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I n t r o d u c t i o n  

Let M denote  the space of functions analytic in I z I < 1 given the usual topology 

of local uniform convergence. Toeplitz [17] showed that a continuous linear 

functional A on M can be represented by a function g(s r) analytic in I~'l_- < 1 as 

follows: for f ( z  ) = Eo a,,z " E M 

o ~=l 

21r 

=l im  1 f ~ 1  ~ f ( ~ e - ' ~ 1 7 6  

o 

where g(s r) = Eoc,~'" and * denotes the Hadamard product or convolution of two 

power series. In his duality method Ruscheweyh [11] has shown how Toeplitz's 

result can be used in a very effective way to establish the exact range of a linear 

functional on a class C C M in cases where C can be shown to lie in the second dual 

of a relatively simple family of functions. The information gained in this way is in 

general more precise than that obtained by constructing the extreme points of C. 

For example, one is able to study extremal problems concerning the ratio of two 

linear functionals. Furthermore in certain interesting cases the first dual family can 

be shown to be closed under convolution and this family then represents a structure 

preserving multiplier class. The ideas here have been in use for many years in 

connection with the theory of polynomials and can be traced back to Szego's 

interpretation of Grace's Theorem [7]. More recently the conjecture of Polya and 

Schoenberg [8] concerning the Hadamard product of two convex univalent 

functions was solved affirmatively essentially by showing that the class of convex 

functions formed a first dual space with the close-to-convex functions (more 

* This work was completed during the academic year 1977/78 while the author was visiting at the 

University of Kentucky. 
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precisely their derivatives) lying in the second dual [13]. These results and methods 

have since been further extended [6, 12, 16]. 

In this paper  we establish a new second dual theorem from which we shall deduce 

a general Convolution Theorem which extends the above-ment ioned convolution 

theorems. As well as the already known results concerning functions starlike of 

various orders, we shall obtain new information concerning functions of bounded 

argument,  functions of bounded boundary rotation, products of the form 

II7 (1 + XkZ)*k and various other classes of non-zero analytic functions in the disc. 

The methods we use will establish a link with the theory of polynomials and we 

shall give generalisations of Grace ' s  Theorem to rational functions. As part of our 

argument  we will show how Grace ' s  Theorem is itself a very simple consequence of 

the Fundamental  Theorem of Algebra and an ingenious Algebraic Convolution 

Lemma  based on the propert ies of Moebius transformations and essentially due to 

Ruscheweyh [12]. In the final part of the paper  we shall show how the Convolution 

Theorem can be used to study general linear t ransformations between the classes. 

As an application we generalise Polya and Schoenberg 's  original problem and give 

a general criterion for linear operators  on M to preserve the property of convex 

univalence. 

1. P r e l i m i n a r y  d e f i n i t i o n s  a n d  s t a t e m e n t  o f  t h e  m a i n  r e s u l t  

1.1. Suppose that k ( z )  is analytic and ~ 0 in I z l <  1 and that A is real. We 

write k ~ H, when 

(1.1.1) 

A <~ 

Re z k ' ( z )  > 2  
k(z) 

~-0 

if A > 0 ,  

if A < 0 ,  

if A = O. 

Finite products of the form 

(1.1.2) k ( z )  = c I-l- (1 + xkz)  *~ 
k = l  

where Ixk I = 1, c ~  0, E~_, & = A, & have the same sign (i.e. that of A) are dense in 

Ha. 

For a _-> 0,/3 _-> 0 we write f E K(a , /3 )  if f E M and can be written in the form 

(1.1.3) f ( z )  = k ( z ) H ( z )  

where k ~l-l~ ~ and H E , ~  is non-zero and satisfies larg H(z)l_--<l~ - rain(a, /3)  in 

I z I < 1. In particular f / 0 .  For example if g @ 1]~, h ~ l-l~ then f = g /h  E K(o~,/3). 
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The functions in K(a , /3)  form rather general classes of non-zero analytic 

functions and can be characterised in an "intrinsic" way by a Kaplan-type condition 

[5]. We give this condition as Theorem 2.2. We may ask to what extent the 

functions in K(a , /3 )  are "dominated"  by the relatively simple functions 

(1 + XZ) '~ 
(1.1.4) (1_  yz)  ~ (Ix/_-< 1, ly]_--- 1) 

for various types of extremal problems. Our basic theorem is concerned with this 

problem. If 4, E M we write ~b E T(a,  fl) if 

(1.1.5) 6(z)*  (1 + xz)~(1 + uz)~r 
(1  - z ) '~  

for Ix I = ]u I = 1, Iz  l <  1, w h e r e  m = [ a ] ,  7 = { a }  (i.e. m is the largest integer not 

exceeding a and m + y = a) .  

1 . 2 .  T h e  D u a l i t y  T h e o r e m .  Suppose that a _-> 1, /3_-> 1 and that 

cb E T(a,/3).  Then for f E K(a, /3) ,  

(1.2.1) c b ( z ) * f ( z ) # O  ( ] z / <  1). 

Assuming the functions in K(a , /3)  are normalised by the condition f(0) = 1, the 

theorem states in the terminology of Ruscheweyh [11] that K(a, /3)  lies in the 

second dual of the class of functions 

(1.2.2) 
( l + x z ) ~ ( l +  uzF 

(1 - y z ) '  
(]xl~l, lu]~-l, Jyl----< 1) 

and any continuous linear functional on J will have the same range on K(a, /3)  as 

on this smaller class. Among other things this implies that the class of functions 

(1.2.2) and K(a , /3 )  have identical closed convex hulls. 

From the Duality Theorem we will deduce the following more complete 

statement. 

1 . 3 .  T h e  C o n v o l u t i o n  T h e o r e m .  Suppose that a >~ 1, /3 => 1. 

(i) I f  4,, ~p E T(a, /3)  then 4) * ~b E T(a,/3).  

(ii) I f  O<= e =< min(a,/3),  then for cb E T(a, /3)  and f E K ( a  - e , / 3 -  e), 4) * f E 

K ( a - e , / 3  - e ) .  
(iii) I f  a >= a '  >= 1, /3 >=/3' >= 1, then T(a,  /3 ) C T(a ' ,  /3'). 

(iv) I f  l=<A_-<min(a,/3) and 0_--<~=<A, then for ~b E T(a,/3),  h E  

K ( a -  A , /3 -  A), ]arg L I =< ~- /2 ,  
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(1.3.1) arg \ th *h / < 2"-" 

We  shall point  out  appl ica t ions  and special cases of this result  in Sect ions 4 and 5. 

Fo r  now we obse rve  that  it extends  very cons iderably  the results  es tabl ished in 

proving  the P o l y a - S c h o e n b e r g  conjec ture ,  which is the case a = 1,/3 = 3 [13]. T h e  

cases a = 1, /3 _-> 1 were  es tabl ished by Suffridge [16], Lewis [6] and Ruscheweyh  

[12]. The  me thods  of [13] and R u s c h e w e y h ' s  extension of these  me thods  [12] will 

play a central  role in the proof .  The  cons tan t  in teract ion of a few s imple  techniques  

toge the r  with the fundamen ta l  na ture  of the result m a k e  it des i rable  to give a 

substantial ly comple t e  proof .  

2. Preparatory  l e m m a s  

In this sect ion we deve lop  the principle subsidiary results needed  for  the main  

p roo f  which we give in Sect ion 3. 

2 .1 .  L e m m a .  L e t g ( z , , . . . , z . ) b e a n a l y t i c i n t h e p o l y d i s c l z k l < l ( l _ - < k = < n )  
and suppose that 

(2.1.1) r g(zx,, . . . ,  zxn) # 0 

for I xk I= 1 (1 <- k <= n) and l z I< 1. Then (2.1.1) holds for Ixk I_- < 1 (1 <= k <= n) and 
Izl<l. 

P r o o f .  T h e  case n = 1 is trivial. It clearly suffices to p rove  the case n = 2. This  

follows easily f rom the following two var iable  l emma:  if f (z ,  5) is analytic for 

I z I < 1, IS1 < 1 and # 0 whenever I z I = 151, thenf(z ,  5 ) #  0 for I z I < 1,151 < 1. T o  

p rove  this we no te  that  f(0,  0) # 0 so f(z,  5) # 0 for  I z I < r, 151 < r and a suitable 

r > 0. H e n c e  we can wri te  

(2.1.2) 1 - E  Ecm~ ~ 
f ( z ,  5) ~=o ~  

the  series being absolute ly  convergen t  for  I z I < r, i51 < r. T h e  conclusion will follow 

by analytic cont inua t ion  if we show that  this series is absolute ly  convergen t  for  

I z I < 1, 151 < 1. By hypothes is  we can write 

1 - E a~ (x)z  k (2.1.3) f (zx,  z )  o 

for  Ix I = 1, Iz I <  1. C o m p a r i n g  this with (2.1.2) for  Iz i <  r, we deduce  
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a~ ( x )  = 

T .  S H E l L - S M A L L  

E c=,, x= ([xl =1)  
r n + n = k  

for k = 0 , 1 , 2 , . - . .  By Cauchy's formula 

] ak (x)J < M ( R )  
---~ R k (O<R < 1) 

where M ( R )  = maxl,p<;l=R 1~If(z, ~)[. Hence 

M ( R )  
[c,.,. I ---- R k ( O < R < l , m + n = k ) .  

