, fl= I:?i);'lf(z)l-

It is well known that if f(z) is regular for [z| < p, M (p) is an increasing
function of o, and it was proved by Hadamard [2]® that log M (o) is a
convex function of log p. Blumenthal [1] further showed that M (o) is
itself an analytic function of p, except at an isolated number of points
01 <2< ... < Pn< .., so that M (o) is represented by distinct analytic
functions in the intervals On S 0X Ontr . ,

The fact that M (o) need not be given by just one analytic function
makes the problem of its characterization for instance for the class of entire
functions f (2) very difficult. We shall solve here a simpler problem, namely
the local characterization of M (p) near p=0. This amounts to characteri-
zing a certain class of functions M (p), regular at p=0 and real for real o,
corresponding (by 1.1) to the class of all f(z) regular at 2=0.

We shall see that for z lying on a certain analytic arc z = a (o), the
maximum modulus is attained. Since o (0) is regular at p=0, we shall be
able to make 0 complex and obtain a locally 1 : 1 correspondence between 2
and p. Using this approach we shall show that M (o) is itself a regular
function of o, which attains its maximum modulus on the positive real
axis, so that M (p) is its own maximum modulus (Theorem 1). We shall
also obtain an equivalent criterion for this to happen in terms of the coef-
ficients of the power series expansion of M (o) near o= 0 (Theorem II).

In Part II we shall study the class of functions M (0) having this
property, with a view to obtaining all functions f(2) such that (1.1) holds

1. Numbers in brackets refer to the bibliography at the end of the paper.
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for small p. It turns out that if
(1.2) M@=1+ap+.., a#o,

with £=1 or 2, then f(2) exists uniquely, satisfying (1.1) and f(0)=1,
and attaining its maximum modulus for small 0 on an assigned analytic
arc through the origin (Theorems III and IV). This result fails to hold,
however, whenever %> 3 in (1.2) (Theorem V).

Part 1.
2. The following two lemmas are fundamental to our theory.
Lemma 1. Suppose that f(2) is regular on the circle |z| =r, and that

7(’®—|f(re"9)|=0, at 0=0,.

Then if zo=1ré% and f(z) #0, 2 D) is real.
f (20)

We put
u(z) = log | f (2)] .

Then #(z) is harmonic at z=12, since f(2)7 0. Also we have at ©® =0,

J i6) —
—d(_)——u(re )=o0.

Expressing % (z) in terms of %,y this gives

d . ou ou .
90 ufrcos©, rsm@]——r[wcos@—ﬁsm@]——o,
i.e, at 2=2p,
— eieo ._di_iﬁ -—0
Im {r (dx 0y>}— ’

Im {zo—;;—logf(z)}=0, 2=2,
[ (z)

so that 20— —— is real as required.
F () E

We deduce immediately

Lemma 2. Suppose with the hypotheses of lemma 1, that z approaches zo
alng a curve'y , 2= a.(0) where p=|z|, and that y has a rangent making a
positive angle with the circle |z| =171 at z0. Then we have at p=7,

d . J(20)
"&;logif[“(!’)]! = &0 f(zo) .
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We write z = pe'®,
u(z) = log| f(z)| = u(p, ©).
Then if p, © are close to r, ®, we have
ou du
u(o, ©)—u(r, Q) = W(P—') + 59 (00— 00 +oflp—7[+[0—06,|}.
If farther 7¢*® lies on 7, so that |@—8,|=0|p—7],

) du .
and since also 50 = 0, ©®=0,, this becomes as z->2 along 7

w () — u (20)
=7 T oo
i.e.
d 0 J )
(2.1) 2 108l /T ()] = 0—“ = 55 log| /(o).

Also we have from the Cauchy-Riemann equations and our hypothesis

at ®=®o
9 i6 1 6y | .
30 arg f (0e®) = - delog]f(pe )| =o0.

Thus (2.1) may be written

LO _0_ ei80) = 60 L Y/ f(zo)
a5 ‘o8l /[ (oll| = o-log f (pe) = o=

or

4 [ (z0)
7%log|f[a(p)]| = %o f(z) °

which proves the lemma.
The idea of both these lemmas goes back to Blumenthal[1], but
he did not use the Function-theoretic formulation in terms of f(z), which

is the main tool of our Theory.

