
ON LINEAR ACCESSIBILITY 

AND Tta, ~, ,SONFORMAL MAPPING OF CONVEX D O MA IN S  

By 

T. SHEIL-SMALL 

in York, England 

Introduction.  Following Biernacki [1] a domain D in the plane will be 

called linearly accessible if  its complement D c can be written as a union of  half- 

lines. Lewandowski [3, 4] has shown that the close-to-convex domains of Kaplan 

[2] are precisely those which are linearly accessible in the "strict sense" of 

Biernacki: the complement can be written as a union of mutually disjoint 

half-lines (except that the endpoint of  one half-line can lie on another half- 

line). Kaplan's definition can be phrased as follows: a domain D z in the 

z-plane is close-to-convex if there is a schlicht conformal mapping w = f ( z )  

of  Dz onto a convex domain D~, with the property that Ref ' ( z )  > 0 for every 

z ~ D z. Although a great deal of  work has been done on close-to-convex 

domains and their conformal mappings onto the unit disc, no results whatever 

(even by Biernacki) have appeared on the more general linearly accessible 

class. Nevertheless these domains arise in a very natural way in connection 

with the conformal mapping of one convex domain onto another. Moreover, 

as we will see, it appears likely that there is an alternative characterisation 

of  linear accessibility in terms of conformal mappings onto convex domains 

very similar to the close-to-convex condition. The work of  this paper centres 

round this connection between convexity and linear accessibility and we will 

establish a sufficient condition for a domain to be linearly accessible. The 

study of the conformal mappings of  the unit disc onto linearly accessible 

domains will not be attempted here, although in conclusion we will mention 

without proof  some results we have obtained concerning these. 

1. We begin with two definitions. Let 7 be a simple arc z(t) (a < t < b). 

We will say that 7 is close-to-linear if  there is a system of  parallel lines 

259 



260 T. SHEIL-SMALL 

covering the plane with the property that  each line in the system intersects ? 

in at most a single point or a line segment. I t  is clear from this definition 

that every point  z not on 7 lies on a half-l ine which does not meet  ?. A simple 

arc 7 satisfying this latter condition will be said to be an arc of  linear type. 

We mention a few examples illustrating these definitions: a line segment, 

an arc consisting of  two adjoining line segments, a Z shape and a semi-circle 

are all close-to-linear arcs; any proper sub-arc of  a simple closed convex 

curve is an arc of  linear type. In particular a circular arc which contains 

properly a semi-circle is an arc of  linear type which is not close-to-linear. 

2. I t  is convenient to give an alternative characterisation for each type 

of arc. For this purpose we assume that  the arcs are regular (i.e. z '( t)  exists, 

is continuous and # 0). 

L e m m a  2 .1 .  A simple regular arc 7: z = z(t) (a < t <- b) is close-to- 

linear if, and only if, 

(2.1.1) l argz'(t2) - a rgz ' ( t l ) [  < lr 

for  any two points tx and t 2 in [a ,b ] .  

P r o o f .  Suppose first that 7 is close-to-linear. Without loss of  generality 

we may assume that every line parallel to the imaginary axis intersects ? in 

at most a line segment, and further that  Re z(a) < Re z(b).  I t  is then clear 

that Rez ' ( t )  => 0 (a - t _< b) and the condition (2.1.1) follows immediately. 

Conversely, the condition implies that there is a real number 2 such that 

7~ largz'(t)-21__< ~ (a _< t _< b), 

i.e. that Ree- iaz ' ( t )  _-> 0 (a < t < b). Thus 

t 2  

Re e-tX(z(t2) - z(tl)) = f Ree-i~z ' ( t )dt  > O, 
i g  
t l  

where equality occurs if, and only if, Ree-~Xz'(t) = 0 for tl < t < t 2 . Hence 

every line parallel to the imaginary axis meets the arc e-~Zz(t) in at most  a 

line segment, and the lemma follows. 
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L e m m a  2 .2 ,  A simple regular arcT: z = z(t) (a <- t < b) is of linear 

type if, and only if, for  any three points to, t 1 and t 2 in [a, b] we have 

[ a r g  z ( t 2 ) -  z(t~ arg z( t , )  - Z(to) I (2.2.1) < 

I I t 2 --  t o t l  to 

P r o o f.  Suppose first that 7 is of  linear type and let us assume that  the 

proposition is false. We can then find three points to, tl and t2 in [a, b] such 

that 

(2.2.2) ~z < l arg z(t2) - Z(to) arg z(ta) - z(to) I < 2~. 
t2 - -  to t l  - -  to 