We obtain for 0 < p < R < l  and J zl  <p ,  l ffl < p  

E Icm.l/zrlr <E E tc-.Ip k 
m = 0  n = 0  k = 0  m 4 - n = k  

=< (k + 1)M(R) 
k = O  

<oo. 

2.2. T h e o r e m .  If  f is analytic and non-zero in I z ] < 1, then f E K (a, fl ) if 

and only if, for Ol < 02 < O, + 2rr and O < r < l 

(2.2.1) 

- aTr + ~(a -/3)(02- 0,)<= arg f(re ,02)_ arg f(re ,o,) 

_--<~(o, -13)(02-  0,) +/3~'. 

The two inequalities are equivalent, i.e. each implies the other. 

P r o o f .  If f = k H  where k ~IL_~ and largHl=~Tr<' min(a,/3), then 

and so 

=~(a-/3)(02-0~) if a ~ / 3  
A arg k 

to,,o~l >=�89  if a < / 3  

A 
Io,, o21 

argf}<=~(a-/3)(02-O,)+/3~ " if a>=/3, 
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Since argf(re '~ is periodic with period 27r we obtain on applying this to the 

interval [0~, 01 + 2~-] 

A a r g f =  - A a rgf  } ~�89 if a ~ / 3 ,  

t0,,~] to2,o,+2~-] =</3"rr + ~(a -/3)(02 01) if a < ]3. 

Conversely, assume the condition holds. If a =/3 the result is clear. If a >/3, let 

i ~ = 2 / ( a - / 3 )  and set g ( z ) =  z f - " ( z ) .  We obtain for 02> O~ 

A arg g => --/~/37r. 
[e~, 021 

Writing t,(O)=info,~o(argg(re'O'))+ls,/37r/2, we see that t,(O) is increasing, 

t,(O +27r)=  t , (0)+ 27r and 

It, (0) - arg g(re '~ = ./x~Tr. 

By Kaplan's method [5] we find there is a function h (z) starlike in ] z I < 1 such that 

l arg h - arg g [ =</x/37r 
2 

and hence g = h / F  where F E ~r satisfies largF[ ~/x/3r Thus f = ( z / g )  ~/~ = 

F l / " ( z / h )  1/~ which is the required form. If a </3, let IX = 2/(/3 - a )  and g = z fC 

We find At0,.o2]argg-->- a/xcr and obtain h starlike such that g = hF where 

]argF]-< i~aTr/2. This gives f = (h / z ) l / "F  1~, the required form. 

2.3. (i 'om this result we easily deduce the following properties of the K(a, /3)  

classes: 

(i) a'<=a, /3'<-/3 =), K ( a ' , / 3 ' ) C K ( a , ~ ) ,  
=[K(A'O) if A->O, 

(ii) II, ( K ( O , - A )  if A<O, 

(iii) f ~ K(a,/3) r 1/f  E K(/3, a), 
(iv) f ~ K(a , /3 ) ,  g ~ g ( a ' , / 3 ' )  ~ fg ~ K ( a  + a',  [3 +/3'), 
(v) f ~  K ( a , a )  4:~ for some /x real, ]arg(e'"f)l<-alr/2. 
The next result [10, 13] is a reflection of the fact that a starlike domain is starlike 

in every direction. We give a geometrical proof. 

2.4.  T h e o r e m .  Let  h (z ) be starlike in I z I < 1 and let n be a natural number. 

Then for each ~1 (I ~11 = 1) we can find ~2, . " , ~, satisfying I ~k l = 1 and ~ real such 

that 
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(2.4.1) [ arg (e'" h(z)~ I P ( z ) ]  <--nrr ( [ z l < l )  

where 

(2.4.2) P(z )  = z [-[ (1 - ~'kz) -2'". 
k = l  

P r o o f .  The class of functions of the form (2.4.2) with fixed ffl is clearly compact 

and hence without loss of generality we may assume that h(z )  is analytic and 

starlike in I z l <  1 + s for suitable s >0 .  Let D denote the image domain 

{w = h(z):  ]z I<  1}. The point ~1 is the inverse image of a point wa on 0D. With 

[0, wl] as the first ray construct the n rays from the origin making equal angles 

27r/n, so that the rays meet 3D at points wt, w2, �9 �9 �9 wn respectively. Let ~2, �9 �9 �9 ~, 

be the inverse images on ]z I = 1 of w2, . . . ,  w, and define P(z )  by (2.4.2). Then P 

maps ]z I < 1 onto the plane cut along n radial slits making equal angles of 27r/n, 
and arg P(z )  is constant on the arcs (~k, ~'k+~) on [z I = 1 with jumps of 21r/n at these 

points. The value of arg P at ~k is exactly half-way into the jump. Hence we see that 

for any 01, 02 real 

[(arg P(e ,o~) _ arg P(e ,ol)) _ (arg h (e'~ _ arg h (e'~ I _-< 27r/n, 

i.e. the difference in swing cannot exceed the angle 2~r/n. Hence for some real/.~ 

larg P(e '~ - arg h(e '~ - / z  1-< ~r/n 

and the conclusion follows easily using Poisson's formula. 

The following simple lemma is frequently applied in our theory [13]. 

2.5.  L e m m a .  Suppose q~, g are analytic in [ z [ < 1 and that 

l + x z  
( 2 . 5 . 0  6 ( z )  * 1 - yz  g(z)# o 

for I x J = J y l  = l , l z l < l ,  T h e n i f F E M a n d  R e F > 0 ,  

(2.5.2) Re ~b * gF > 0. 
4 ' *g  

In particular 

(2.5.3) 4~ * g F #  O. 
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P r o o f .  When x = - y we obtain qb * g / 0 .  By L e m m a  2.1 and simple manipu- 

lations we obtain for  Ix I--< 1, l Y I = 1 

6 ( z ) .  1 + yz g(z) 
1 - y z  ~ x ~  - 1 

44z)*g(z )  xy+l  

and hence (2.5.2) holds for  F ( z ) = ( l + y z ) / ( 1 - y z ) .  If R e F > 0  we have by 

Herglo tz ' s  T h e o r e m  

F(z) = f dp (y) + ic 
1 - yz 

T 

where  ~ is a positive measure  on the unit circle T and c is a real constant .  Hence  

l + y z  
f 4,(z),l__z__~_g(z ) 

Re t b * g F =  Re d/x > 0 .  
4, * g 4,(z ) * g(z ) 

T 

2 .6 .  C o r o l l a r y .  I f  F E sg takes all its values in a convex domain D, then the 

inequality (2.5.1) implies that 

4~ * g F  
4 ' * g  

takes all its values in D. 

The  next  result plays an impor tant  algebraic role. The  proof  is based on an 

ingenious idea due  to Ruscheweyh  [12]. 

2 .7 .  L e m m a .  Suppose that for given complex numbers al," �9 ", a.  the class of 

functions 4~ E s4 and satisfying 

(2.7.1) c~(z)* FI (I + XEZ)"~r 0 
k = l  

(Ixk I = 1, l=<k  _-<n, I z l <  1) 

has the property that all functions ch in the class also satisfy 

(2.7.2) 4~(z)* [- I (l + xsz)~ 
i = 1  

([xsl = 1, l<--]<=m, [ z l < l  ). 

Then it is also the case that all the functions ch satisfy 
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(2.7.3) ~b(z)* (1 + xz f '  [-I (1 + xjz)~ 
i = 1  

]:or [ x l <= l, [ X j l N l ( l = < j N m )  and I z l < l ,  where 

A ~- ~', ,~k - 2 t3,. 
1 1 

Symbolically: ((2.7.1) ~ (2.7.2)) ~ (2.7.3). 

P r o o f .  We denote the three classes by P(a), P(~) and P(A, fl). By Lemma 2.1 
the conditions (2.7.1) and (2.7.2) will hold with the parameters in the closed unit 

disc. Also by Hurwitz's Theorem it will be sufficient to show that (2.7.3) holds with 

the parameters in the open unit disc. Choose Ix J< 1 and set 

a(~-) = 1 + JTr ' b ( r ) -  1 + xz 

which give automorphisms of I t  f<  1. Then 

1 + xz  (1 + b ( z ) r ) .  (2.7.4) 1 + a('r)z = 1 + .~r 

Thus for [~rk I --< 1, Iw I =< 1 and c~ = 27ak we have 

FI (l +a(ffkw)z)~ =( l  +xz)a (-I ( l + b(z)ffkw~'~ 
k=l k=l 1 + $ffkW / 

and hence if ~b E P(a)  

qS(z)*(1 + xz)  '~ [-I (1 + b(z)~kw) '~ •0 
k = l  

for ]z I < 1, J w I N 1, [~'k I -< 1. We write this as 

{ 1 } 
( l+~kw)~ 4 , ( z ) , z ( l + x z ) ~  w gO 

k = l  

and deduce that for each z ( I z l <  1) the function 

1 
w-- )6 ( z )* z ( l+xZ)~  w ( I w l < l )  
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is in P(a).  Therefore it is also in P(/3) and we obtain 

fi . .  (1+ ~,w) ~ *w 4,(z)*~ ( l + x z ) "  / o  
j=l 

for I~sIN1, I w l < l ,  I z ] < l .  This gives 

~b(z)** (1 + xz)  ~ [I  (1 + za(~iw))n,~O 
i = i  

and the conclusion follows. 
As an application of this lemma we prove a unit disc version of Grace's Theorem 

for polynomials. In addition to other applications of the lemma Grace's Theorem 

will itself form part of our proof of the convolution theorem. 