3. Lemma 1 shows us that the points where f(2) attains its maximum

ED)

modulus lie among the points where 2o 7 (20) is real. We next investigate
0,

the set of points near the origin where a regular function is real. It will
appear that this set consists of a finite number of regular arcs. To make

this concept precise we define
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Definition: A regular arc (R-arc) is defined to be the set of poinss ¥,
given by a function z=0a(t), 0 <t <€, where «(t) is regular atr t=0,
a(o)=0 w()#o0.

We shall suppose € so small that y does not cross itself. Apart
from this we do not distinguish between arcs given by the same function a
and different &s. If a(f), 0<¢<e, B(), 0<¢<m yield the same set of
points y, we shall say that o (f), P(¢) are different representations of 7.

There is one representation applicable to every R-arc and for this
reason particularly useful, in which |a(f)| = ¢. We have

Lemma 3. Suppose v is an R-arc. Then for some €0 there exists a
representation of y in the form

z=p6% 0<p<e
where © (0) is real for real p, and regular at p= 0. Conversely such an expres-
sion always yields an R-arc.

The converse part is trivial. To prove the lemma let
z=14(t)
be a representation of y, where ¢ (0)7%0. Then log¢(t) is regular at

=0, and we may write
log ¢ (8) = ¢:1()) + ¢ ¢2(?)
where ¢:1(#), ¢:(¢) are regular at £=0 and real for real £. Thus we may
write for 2 on 7
2= 11 g9,
We put
o = te®1®

Then p is a regular function of / at £=0, real for real ¢ and

ap
— = ¢@]Fo0

at £=0. Thus we may invert and put
t = 1(p)

where A(p) is regular at =0, and real and positive for real and positive p.
Hence
2 == pei P24 (0]
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gives the required representation, since . O (0)=¢;[A(p)] is real for real p

and regular at 0=0.

4. We next show that the set near the origin, where a regular function
is real consists of a finite number of R-arcs.

Lemma 4. Let
g@ =apttfap P+, k>0, ar£0,

be regular at x=0. Then if € is a sufficiently small positive number there exist
exactly 2& R-arcs, 11, Tz, ..., Yo with the following properties :

(i) The function g(2) is real at those points of |2| <€ which lie on the
arcs vv and only those.

(ii) On the arcs 11, 13, ..., Yo—s, £(2) is negative, while om Y2, ¥4, ..., T2t
g (2) s positive.

(iii) The arcs yv, yvy1, V=1, ..., 2k—1 and ym, 71 intersect at an

T . .
angle - with each other at 2 =0 and do not intersect elsewhere in |z| <.

The lemma is almost trivial. We include a proof merely for complete-
ness. We put
g(2) = apw*,

so that
1

a R
(4.1) w=z(1+ﬂz+...)k.

ai
Then g(z) is real, when @zw* is real, and this occurs on 24 halflines in
the w-plane of the form

w=re%, v=1, .., 2k.

where 7 is real and

n
®v+1 —_ Gv = T
Also adding % to © changes the sign of azw*. Thus if © = O, makes

f(z) positive, so do O, O, ..., Oy and 01, O3, ..., Ox_; make f(2)

negative.
dw

Since w given by (4.1) is a regular function of z near z =0, P 1,

we may choose € so small, that @ is univalent in |2|<e, so that the
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correspondence is 1: 1 and both ways regular. Let y» be the set of those
points in |2{< &, which correspond to w=7re». Then it is clear that
the 7y have the properties (i), (ii) and (iii) of lemma 4, since the z,w
correspondence is 1:1 and conformal.

Let 2 =@ (@) be the inverse of (4.1). Then the set y, consists of all
points of the form z=@(r¢'%), which lie in |z2|<&. We may choose ¢
so small that y, consists of a single R-arc corresponding to 07 <.
This proves that the 7, are R-arcs and completes the proof of lemma 4.

We next investigate the behaviour of £(z) on the y». We have

Lemma 5. Let yy, v=1, .., 2k be the arcs of the last lemma and let
&v(0) be the value necessarily real which g(2) takes at the intersection of yv and
| 2| = p (The intersection is unique if p is small enough). Then

() g (0) = (=1’ @l + ..,
is a regular function of p mear p= 0, real for real p.
(i) There exists a strictly increasing function W(p), 0 < p <€ for sufficiently
small €>0, such that we have for each v either
a) & (o) =u()
or b) & (o) <p(o), 0<p<e.
Further a) holds for at least one index v.
Let y» be given as in lemma 3 by
z = pe'®(P),
Then we have
&v (o) = g o],
which is clearly regular near p=0. Also from the definition of the

7v, & (o) is real for real positive p. Further

! i6,,(p)
!g’:;kp) = g[pBOkv ] > a, as 0>0,
i
since | 06 @ | =|p| for real p. Thus since g,(0) is real for real positive o,

negative for v odd and positive for v even, lemma 5 (i) follows.

