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Introduction

Let & denote the space of functions analytic in | z | < 1 given the usual topology
of local uniform convergence. Toeplitz [17] showed that a continuous linear
functional A on & can be represented by a function g({) analytic in [{|=1 as
follows: for f(z) =25 a.z" € oA

A =3 aa = (S cad”) = @@ @)

=

=tim 5 [ fe™)g(e")do

where g({) = 25 ¢.{" and * denotes the Hadamard product or convolution of two
power series. In his duality method Ruscheweyh [11] has shown how Toeplitz’s
result can be used in a very effective way to establish the exact range of a linear
functional on a class C C o in cases where C can be shown to lie in the second dual
of a relatively simple family of functions. The information gained in this way is in
general more precise than that obtained by constructing the extreme points of C.
For example, one is able to study extremal problems concerning the ratio of two
linear functionals. Furthermore in certain interesting cases the first dual family can
be shown to be closed under convolution and this family then represents a structure
preserving multiplier class. The ideas here have been in use for many years in
connection with the theory of polynomials and can be traced back to Szego’s
interpretation of Grace’s Theorem [7]. More recently the conjecture of Polya and
Schoenberg [8] concerning the Hadamard product of two convex univalent
functions was solved affirmatively essentially by showing that the class of convex
functions formed a first dual space with the close-to-convex functions (more
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precisely their derivatives) lying in the second dual [13]. These results and methods
have since been further extended [6, 12, 16].

In this paper we establish a new second dual theorem from which we shall deduce
a general Convolution Theorem which extends the above-mentioned convolution
theorems. As well as the already known results concerning functions starlike of
various orders, we shall obtain new information concerning functions of bounded
argument, functions of bounded boundary rotation, products of the form
II7 (14 xiz)* and various other classes of non-zero analytic functions in the disc.
The methods we use will establish a link with the theory of polynomials and we
shall give generalisations of Grace’s Theorem to rational functions. As part of our
argument we will show how Grace’s Theorem is itself a very simple consequence of
the Fundamental Theorem of Algebra and an ingenious Algebraic Convolution
Lemma based on the properties of Moebius transformations and essentially due to
Ruscheweyh [12]. In the final part of the paper we shall show how the Convolution
Theorem can be used to study general linear transformations between the classes.
As an application we generalise Polya and Schoenberg’s original problem and give
a general criterion for linear operators on & to preserve the property of convex

univalence.

1. Preliminary definitions and statement of the main result

1.1. Suppose that k(z) is analytic and # 0 in |z | <1 and that A is real. We
write k €II, when

( <% if A>0,
zk'(z % A
(1.1.1) Re k(2) >3 if A<0,
=0 if A=0.
Finite products of the form
1.1.2) k(z)=c[] 0+ xz)™
. k=1

where [x, [ =1, c# 0, Zi_, Ax = A, A« have the same sign (i.e. that of A) are dense in
I1,.
Fora =0, B = 0 we write f € K(a, B) if f € of and can be written in the form

(1.1.3) f(z)=k(z)H(z)

where k €11, , and H € & is non-zero and satisfies |arg H(z)| =47 min(a, 8) in

|z| < 1.In particular f# 0. For example if g € Il., h €, then f = g/h € K(a, B).
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The functions in K(a, 8) form rather general classes of non-zero analytic
functions and can be characterised in an ““intrinsic”” way by a Kaplan-type condition
[5]. We give this condition as Theorem 2.2. We may ask to what extent the
functions in K(ea, B) are “dominated” by the relatively simple functions

(1.1.4) %g)% (x|=1,[y|=1)

for various types of extremal problems. Our basic theorem is concerned with this
problem. If ¢ € o we write ¢ € T(a, B) if

LAt xz)"(1+uz)”
(1.1.5) #(z) -2y 70

for|x|=|u|=1,[z]|<1, where m =[a], vy ={a} (i.e. m is the largest integer not

exceeding @ and m +vy = a).

1.2. The Duality Theorem. Suppose that a«=1, B=1 and that
¢ € T(a, B). Then for f € K(a, B),

(1.2.1) d(2)*f(2)#0  (Jz[<1).

Assuming the functions in K(ea, 8) are normalised by the condition f(0) =1, the
theorem states in the terminology of Ruscheweyh [11] that K(«a, 8) lies in the
second dual of the class of functions

(1+xz)"(1+uz)”
(1-yz)°

(1.2.2) (x|=1,ul=1,]y[=1)

and any continuous linear functional on & will have the same range on K(a, B8) as
on this smaller class. Among other things this implies that the class of functions
(1.2.2) and K(a, B) have identical closed convex hulls.

From the Duality Theorem we will deduce the following more complete

statement.

1.3. The Convolution Theorem. Suppose thata =1, 8 =1.

() If ¢, ¢ € T(a,B) then ¢ * ¢ € T(a, B).