2.8. G r a c e ' s  T h e o r e m .  Let P( z )  be a polynomial of degree at most n such 

that 

(2.8.1) P ( z ) * ( a + z ) " # O  ( I z j <  1). 

Then if O ( z )  is a polynomial of degree at most n with no zeros in l z f <  1, 

(2.8.2) P ( z ) * O ( z ) # O  ( I z l < l ) .  

P roof .  By the Fundamental Theorem of Algebra we can write 

P ( z ) * ( l  + z)" = c [-[ (1+ zkz) 
k=l 

where c # O ,  I zk ]--< 1 (1 < k =< n). Hence 

P ( z ) * I + z  c ( l +  1 ~ ) ~  = - -  Z k Z  0 
n 1 

( I z l <  1). 

Thus P * ( I +  z ) " # 0  f f  P * l + z # 0 .  By the lemma we deduce that 

P ( z ) * ( l + x z ) " - ' ( l + y z ) # O  (Ix[_-< 1, ly]_-< 1, I z ] <  1) 

and in particular P(z)*(1  + z) "-1 # 0 (which is the Gauss-Lucas Theorem). Re- 
peating the argument and re-applying the lemma we obtain inductively 
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P(Z)*[ - [ ( I+x~z )~O (Ix~l--<-- 1 , 1 z t <  1). 
1 

The  conclusion follows from the Fundamen ta l  T h e o r e m  of Algebra .  

3. T h e  m a i n  p r o o f  

In this section we give the proofs  of T h e o r e m s  1.2 and 1.3. T h e  proof  of T h e o r e m  

1.2 consists of  a chain of arguments  which builds by proving successively more  and 

more  general  cases. T h e o r e m  1.3 is then deduced  f rom T h e o r e m  1.2. 

We consider  first the class T(1 , /3)  where  /3 _>-1. Suppose  that 4~ E 3 . 1 .  

satisfies 

l + x z  JO ( I x ] =  1, ] z ] < l ) .  (3.1.1) ~b(z) * (1 - z )  ~ 

Our  first goal will be to show that for  Ix ] = I Y I = 1 and g E 1-11-0, 

l + x z  
(3.1.2) q~(Z)*l_--Z--~g(z)~O ( I z l <  1). 

The  initial crucial step is to show that  (3.1.1) implies 

l + x z  
(3.1.3) ~b(z) * ( l - - zy_ l  ~ 0 ( I x l =  1, I z [ <  1). 

Suppose  for the m o m e n t  that we have established this implication for  every /3  => 1. 

Then  L e m m a  2.7 gives us the first split: 

1+  xz 
(3.1.4) 6 ( z )  * (1 - y l z ) (1  - y2z) ~ ~ 0 

for  Ix 1 ---- 1, I Y~ I < 1, t y2 t ~ 1, [ z I < 1. Applying  this lemma inductively we obtain 

+ xz ~ 0  

n => 1 and 0-< y < 1. Applying L e m m a  2.5 we whe re  n = [/3], y = {/3}, so that 

deduce  that  for  Re  F > 0 

(3.1.6) g(z) ~ o. 
q)(z)* ("~ (1- ykz)) (1- yz), 
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Thus  to prove  (3.1.2) it is sufficient to show that  given Ix I = I Y I = I and g E H,_~, we 

can find yk, e and c on the unit circle and Re  F > 0 such that 

1 + x z cF(z)  

l -  Yz g(Z )= ( ~ I ' ( 1 -  ykz )) ( 1 - e z  )~' 

Choose  e = y and note  that h(z)  = g ( z ) ( 1  - yz )  ~-1 ~ H_,. Thus  we wish to show 

that given Ix I = 1 and h EI I_ , ,  we can find yk and c such that 

{ o1 / 
Re e(l+xz)h(z) I-[ (1-ykz) >0. 

1 

This follows immedia te ly  f rom T h e o r e m  2.4. F rom (3.1.2) and L e m m a  2.5 we 

obtain  for g E IIl-o and Re  F > 0, 

(3.1.7) c k ( z ) * g ( z ) F ( z ) r  ( I z l <  1) 

and this gives T h e o r e m  1.2 in the case a = 1. 

3 .2 .  To  comple te  this part  of the chain of reasoning it remains  to establish the 

first link ( 3 . 1 . 1 ) ~  (3.1.3). The  case /3 = 1 is clear. Assume  /3 > 1. Then  the 

implication is equivalent  to 

<1  lzj<l) eo(z)*(1-  z)-" 

ck~z )* z ( 1 -  z ) '-~) 
6 ( Z ) . ( 1 _  Z)I_ 0 < 1  (IZ [ <  1). 

Let  

,o(z ) = ~,(z ) * z (1 - z)  '-~ 
4 , ( z ) * ( 1 -  z)'-" " 

Then oJ is me rom orph i c  in Izl< 1 and ~o(0) = 0. We  wish to show that  I,o(z)l < 1 

( I z l <  1). If this is not  the case, then by the Clun ie -Jack  L e m m a  [4] we can find 

satisfying I~'1 < 1 such that 

I~o(~')l = 1, ~o'(~') = kos(~') 

where  k => 1. Simple algebraic manipulat ions,  which we shall omit,  give the relation 
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~b(~)* if(1 - ~)-~ = (k +/3 - 2)to(~) 
t h ( ~ ) . ( 1 -  ~) -~ /3 - 1+ (k - 1)to(~) 

provided /3 - 1 + (k - 1)to(~) ~ 0. Hence  by hypothesis 

[(k - 1 ) + ( / 3 -  1 ) [ < [ / 3 -  1 + ( k  - 1)o9(~)[ 

_ - < l / 3 - 1 [ + l k - 1  [. 

Since k-> 1, /3 > 1, this is clearly false. If / 3 - l + ( k - 1 ) o ~ ( ~ ' ) = 0 ,  then also 

k +/3 - 2 = 0, which implies /3 _-< 1, a contradiction. 

3 .3 .  We now consider the class T(m,/3) where m is a natural  number  and 

/3 _-> 1. Suppose that  ~b satisfies 

(3.3.1) O(z)  * (1 + xz) m (1_  z)~ ~ 0  ( I x [ =  1, l z l <  1). 

By L e m m a  2.1 this holds for Ix I --< 1. It can be re-written 

(3.3.2) (1+ x)"  *x (~b(z) *z 1+  xz_(l__z) "if+'''+ x'z ')  ~0 

for Ix I--< 1, [z [ < 1. Hence by Grace 's  Theorem 

(3.3.3) P(x)*x(~b(z)*~ 1+ XZil__z~+'..+ x"z') gO 

for any polynomial  P ~  0 in I x [ <  1 and of degree _-< m, the inequality certainly 

being valid for Ix ] < 1, I z [ < 1. We obtain 

P (xz )  ~ 0  
(3.3.4) q~(z) * (1 - z )  ~ 

and by Hurwitz 's  Theorem this is valid for Ix [ --< 1, I z I < 1. In particular we deduce 

that 

1 +xz 
(3.3.5) ~(z)*(iZ-~-~O (Ixl_--< 1, I z t <  1), 

and so 4, ~ T(1,/3).  Thus if {/3k}~ are positive numbers whose sum is /3 - 1 we 

obtain f rom (3.1.2) 
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(3.3.6) l + x z  [I  ( 1 -  YkZ)-~k~ 0 
4~(Z) * 1 - - y z  1 (Ix/=< 1, [y I----1, lyk J--< 1, Iz I < 1). 

Apply ing  L e m m a  2.7 to the implicat ion (3.3.1) ~ (3.3.6) we ob ta in  

(3.3.7) eb(z)* ( l+ x ' z ) ( l +  SO 

(1 - yz ) YI (1 - ykz )o, 
1 

and since we may  choose  x, = x2 = x we may  again apply G r a c e ' s  T h e o r e m  to 

obta in  

(3.3.8) 

m - 1  

l + x z  I-I ( l + x i z )  
6 ( z ) * - -  ~-' s 0 .  

1 - yz l-[ (1 - y~z 1"~ 
k = l  

Apply ing  Hurwi t z ' s  T h e o r e m  and L e m m a  2.5 we deduce  that  for  g E 1-I~_, and 

R e F > 0 ,  

m - 1  

(3.3.9) 4) (z) * g ( z )F(z )  I-I (1 + xiz ) ~ o. 
1 

W e  will deduce  f rom this that  for  g E 1-I1_~, h E II,~_l, Re  F > 0, 

(3.3.10) , ~ ( z ) * g ( z ) h ( z ) F ( z ) ~ O  ( ] z l <  1). 

This  will follow f rom L e m m a  2.5 and (3.3.9) if we can show that  for  Ix I = I Y I = 1, 

m - 1  

1 + x._____._~z gh = gG I-I (1 + xjz ) 
1 - y z  

for  suitable x, on the unit  circle and G satisfying for  a rea l /~ ,  R e ( e ' ~ G ) > O .  W e  

may  assume m > 1, so we require  

Choose  x, = x. Since z (1/h )2/('-') is starl ike,  the  conclusion follows f rom T h e o r e m  

2.4. 