Let us assume in the first instance that  to < tx < t2 .  For convenience of  no- 

tation and without loss of  generality we will assume further that  ZOo) = O, 

zOO = zt > 0 and z(t2) = z2 satisfies Im z2 < 0. Since 7 is simple and regular, 

for sufficiently small r > 0, the closed disc A of  radius r and centre z,  inter- 

sects 7 in a single simple arc 7' passing through z t . The inequality (2.2.2) 

implies that  every ray from the origin making an angle between 0 and 

argz2 > rc meets 7 for some value of  t in ( t l , t2) .  Put  ~ = argz2,  so that  

rc < ~ < 2~, and choose r sufficiently small so that the angle subtended at 

the origin by the circle C bounding A is e < ~ - n. We now choose two points 

( t  and (2 on the complementary open circular arcs of  C whose endpoints 

coincide with those of  7'. Neither (i  nor  (2 lie on 7, so we can find half-lines 

Ii and 12 with respective endpoints ( t  and (2 which fail to meet 7. Let  C1 

and C2 be the complementary circular arcs of  C with endpoints (1 and ~2, 

it being assumed that  ll and 12 do not meet the interior of  A. The comple- 

ment of  A is divided by I t and 12 into at most  three open components:  Dt 

with boundary C t and a subset of  11 u 12, D 2 with boundary C2 and a subset 

of  11 u 12, and possibly a sector S formed by 11 and 12. I f  S exists it is 

separated from C and contains no points of  7. I f  we suppose that 0 ~D1,  

then we can find st and s2 satisfying to < st < t~ < s 2 < t2 such that  z(t) ~ Dt 

for  to _-< t < sx, z( t )~  D 2 for s 2 < t ~_~ t 2 and z ( t )~A  for st < t _< s 2. By 

hypothesis every ray l 0 = {w/argw = 0} such that �89 < 0 < ~ meets 7 for 

values of  t > sa, and therefore meets D z . Hence every such ray intersects 
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either 1 t or 12 . Let At be the set of  0 in ()e, ct) such that lo meets 11, and define 

A 2 similarly. A 1 and A2 are clearly open intervals of  length < z~, and since 

their union is the interval (�89 ~) which has length > zc, their intersection is 

a non-empty open interval (x,y).  We may suppose then that  A1 = (�89 y) ,  

A 2 = (x, e),  where x < y .  Now since (~ and (2 lie in the sector [arg w I ---- e, 

it is clear that x > 7r - �89 and y < rc + �89 and that l~ has the same direction 

as Ix and 12 as ly. I f  Ix meets 12 at w2 and ly meets 11 at wa, then wx and w2 

lie in the sector r~ - �89 < arg w < rc + �89 and It and 12 meet also in this sector 

at Wo, which is the fourth vertex completing the parallelogram 0, wl, w2 

along I1 and 12. I t  follows that Wo is the vertex of the sector S and that  the 

ray from 0 through Wo does not meet D2, so does not meet 7. This contra- 

diction establishes (2.2.1) in this case. The case tx < t2 < to follows similarly. 

The ease tl < to < t2 can be deduced f rom the previous cases and we omit 

the details. 

For  the converse we assume (2.2.1) satisfied and choose Zo~y.  Assume 

that every half-line f rom Zo meets 7. For  simplicity of  notation we can assume 

that Zo = 0. We can find points t~ and t2 in [ a ,b ]  such that  z ( tx )<  0, 

z(t2) > 0 and (z(tl),z(t2)) does not meet 7. We may suppose that  tl < t : .  

The inequality (2.2.1) implies that there is a line L I through z(tx) such that 

z(t) lies on one side of  L~ for t < t~ and on the other side for t > tl (meeting 

L 1 being permitted), and a similar line L2 through z(t2). We consider three 

cases :  

(i) L 1 parallel to L 2 but not coinciding with the real axis; in this case 

for t 1 < t < t2, z(t)  lies in a half-strip bounded by L1, Lz and [z(tl),z(t2)] 

and no point of  ~ lies in the opposite half-strip; hence the half-line from 0 

parallel to L 1 and into the latter half-strip fails to meet 7, a contradiction; 

(ii) L 1 and L 2 coincide with the real axis; we may  suppose then that 

Re z(t) > 0 for t > tl ; it follows that  for some t < t2, Re z(t) > 0 and there- 

fore Re z(t) > 0 for t < t2; thus Re z(t) > 0 for all t and we again obtain 

a contradiction; 

(iii) La and L 2 meet at a point za; let S be the open sector with vertex 

at z a and which contains 0; let S '  be the opposite open sector; every ray from 0 

lying entirely in S can meet 7 only for t in (t~, t2); it is therefore clear that 

does not meet the open triangle whose vertices are z(q), z(t2) and za; 



LINEAR ACCESSIBILITY 263 

also ~ cannot meet S ' ;  therefore by hypothesis z a e y, say z a = z(ta); if t 3 < tl 

then z 3 r z = z(t) (t2 < t < b); hence there is an open disc of  centre z 3 not 

meeting 7'; there is a ray from 0 passing through this disc and into S' which 

never meets the region in which z(t) lies for t < t l ,  and therefore never meets 

~; similarly if t 3 > t2; this final contradiction completes the proof. 