Consider next
A(0) = gv(0) — g (0)

for two indices v, v'. Then A(p) is real for small positive p<¢e, and if
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€ is small enough A(p) has either constant sign or is identically zero.
Thus, if g, (p), & (0) are not identical, one of them is larger than the other
for small positive 0. We may thus find a greatest among the g, (o), for
small positive p, which has the properties required of |1(p) in lemma 5 (ii).

In fact
k(o) = la] o+ ..

and hence p(0) is necessarily strictly increasing for small positive p.

This completes the proof of lemma 5.

We shall call the g,(p) the real values of g(2) (on the circle 2| = p for
small positive 0 being understood). We shall say that the function w(p) of lemma
5 (ii) s the greatest real value of g(2). We shall also say that g(2) attains the
value &y (0) on all arcs gy, for which g, (0)=gv(p).

5. We can now relate our problem of the maximum modulus to the
preceding work. In studying the maximum modulus of f(2) near 2=0,

we may suppose without loss in generality that f(0)= 1. For if

¢ (z) = azt 4+ ...
has maximum modulus M (o), then CF:J;‘ = f(z) has maximum modulus
M
»|—21 rg . We shall always presuppose this normalization in future. We
then have

Lemma 6. Let
f@=1+az+ ..
be vegular mear z=0, and lte M(o)=Mp, fl= max|f(2)].

M’ [zj=p
(& is the greatest real value

Then for some €>0 and |2| <&, u(p)=p

PP . o
of g(z) =2 o Further the points of |2| <& for which
(5.1) [zl =p, [f()]=M(o)

consists of those R-arcs, where g(2) attains its greatest real value.

We know from lemma 1, that the points on which (5.1) holds lie
on the arcs 7y, V=1, .., 2k on which g(z) is real. Let f,(0) be the value
of |f(2)| at the intersection of 7 and |z|=p. Then M (o) is the largest
of f»(p), v=1, .., 2k
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The arc 7y is not tangential to |z|=p for small p.

Thus we may use lemma 2 and obtain for 0 < p<¢

Pdipbgfv(p)z-gv(p)-

Since f»(0)=1, we deduce that

4 dt
(5.2) f»(p) = exp {f g (%) T}

0
Now since & (p) < n(0) with the notation of lemma 5, with equality for

one or more indices v, we deduce from (5.2) that

(5.3) M(p) = yzl?ffufu(p)=exp{fu(t)d_t’}

and further that M (o) = f»(p), if and only if g(2) attains the real value
u(p) on 7». Thus the points of |z|=p for which |f(2)|=M(/z]), are
just those points which lie on the y, on which £(2) attains the value i (o).
The rest of the lemma follows from (5.3) and the proof of lemma 6

is complete.

6. We can now state our first main Theorem, characterizing the
function M (0). We have

Theorem 1. Suppose that
fE=1+4+mz*+ ..., a£0
is regular at 2=0. Let
M(p)=Mlp, /] = max | /().
Then we bave
o) M(o)=1+|asl o+ ...
is a regular function of p near p=20.

(ii) If M (o) is continued into the complex domain then for some €>0,
and 0 < p<e, 0O 21 we have the inequality

| M (0e*)| < M (p).
(iii) The points z in |2| <€, such that |z|=p,|f ()| = M (p), form
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at most k R-arcs, which make angles of —-%éﬁ— with each other at 2=0, where
P s a positive integer.

The important property is (if), which shows that the maximum modulus
functions M (p), are just those functions, regular at o= 0, and real for
real p, which attain their maximum modulus on the positive real axis, i.e.,
those which are their own maximum modulus.

We know from lemma 6 that for small p

M’ (o)
(6.1 oy = ,
) Par(p) ~HP
, f() .
where W(p) is the greatest real value of zf—(ﬁ By lemma 5, pn(p) is
regular at p=0 and has there an expansion of the form
(6.2) uwip) =4 ar|p*+ ...
since
f @)
2" =kap*+ ...
fa

near z=0. From (6.1), (6.2) we infer that M (p) is regular near p=0,

and has a power series expansion of the form
M(p)=1 +|ak|p’°+...