3 .4 .  W e  now comple t e  the  p roof  of  T h e o r e m  1.2 in the case a = m. Cons ider  

first the case /3 _-> m. Then  by (3.3.10) we have  for  g E IIm_~, 
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fl l + x ~ z # 0 "  (3.4.1) 4 s ( z ) * g ( z )  
" 1 .  ykz k = l  

apply ing  L e m m a  2.5 m t imes  we ob ta in  for  J a r g H  I _-< rn~r/2, 

(3.4.2) 4" * g H  # O, 

the  des i red  result .  Nex t  suppose  t h a t / 3  < rn. Le t  n = [/3], y = {/3}. T h e n  by (3.3.10) 

we h a v e  for  u ~ II_,, v ~ II . . . .  

(3.4.3) 4' ( z )  * u ( z ) v  ( z )  I~I 1 + xkz # o. 
1 - ykz 

A p p l y i n g  L e m m a  2.5 n t imes  we ob t a in  for  l arg L I<-_ n~'/2, 

(3.4.4) 4" * L u v  # O. 

Let  g E II,._8 and  I arg G I -< (/3 - 1) , r /2 .  T h e n  

l + xz  Gg = ( l + xz'~ ~-~" 
1 - yz  \1------~-/ G ( 1  - y z ) - ' ( 1  + x z ) ' g  = L u v  

w h e r e  

1 + xz~ 1-" 
L = \1 - yz  ] G, 

so I arg ( e ' L ) t _ - -  < nTr/2, u = (1 - yz ) -~  E II_,, v = (1 + xz )"g  E 17 . . . .  T h u s  by (3.4.4) 

1 + xz  Gg # O. 
(3.4.5) 4' * 1 - yz  

H e n c e  by L e m m a  2.5 we h a v e  for  [argHl_-</3~-/2 ,  g E l-Ira_, 

(3.4.6) 4" * g H  # O, 

the  des i red  result .  

3 . 5 .  W e  n o w  c o m p l e t e  the  p r o o f  o f  T h e o r e m  1.2. S u p p o s e  tha t  a -> 1, /3 - 1 

and  let rn = [ol], y = {or}. If  4' E T ( a , / 3 ) ,  then  

(3.5.1) 6 ( z )  �9 (1 + xz ) 'O  + u z y ~  o 
(1 - z )  ~ 
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forlxl<=l, lul<=l, l z l < l .  Henceforlwl<l ,  lxl<=l, lyl<=l, lul<=landJzl<l  

(1 + xw)'- { (1+ uz)'l = ( l+uz) ' ( l+xwz)" 
( 2 -  yw)  ~ *~ 6 ( z ) * ~  1 - wz j 6 ( z )  *, (1- y w z y  ~ o, 

and so the function 

w--">~b(z)*~ ( l +  uz)~ E T(m,[3)  
1 - wz 

for  each fixed z ( ] z l <  1). Hence  for  f E  K ( m , / 3 )  

(3.5.2) ~b (z )  * (1 + uz ) ' f ( w z  ) r 0 

for  [u I -< 1, I w I =< 1, I z [ < 1 by Hurwitz ' s  Theorem.  Let  g E I-I~ and consider  

(3.5.3) 4~(z) * (1 + x z )  m (1 -  yz) ~ g(z). 

This will be non-zero  by (3.5.2) provided that we can find [u I -< 1 and f E K ( m ,  [3) 

such that 

(1 + xz)m 
(2 - y z y  g ( z  ) = (2 + . z  ; f ( z  ). 

Choose  u = x. Then  (1 + xz)m-~(1 - y z ) - ' g ( z )  E K ( m ,  [3) by 2.3. Thus  (3.5.3) is 

non-zero  and in the same way that we proved  the implication (3.5.1) ~ (3.5.2) we 

obtain for g E H~ and f ~ K(rn,  [3), 

(3.5.4) 6 * g [ ~  0. 

Thus  to comple te  the proof  of T h e o r e m  2.2 it is sufficient to show that if k ~ II~_~, 

[arg G l_-<�89 (a, [ 3 ) -  1) and Ix 1= l y l =  2, we can write 

l + x z  
(3.5.5) 1 - y z  k G  ghL  

where  g EII~,  h El-lm_~, largLl_-<�89 for the conclusion will then 

follow from (3.5.4) and L e m m a  2.5. We consider  three  cases: 

(i) /3 - m. Choose  

1 + x z  
g = k ~/~'*-~, h = k~"-~l~"-~ L - 1 - yz  G. 
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(ii) 

g = (1 + xzF ,  

The  proof '  is comple te .  

3 .6 .  P r o o f  o f  T h e o r e m  1 .3 .  

and l arg G I =< (P - 1)7r/2, then 

1 + x z  
1 - y z  

T. SHEIL-SMALL 

m < / 3  < m + 7- Then  larg G I N  (/3 - 1)7r/2. Choose  

{ l  + xz'~ m-. +' g = ( l + x z )  ~ ink, h = ( 1 - y z )  m-o, L = \ I - - Z - ~ -  / G. 

(iii) m + 3' --</3. Then larg G I N  (m + y - 1)7r/2. Choose  

/ 1 +  xz~ 1-" 
h = (1 - yz)-*k,  L = \1 - - - - -~ - /  O. 

Let  p = min(a , /3 ) .  If I x l = l y l =  1 , g ~EI],~_~ 

- -  g G  E K ( a , / 3 ) ,  

and hence  by T h e o r e m  1.2 and L e m m a  2.5 we have  for  4' E T (a , / 3 )  and R e  F > 0, 

(3.6.1) R e  4' * 8 G F >  O. 
4" * gG 

Suppose  that  h E K ( a  - A,/3 - A), larg L I<= &r/2  where  1 =< A =< p and 0 =< 6 =< A. 

Then  h = g M  where  g @ 1-I~-t, and  larg M I _-< (p - A)Tr/2. Le t  k = [6], tr = {6}. If 

k = 0 ,  then 0 _ - < 6 < 1  and l a r g M l < - - ( p - A ) c c / 2 < = ( p - 1 ) T r / 2 ,  so by (3.6.1) and 

Corol la ry  2.6 

l arg { ~ * g M L ] I  6zr 
\ 4 " * g M  / <=-2- 

since f arg w f --< 8 ~ / 2  is a convex  region.  This  gives (1.3.1) in the  case k = 0. If k => 1, 

we write L = L 1 " " L ~ R  where  R e  L, > 0  (1 = < i =  < k )  and l a r g R l _ -  < o'r Then  

i terat ing (3.6.1) we obtain  

4" * gML1.  . . LkR = (4" * g M R  )f,1. . . ISk 

where  Re/Z~ > 0 (1 =< i _-< k).  Also by the case k = 0, 4, * g M R  = (4' * gM)l~ where  

larg/~l_-<trTr/2. Thus  4 " * h L = ( 4 " * h ) l ' _ ,  where  larg/~l_-<6~r/2, which proves  

(1.3.1). In the case A = p we deduce  that  for  g E II~_~ and l a r g H l _ -  < e~r/2, where  

0_-<e =<p, 
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(3.6.2) I arg (~*g/- /~  I < err 
\ 4 , * g  / = T "  

In particular putting e = 1 we have for Re F > 0 

(3.6.3) Re 4, * g F >  0. 
4 '*g  

Applying Corollary 2.6 we see that 

, b * g Z g ' } < � 8 9  if a > / 3  
R e t h * z g ' = R e  g > � 8 9  if a < / 3  

t h*g  4~*g ~-0 if a = / 3  

and so ~b*gEII~_o. Hence if 0_--<e_-<p and f E K ( a - e , / 3 - e )  we can write 

f = gH with g E 1]~_~ and l arg H I -< (p - e)~'/2, and so by (3.6.2), 

4, * f  = (4' *g) /q  = g/q 

where ~El-l~_~ and largI2II<-_(p-e)~r/2. Thus q b * f ~ K ( a - e , / 3 - e )  which 

proves (ii). To prove (i) we note that if I x l = l u J = l ,  the function 

(1 + xz)'~(1 + uz) ' (1 - z) -a E K(a,/3),  and hence by (ii) for $ E T(a,/3), 

(3.6.4) $(z ) * (1 + xz)m (1 + uz ) ' E  K(a,/3):  
(1 - z )  ~ 

Hence for 4' E T(a,/3) the convolution of 4, with (3.6.4) is non-zero by Theorem 

1.2, and thus ~b * ~b E T(a,/3). Finally to prove (iii) we note that by (2.3)(i), 

K(a',/3')C K(a,/3). Also if I x l = l u l  = 1 

(1 + xz)t~'l(1 + uz) t~'r C K(a' , /3 ' )  
(1 - z)O' 

and so is in K(a,/3). Hence if 4, E T(a,/3) its convolution with this function is 

non-zero by Theorem 1.2, and hence 4' E T(a' , /3 ') .  

4. T h e  c l a s s e s  K(a, fl) 

The convolution theorem provides us with information which appears to be 

unavailable on the basis of extreme point theory. 