3. We now present a result which contains within it some interesting 

structural information about the conformal mapping of  one convex domain 

onto another. 

T h e o r e m  3.1 .  Let w =f ( z )  be a schlicht conformal mapping of a 

convex domain D, onto a convex domain Dw. For any three points Zo, z 1 

and z2 in D~ we have 

(3.1.1) l argf(Z2)zf(--z~ arg f (Z l ) - J ( z~  l < 7r. 
Z 2 - -  Z 0 Z 1 - -  Z 0 

R e m a r k  3 .2 .  Roughly speaking this result is geometrically obvious if 

the points Zo, z 1 and z2 are boundary points of  D, occurring say in that order 

as the boundary is traversed in the positive direction: for then the angle sub- 

tended by z 1 and zz at Zo lies between 0 and re, and since the image points 

occur in the same order on the boundary of  D w, the angle subtended b y f ( z l )  

and f(z2) at f (zo)  also lies between 0 and n. 

L e m m a  3.3 .  Let h(O be regular and univalent in [(1 < 1, h(O) = 0, 

and let the image ~ of[ ( I < 1 be starlike with respect to O. Let (1 and ~2 

be two points in the open unit disc. Then there is a real number ct, depend- 

ing on ~1 and (2 but not on the particular function h, such that 

(3.3.1) zc h((2) �89 arg h((t) 
- ~ + c t < � 8 9  (2 

P r o o f .  

write 

7~ 
< ~ + ~ .  

By the well-known Integral Representation formula we can 

2~ 

( i f  1 ) h'(O) = ~ exp ~ log dV(t) 
o (1 - ~e- l f )  2 
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where V(t) is an increasing function such that 
2~ 

f dV(t) = 2~. 
0 

We thus have 

(3.3.2) �89 h((2) �89 
h ( ~ l )  

~2 - arg ~1 

The mapping 

2~ 

f r e -i, = 1 arg 1 - ~1. ~;dV(t). 
2r~ 1 {2e-" 

0 

1 - -  ~10" 

1 - -  ~2 O" 
( ta l  _< 1) 

sends the closed disc [a I < 1 onto a closed disc not containing the origin. 

Therefore there is a real number a such that for all real t 

n 1 - ( l e - "  

- ~ + a < a r g  1 - ~2 e-it  < -~-bO~. 

We deduce (3.3.1) from (3.3.2). 

(3.4) P r o o f  of  3.1.  Let w = ~b(~) be a schlicht conformal mapping 

of lr I < 1 onto Dw and let q(O = f-~(~b(()). ~b(() and r are then convex 

schlicht functions in ] ( I  < 1, and therefore I6] the functions 

~ ~ ( ~ 0 ) ~  ~ 
- -  , k ( O = ~ \  ~ - ~ o  ] 

are starlike in 1~1 < 1 for any (o(1(o[ < 1). Let (1 and (2 be any two points 

in [~1 < 1. It then follows from Lemma (3.3) that 

so that 

h((2) h(~j) 
I �89 k(~2) �89 ] < n  

l arg tk(~2) - ~b((~ arg ~b((1) - q~(~o) 
r - ~'((o) ~'(G) - ~-~o) I 

7r. 
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Since the points ~o, (1 and (2 are arbitrary in ] (1 < 1, we can write Zo = ~((o), 

zx = r and z2 = ~((2). Then f (zo)  = ~b((o), f ( z O  = ~b((1) and 

f(z2) = ~b((2) and the result follows. 

It is also interesting to note that this result is characteristic of convex 

domains Dz. To be precise we have 

(3.5) Let Dz be a simply-connected domain with the property that every 

schlicht conformal mapping w = f ( z )  of Dz onto a convex domain Dw saris- 

ties (3.1.1)for any three points Zo, zl and z 2 in Dz. Then Dz is convex. 

P r o o f .  Let z = ~b(() be a schlicht conformal mapping of  [ ( [ <  1 onto 

D~ and let w = ~b(() be an arbitrary schlicht conformal mapping of [([ < 1 

onto a convex domain Dw. Then the hypothesis implies that for any three 

points (o, (1 and (2 in ]([ < 1 we have 

~ ( G )  - ~ ( (o )  ~ ( ( 1 )  - ~ ( (o )  I arg arg < 
~ ( G )  -- ~ ( (0 )  ~ ( ( 1 )  r  

From this it is easily deduced that for any two points (1 and (2 in l(I  < l 

we have 

I _ _  _ (3.5.1) arg G((2) arg < 2~z G((I )  
F((2) F((1) 

where G(0 = (~b'(() and F ( ( ) =  (4~'((). Thus it is sufficient to show that 

if for a given G((), (3.5.1) holds for every starlike F ( 0 ,  then G(0 is starlike. 