(it) If 0=¢ =min(a, B), then for d ET(a,B)and fEK(a —¢,B~¢), p*fE
K(a—¢B—¢).

(i) faza'Z1, =B’ =1, then T(a, B)C T(a’, B').

v) If 1=A=min(a,B) and 0=8=A, then for ¢ €T(o,B), hE
K(a—AB—A), |argL|= 672,
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(1.3.1) arg (%)’ = Qr_r

¢ =2

We shall point out applications and special cases of this result in Sections 4 and 5.
For now we observe that it extends very considerably the results established in
proving the Polya-Schoenberg conjecture, which is the case « = 1, 8 = 3 [13]. The
cases a« =1, B =1 were established by Suffridge [16], Lewis [6] and Ruscheweyh
[12]. The methods of [13] and Ruscheweyh’s extension of these methods [12] will
play a central role in the proof. The constant interaction of a few simple techniques
together with the fundamental nature of the result make it desirable to give a
substantially complete proof.

2. Preparatory lemmas

In this section we develop the principle subsidiary results needed for the main
proof which we give in Section 3.

2.1. Lemma. Letg(z,, -, 2.) be analytic in the polydisc |z, |<1(1=k =n)
and suppose that

(2.1.1) : d(z)*g(zxy, -+, 2x,) #0

for|x.[=1(1=k=n)and |z|<1. Then (2.1.1) holds for |x. |=1 (1= k = n) and
|z|<1.

Proof. The case n =1 is trivial. It clearly suffices to prove the case n = 2. This
follows easily from the following two variable lemma: if f(z,{) is analytic for
|z]<1,]¢|<1and # 0 whenever |z|=|{|, then f(z,{)#0 for |z|<1,|{|<1.To
prove this we note that f(0,0)# 0 so f(z,{)#0 for |z|<r, [{|<r and a suitable
r >0. Hence we can write

1 =
f(z.8) «

M
M
o
3
3
N
3
[T
3

(2.12)

0 n=0

the series being absolutely convergent for |z | < r, | £ | < r. The conclusion will follow
by analytic continuation if we show that this series is absolutely convergent for
|z|<1, |{]<1. By hypothesis we can write

(2.13) mi—z) = }Z‘, a (x)z*

for [x|=1, |z]< 1. Comparing this with (2.1.2) for |z |<r, we deduce
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a(x)= 2 cnmx™ (lx]=1)

m+n=k

for k =0,1,2,---. By Cauchy’s formula

jak(x)Jgk%,‘52 (O<R<1)

where M(R) = max,-;-z 1/]f(z, {)|. Hence

< MRR) O<R<1,m+n=k).

'C"L'll— Rk

We obtain for 0<p <R <1and |z|<p, |[{|<p

3 S lanallzl 12l =S 3 Jenale®

= 3k~ MER) (&)

< oo,

2.2. Theorem. If f is analytic and non-zero in |z | <1, then f € K(a, B) if
and only if, for 6, < 0,<0,+2m and 0<r<1

—am +3(a = B)(6:— 6,) = arg f(re") — arg f(re™)

2.
22.1) =i(a - B)(6:~ 6, + B

The two inequalities are equivalent, i.e. each implies the other.

Proof. If f=kH where k €Il,_; and |arg H|= }7 min(a, 8), then

=i(a—B)06.-0,) if azp
};%(a—a)(oz—e,) if a<p
and so

}é%(a—B)(02—01)+B'n if azp,

z —ar+ixa-B)H.—-0) if a<B
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Since arg f(re®®) is periodic with period 27 we obtain on applying this to the
interval {6, 6, +27]

A argf=- A

[61.87] 162, 6,+27}]

zi(a—B)B:—8)—ar if az=p,
argf}

=Br+i(a—B)0.—6) if a<pB.

Conversely, assume the condition holds. If @ = B8 the result is clear. If a >, let
n =2/(a — B) and set g(z)=zf *(z). We obtain for 8,> 6,

A argg = — upm
[61,62]
Writing t,(0) = infe=e(arg g(re®))+ uBm/2, we see that 1(6) is increasing,
(6 +27w)=1(0)+2m and

|t,(8)—arg g(re”)| éﬁg—w .

By Kaplan’s method [5] we find there is a function h(z) starlike in | z | < 1 such that

|arg b —argg[éﬁng

and hence g = h/F where F € o satisfies |arg F| = uBm/2. Thus f=(z/g)"* =
FV*(z/h)" which is the required form. If a <, let u = 2/( - «) and g = zf*.
We find Ap,e,argg = —apm and obtain h starlike such that g = hF where
|arg F| = paw /2. This gives f = (h/z)"“F"*, the required form.

2.3. ];'”fom this result we easily deduce the following properties of the K{(«a, 8)
classes:

(i) a'=a B'=B > K(a',B)CK(a,B),

.. K(A,0 if Az0,

(i) T, = {K((O, —))\) it A <0,

(iii) f € K(a, B) © 1/f € K(B, @),

(iv) fEK(a,B), g EK(a',B) > fg EK(a t+a’,B+B),

(v) f€ K(a, @) & for some u real, |arg(e“f)| = an /2.