4.1. T h e o r e m .  Let A1, A: be continuous linear [unctionals on ~l and suppose 

that 
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A2 (( l  + xz)m(l + uz) ~) 
(1 - yz  y # 0 

for Ix I <- 1, l u I <= 1, l Y I <= 1, where m is a natural number, 0 <= y < 1, [3 >= 1. Let 
[(z  ) = l + Y, T a.z " E K (m + y, /3 ). Then for suitable I x l <= l, [ u l <= l, lyl_-<l, 

{(1 + xz)m (1 + 
(1 - y z y  uz),] A, 

(4.1.1) A l f  = 
\ 

Azf Az ((1 + xz)"(1 + u z ) ' ) "  
(1 - y z ) ~  

In particular for suitable x, u, y 

(4.1.2) All= A1 ((1 "~ XZ)m(1-~- UZ)') 
(1 - y z y  

This is immediate  from Theorem 1.2 and Ruscheweyh's  Duality Theorem [11]. 

Another  easy consequence of the Duality Principle concerns linear operators on M. 

Let M be a compact  space of analytic functions g E M and let M* denote the 

"dual"  of M: 

M *  = {f e ~r f ( o )  = 1, g �9 f / o ,  f o r  g E M}.  

4 .2 .  T h e o r e m .  Let A be a continuous linear operator on M and suppose that 

A ( ( l + x z ) m ( l + u z ) ' ~  M* 
(1 - y z y  ] E 

for Ix I --< 1, I u I --< 1, l y I --< 1, where m is a natural number, 0 =< y < 1, /3 _-> 1. Then if 
f ( o )  = 1 and f E K(m + y,/3), Af  E M*. 

P r o o f .  Choose h E M  a n d l z ] < l .  F o r f E M  let 

Af = (h * Af) (z ) ,  

so h is a continuous linear functional on M. If f E K(m + % fl) then for suitable x, 

u, y 

( h * A f ) ( z ) = ( h * A  (l+xz)~(l+uzf')(l_yz)O / 0 .  

Also A f ( 0 )  is a continuous linear functional on M so for f E K(m + %/3) with 

f (0 )  = 1, A f ( 0 )  = 1. T h u s  A f  ~ M * .  
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Deeper  questions concerning linear mappings will be discussed in Section 5. 

However  reducing such questions to consideration of relatively simple members of 

the given classes will remain a constant theme. We apply Theorem 4.1 to the 

coefficient problem for K(a,  [3). We make use of the now standard notation f ~ g 

[21. 

4.3.  T h e o r e m .  Let f ( z )  = 1 + E7a,z"  E K(a,  [3) where a >- 1, [3 >= 1. I f  [3 
min(1 + { a } , 2 -  {a}) then 

( l + z )  ~ 
(4.3.1) f ( z )  ~ (1 - z)  a " 

In particular this holds for a >= 1, [3 >= ~. 

P r o o f .  Write a = m + 3 ,  where m is a natural number and 0=<3 '<1 .  By 

Theorem 4.1 the extremal function for any coefficient must lie among the functions 

(4.3.2) (1 + xz)"  (1 + uz)  ~ 
(1_  yz)~ (Ixl<=l, lu[<=l, ly [=< 1). 

I f /3  _-> 1+ 3' we write this as 

(1 + xz )  "~-' (1 + xz)(1  + uz )  ~ I 
(1 - y z )  '+~ (1 - y z )  a - ' - "  

Clearly (1 + xz )  "-1 ~ (1 + z) m-~, (1 - yz) -~+~+~ ,~ (1 - z)  -a§ Also for a suitable 

real 

[ a r g (  e'~ ( l + x z ) ( l + u z ) ~  I ( 1 - y z )  '+~ ] = < ( l + y )  Tr 

and hence as shown by Brannan [1] 

(l + x z ) ( l  + uz)  ~ ( l+z~  1+" 
(1 - yz) L+~ "~ \1 ---Z-~] 

and the conclusion is clear. If [3 => 2 - % we note that by Brannan's  theorem [1] 

(1 + uz F (1 + z F 
( 1 - y z )  ~ ~ ( 1 - z )  ~ 

and again the conclusion is clear. 
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4 .4 .  R e m a r k .  It is natural  to con jec tu re  that  the conclusion holds for  every  

a _-> 1, /3 _-> 1. T h e  crucial case is clearly m = 1, /3 = 1. A m o r e  genera l  quest ion 

concerns  the  ex t r eme  points  of K (or,/3). Are  these the funct ions  (1 + xz )~ (1 - yz) -8  

where  I x I = I Y I = 1, x ~ - y ? If t rue,  B r a n n a n ' s  result would  give the coefficient 

conjecture .  

4 .5 .  Var ious  wel l -known classes are  conta ined  in the K ( a ,  fl) classes. A 

funct ion f is c lose- to-convex of o r d e r / 3  [2] if, and only if, f '  ~ K(fl ,  fl + 2). These  

classes contain  the funct ions of b o u n d e d  bounda ry  ro ta t ion  at most  2rr (/3 + 1) [2]. 

For  3, < 0  the class HA = K ( 0 , - A )  is directly re la ted  to the class S ' 4 ~  of 

funct ions s tar l ike of o rder  1 +�89 k E I I ,  if, and only if, zk  E S*+~. Note  that  the 

funct ions in T(1, 1 -  A) p rese rve  IJ~ under  convolut ion,  a result first p roved  for  

A = - 1 , - 2  in [13] and for  genera l  A < 0  in [16]. A p a r t  f rom the extensive 

l i terature on polynomials  I am not aware  of any detai led s tudy of II~ for  A > 0. No te  

that  for  A > 0  the functions in T(A + 1, 1) p rese rve  the s t ructure  of  II,  under  

convolut ion.  

It seems  well wor th  giving a sepa ra t e  s t a t ement  of the Convolu t ion  T h e o r e m  for  

the case a =/3.  

4 .6 .  T h e o r e m .  Let a >- 1 and  suppose that ch ~ T(a ,  a )  and ok(O) = 1. Let  h 

and L E sg and satisfy 

(4.6.1) J a r g h l _ - < ( a - A )  2 ,  l a r g L J - < - ~  E ,  

where l=<A_-<a,  O <- 6 <= A. Then 

cb * h L <=ff_~ . 
(4.6.2, I arg - - ~ - ~  I 

In particular if H E sr satisfies l a r g H ]  _--< air~2, then 

(4.6.3) t arg (~b * H)J  _-< art~2. 

The  case a = 1 is x;ery wel l -known.  T h e  case a = 2 has a geomet r ica l  in terpre ta-  

tion. A doma in  D in the plane is called linearly accessible if its c o m p l e m e n t  D c can 

be wri t ten as a union of half-lines (equivalent ly  o0 is visible f rom every bounda ry  

point  of D ) .  Eve ry  c lose- to-convex domain  is l inearly accessible.  We  refer  to [14, 

15] for  a deta i led discussion of the concept .  

4 .7 .  T h e o r e m .  Suppose f @ ~ takes all its values in a linearly accessible 

domain  D. I f  4, E sg satisfies ok(O) = 1 and 
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(1 "Jv XZ~ 2 
(4.7.1) 4"(z)*\--i----~_z / ~ 0  ( I x l =  1 , 1 z t < l ) ,  

then 4' * f ( z  ) takes all its values in D. 

P r o o f .  Suppose that w0 Z D, so there is a half-line l with end-point  w,, such 

that l C D c. Since f takes no values on l, for  some real /z, 

Hence  by (4.6.3) 

and so 4'(z )* f ( z  ) ~ Wo. 

l a r g ( e ' " ( f ( z ) - w o ) ) l < r r  ( I z l < l )  

4 " ( z ) * e ' " ( f ( z )  - w,,) g 0 

4 .8 .  R e m a r k .  Since the functions (1 + xz )2 (1 -  z )  2 ([x l = 1, x ~  - 1) are 

mappings of the disc on to  the plane cut along a ray f rom the origin, the condit ion 

(4.7.1) is both necessary and sufficient for this "l inearly accessible preserving"  

proper ty  under  convolut ion.  The  class of such functions is closed under  convolu-  

tion. Writ ing the condi t ion as a quadrat ic  non-zero  condit ion in the variable x 

whose coefficients are functions of z, the condit ion on 4' can be t ransformed into a 

direct inequali ty relating 4' and z4 ' ' :  we make  use of the fact that  ax 2+ bx + c ~ 0 

in Ix]_-  < 1 if, and only if, 

(4.8.1) [ a ~ -  b e [ < l c J 2 - [ a ]  2. 

Here  we have 

Z, 2 

a = 4 ' * ~ =  z 6 ' - 4 ' + 1 ,  

2z  
b = 4' * (1 - z)2 = 2z4",  

1 
c = 4 ,  * ( 1 _  z)~ = 4' + z4' '. 

Af te r  some algebra we obtain the inequali ty 

(4.8.2) 4( Im z4")  2 < Re (24' - 1)Re{(1 + 4z4")  (2~ - 1)}. 
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As fur ther  applications of the Convolu t ion  Theo rem we establish two generalisa- 

tions of Grace ' s  T he o re m  to rational functions. 

4 .9 .  T h e o r e m .  Let R ( z ) = P ( z )/ Q ( z ) be a rational function w~th no zeros ot 

poles in I z I < 1, and suppose that 

degP_-< m, deg Q =< n 

where m >= 1 and n >= O. Let  A 1, A2 be continuous linear functionals on ~ such that 

(4.9.1) A 2 \ ( l _ y z ) , ] / 0  (Ix 1,1yl_-<l) .  