To establish this result we begin by observing that arg G(O/( is a bounded 

harmonic function and therefore 

U(t) = lira argG(rd') 
r--~l 

exists for almost all real t. Also V(t) = lim,_., argF(rd') exists for all t when 

F(z) is starlike. By hypothesis 

I (U( t2) -  V(t2)) -  ( U ( q ) -  V(ti)) I < 2~ 

for all ta and t2 on the set E where U(t) exists. If  t2 > tl we have therefore 

U( t2 ) -  U(tl) > - 2 ~  + V( t2) -  V(tO. 
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This holds for all increasing functions V(t) which satisfy V(t + 2n) = V(t) + 21t 

for all t .  In particular V(t) may be step function with at least one jump of 

2n occurring between tx and t 2. We deduce that U(t2) - U(t,) > O. Thus 

U(t) is increasing on E.  We may extend U(t) to all real values by setting 

U(t) = �89 => t,  z ~E} + sup{U(~)/~ =< t ,  z e E}). 

The resulting function is then increasing for all t and U(t + 2re) = U(t) + 2re. 

Now if 1([ < R < 1 we have by Poisson's formula 

2 ~  

f St t St ~G'(O 1 Reit + ( , ,  Re G (Re)  . 
- ~ ~ , ~  ~ a t  ReSt G(~) 2= 

0 

2~ 
= l + ' f ~ReSt G(ReU) dt, 

(Re~ Z ~)i arg ReSt 
0 

the third expression being obtained by an integration by parts. We observe 

that the final integrand is bounded as R ~ 1 and converges almost every- 

where to ~e-it(1- (e-St)-Z(u(t)- t). Therefore by the Lebesgue bounded 

convergence theorem 

2r~ 

~G'(~) = 1 +  .- (l~-se~-e~---s') 2 ( U ( t ) - t ) d t  
0 

2n 

1 ~ 1 +_ (e-"  
dU(D i 

2re ~r 1 - ( e - "  "'" 
0 

Thus Re ~G'(O/G(~) > 0 and the result follows. 

4. This section is concerned with the interpretation of  the inequality 

(3.1.1). For this purpose we introduce the following definition: we will say 

a domain D is of convex type if  there is a schlicht conformal mapping w = f(z)  

of D onto a convex domain with the property that 

(4.1) ] argi(Z')-i(:~ 
Z 2 - -  Z 0 Z 1 - -  Z 0 

for any three points Zo, z 1 and z 2 in D. We deduce immediately from (3.1): 
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(4.2) A schlicht conformal mapping of a convex domain D~ onto a convex 

domain D~ maps every convex sub-domain of Dz onto a domain of convex 

type in D~. 

(4.3) Every close-to-convex domain is a domain of convex type. 

For  if  w = f ( z )  is a schlicht conformal  mapp ing  o f  D~ onto a convex domain  

D~,  and if  Ref ' ( z )  > 0 in D~, then for  any two points zl  and z2 in Dz we 
have 

1 

R z 2  - zl  f 1 ef(~z-2--f--~l ) - Re ~ d t  > 0 
0 

wheref(z(t)) = (1 - t)f(zl) + tf(z2) (0 < t < 1), and the conclusion is immediate .  

On the o ther  hand  

T h e o r e m  4 . 4 .  Every domain of convex type is linearly accessible. 

Although this can be p roved  directly, we prefer  to deduce it as a corol lary  

o f  the results which fol low:  

(4.5) I f  D is a domain of comvex type, then any two points z x and z 2 in D 

can be joined by an arc of linear type lying wholly in D. 

P r o o f .  Let  w = f ( z )  be a schlicht con fo rma l  mapping  of  D onto  a con- 

vex domain  D~ with the inequali ty (4.1) satisfied. Let  7 be the arc in D joining 

zl  to z2 whose image is the line segment  [ f ( z l ) , f ( z2)  ] . Thus y has the equa- 

t ion z(t) = f - l ( ( 1  - t)wl + tw2) (0 <-- t <-- 1), where w 1 = f ( z l )  , w 2 = f ( z 2 ) .  

We have for  any three points  to, tl and t 2 in [0, 1] ,  

I arg  z ( t 2 ) -  z(t~ a rgZ( t l )  -_ Z!to) 
1 t 2  - -  to tl  --  to 

z(t2) - Z(to) z(t l )  - Z(to) 
= arg . . . .  < n .  

f(z(t2)) - f(z(to)) argf(z(tl)) - f(z(to)) 

Thus  7 is o f  l inear type by L e m m a  2.2. 
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By the same argument we have 

(4.6) A schlicht conformal mapping of one convex domain onto another 

sends line segments onto arcs of linear type. 

Theorem 4.7 .  Let D be a simply-connected domain with the property 

that any two points in D can be joined by an arc of linear type which lies 

wholly in D. Then D is linearly accessible. 