This proves (i). Again by lemma 6, f(2) attains its maximum modulus on

just those R-arcs on which z—f (z)

@

arcs have the properties required in Theorem I (iii) by lemma 4. In fact

attains its greatest real value, and these

the arcs of Theorem I must be among the arcs 7y of lemma 4 with v even.

1. It remains to prove Theorem I (ii) and the proof uses the whole
of our preceding theory. Suppose that (ii) is false, so that for small p
M (p) does not attain its maximum modulus on the positive real axis.
Then it follows from lemma 6, that n(o) given by (6.1) does not have
its greatest real value on the positive real axis. Thus for all small positive ,

we can find a complex p such that |p|=%, and p(p) is real and satisfies

u(p) > p (k).

For each small % choose such a value p=p: and put p, =;7-1. Then since
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u{p) is real for real p, we have
u(o2) = n(o) = (o)

so that

(7.1) 1 (o) = n(o) > p(#)
and

(7.2) pr=pi, |pil=|p:| =4

Now let y be an R-arc on which f(2) attains its maximum modulus

for small positive p. We write y in the form
(7.3) z = pe*®P),
where ©(p) is real for real p, as we may do by lemma 3. Also if z, p are

related as in (7.3) and p is real and positive, it follows from lemma 6

that we have

@ _ M)
(7~4) z f(Z) =p M(P) _M(lo)

It follows by analytic continuation that the identity (7.4) continues to hold
when 2, p are complex numbers related as in (7.3). In particular if
Z=21, 2, %, correspond to the numbers o= 01, p2, £ of (7.2), we have
from (7.1)

f’(zl) _ f’(Zz) f’(zk)
(7.5) “TE T @) f)

Since £#>0, the point 2 is the intersection of the arc y of (7.3) and the

>

citcle |2z]=4. Also o1, p: are reflections of each other in the real p axis.

Hence we have
0 (o)) = 8 (02)
since the function © (p) of (7.3) is real for real p and so
|22 ] = | pypa | | 18P +ECON| = [ o0, | = £2,
using (7.2) and (7.3). Thus at least one of 2,2, z=2 say, satisfies

S (2)

|z1| < #. Combining this with (7.5) we see that z 0, does not attain

its greatest real value on the arc y for small 4, since we can find a point
z1 no further from the origin than the point on |z|=4% and y, where

I (2)
f @)

2

takes a larger real value. From this it follows by lemma 6, that
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J(2) cannot attain its maximum modulus on y, for small 2z, contrary to
hypothesis. Thus our original assumption, that M (p) is not its own maximum
modulus for small p must have been incorrect, and Theorem I (ii) is proved.

This completes the proof of Theorem I

8. In Theorem I we have characterized those functions, which are
the maximum modulus of some other function. We now prove an equivalent
criterion, which depends only on the power series expansion of M (p) near
p=0. This is

Theorem II. Let
(8.1) M@p)=1+ap+.., a#0

be real for real p. Then M (0) is the maximum modulus M[p, f(2)] of some
Sunction regular for |z| <€, where € is some positive number if and only if
the following conditions are satisfied :

(1)  The series (8.1) has a positive radius of comvergence;

(i) a > 0;

(iii) for every positive integer §, let B (7) be the function defined as follows:
let v be the smallest positive integer if any such that vj is not a muliple of k
and ay 7 0; then

B()=av.

If no such integers exist, we put B(j) = 0.

Then B(7) = O for every positive integer j.

The criterion of Theorem II, although we shall deduce it from
Theorem I, does not use any properties of M (p) outside its original domain

of definition 0<p<e.

9. To prove the Theorem we need two further lemmas.
Lemma 7. Lt

M@ =1+a2*+.., a>0,
be real for real z, and let
”(”)=|ﬁ’i’§, | M (2)].
Then given €>0, there exists O such that if 0 < p<d and O is real,
z=p0e%, |M@)[=p(p)
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we have

<&,

2my
o

where § is an integer. Further if j=0, ©=0.

We know from lemma 6 that M (2) attains its maximum modulus on

o M) M ()

those R-arcs on which z--—-" attains its greatest real value. Now z
M (2) M ()
is certainly real and positive on the positive real axis for small 2z, hence

M ()
M)

make an angle Z with the positive real axis, where 7 is a non-zero

the other R-arcs on which z is real and positive must by lemma 4

integer. This proves lemma 7.