Then for suitable Ix I --< 1, J y I --< 1, 

- y z ) " /  (4.9.2) A~R = 

In particular, if R (0) = 1, for suitable Ix J _-< 1, [y I --< 1, 

(4.9.3) A ,R  = A~ \(1 - y z ) " ]  " 

P r o o f .  By the Fundamenta l  T h e o r e m  of Algebra  R E K ( m ,  n )  and the result 

is immedia te  f rom T h e o r e m  4.1 for m _-> 1, n _-> 1. If n = 0, the conclusion is a 

consequence  of Grace ' s  Theorem.  

4 . 1 0 .  R e m a r k .  The conclusion is false in the case m = 0. For  example  take 

m = 0, n = 2 and let R (z)  = (1 - z)-% If the theorem were  t rue in this case, then 

1 1 
= 0 ~ 6 . - - = 0  

* 1 - z (1 - xz)2 

for some Ix [ _--< 1. Equivalent ly 

1 
in [ z l < l  

1 
~ 4 ~ * 1 _ z r  in [ z l < l .  
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But by Lemma 2.7 this implication gives 

1 
4) * ( l _  x z ) ( l ~ y z ) ~  0 

Writing ~0 = z4) the assertion is equivalent to 

( [ x ] ~ l , ] y l ~ l ,  l z ]<l ) .  
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q / ( z ) / 0  in [zl<l  ~ ~b(z)schlicht in I z l < l ,  

which is of course false. 

4 .11.  T h e o r e m .  Let R(z )  = P(z) /Q(z)  be a rational function with nopoles in 
[ z l <1 and let 

m = deg P, n = deg Q, N = max (m, n). 

Suppose that 4) E T(N, n) with 4)(0) = 1. Then 

(4.11.1) (4)* R ) ( [ z  I < 1)C R( I z  ] < 1). 

P r o o f .  Suppose that R ( z ) / w  in ]z ]<  1. Then 

P -  wO ~ o  
Q 

and by the Fundamental  Theorem of Algebra, 

P -  wQ 
E K(N, n). 

Hence by the Convolution Theorem for n => 1 and Grace's  Theorem for n = 0, if 

4) ~ T(N, n) and 4)(0) = 1, 

4)(z) * P -  w O ~  0 
Q 

and so 4) * R ~ w. The conclusion follows. 

4 .12.  R e m a r k .  In particular every rational function without poles in I z [ < 1 

has non-trivial image preserving convolution multipliers depending only on the 

degrees of the numerator  and denominator.  
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5.  L i n e a r  t r a n s f o r m a t i o n s  o n  t h e  c l a s s e s  T(a,/3) 

5 .1 .  T h e  Convolu t ion  T h e o r e m  tells us that  T(a, fl) is closed under  convolu-  

tion for  a _-> 1, /3 => 1 and that  ct _-> a '=> 1, /3 > / 3 ' - >  1 imply T(a,/3) C T(o~',/3'). 
Thus  if 4~ E T(a,/3) the l inear o p e r a t o r  4' * gives a mapp ing  of T(a, /3 )----> T(ot',/3'). 
In this sect ion we shall discuss a genera l  cri terion for  l inear  mappings  be tween  the 

classes. 

Le! A be a con t inuous  l inear  o p e r a t o r  on ,.~. With ~" acting as a pa rame te r ,  let 

Then H(z, ~) is called the kernel of the ope ra to r  A and for  f ~ 

(5.1.1) 
A f ( z )  = (H(z, ~)*,f(~)),=, 

2 ~  

= lim 1 f R-, ~ f (Re- ' )H(z ,  e'~ 
0 

the limit existing and  converging locally uniformly in l z l <  1. Kerne l  funct ions 

H(z, ~) are charac ter i sed  by the p rope r ty  of being analyt ic  as a function of two 

variables  in I z I < r < 1, I~'1 < 1 + 6 ( r )  for  each 0 <  r < 1, where  8 @ ) > 0 .  Note  that  

the convolu t ion  ope ra to r  d~ *has  kernel  r  

5 .2 .  Suppose  that  a => 1,/3 _-> 1, a '  _-> 1, /3 '  ~ 1 and that  we wish to show that  the 

linear o p e r a t o r  A with kernel  H(z, ~) maps  T(a,/3) into T(a',/3'). Since T ( a , / 3 )  is 

closed unde r  ro ta t ions  and cont rac t ions  of  the variable,  we see f rom (5.1.1) that  the 

necessary and sufficient condit ion is: for  each th E T ( a , / 3 )  

(5.2.1) 4 , ( O * , H ( z ,  *z + xz)"(i +.,z)" 
(1 - z )  ~" ~ 0 

for  I ~'1 ---- 1, I z I < 1, Ix I = I u I = 1, where  m '  = [a ' ] ,  3" = {a'}. By the Convolu t ion  

T h e o r e m  this will hold for  I ~'1 < 1 if the  function 

(5.2.2) ~---~H(z,~)*z (1 + xz)m'(1 + uz)~" 
(1 - z )  ~' 

is in K(a, fl) for  each fixed z, x, u in the given ranges.  Thus  in this case 

z ~ H(z, ~') *~ ~b ( ( )  maps  T(a, fl) ~ T(a', fl') for  each l ~" l < 1. Since a local 

un i form limit of  funct ions in T(a', fl') is e i ther  -= 0 or  in T(a', fl'), we see that  if 

(5.2.2) holds for  I ( I  < 1 and  if th E T (a , / 3 ) ,  then e i ther  A r  -= 0 or  A~b E T(a',/3'). 
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Note that, though complicated, this condition is a condition purely on the kernel. 

The particular cases which we shall consider reduce to this general  criterion. 

5.3.  T h e o r e m .  Suppose that l = 8 = m i n ( a ' , / 3 ' ) - < m i n ( a , / 3 ) .  Let A be a 

continuous linear operator on J with kernel H(z ,  ~) satisfying the following two 

properties: 

(i) for each 1~ I = 1 the function 

(5.3.1) z --> H(z ,  ~) E T (a  ', [3 '); 

(ii) for each [z I < 1 the function 

(5.3.2) ~--* H ( z , ~ ) * z  (1 + z)~'-~'E K ( a  - 6, fl - 8). 

Then for each ck E T(a, /3) ,  either A~b =-0 or A4, E T(a ' , /3 ' ) .  

5 .4 .  R e m a r k .  Since the functions (1 - ~'z) -1 are in all the T(a, /3)  classes, the 

condition (i) is clearly a necessary condition for the mapping proper ty  to hold. In 

certain interesting cases it also turns out to be sufficient, though this is not the case 

in general. 

In order to prove the theorem we require the following lemma. 

5 .5 .  L e m m a .  Let f (z ,  ~) be a kernel function such that f (z ,  ~) ~ 0 for I z t < 1, 

I~1= 1, and f ( O , ~ ) ~ O  for I~l<=l. Then f ( z , ~ ) ~ O  for I z l < l ,  I,~l_--- 1. 

The proof proceeds by considering the Laurent  expansion of 1/f(z, ~) in a region 

[z ]_-< r < 1, 1 -  ~(r)_-<[~'l= < 1 + 8(r),  and showing by simple power  series argu- 

ments and analytic continuation that the resulting series is in fact a Taylor  series. 

5.6 .  P r o o f  o f  T h e o r e m  5 .3 .  

Let 

1 
g ( z ) -  (1 - z y  ' -~ ' '  

We consider first the case a '  _-</3', so ,5 = a ' .  

L (x, u, z)  = (1 + xz)m'(1 + uz)~' 
( l - z )  "' 

Then g E II~,_~, and since m ' +  y ' =  a ' ,  for suitable p(x, u) real 

larg(e'P~x'~)L(x, u, z ))l <= a'  rr 
2 

Thus by the Convolution Theorem and (i) 
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(5.6.1) 

I [ (1 + xz)m'(1 + uz)~'\ 
(l_b } 

arg ~e '~"~) H(z ,  ff)*z (1 - z)  ~'-' ' ] 
~'TT 
2 

for ] ~'l = 1, I z I < 1. Also by (ii) the denomina tor  in this expression is non-zero for 

J~'l< 1. If we denote  the numera tor  by f ( z ,~ ) ,  then f ( z , ~ )  •0 for I z I<  1, I~'f = 1. 

Also f(0, ~') = H(0 ,  ~r) ~ 0 for I~rl < 1 by (ii). Hence  by L e m m a  5.5 f (z ,  ~) ~ 0 for 

tzt < 1, I~l = 1. Thus we can apply the maximum principle to deduce that (5.6.1) 

holds for f z l <  1, fr 1. Then applying (ii) we see that  for each f z f <  1, 

I x I = I u ] = 1, the function 

~---~ H ( z , ~ ) * z  ( l  + xz )~ ' ( l  + u z f  ' 
(1 - z )  ~' 

is the product  of a function in K ( a  - a ' , /3  - a ' )  and a function in K(ot' ,  ct'), so is in 

K(a , /3) .  The criterion (5.2.2) is thus satisfied. 

Secondly suppose that /3 '<  ct' so ~ = /3 ' .  Let  g ( z ) =  (1 + xz)~'-~'~ II~,_~, and 

L(x,  u, z )  = (1 + xz)"'§ + u z y  
(1 - z)8' 

Then m ' + / 3 ' -  o~' = / 3 ' -  y ' > 0  and hence for suitable p(x, u)  real 

larg(e'~'~)L(x,  u, z)) I =</3'rr 
2 

Similarly to before we deduce that the function (5.2.2) is the product  of a function in 

K ( a  - / 3 ' , / 3  - / 3 ' )  and a function in K (/3 ', /3 '), so is in K(a ,  [3). 