P r o o f .  Let z o e D  c, the complement of  D,  and assume that every half- 

line with endpoint Zo meets D. Without loss of  generality we may assume 

that z o = 0. There are then points z 1 < 0 and z2 > 0 which lie in D,  and 

there is an arc 71 in D of linear type joining za to z 2 . The change in arg z 

along 71 has absolute value an odd multiple of  ~ which cannot exceed 2~ 

since by the definition of  an arc of  linear type, there is a ray from 0 not meeting 

71. Thus A a r g z  along 71 is + zc or - zc. In the first case we choose z 3 ~D 

on the positive imaginary axis, in the second case on the negative imaginary 

axis. There are arcs of  linear type in D joining z 3 to z I and z 3 to z2. At least 

one of  these arcs, say 72, is such that I A arg z I along 72 is 3~/2: for otherwise 

there is a closed curve in D which has non-zero winding number  about  0, 

and since D is simply-connected we then have 0 ~ D c. Inductively, for each 

n = 1, 2,...  we can find an arc 7, in D of linear type such that I A arg z ] along 

7. is 27~ - ~/2"- 1, and such that if a .  and b. are the arguments of  the end- 

points of  7., a . ~  and b . - ~ e + 2 g .  Let tr be the ray a rgz  = ~  and 

let ( ~  D r~ tr. Let A be an open disc in D with centre ( .  For  sufficiently 

large n, the rays f rom 0 through the endpoints ~., (" of  Y. meet A. By the 

same reasoning as before there is an arc F in D of  linear type which joins 

to either (,  or (" (say (,) such that [ A arg z [ along F is > 2n - hi2"- i .  But 

then by suitable choice of  ( '  e A, we can construct an arc F '  in D of  linear 

type joining ( '  to ( ,  such that ]Aargz]  for z ~ F '  is > 2re, and this, as we 

have already observed, is impossible. 

(4.8) (4.4) is an immediate consequence of  (4.5) and (4.7). As a particular 

consequence of  these results we have that a convex function in the unit disc 

maps every convex sub-domain of the disc onto a linearly accessible domain, 



LINElkR ACCESSIBILITY 269 

and conversely the inverse image of a convex-domain is a linearly accessible 

sub-domain of the unit disc. Another particular case is that of  a bilinear 

mapping 

a z + b  
w = f ( z ) -  c z + d  ( a d - b c ~ O )  

defined in a convex domain D~ not containing the point z = - d / c .  The 

image Dw is then a domain of convex type: for D z being convex is contained 

in a half-plane H having as boundary a line L through the point - d / c ;  f ( z )  

maps H onto another half-plane and the conclusion follows from (4.2). 

(4.9) With the help of  this example we can exhibit a domain of convex 

type which is not close-to-convex: indeed if C 1 and C2 are circles meeting 

at just one point ( ,  and if Ca lies inside Cz, then the crescent-shaped region 

between the circles is a domain of convex type (and is clearly not close-to- 

convex), for the mapping w = 1/(z - ~) maps the region onto a strip; since 

a strip is convex the conclusion is immediate. 

5. It  will come as no surprise that the notion of "close-to-linear" arc is 

the analogue of arc " o f  linear type"  which arises in connection with close- 

to-convex domains. In fact we have 

T h e o r e m  5 .1 .  A simply-connected domain D is close-to-convex if, 

and only if, any two points in D can be joined by a close-to-linear arc lying 

wholly in D. 

To prove the necessity: let w = f ( z )  be a schlicht conformal mapping of 

D onto a convex domain Dw such that R e f ' ( z )  > 0 for all z ~ D. Let za and 

z 2 lie in D,  let w I = f ( z a )  and w 2 = f ( z 2 )  and let ~ be the arc 

z(t) = f - 1  ((1 - t)wl + tw2) (0 < t <_ 1). Then for any two points t~ and t2 

in [0,1 ] we have 

[argz'(t2) - a rgz ' ( t l )  [ = ]argf ' (z( t , ) )  - argf'(z(t2))[ < 7r 

and therefore ~ is close-to-linear by Lemma 2.1. 

The sufficiency is rather harder to establish and we need first to weaken 

considerably the conditions on the complement of  a domain which are suf- 

ficient for it to be linearly accessible in the strict sense. 
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(5.2) Let D be a domain and suppose that given any two boundary points 

of D we can find a half-line or two disjoint half-lines containing the points 

and not meeting D. Then D is close-to-convex. 

This hypothesis can be weakened further, and it is enough to assume that 

the points to which the hypothesis applies form a dense subset of  the boundary 

(e.g. accessible boundary points). We begin the proof  of (5.2) by first estab- 

lishing: 

(5.3) Under the hypotheses of (5.2) given any n points z l , z2 , . . . , z , ,  on 

the boundary of D we can find a finite number of mutually disjoint half- 

lines containing the points and not meeting D. 