We have next

Lemma 8. Suppose the power series (8.1) has a positive radius of conver-
gence and let M (2) be its sum for p=2z (possibly complex). Let B(j) =B be

defined as in Theorem II (iii) and put o = 2%] Then there exists €> 0,

such that for |z| <e, |argz| <& we have

() [M@E)|>|M (=] if B>o,

(i) |M(@)|<|M@E]| if B<o,

(iii) M (2) = M (z¢*%) if B=0.
We put
(9.1) M (z) = My (2) + M2(2)
where M, (z) is the sum of all those powers 4,2 for which k is a factor
of vj.
(9.2) M (z) = a2’ .
If B=0, then M,(2) =0 and in this case M (2) = M:(z). Also we have
clearly always

2néf
(9.3) My (2) = My (zei®) = M,y (ze # ).
Thus (iii) follows.
Suppose next B 0. In this case we have for some v>k,
M () =02+ ...
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We put
z=p(cos ® + isin O),
so that
2’ = ¥ (cos v © + 7 sin vO)
and
(9.4) M, (z) = Bp* [cosvO + 7sinv O +0(1)],

where 0 (1) denotes a function of 2, which tends to zero uniformly as z—0.

We may write using (9.3)
(9.5) M (2) = M, (z¢"%) = u (2) + v (2).
We have from (9.1), (9.4), (9.5)
M (2 = {u () + Bp” [cos v O + 0 ()]}* + {v (2) + Bo” [sinv O + 0 (1)]}*.
This gives
(9.6) |M () —|M (z6%)|* = 2Bp"u (2) [cos v O — cos v (O + a) + 0 (1)],
since from (9.2) #(2)—1, v(2)—0 as z— 0. Now by hypothesis va is
not a multiple of 2w, so that cos va<1. Hence if € is sufficiently small
and |@| < e, 0<p<¢ then
20" % (2) [cosvO —cos v (@ +a) + o(1]
is positive, so that from (9.6)
| M@)| 2 | MG
according as

>
B<o.

This completes the proof of lemma 8.

10. We can now prove Theorem II. We know from Theorem I,
that M (o) is the maximum modulus of some function f(z) if and only if
M(2) attains its own maximum modulus on the positive real axis. Let

M(z) be the function of Theorem II and suppose that for |z|<e, largz|<e
2mif .

and every o = —%1»]— for =1, 2, .., #—1, the results of lemma 8 hold.

Next choose d<e so small that the points z=p¢®, 0<p<d such that

|M@)| = pn(o)
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in the notation of lemma 7 all satisfy
(10.1) |©@ —aj| < ¢
21] .
where a; = ——zj— for some 7=0, 1, 2, ..., £—1.

Then if () 2 0 for every j, we have from lemma 8, if z= pe®
and (10.1) is satisfied with

(10.2) | M (ze=%5) | 2 | M (2) |,

so that the maximum modulus is certainly also attained for some © with
|©|<e, and hence ®=0 by lemma 7. Thus if the conditions (i), (ii)
and (iii) of Theorem II are satisfied M (2) attains its maximum modulus
for small z on the positive real axis, so that M (p) is the maximum modulus
of the function M (2).

Conversely (i) and (ii) are also necessary for this, by Theorem I.
Suppose next that (iii) is not satisfied, so that B (7)< 0 for some 7. Then
we have from lemma 8 for small positive p

| 2mi

| MGoe £)| > M),
so that M (z) does not attain its maximum modulus on the positive real
axis for small z, and hence by Theorem I, M (p) cannot be the maximum
modulus of any function f(2). This shows that the conditions (iii) of
Theorem II are also necessary in order that M (o) should be the maximum

modulus of any function f(z). This completes the proof of Theorem II.

Remark: We note that M (2) attains its maximum modulus on the positive
real axis and nowbere else if and only if B(j)>0, for j=1, 2, ..., b—1.

For in this case we cannot have [(j) = 0 since otherwise, by lemma 8, we have
M (o) = M (pe?™5T%y.

Conversely if (7)>0 for j=1, 2, ..., £—1, and
| M (o) | = M (p)

for some small p and 0 < O < 2n we have from lemma 7, for some 7,

< &

_ 2
o

and hence if 7 is not a multiple of £ we deduce from lemma 8
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IM[pei (e—znj/é)” > M(p)

which gives a contradiction. Thus we must have 7=0, |®| <& and hence

from lemma 7, © = 0. This proves the remark.