The next result [10, 13] is a reflection of the fact that a starlike domain is starlike
in every direction. We give a geometrical proof.

2.4. Theorem. Let h(z) be starlike in |z |<1 and let n be a natural number.
Then for each {, (|{,| = 1) we can find {5, - -, {. satisfying | (| =1 and u real such
that
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(2.4.1) arg (e“‘ -;—;%%) ’ < %T (Jzf<1)
where
2.42) P(z)=1z 1’[ (- Lz)™"

Proof. The class of functions of the form (2.4.2) with fixed { is clearly compact
and hence without loss of generality we may assume that #(z) is analytic and
starlike in [z|<1+¢ for suitable ¢ >0. Let D denote the image domain
{w =h(z):|z|<1}. The point £, is the inverse image of a point w, on 4D. With
[0, wi] as the first ray construct the n rays from the origin making equal angles
21 /n, so that the rays meet 4D at points w,, w,, * - -, w, respectively. Let {5, - -, {n
be the inverse images on |z | =1 of w,, - -, w, and define P(z) by (2.4.2). Then P
maps |z | <1 onto the plane cut along n radial slits making equal angles of 27 /n,
and arg P(z) is constant on the arcs (&, Zc.1) on |z | = 1 with jumps of 27 /n at these
points. The value of arg P at £, is exactly half-way into the jump. Hence we see that
for any 6., 6, real

[(arg P(e™)— arg P(e")) — (arg h(e*) —arg h(e*))| =27 /n,
i.e. the difference in swing cannot exceed the angle 27 /n. Hence for some real p
|arg P(e®)—argh(e®)—pn|=w/n

and the conclusion follows easily using Poisson’s formula.
The following simple lemma is frequently applied in our theory [13].

2.5. Lemma. Suppose ¢, g are analytic in |z | <1 and that

25.1) é(z)* 11:“;;

g(z)#0
for |x|=|y|=1,|z|<1. Then if F € o and ReF >0,
2.52) Re %E%E > 0.

In particular

(2.5.3) ¢ *gF#0.
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Proof. When x = —y we obtain ¢ * g # 0. By Lemma 2.1 and simple manipu-
lations we obtain for |x|=1, |y[=1

6@ T8
$G)*glz) T

and hence (2.5.2) holds for F(z)=(1+yz)/(1—yz). If ReF >0 we have by
Herglotz’s Theorem

1+ .
F(z)=f1—_—y§du(y)+w

where u is a positive measure on the unit circle T and ¢ is a real constant. Hence

(@) r it
P 8@

Reﬂg— fR d,L>o.

2.6. Corollary. If F € o takes all its values in a convex domain D, then the
inequality (2.5.1) implies that

¢ *gF

takes all its values in D.

The next result plays an important algebraic role. The proof is based on an
ingenious idea due to Ruscheweyh [12].

2.7. Lemma. Suppose that for given complex numbers a,, - - -, a. the class of
functions ¢ € A and satisfying

2.7.1) o(z)* [] @+ xz)*#0 (Jx|]=1L,1=k=n|z|<1)
k=1

has the property that all functions ¢ in the class also satisfy

(2.7.2) o@)*[[ +x2)#0  (x|=1L1=j=m,|z|<1).
j=1

Then it is also the case that all the functions ¢ satisfy
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(2.7.3) d()*(L+xz) [] A+ x2)5#0
j=1
for [x|=1,|x|=1(1=j=m)and |z|<1, where
A= 2]: = Z Bf'

Symbolically: ((2.7.1) > (2.7.2)) > (2.7.3).

Proof. We denote the three classes by P(a), P(8) and P(A, 8). By Lemma 2.1
the conditions (2.7.1) and (2.7.2) will hold with the parameters in the closed unit
disc. Also by Hurwitz’s Theorem it will be sufficient to show that (2.7.3) holds with

the parameters in the open unit disc. Choose |x|<1 and set

T+x T+HX

aM=1rz P05

which give automorphisms of |7|< 1. Then

(2.7.4) 1+a(r)z = 11—:[% 1+ b(z)7).

Thus for [&|=1, [w|=1 and a = =} ax we have

H 1+ a@w)z)™ = 1+ xz) 1 (Mﬂ{—“’) B

k=1 1+i§kw

and hence if ¢ € P(a)
qb(z)*(l-l-xz)"‘ﬂ (1+ b(z)Gew)™ #0
for |z|<1, [w|=1,|&]|=1. We write this a-s
T1 -+ dowye *w{¢(z)*z (1+xz)"1—_5%z—);}7!0

and deduce that for each z (|z|<1) the function

1

w—d(z)*, (l+xz)°'1—_—g(—z'5;

(Jwi<1)
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is in P(a). Therefore it is also in P(B) and we obtain
= 1
[T+ gwpm {6@)n (14 x2y | #0
for ||=1, {w]|<1, |z|<1. This gives
¢z % (1+x2) [] (1 + za(Gw)P #0

and the conclusion follows.