5.7 .  C o r o l l a r y .  Suppose that ct >= 1, /3 => 1 and that A is a continuous linear 

operator on ,;t with kernel H(z ,  ~) satisfying 

(i) for each I~1 = 1 the function 

z --->H(z,r  T(a,  fl); 

(ii) for each I z I < 1 the function 

~--~ H ( z , ~ ) * ~ ( l  + z )  ~-~ E l"l.  ~" 

Then A maps T(c~,~) into T(a ,B)U{0} .  
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5 .8 .  D e f i n i t i o n .  A cont inuous  l inear  ope ra to r  on M is said to be origin 

preserving if A f(0)  = f (0)  for  every f E M. It is immedia te ly  verified that  A is origin 

preserving if, and only if, the kernel  H(z,  ~) satisfies H(0 ,  if) -- 1. 

5.9 .  T h e o r e m .  If  a >-1 and if A is a continuous linear operator origin 

preserving on sg, then A maps T(a, a ) into T(a, or) if, and only if, for each J ~" I = 1, 

 ,oo, 

As an appl icat ion we p rove  a s t ructure  preserving t h e o r e m  for  the  K ( a , / 3 )  

classes. 

5 . 1 0 .  T h e o r e m .  Suppose that 1 <= a <=/3 and let A be a continuous linear 

operator on st  with kernel H(z ,  ~) satisfying the following two properties: 

(i) for each I~l = 1 the function 

(5.10.1) z --+ A((1 + ~ z ) ~ - ' )  E I-I~_~; 

(ii) for each I z l <  1 the function 

(5.10.2) ~----> H ( z , ~ ) ~  T(a,[3). 

Then for each 0 <- e <= a, A maps K (a - e,/3 - e ) into K ( a  - e,/3 - e ) U {0} and (in 

the case e = a)  A maps [I~- o into 1]~_~. 

P r o o f .  Cons ider  first the case a = 1, /3 > 1 and assume that  

(a) z --~ A((1 + ~'z) 1-~) E 1q~_~ for  each I srl = 1; 

(b) ~---~H(z,~)E T(1, /3)  for  each I z l <  1. 

W e  note  that  g E 1-1t_~ if, and only if, g ( z ) =  t h ( z ) * ( 1 -  z )  1-a where  th E T(1,/3) .  

For  f E ~ define 

F f ( z )  = ((1 - z)l-~'), * A f t ( z )  * (1 - z )  1-~) 

where  h~ deno tes  the convolu t ion  inverse of h (h * h, = (1 - z) - l ) .  F is a cont inuous  

l inear opea to r  on ,~ with kernel  J(z, ~) satisfying 

(5.10.3) (1 --  Z )  1-/3 *zJ(z, ~) = (1 --  ~ )1 -~  * ,H(z ,  ~). 

F r o m  (a) and (b) we obta in  
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(c) z - - > J ( z , ~ ) E  T(1,/3) for each I~'1= 1; 

(d) ~ ' - -*(1-z)  '-~ *zJ(z,~')E l-[,_t~ for each I z l < l .  

Hence by Corollary 5.7 F maps T(1,/3) into T(1,/3)U{0}. We show that if 

c k ( z ) = E o d ~ . z " E T ( 1 , / 3 ) ,  then F~b~0. Let J ( z , ~ ) = E o z , ( z ) ~ " ,  so by (d) 

12o z, (0)~"" E H,_o. Hence to(0) ~ 0 and by the Convolution Theorem Eo qb.r. (0)~"" E 
17,_ o. Hence clearly 

(1~'1< 1) 

and so F~b(0)= Eo ~b,r,(0)~ 0. Thus A maps II,_0 to II,_~. 

Secondly, consider the case a = 1,/3 = 1. Then (i) implies that A1 is a non-zero 

constant and so A maps I10 into II0. Finally consider the general case 1 =< a =</3 and 

put a - / 3 = l - y ,  so y_-->l. We obtain 
(iii) z --> A((1 + ~rz)'-~) E H, ~ ; 

(iv) r 1 6 2  T(a, /3)C T(l,y),  

since a _-> l, /3 _-> y. Hence the previous cases show that A maps I-[._o to I]. 8- Let 

f E K ( a - e , / 3 - e )  where O<-e<=a. Then f = g L  where gEl-I~_~, l a r g L l =  < 

( a -  e)Tr/2. Assume A f ~  0. By (ii) and the Convolution Theorem 

larg H ( z ' ~ ) * ' g ( ~ ) L ( ~ )  I <= (a ~" 
H(z ,  ~r),,g(~') - e)~- 

for I ffl < 1, I z I < 1. Letting ~ ' ~  1 we deduce that 

largA/(z) I <(a-e)  Tr 
A g ( z )  = 2' 

and since Ag El-Is-0, A l E  K ( a  - e,/3 - e). 

As a final application we establish general criteria for continuous linear operators 

on .~/ to preserve convex, starlike and close-to-convex univalent mappings of the 

disc. These results generalise the Convolution Theorems established in proving the 

Polya-Schoenberg conjecture [13]. 

5.11. T h e o r e m .  Let A be a continuous linear operator on M with kernel 
H(z ,  ~). Suppose that 

(i) for each I '1= 1 the function 

(,1 
is starlike in I z I < 1; 
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(ii) for each I z j <  1 the function 

(5.11.2) ~ --> H(z '  ~ ) -  H(z ,O)  
z 

is convex in I~J < 1. 

Then if g is starlike, Ag is starlike. 

5 . 1 2 .  T h e o r e m .  Let F be a continuous linear operator on sr with kernel 

J(z ,  ~). Suppose that 

(a) for each I ~ l = 1 the function 

(5.12.1) z --,  J ( z ,  ~)  

is convex in I z l <1;  

(b) for each I z I < 1 the function 

o 3(z, ~) (5.12.2) ~ ---> ~zz 

is starlike in I ~ l < 1. 

Then for each convex 49, F49 is convex, and for each f close-to-convex, F f is either 

close-to-convex or constant. 

P r o o f .  Let H(z ,  ~) = Xo o-, (z)~" so that 

A - - ~ z ) 2  = , n o - . ( z ) ~ " - '  

is starlike in z for each I r I = 1, and so = 0 at z = 0. Hence  o-, (0) = 0 (n => 1). Thus  

for  f E M, A(zf(z))~ =o = 0. Define for f E M 

A ' f  ( z )  = 1 A ( z f ( z  )), 

so A* is a cont inuous  l inear ope ra to r  on M with kernel  

H *(z, ~) = --~ ( H  (z, ~ ) - H (z, 0)). 

The  condit ions (i) and (ii) imply 
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z - - - * A * ( 1 -  ~z) 2E I-[ 2 f~  each [~'l = 1; 

~ H * ( z , ~ ) ~ T ( 1 , 3 )  for each I z [ < l .  

H e n c e  by T h e o r e m  5.10 A* maps  II 2 to IT 2, so A maps  S* to S*.  F u r t h e r m o r e  A* 

maps  K(1 ,  3) to K(1 ,  3) t_J {0}. Since f is c lose- to-convex if, and only if, f '  ~ K(1 ,  3), 

we see that  if f is c lose- to-convex,  A z f '  is e i ther  identically zero or has the fo rm z h '  

where  h is c lose- to-convex.  

T o  p rove  5.12 define for  f ~ ,~ 

A f ( z )  = - -  
(1  - z )  

( 1 ) 
* F log l_---UT* f ( z )  . 

Then  (a) and (b) imply (i) and (ii) and hence  if ~b is convex  and jr c lose- to-convex,  

F ( 4 ~ ( z ) -  ~b(0)) is convex and F ( f ( z ) - f ( 0 ) )  is e i ther  c lose- to-convex or identically 

zero.  Finally writ ing J ( z ,  ~) = Xo'r ,  ( z )~" ,  the condit ion (b) implies  that  r~(z) = 0, so 

F1 = zo(z) is constant .  H e n c e  F~b is convex and F f  c lose- to-convex or constant .  

5 . 1 3 .  E x a m p l e .  Suppose  that  we wish to know which subdoma ins  of [z [ < 1 

are m a p p e d  by every convex univalent  funct ion on to  a convex  region. This was a 

p rob l em first solved by P o m m e r e n k e  [9] and later  s tudied by Heins  [3]. Such a 

domain  is clearly convex.  Let  w = or(z) be  univalent  and  m a p  I z I < 1 on to  such a 

domain .  Then  the linear o p e r a t o r  

A 4 , ( z )  = ,/ ,(o-(z)) 

preserves  convex  univalence.  T h e  kerne l  of the o p e r a t o r  is given by 

1 
H ( z ,  ~)  - 1 - ~o ' ( z )  " 

T h e o r e m  5.12 gives the following condi t ions  as sufficient for  the  desi red proper ty :  

1 
(5.13.1) z 

1 - 

(5.13.2) ~" --+ (1 - ~'o'(z)) 2 

convex for  each I r I = 1 ; 

s tarl ike for  each J z I < 1. 