Part II.
11. We have now solved our first problem, namely the characterization

of the functions
M(0) = max /@)

which are for small positive p the maximum modulus of some function
f(2), regular at z=0. The conditions are that M(p) is for small positive
o the sum of a convergent power series in p, some of whose coefficients
(depending on the index of the first non-vanishing coefficient) must be
positive.

We now attack the problem of characterizing all functions with a

given maximum modulus of this type. Let
(11.1) M@E)=1+ao+..., &F#0

satisfy the conditions of Theorem II. Then we shall see (Theorem IV) that
it is always uniquely possible to find a normalized function f(z) having
maximum modulus M (o) and attaining it on an assigned R-arc y for small
positive p, when 2=1 or 2. However if (11.1) holds with k=3, this
result is false (Theorem V),

We first prove the following result:

Theorem III. Ler M(0), regular near p= 0 and real for real p, be given
by (11.1). Let v be an R-arc given by

(11.2) z = pe'%P)

where O (0) is regular near 0=0 and real for real p. Then there exists a
unique function f(2) regular near 2=0 and having for some €> 0 the following

properties :
(@) [flee*]| = M(0), 0<p<s,
() g |/ =0, ©=0(), 0<p<s,

(i) f(0)=1.
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If there exists f(z) having maximum modulus (or minimum modulus !)
M(p) and attaining the maximum (or minimum) modulus on 7, it must
certainly satisfy (i) and (ii). By further multiplying by a constant ¢ we may
assume (iii) satisfied also. Thus the conditions (i) to (iii) of Theorem III
are certainly necessary for the result we are seeking. In order that the function
f(z) of that Theorem $hould in effect bave its maximum modulus M (o),
it is further necessary that M (o) should satisfy the conditions (ii) and (iii) of
Theorem II. We shall see that when 2= 1 or 2 this further condition is
also sufficient, but not when %= 3. There is thus a sharp distinction between

these two cases.

12. We proceed to prove Theorem III. Let z be related to p by (11.2),
where p,z are small complex numbers and let p= p(z) be the inverse
functdon of (11.2) clearly regular at 2= 0. We put

(12.1) @) =¢glo®] = p%’((z))-
and

: dz
(12.2) f@)= exPJ HORES

Then f(z) is the required function in Theorem III.

In fact g(2) is cleatly regular and vanishes at 2=0, and so [f(z) is
regular at 2=0 and satisfies (iii).

Again we have from (12.1), (12.2)

if z,p ate related as in (11.2) and so in particular z

/ (f)— is real for 2

f @)
on 7, and the argument of lemma 1 shows that this is equivalent to (ii).

Lastly it now follows from lemma 2, that if

w(o) = | f [P |
then we have for small positive p, z= e’
¥ (o) /() M (o)
=z =
U T T My
using (12.3), and hence

M (0) = k(o)
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where & is a constant. Since M(0)= f(0)=1, we deduce k=1, which
proves (i). This completes the existence part of Theorem III. To prove
uniqueness, note that by lemmas 1 and 2 any function f(2) satisfying (i)
and (ii) must satisfy (12.3) when (11.2) holds, and this condition together
with (iii) implies (12.1), (12.2) and determines f(z) uniquely.

13. Lastly we investigate under what circumstances the function f (2)
of Theorem III actually has the maximum modulus M (o). We have in
this connection first

Theorem IV. Suppose that M (o) given by (11.1) satisfies the con-
ditions of Theorem II and k=1 or 2. Then if y is an R-arc, there exists
a unique function f(z) such that f(0)=1 and

[f@| < M(|z])
with equality for z on y.

Let 7 be given by (11.2). Then by Theorem III, if f(2) exists having
the properties required in Theorem IV, then f(2) is unique. We know also
that f(2z) must be given by (12.1) and (12.2). Let us investigate this function
f(2). The R-atcs where f(z) attains its maximum modulus must lie among

f(2)

those where 2 76 is real and positive, by lemma 6. The arc y certainly has

this propetty by (12.3), (11.2) and Theorem II (ii). If £=1 it is by lemma 4
the only arc with this propetty so that in this case Theorem IV follows.
If £=2 and (11.2) holds, we have from (12.3)

F@ M@
F@ TP T

By condition (ii) of Theorem II, 4,>0, so that the right hand side of

(13.1)

(13.1) is positive for small real and positive or negative p. It follows from

lemma 4 that o ]1\;11((5% is real and positive on only two R-arcs near p=0,
and since the positive and negative real axis give two such R-arcs, there
f'(2)

can be no others. Thus the only points on |z|=p, where z

can
/@
attain its greatest positive value are given by

Z = peie(l’) , 2= — pg‘ie(—P)’

with real positive p. At these points we have respectively
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lf @ = M), |f @)= M(—p)
and since M (2) is its own maximum modulus for small complex z we have
M(p) > M(—p).