As an application of this lemma we prove a unit disc version of Grace’s Theorem
for polynomials. In addition to other applications of the lemma Grace’s Theorem
will itself form part of our proof of the convolution theorem.

2.8. Grace’s Theorem. Let P(z) be a polynomial of degree at most. n such
that

2.8.1) Pz)*(1+z)#0  (Jz|<1).
Then if Q(z) is a polynomial of degree at most n with no zeros in [z |<1,
(2.8.2) P(z)*xQ(z)#0  (]z]<1).
Proof. By the Fundamental Theorem of Algebra we can write
P(z)*(1+2) = ¢ kl‘[ 1+ 22)

where ¢#0, |z.|=1 (1=k =n). Hence

P(z)*1+z=c(1+lizkz)¢o (2] <1).

n
Thus P*(1+2)"#0=> P*1+z#0. By the lemma we deduce that
P(z)*(1+xz)"'Q+yz)#0 ([x|=1L]y|=1,]z]<])

and in particular P(z)*(1+ z)""' # 0 (which is the Gauss—Lucas Theorem). Re-
peating the argument and re-applying the lemma we obtain inductively
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P(z)*l—[(1+xkz)#0 (x|=1,zI<1).

The conclusion follows from the Fundamental Theorem of Algebra.

3. The main proof

In this section we give the proofs of Theorems 1.2 and 1.3. The proof of Theorem
1.2 consists of a chain of arguments which builds by proving successively more and
more general cases. Theorem 1.3 is then deduced from Theorem 1.2.

3.1. We consider first the class T(l, 8) where B = 1. Suppose that ¢ €
satisfies

(3.1.1) 6@ A0 (xl=1lz]<D).

Our first goal will be to show that for [x|=|y|[=1 and g €I,

1+ xz

(3.1.2) $(@)* [y 8(2)#0 (Jz|<1).

The initial crucial step is to show that (3.1.1) implies

(3.13) ¢(z)*(11_—2’;§:?f0 (x|=1,]z|<1).

Suppose for the moment that we have established this implication for every g = 1.
Then Lemma 2.7 gives us the first split:

1+ xz

O Ty A=y

(3.1.4)

for|x|=1,]y,|=1,|y.| =1,|z|<1. Applying this lemma inductively we obtain

(3.15) ¢(z>*< e £0

[Ta-y2)@a-yzy

where n =[8], y ={B}, so that n=1 and 0=y <1. Applying Lemma 2.5 we
deduce that for Re F >0

(3.1.6) b(z) % —e—112) #0.
(TTa-y2) a-yzy
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Thus to prove (3.1.2) it is sufficient to show that given |x | = |y |=1and g €II,_s, we
can find yi, € and ¢ on the unit circle and Re F >0 such that

1+ xz cF(z)

—— 8(2)= 775 )
1=z (IT a-na)) (a-ezy

Choose ¢ = y and note that h(z)=g(z)(1— yz)" ' €IL,. Thus we wish to show
that given |x|=1 and h €IL,, we can find y, and c such that

Re {E(l + xz)h(z) ﬁ 1- ykz)} > 0.

This follows immediately from Theorem 2.4. From (3.1.2) and Lemma 2.5 we
obtain for g €Il,_; and Re F >0,

3.1.7) $(z2)*g(z2)F(z)#0 (Jzl<1)
and this gives Theorem 1.2 in the case a = 1.

3.2. To complete this part of the chain of reasoning it remains to establish the
first link (3.1.1) = (3.1.3). The case B =1 is clear. Assume B8 >1. Then the
implication is equivalent to

d(z)*z(1~z)*°
d(z)*(1~2)"

P(z)*z(1-z)""
d(z)*(1~2)"*

<1 (Jz|<1)

> | <1 (|z|<1).

Let

$(z)*z(1-z)"*
b)) *(1-z) "

w(z)=

Then w is meromorphic in |z | <1 and w(0) = 0. We wish to show that |w(z)| <1
(Jz | < 1). If this is not the case, then by the Clunie-Jack Lemma [4] we can find ¢
satisfying |£] <1 such that

lo(@)]=1,  {o'(()=ke(l)

where k = 1. Simple algebraic manipulations, which we shall omit, give the relation
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S(N*LA=0"F _ (k+B-2w(()
d()*(1-5)"  B-1+(k—Dw(l)

provided B — 1+ (k ~ V)w({)# 0. Hence by hypothesis

|k =D+ (B-1D|<|B -1+ (k~Dw(l)
=|g-1|+]k—-1].

Since k=1, B>1, this is clearly false. If B —1+(k —1)w({)=0, then also
k + B —2 =0, which implies 8 =1, a contradiction.