P r o o f .  For  any point z on the boundary of D there is a closed sector 

S(z) in D c, the complement of  D,  with vertex z and of angle 7(z) (0 < y(z) < 2rr 

such that  every half-line with endpoint z not  in S(z) meets D.  We denote 

by 6e(z) the family of  half-lines with endpoint z which lie in S(z). We proceed 

by induction assuming that n > 2 and the result proved up to n - 1. Assume 

first that y(zn) > re. There is then a line L through zn such that  D lies entirely 

on one side of  L. Without  loss of  generality we may assume that  L is the real 

axis, that z , = 0  and that Re z < 0  for z ~ D .  We then have Re z i < 0  

(i = 1, ..., n - 1 ) .  By the induction hypothesis we can find a finite number 

of  mutually disjoint half-lines in D c containing the z i (1 < i < n - 1). 

Since we require a half-line from 0 in D c not  meeting any of  these, we may 

suppose that k of  the half-lines, say 1 t, 12, "" ,  Ik, meetL at points a 1 < a 2 <  "-" <ak  

where, for some i, a , < 0 < a , + l ,  and that  the remaining half-lines lie 

entirely in R e z  < 0. I f  aj is the ang le  lj makes at aj with the positive axis, 

we see that 0q > a2 --> "'" > Ctk" Choose a satisfying ~+1 < 0~ < ai. The 

half-line from 0 making angle a with the positive axis lies in D c and is dis- 

joint from the other half-lines, the required conclusion. 

We may therefore assume that  each 7(zi) is < n (1 < i < n). We suppose 

next that zn E S(zl). Without loss of  generality we may then assume that 

zl = 0, z, > 0, the positive axis being one of  the arms of  S(zl) (since z~ 

is a boundary point of  D, it cannot lie in the interior of  S(z~)). There are 

disjoint half-lines in D c containing z l ,  z2, . . ' ,  z ,_ 1 and for definiteness we may 
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assume that the one containing zx makes an angle 7 with the positive axis, 

where 0 < 7 < r e .  The zf (2 < i <  n - l )  all lie outside the sector 

S = {0 < arg z < 7} and S c D c. We may assume that exactly k of the dis- 

joint  half-lines cut the positive axis at points al < a2 < "'" < a~,, where for 

some i, a, < z, < a ,+ t .  The angles aj which they make decrease with j and 

are all < 7. Choose ~ satisfying ~,+1 < ~ < ~,- The half-line in this direction 

from z, gives the required conclusion. 

Thus we may further assume that zi r S(zj) for i ~ j .  We base our proof  

now on the following geometrical lemma which enables us to eliminate "im- 

possible" half-lines from the ,f(z,) :  

Lemma 5.4.  Let S(Zl), S(z2) and S(za) be three closed sectors of angles 

7(z/) (0 <7(zz)<n) such that z~q~S(zj) for j ~ i  ( i =  1,2,3, j = 1,2,3) 

and assume that for any two distinct points z~ and zj there are disjoint half- 

lines in 5"(z i) and 5:(z~). Let 5:'(Zl) be 5:(zl)  less all half-lines in 5:(Zl) 

which meet every half-line in 5"(z2). Then the half-lines in 5:'(zl) form a 

closed sector S'(zl) ;  further, there are disjoint half-lines in 5~ and 

5:(za) and every half-line in 5:'(zx) is disjoint from at least one half-line 

in 5:(z2). 

Proof .  Clearly s is non-empty and we may assume that 

5: '(Zl) ~ ~(Zx) as otherwise the lemma is trivial. Without loss of  generality 

we may assume that zl and z2 are real and that z I < z2. For  definiteness 

we may assume further that at least one half-line in ~(z2)  lies (apart from z2) 

in the upper half-plane. Then the whole of S(z2) (except z2) lies in the upper 

half-plane, the arms making angles ~2 and f12 with the positive axis 

(0 < ~2 ~-~ f12 ~ 7~). The corresponding angles ~1 and fll of  S(Zl) will then 

satisfy 0 < ~1 < ~z2 ~ fll < 7~. ~ t (Z1)c lear ly  consists of those half-lines from zl 

making an angle 0 with the positive axis, where ~2 <= 0 <_- il l .  For  any point 

z we denote by l(O, z) the half-line with endpoint z making an angle 0 

with the positive axis. To complete the proof  we need only to show that 

there are disjoint half-lines in 5:'(Zl) and S:(z3). Assume on the contrary 

that every half-line in S:(z3) meets every half-line in S: ' (z l ) .  Let L(0) denote 

the line containing the half-line l(O, Zl). I f  z 3 lies on the same side of  L(fll) 
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as z 2 then the assumption implies that every half-line in ~(Z3) meets every 

half-line in 6a(zl),  contradicting the hypothesis. Hence z a lies on the opposite 

side to z2 of both L ( ~ 2 )  and L(fll),  I f  S(z3) meets the segment [zl ,  z2],  then 

every half-line in de(z3) meets this segment and so also meets, by the assump- 

tion, every half-line in 6a(zl), a contradiction. Finally if S(z3) does not meet 

this segment, the assumption implies that every half-line in 6e(za) meets 

every half-line in Se(z2), a contradiction. 