Clearly (5.13.1) implies that  o ' ( z )  is univalent  so o - ' ! z ) ~  0. H e n c e  since [cr(z)l  < 1 

the condi t ion (5.13.2) is au tomat ica l ly  satisfied. Thus  (5.13.1) is both  a necessary  

and a sufficient condit ion.  Wri t ing 
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T = Re (1 + --~-~-}z~ 

this condition becomes 

(5.13.3) 

This gives 

(5.13.4) 

,., 2zOo'(z) 
T +  Re 1 - ~'o-(z) > 0  (1~'] = 1, Iz I<  1). 

l zo" I 1 zcr' ~ r - ~ - -  < ~  ( I + I ~ ] ~ ) - R e # T .  

If c = ~ r ( z ) - z o " ( z ) / T ,  19 = ]zo"(z) l /T ,  then p is the radius of curvature of the 

curve F, = {w = g(re'O)} at w = or(z) (Iz[  = r) and c is the centre of curvature. 

Clearly [c I<  1 + p. Therefore  

Z O J  [2 __ 2 
21c I < 1 + Io-12- 2 R e , Y - ~  = 1 + I~r]2+ Ic Io '12-p 

and hence [c[ 2 - 2 1 c  [+ 1 >p2,  which gives [c [ + p  < 1. Conversely, this condition 

implies (5.13.4). Thus the necessary and sufficient condition is that the circle of 

curvature at each point of F, lies entirely in I w ] <  1. 

6. Concluding remarks and an open question 

6.1 .  Apart from the case a = 1 the definition of the classes T(a,  ~)  is not an 

easy one to work with. As it implies a variety of "positivity" conditions it would be 

interesting to know whether any of these represent sufficient conditions. The case 

a not an integer is particularly interesting. Is it true that ~b ~ T(a, /3)  if 

(1 + xzy 
(6.1.1) ~b(z)* ( l_z )~  ~0  ( I x l = l ,  l z l < l )  

where a => 1, /3 ~ 1? By Lemma 2.7 it would be enough to establish either of the 

implications 

(6.1.1) @ ~b(z) * (1 + xz )  ~-1 (1_ z). ~o 

l + x z  
(6.1.i) ~ qS(z) * (1 - z )  ~ ~ 0 

( l l x l  = 1, Iz I<  1), 

( I x [ =  1, I z l < l ) .  

This conjecture is made very tentatively as I have not even managed to show that 
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the condit ion (6.1.1) represents  a no rma l  family of functions.  The  truth of the 

conjec ture  would settle affirmatively the  coefficient con jec ture  for  K ( a , / 3 )  (a  _-> 1, 

/3_->1). 

6 .2 .  T h e  fur ther  study of non-ze ro  convolut ion condi t ions  seems well worth  

pursuing and could throw new light on old p rob lems .  For  example  f ( z ) =  

z + a2z2+ . . .  is schlicht in [z [ <  1 if, and  only if, 

(6.2.1) / ( z ) ,  1 
z ( 1 - x z ) ( 1 - y z )  ~ 0  ( [x l= ty [= l ,  Iz[< 1). 

The  second dual  p r o b l e m  is thus of grea t  interest.  

7. S o m e  a d d i t i o n a l  r e m a r k s  

7 .1 .  The  ranges  of the p a r a m e t e r s  x, y and u in T h e o r e m s  4.1, 4,2 and 4.9 can 

be reduced  to two cases: (i) Ix ] = ]u [ = ]y [ = 1 or (ii) x = u = - y and Ix I < 1. This 

follows f rom the following sha rpened  version of R u s c h e w e y h ' s  duality theo rem:  

7 .2 .  T h e o r e m .  Suppose that g ( z ,  z 2 , . . . , z , )  is analytic for I z . l< l  
(1 <= k <= n) and that g(O, . . .  , 0 )= 1. Denote by T(g)  the class of functions d~ ~ A 

satisfying 

(7.2.1) 

for Ix~ 

(7.2.2) 

6(z)* g ( x l z ,  . . . , x~ ) / 0 

= 1 (1<= k <- n) and [z I < 1. L e t f ( z ) =  1+ ETa,z"  ~ A and suppose that 

for each rk E T(g).  Then there is a probability measure tx on the torus T" = {Ixk [ = 1, 

f (7.2.3) f ( z )  = J g ( x , z , . . . ,  x , z ) a ~ .  
T n 

Furthermore if A1 and A2 are continuous linear functionals on A such that 

(7.2.4) Azg(xlz,  " . " , x,z ) / 0 

for Ixk 1= 1 (1 <= k <= n) and for x, = x2 . . . . .  x. and Ix~l < 1, then for some values 

of the parameters x~ in this range 

f ( z ) * 6 ( z ) ~ O  ( [ z l< l )  

1 <= k <= n} such that 
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(7.2.5) A i / ( z )  = A , g ( x , z , . . . ,  x .z )  
A f t ( z )  A2g(x,z,...,x~ " 

7,3.  The proof of (7.2.5) follows Ruscheweyh's  original argument  [11] with one 

additional ingredient to reduce the range of the parameters  Xk. This is the following 

known lemma brought to my attention by D. Aharonov:  if h ( z , . . . ,  z , )  is analytic 

in the closed polydisc IzkI<=l ( l = < k = < n )  and if h ( z , , . . . , z . ) ~ O  when tz~[ = 1 

and also when z, = z2 . . . . .  z, = z and [ z l <  1, then h ( z , , . . . ,  z , ) ~  0 for [zk t _  -< 

1. 

To prove the representation (7.2.3) we observe that f ( z )  lies in the closed convex 

hull of the functions g ( y , z , . . . ,  y~ with [yk[=  < 1. But for any analytic function g 

and parameters  yk satisfying l Yk I =< 1 we can find a probability measure ~z on T" 

such that 

(7.3.1) g ( y t z , . . . , y , z ) =  f g ( x l z , . . . , x , z ) d ~ .  
T n 

This is seen from the fact that the function 

1 (Iz~l<l) 
1 - ykzk 

has a representation in the form 

f 1--ykZk ~ 1--XkZk 
T n 

(see e .g .T .  Sheil-Small, On the convolution of analytic functions, J. Reine Angew. 

Math. 258 (1973), 137-152). Thus 

ffI 1 g(y,zl ,"  �9 ", y,z,)  = g ( z , "  ", z , )  * 1 - y~z~ 

= f g(zlx,,"',z.x.)dl~ 
T n 

and (7.3.1) follows. Thus f must lie in the closed convex hull of the functions 

g ( x l z , . . .  , x , z )  (Ixk I = 1) and (7.2.3) follows from Choquet ' s  theorem. 

7.4.  T h e o r e m .  Let [ ( z ) = l + E ~ ? a , z " E K ( a , ~ ) ,  where a>=l and ~>-1. 

Then there is a probability measure tz on the torus T 2 such that 
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f ( l+xz)  ~ (7.4.1) f(z) = (1 - yz)  ~ d/z. 
T 

Furthermore 

(7.4.2) f(z ),~ ~ + z )~ 
- -  Z )  ~ �9 

P r o o f .  The  following ex t r eme  point  a rgument  is due to J. Clunie. 

Let  h(z) be an ex t reme  point  of the closed convex hull of K(a,/3). By T h e o r e m  

1.2 and the preceding  r emarks  h ( z )  has the form 

(7.4.3) h(z) = (1 + xz)m (1 + uz)" 
(1 - y z ) ~  

where  [ x [ = ] u l = l y [ = l  and m = [ a ] ,  y = { a } .  We  may  assume 0 < y < l .  T o  

p rove  the result it will be sufficient to show that x = u. Now 

(1 + x : )  "-'+~ (1 + x z ) ' - ~ ( ]  + u:)~ 
h(z)= ( 1 - y z )  ~-'  1 - y z  

= f  (1+  xz)  ~-1 l+~vz did(v) 
(1-yz) t3-1 1 - v z  

T 

where  ~ is a probabi l i ty  measure  on T and I ~'1 = 1. We have  thus represen ted  h as 

a convex combina t ion  of e lements  in K(a, 13) and, since h is an ex t reme  point ,  the 

measure  ~ must  be  a point  mass.  H e n c e  for  some  Is r[ = Iv I = 1 

h ( z ) = ( l + x z ) ~ - '  l + ~vz 
(1 - y z )" - '  i -- ~ " 

The  relat ion x = u follows easily. 

7 .5 .  In a fo r thcoming  pape r  St, Ruscheweyh  [Some convexity and convolution 
theorems for analytic functions, Math.  Ann.]  also obta ins  T h e o r e m  7.4. In addit ion 

Ruscheweyh  establ ishes the following interest ing consequence  of the convolut ion 

theorem.  For  a => 0, /3 _-> 0 deno te  by S(a ,  13) the funct ions of the fo rm 

g(z) 
f ( z ) =  h(z) 
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w h e r e  g E FI~, h E II~. If  4' E T ( a  + 1, fl + 1), t h e n  th * f E  S ( a , / 3 ) .  In  p a r t i c u l a r  

t h i s  s h o w s  t h a t  if p ( z ) =  z + . . .  b e l o n g s  to  t h e  c lass  Vk of  f u n c t i o n s  of  b o u n d e d  

b o u n d a r y  r o t a t i o n  at  m o s t  kTr, t h e n  so d o e s  z4 '  * p  fo r  e a c h  4' E T ( � 8 9  + 2 ) .  
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