3.3. We now consider the class T(m, 3) where m is a natural number and
B = 1. Suppose that ¢ satisfies

(3.3.1) ¢(z)*£(11+_—"zz)¥aé0 (Ix]=1,]z|<1).

By Lemma 2.1 this holds for |x|=1. It can be re-written

for |[x|=1, |z|<1. Hence by Grace’s Theorem

1+xz+---+x"z"

(3.33) P(x)* (qb(z) " IS ) #0

for any polynomial P#0 in |x|<1 and of degree = m, the inequality certainly
being valid for |x | <1, |z]|<1. We obtain

(3.3.4) b(z) * uﬂ—% £0

and by Hurwitz’s Theorem this is valid for |x [ = 1, | z | < 1. In particular we deduce
that

(3.35) ¢(z)*(11f:)25;é0 (Ix|=1,]z]<1),

and so ¢ € T(1, B). Thus if {B«}i’ are positive numbers whose sum is 8 —1 we
obtain from (3.1.2)
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(36 d@)* e [1a-nay®#0  (xISLIy|SLinlsLz|<D).

Applying Lemma 2.7 to the implication (3.3.1) = (3.3.6) we obtain

A+ x2)A+x,2)" !
N

(1—yZ)H(1—ykZ)“*

(33.7) (z) * £0

and since we may choose x; = x,=x we may again apply Grace’s Theorem to

obtain

m-—1

1+ xz
1+xz ,I:[,( ’)?50‘

o3 S

Applying Hurwitz’s Theorem and Lemma 2.5 we deduce that for g €Il,-; and
ReF >0,

(3.3.9) 6(2)*g(2)F(2) ﬁl (1+x2)#0.

We will deduce from this that for g €I1,_4, h €1I1,._,, Re F >0,
(3.3.10) &{(z)*g(z)h(2)F(z)#0 (Jz]<1).

This will follow from Lemma 2.5 and (3.3.9) if we can show that for |x |=|y|=1,

1+ xz ot
= _
1=z 8h =8G [ +x2)

for suitable x, on the unit circle and G satisfying for a real p, Re(e*G)>0. We
may assume m >1, so we require

(l)ﬂ(m—l) _ (i>2/(m_l) 1+ xz 2/(m—1)
h \G '

1-y2) TT 1+ xz

Choose x. = x. Since z(1/h ¥ is starlike, the conclusion follows from Theorem
2.4.

3.4. We now complete the proof of Theorem 1.2 in the case « = m. Consider
first the case B = m. Then by (3.3.10) we have for g €Il,._g,
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1+xkz

(3.4.1) ¢(2)*g(z) H ;éo

applying Lemma 2.5 m times we obtain for |arg H|= mm/2,
(3.4.2) & *gH#O,

the desired result. Next suppose that 8 < m. Let n = [B], y = {8}. Then by (3.3.10)
we have for u €1, v E€EIl,._,,

l+ka

(3.4.3) ¢ (z)*u(z)v(z) H

Applying Lemma 2.5 n times we obtain for |arg L | = nw /2,
(3.4.4) & * Luv#0.

Let g €M,._s and |arg G| =(B — 1)7 2. Then

1+xz ., (1+xz\'"” - v
l—yzG _<1—yz> G(-yz)"(1+xz)g = Luv

where

-
L=(1+xz) YG,
1—-yz

solarg(e*L)|=nm2,u=(1—-yz) " €ll.,,v=(1+xz)g €Il,_,. Thus by (3.4.4)

1+ xz
1-yz

(34.5) ¢ * Gg#0.

Hence by Lemma 2.5 we have for [arg H|= 87 /2, g €l
(3.4.6) ¢ *xgH#O0,
the desired result.

3.5. We now complete the proof of Theorem 1.2. Suppose that a =21, 8 =1
and let m = [a], ¥ = {a}. If ¢ € T(a, B), then

(3.5.1) b(z)* (1+xz)"‘zL):— uzl
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for|x|=1,|u|=1,|z]<1.Hencefor|w|<1,|x|=1,|y|=1,|ul=1land|z]|<1

1+xw)™ . 1+uz)"] _ . 1+ uz)"(1+xwz)"
G2l {0 e G = 00 » LI 0,

and so the function

w—> d(z)* 1—wz

for each fixed z (|z|<1). Hence for f € K(m, 8)
(3.5.2) d(2)*(1+uz)yf(wz)#0

for |[u|=1, |[w|=1, |z|<1 by Hurwitz’s Theorem. Let g €II, and consider

(3.5.3) o2) WXL o (o),

This will be non-zero by (3.5.2) provided that we can find |u| =1 and f € K(m, B)
such that

%}—f—’jﬁ—%% g(z)= (1 + uz)f(2).