(5.5) We now complete the proof of  (5.3). Delete from 6a(zl) all half-lines 

which meet every half-line in ~(z i )  (i = 2, ..., n). By successive applications 

of (5.4) we obtain a closed sector S*(zx) such that every half-line in SP*(zl) 

is disjoint from at least one half-line in :T(z~) (i = 2, ..., n). Beginning again 

with :T*(zl),Ze(z2), ..., 6e(z,) we repeat the process on SP(z2) and so on. We 

obtain finally n closed sectors S*(zl) , . . . ,S*(zn)  with the property that every 

half-line in 6e*(zi) is disjoint from at least one half-line in 6P*(zi) (i ~ j ,  

1 _< i -< n, 1 < j _-< n). We now show by induction that there are n disjoint 

half-lines li with l i ~ * ( z i )  (1 < i < n), which will complete the proof. 

The result is clear if n = 2, so assume proved up to n - 1. Assume zn = 0 

and that S*(z,) has one arm along the positive axis, the other arm L making 

an angle ? with the axis, where 0 < ? < n.  We may further suppose that there 

are k points al  < a2 < "'" < ak on the positive axis and j points bl, b2, "", bj 

on L(e- i rb l  < e-irb2 < ." < e-~bj)  at which the half-lines li first meet S*(z,), 

the remaining half-lines, if any, being disjoint from S*(z,) .  No half-line 

meets both arms of  S*(z,) .  If  the half-line through ax makes angle ~ with 

the positive axis, then clearly ~ < ft. Moreover the half-line through ai makes 

angle < ~, and the one through bg makes angle >__ ft. Thus I n may be chosen 

to be any half-line from 0 making an angle between ~ and ft. 

(5.6) We now prove (5.2). Since the boundary of D is an infinite closed set 

and since the plane is separable, we can find a sequence {z,} of  distinct points 

such that the closure of the set ( z l , z  2,...} is the boundary of  D.  For  each 

n we can find a finite number of half-lines which are mutually disjoint, lie 

in D c and contain z~, z2, "", z , .  Let D, be the plane cut along these half-lines. 

Then D, is a close-to-convex domain containing D. If  z o is a fixed point of D, 

then it is easily seen that the density of  the sequence {z,} on the boundary 
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of  D implies that the kernel relative to z o of  the sequence {Dn} is precisely D. 

In view of the compactness property of  the family of  close-to-convex functions, 

we deduce immediately that  D is close-to-convex. 

(5.7) We can now establish the sufficiency of  Theorem 5.1. Assume the 

condition satisfied and that  D is not close-to-convex. By (4.7)D is linearly 

accessible and therefore by (5.2) we can find two boundary points zt and z2 

of  D such that (with the notation of  (5.3)) every half-line in 6:(zl)  meets every 

half-line in 5:(z2) at points other than z i or z2. We may assume that  zl and z2 

lie on the real axis, zl < z2 and that the arms of  S(zi) make angles ei and fl~ 

(i = 1,2) with the positive axis, where 0 < cq < fll < ~2 </32 < n .  Choose 

e satisfying 0 < 8 < �89 - / 31 ) ,  and consider the half-lines I 1 and 12 f rom z 1 

and z 2 respectively, making angles fll + 8 and e2 - e  with the positive axis. 

There is a point ~l e l i  n D and a point ~2 e 12 c3 D,  and moreover we must 

have arg (~l - z2) >/32 and arg ((2 - zl)  < e l -  By hypothesis there is a close- 

to-linear arc F lying in D and joining ~l to ~2. We observe that the half-lines 

l(O, z2) meet F for - n < 0 < c% - 8, and the half-lines l(O, zl)  meet F for 

fll + 8 < 0 < 2n. Thus any line L(O) 

fll + 8 _< 0 -< zc meets F at two points 

L(O) through z2 containing l(O, z2) for 0 _ _ 

separated along L by z 2 . Since a2 - 8  > 

This contradiction completes the proof. 

through zl containing l(O, zi) for 

separated along L by z l ,  and any 

< 0 < a z - 8 meets F at two points 

fli + 8, F cannot be close-to-linear. 

(5.8) We remark finally that the usefulness of  the conditions (4.7) and (5.1) 

for linear accessibility and close-to-convexity is somewhat limited unless one 

can reduce the pairs o f  points to be considered to boundary points o f  the 

domain. Without going into details we can assert that with suitable modi- 

fications of  the proofs one can establish that a sufficient condition for a simply- 

connected domain D to be linearly accessible (close-to-convex) is that given 

any pair of accessible boundary points of D, one can find a cross-cut in the 

domain joining the points which is of linear type (close-to-linear). 