Hence the maximum of |f(2)] on |z|=p occurs at 2= pe'®?) | which, together
with (i) and (iii) of Theorem III, proves Theorem IV.

We note incidentally that in Theorem IV strict inequality holds except
when z is on y for small z, except that when k=2 and M (p) = M(—p),

equality also holds at the point

2 == - peie(—'P) .

where © (o) is the function of (11.2).

14. If =3, the result of Theorem IV breaks down, as we shall
show in Theorem V below. In this case the problem of classifying all

functions whose maximum modulus is M (o) appears much more difficult.

Theorem V. Let M(p) be given by (11.1) with k=3 . Then there
exists an R-arc, y such that no function f(2) exists satisfying for anmy

>0, and all |z| <& the inequality
[ f@)] < M(]z])
with equality for z on 7.

If contrary to this Theorem there is such a function f(2) we may
without loss in generality assume that f(0)=1, so that f(2) satisfies the
conditions (i) to (iii) of Theorem III. We take for y the arc given by

(14.1) z = pe'er
where « is a suitable large positive constant depending on M (p). Then if

f (2) exists having maximum modulus M (0) and attaining it on 7, it follows

from Theorem III, that we must have

(14.2) : ’}8 —» x((f)) — (Bagh + b + )

where b= (£+41) a4+1. We deduce from (14.1) that
z=p+iap0" + ..

so that
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(14.3) p=1z—102" + ..

and substituting from (14.3) in (14.2) we obtain

2 J;Z; = kapz*(1 —kiaz 4 ..) + b2 + ...

= kay2* + (b—F io ap) 21 4 ..
whence
b—Riaay

Iogf(z)-:akzk+( F 1

)zk‘“ + ...

We put z= pe'® in the above and take real parts. This gives

(14.4) log| f (0e) | =
o
app cos kRO + e [6cos(k+1)O + klaasin(k+1)0] + ...
2n

We now put O =TF . Then since 223, we have sin (#+1)0=sin®@+0.

&
We may suppose aasin(k+1)0 >0.
Hence oagsin(k + 1) 0O can be made as large as we please by choosing

a sufficiently large. We obtain in (14.4) an expansion of the form

(14.5) log | £ (0€®) | = auph + B o+ + ...

where the constant B can be made as large as we please by a suitable choice
of a. On the other hand when |z |= p and z lies on y, we have
b
log| f (2) | = log M (0) = arp* +mp"+l + .,

where b is the constant in (14.2). Hence if a is so large that B> b/(k + 1)

we have for all small positive p, and one of © = T 2—;

log| f (pe'®)| > log| f (0e'®?)| .

so that f(z) does not attain its maximum modulus on y. This contradicts
our original assumption that Theorem V is false and completes the proof

of that Theorem.

15. In conclusion it may be worthwhile to point out some open
questions. Blum enthal [1] raised the problem of characterizing the maximum
modulus of entire functions. A more modest aim would be to obtain

conditions for a function M(p), regular at p=0 and real for real p to be
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the maximum modulus of an entire function for sufficiently small o, and
to decide in what way such a function M(p) can locally be the maximum
modulus of several entire functions. In this way it might be possible to
settle the problem of whether two entire functions of the form w= f(2),
which have the same maximum modulus for all values of o=|z| are
necessarily obtained from each other by reflections and rotations in the z-
and w-planes .

A characterization of the maximum modulus of the smaller class of
polynomials might also be of interest.

In connection with the preceding work ‘it may be possible to genera-
lize the Theorem 1 that a maximum modulus is always locally near the
origin its own maximum modulus to a Theorem in the large.

Further Theorem V opens the question of how to characterize all

functions having a given maximum modulus
M(p) =1 +akp” + ...

in the neighbourhood of the origin, when k2= 3.

2. See also B. Anderson [3], who used essentially lemmas 1 and 2 in an
investigation of functions equivalent under rotation and reflection.
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