Choose u = x. Then (1+xz)" "(1—yz) Pg(z)€ K(m,B) by 2.3. Thus (3.5.3) is
non-zero and in the same way that we proved the implication (3.5.1) = (3.5.2) we
obtain for g €11, and f € K(m, B8),

(3.5.4) b *xgf#0.
Thus to complete the proof of Theorem 1.2 it is sufficient to show that if kK €11, 4,
|arg G| =47 (min(a, B)—1) and |x|=]|y|=1, we can write
1+ xz _
(3.5.5) 1=yz kG = ghL

where g €I1,, h €Il,._5, |arg L | =37 min(m, B), for the conclusion will then
follow from (3.5.4) and Lemma 2.5. We consider three cases:
(i) B =m. Choose

_1+xz
1-yz

g= kY/(“—B), h = k(m—B)/(ﬂ—B)’ L G.
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(i) m <B<m+7y. Then |arg G| = (B — 1)7/2. Choose

1+ xz)"“‘g+1 G.

= B—m —_ —_ m—pg —
g=0+xz)""k, h=(1-yz)"® L <1—yz

(ili) m + y = B. Then |arg G| = (m + y — 1)ar/2. Choose

_ Y b= (1= va ) o (Ltxz)\"™
g=(+xz), h=(-yz)"k L (1_yz> G.

The proof’is complete.

3.6. Proof of Theorem 1.3. Let p =min(a,B). If [x|=]y|=1, g€l
and |arg G| = (p — 1)7/2, then

1+ xz
=7 86 EK(@p),

and hence by Theorem 1.2 and Lemma 2.5 we have for ¢ € T(a, 8) and Re F >0,

GF
(3.6.1) Re % > 0.

Suppose that h E K(a — A, B—A), |argL |=8n/2 where 1= A =p and 0=6 = A.
Then h = gM where g €EIl._, and |arg M | = (p — A)7/2. Let k =[8), o ={8}. If
k=0, then 0=86<1 and |argM|=(p —A)7/2=(p — 1)7/2, so by (3.6.1) and
Corollary 2.6

arg <%*;%>‘ = %71

since [arg w | = 87r/2 is a convex region. This gives (1.3.1)inthecase k = 0. If k = 1,
we write L = L,---L,R where ReL, >0 (1=i=k) and |argR|= o7/2. Then
jterating (3.6.1) we obtain

¢*gML,---L.R =(p*gMR)L,--- L,

where Re L; >0 (1 =i = k). Also by the case k =0, ¢ * gMR = (¢ *gM)R where
largR| =< om/2. Thus ¢ *hL = (¢ *h)L where |argL|= &n/2, which proves
(1.3.1). In the case A = p we deduce that for g € I._, and |arg H| = e7 /2, where

O0=¢=p,
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arg(%%’)'é%r.

In particular putting ¢ =1 we have for Re F >0

(3.6.2)

F
(3.6.3) Re%f%%—>o.

Applying Corollary 2.6 we see that

b *2g’
Re = Re
d*g b*g

¢*éﬂ}¢w—m it a>p
E t>l(a-B) if a<B
=0 if a=p

and so ¢ g €I, 4 Hence if 0=¢=p and f€ K(a — ¢, 8- ¢) we can write
f=gH with g €Il._,; and |arg H| = (p — ¢ )7 /2, and so by (3.6.2),
é+f=(d*g)H=¢H

where g €1Il,-; and largI:I] E(p-¢)m/2. Thus ¢ *fE€ K(a — g, 8 — £) which
proves (ii). To prove (i) we note that if |x|=|u|=1, the function
(1+xz)"(1+uz)(1-2)* € K(a, 8), and hence by (ii) for ¢ € T(a, B),

(3.64) o) » EEOS e K a .

Hence for ¢ € T(a, B) the convolution of ¢ with (3.6.4) is non-zero by Theorem
1.2, and thus ¢ *¢ € T(a, B). Finally to prove (iii) we note that by (2.3)(i),
K(a',B)C K(a, B). Also if [x|=|u|=1

1+ x2)'1 + uz)"
(1-z)

€ K(a', B)

and so is in K(a, B). Hence if ¢ € T(e, B) its convolution with this function is
non-zero by Theorem 1.2, and hence ¢ € T(a’, B').

4. The classes K(a, B)

The convolution theorem provides us with information which appears to be

unavailable on the basis of extreme point theory.

4.1. Theorem. Let A, A, be continuous linear functionals on s{ and suppose
that
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(A+xz)"(1+ uz)”
A () #o

for |x|=1, |u|=1, |y|=1, where m is a natural number, 0=y <1, B= 1. Let
f(z)=1+3%27a.z" € K(m +v,B). Then for suitable |x|=1, |u|=1, |y|=1,

A, ((1 +xz)"(1+ uz )")

Adf _ (1-yz)*
“.1.1) A—}_ A I+ x2)"(1+uz)\ "~
2( (1-yz) )

In particular for suitable x, u, y

(4.1.2) Alf = A, <£L+ )(Clz_"')gi;uzy) .