6. Given a linearly accessible domain D the question arises as to whether 

the condition (4.7) is necessary. In view of (4.5) this question would be affirm- 

atively answered if one could establish the following conjecture: 

Every linearly accessible domain is of  convex type. 
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We conclude by mentioning briefly some results relevant to this problem 

which we have obtained concerning the class of linearly accessible functions 

(i.e. schlicht conformal mappings of  the unit disc onto linearly accessible 

domains). 

(6.l) f ( z )  is linearly accessible in [ z [ <  1, if, and only if, for each r, 

0 < r < 1, and for any point z o ([z o[ < 1), we have 

[ f ( r e i ~  - f ( z ~  - 01 - arg[ f(ret~ - f (z~ > - 2~ 
(6.1.1) 02 + arg t r--e~2-Zo / I reiOl z o / 

whenever 02 > 01 . 

This "intrinsic" characterisation can be geometrically interpreted in the 

case [z0 [ =  r as stating that the chordal angle on f(] z 1-- r) as measured 

from f(zo) going once round the curve in the positive direction does not 

turn back from a previous direction by more than an angle ~, nor turn for- 

wards by more than 2rr. 

(6.2) f ( z )  is linearly accessible in [ z [ <  1 if, and only if, for each fixed 

Zo (] Zo ] < 1) we can find a function g(z) starlike of order �89 so satisfying 

(6.2.1) Re > ~ ([ z [ < 1), 

such that 

(6.2.2) (1 1 <'> 

What is lacking in this statement is any indication as to how the functions 

g(z) may be related as zo varies. If  it can be shown that g(z) can be chosen 

to have the form 

(6.2.3) g(z) = cz 
~(~)  - ~(Zo) 

Z - -  Z 0 

where ~b(z) is convex (and the same ~b(z) for all Zo) and c depends only on Zo, 

then we have the condition for f ( z )  to be of  convex type. 
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(6.3) f (z)  is linearly accessible in [z ] < 1 if, and only if, for any convex 

function r and for any three points Zo, z I and z 2 in [z[ < 1, we have 

(6.3.1) I f ( z 2 ) - f ( z ~  arg f ( z l ) - f ( z ~  
arg ~(z2 ) - -  t ~ ( Z O )  - -  ~(Z1) ---- ~-~O) l < 2re. 

(6.4) Let f ( z ) =  ~ a,z" be linearly accessible in [ z ] < l .  Then 
z 

3~ <-i '"  (6.4.1) I argf---~zf'(z) I 

For each Zo (I Zo ] < 1) the function 

(6.4.2) h(z) = 

is close-to-convex in I z [ < 1. 

Z 

f f ( ( )  - f ( z~  
~ Zo 

0 

I f  P,(z) = ~ ak Zk is the n th partial sum, then 
k = l  

f (z)  = 

for n = 1, 2,... and [z] < 1. This gives in particular 

(6.4.4) la:l ~ (2n + 1)lf(z)l + ( 2n -  1) 157  I 
from which we deduce 

(6.4.5) la.I =< (2n-1)la,  I; la.I < 4dn 

where d is the distance from 0 of the complement of the image of I zl < 1. 
The results (6.4.1) and (6.4.2) are known for close-to-convex functions I-5]. 
The second inequality in (6.4.5) can be deduced easily by subordination from 
the original definition of linear accessibility. The inequality (6.4.3) is certainly 
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not  sharp in the interior  of  lz  ] < 1, and we would expect the best est imate 

for  the second m e m b e r  to be something like (n + 1)[z  1" + n I zl "+1 (the esti- 

mate  for  z ( 1 -  z ) - 2 ) .  

Proofs o f  the results o f  this section and a detailed discussion o f  the con- 

jecture will be presented in the near  future.  

REFERENCES 

I. M. Biemacki, Sur la repr6sentation conforme des domaines Iin6airement accessibles, 
Prace Mat. Fiz. 44 (1937), 293-314. 

2. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. 3". 1, (1952), 169-185. 
3. Z. Lewandowski, Sur l'identit6 de certaines classes de fonctions univalentes I, Ann. 

Univ. Mariae Curie-Sktodowska, Sect. A 12 (1958), 131-146. 
4. Z. Lewandowski, Sur l'identit6 de certaines classes de fonctions tmivalentes II, Ann. 

Univ. Mariae Curie-Sktodowska, Sect. A 14 (1960). 19-46. 
5. Cla. Pommerenke, On close-to-convex analytic functions, Trans. Amer. Math. Soc., 

114 (1965), 176-186. 
6. T. Sheil-Small, On convex univalent functions, J. London Math. Soc., (2) 1 (1969), 

483-492. 

DEPARTMENT OF MATHEMATICS 

UNIVERSITY OF YORK 

HESLIN'GTON, ENGLAND 

(Received November 14, 1970) 