This is immediate from Theorem 1.2 and Ruscheweyh’s Duality Theorem [11].
Another easy consequence of the Duality Principle concerns linear operators on .

Let M be a compact space of analytic functions g € of and let M* denote the
“dual” of M:

M*={fed: f(0)=1, g*f#0, for g € M}.

4.2. Theorem. Let A be a continuous linear operator on of and suppose that

(1+xz)"(1+uz) N
A em

for [x|=1,|u|=1,|y|=1, where m is a natural number, 0=y <1, 8 = 1. Then if
f0)=1and fEK(m+1v,B), AfE M*

Proof. Choose h € M and |z|< 1. For f € A let
Af = (h *Af)(2),

so A is a continuous linear functional on . If f € K(m + v, B8) then for suitable x,

u,y

(+xz)"(+uz)"
(I1-yz)

(h*Af)(z)=<h*A )#0.

Also Af(0) is a continuous linear functional on & so for f € K(m + vy, 8) with
f(0)=1, Af(0)=1. Thus Af € M*.



ANALYTIC FUNCTIONS 223

Deeper questions concerning linear mappings will be discussed in Section 5.
However reducing such questions to consideration of relatively simple members of
the given classes will remain a constant theme. We apply Theorem 4.1 to the
coefficient problem for K(a, 8). We make use of the now standard notation f < g

(2}.

4.3. Theorem. Let f(z)=1+Z27a.z" € K(a,B) where az1, Bz1. IfB =
min(l +{a},2 - {a}) then

43.1) f(z) < 8{—;)% .

In particular this holds fora = 1, g = 3.

Proof. Write « =m +y where m is a natural number and 0=y <1. By
Theorem 4.1 the extremal function for any coefficient must lie among the functions

(1+xz)"(1+uz)

(432) 0 =y27

(xI=1,]ul=1,]y|=1).

If B =1+ y we write this as

(I+xz)(1+uz) 1
(I-yz)"™  (A-yz)’"

1+ xz)"!

Clearly (1+xz)" "< (1+2)"", (1—yz)?""" <(1—-2)*"""". Also for a suitable
real u

arg (e w (1 -i(—lx—z)y(zl)iyz)’> ‘ =(1+ ’)’)%r

and hence as shown by Brannan [1]

A+x2)A+uz) <1+z>”’
<
(1-yz)"™ 1-z

and the conclusion is clear. If 8 = 2 — y, we note that by Brannan’s theorem [1]

(1+uz) < A+zy
(1-yz)* ~(1-z)f

and again the conclusion is clear.
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4.4. Remark. It is natural to conjecture that the conclusion holds for every
a =1, B = 1. The crucial case is clearly m =1, B8 =1. A more general question
concerns the extreme points of K (a, B). Are these the functions (1+ xz)*(1-yz)™*
where |x|=]|y|=1, x# —y? If true, Brannan’s result would give the coefficient
conjecture.

4.5. Various well-known classes are contained in the K(a, B) classes. A
function f is close-to-convex of order 8 [2] if, and only if, f'€ K(B, B +2). These
classes contain the functions of bounded boundary rotation at most 2« (8 + 1) [2].

For A <0 the class II, = K(0, — A) is directly related to the class S1.1 of
functions starlike of order 1 +3A. k €11, if, and only if, zk € S¥.4,. Note that the
functions in T(1,1 - A) preserve II, under convolution, a result first proved for
A=—1,-2 in [13] and for general A <0 in [16]. Apart from the extensive
literature on polynomials I am not aware of any detailed study of II, for A > 0. Note
that for A >0 the functions in T(A +1,1) preserve the structure of II, under
convolution.

It seems well worth giving a separate statement of the Convolution Theorem for
the case a = 8.

4.6. Theorem. Leta =1 and suppose that ¢ € T(a,a) and $(0)=1. Let h
and L € o and satisfy

(4.6.1) larghlé(a—)«)g, ]argL|§§27—T,

where 1=A=a, 0=86=A. Then

4.6.2)

¢ xhL| _om
arg & *h ,g > -

In particular if H € A satisfies |arg H | = am /2, then
(4.6.3) larg (¢ * H)| = am /2.

The case a = 1 is very well-known. The case @ = 2 has a geometrical interpreta-
tion. A domain D in the plane is called linearly accessible if its complement D* can
be written as a union of half-lines (equivalently « is visible from every boundary
point of D). Every close-to-convex domain is linearly accessible. We refer to [14,
15] for a detailed discussion of the concept.

4.7. Theorem. Suppose fE o takes all its values in a linearly accessible
domain D. If ¢ € A satisfies $(0)=1 and
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(4.7.1) ¢>(z)*(1+—”)27-‘0 (IxI=1]zf<1),

1-2z
then ¢ * f(z) takes all its values in D.

Proof. Suppose that wy, & D, so there is a half-line ! with end-point w, such
that I C D*. Since f takes no values on [, for some real u,

larg(e™ (f(z)—wo)| <7  (lz[<1).
Hence by (4.6.3)
$(z)*e" (f(z)=wi) #0
and so ¢(z)*f(z)# wo.

4.8. Remark. Since the functions (1+xz)(1—z)7 (|x|=1, x# ~ 1) are
mappings of the disc onto the plane cut along a ray from the origin, the condition
(4.7.1) is both necessary and sufficient for this “linearly accessible preserving”
property under convolution. The class of such functions is closed under convolu-
tion. Writing the condition as a quadratic non-zero condition in the variable x
whose coefhicients are functions of z, the condition on ¢ can be transformed into a

direct inequality relating ¢ and z¢': we make use of the fact that ax®>+ bx + ¢ # 0
in |x]=1 if, and only if,

(4.8.1) ab—be|<|c[—|al”

Here we have

2

Z — ,_—
a:d)*m—l(? é'*‘l,

2z ,
b=¢*—(1—_'z—)2—22¢,

c=¢*(1—_lz—)3=q5+2¢'.

After some algebra we obtain the inequality

(4.8.2) 4(Imzé'Y <Re(2¢ — 1)Re{(1 +42¢")(2¢ — 1)}.
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As further applications of the Convolution Theorem we establish two generalisa-
tions of Grace’s Theorem to rational functions.

4.9. Theorem. Let R(z)= P(z2)/Q(z) be a rational function with no zeros ot
poles in |z | <1, and suppose that

deg P = m, degQ =n

wherem =1 andn = 0. Let A\, A, be continuous linear functionals on o such that

4.9.1) A (gi—;‘g;);éo (x|=1, |y|=1).

Then for suitable |x|=1,ly|=1,

1 <!1 +xz ):‘>
w92 e

(1-yz)

In particular, if R(0)=1, for suitable |x|=1, |y|=1,

(4.9.3) AR = A, (%iﬁ)ﬂ) .

Proof. By the Fundamental Theorem of Algebra R € K(m, n) and the result
is immediate from Theorem 4.1 for m =1, n=1. If n =0, the conclusion is a
consequence of Grace’s Theorem.

4.10. Remark. The conclusion is false in the case m = 0. For example take
m =0,n =2andlet R(z)=(1— z) . If the theorem were true in this case, then

1 1 _
0= d)*(l—xz)”_0

1-z

¢ *
for some |x|= 1. Equivalently

1 .
¢*u—_55#0 in |’Zl<1

1
1-2

> b * #0 in |z|<1.
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But by Lemma 2.7 this implication gives

1
¢ Ty

0 (xI=L]yl=11]z]<D).
Writing ¢ = z¢ the assertion is equivalent to
¢'(2)#0 in |z|<1= ¢(z)schlichtin|z|<]1,

which is of course false.

4.11. Theorem. LetR(z)= P(z)/Q(z) be arational function with no poles in
|z|<1 and let

m = deg P, n =deg Q, N =max(m, n).

Suppose that & € T(N, n) with $(0)=1. Then
(4.11.1) (¢ *R)(|z|<1)C R(|z|<1).

Proof. Suppose that R(z)# w in |z|<1. Then

P-wQ
—#0
0 #
and by the Fundamental Theorem of Algebra,

P—-wQ
Q

€ K(N, n).

Hence by the Convolution Theorem for n = 1 and Grace’s Theorem for n =0, if
¢ € T(N,n) and ¢(0)=1,

¢(z)*f—_QLQ;éo

and so ¢ * R# w. The conclusion follows.

4.12. Remark. In particular every rational function without poles in |z | <1
has non-trivial image preserving convolution multipliers depending only on the
degrees of the numerator and denominator.
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5. Linear transformations on the classes T(«a, B)

5.1. The Convolution Theorem tells us that T(e, 8) is closed under convolu-
tion for a =1, =1 and that aza'=1, =z B'=1 imply T(e, B)C T(a', B’).
Thus if ¢ € T(a, B) the linear operator ¢ * gives a mapping of T(a, B)— T(a’, B').
-In this section we shall discuss a general criterion for linear mappings between the
classes.

Let A be a continuous linear operator on &. With { acting as a parameter, let

_ 1
He =4 (Zg)-
Then H(z, ) is called the kernel of the operator A and for f € «

Af(z) = (H(z,{)*:f({))e=
(5.1.1)

2

= lim 5= f f(Re ®)H(z, ¢*)do
0

the limit existing and converging locally uniformly in |z|< 1. Kernel functions

H(z,{) are characterised by the property of being analytic as a function of two

variables in [z | <r <1, [{|<1+ 8(r) for each 0 < r < 1, where 8(r) >0. Note that

the convolution operator ¢ *has kernel ¢(z¢).

5.2. Supposethata =1,8=1,a’'Z1, B'=1 and that we wish to show that the
linear operator A with kernel H(z, {) maps T(«a, 8) into T(a’, B'). Since T{(a, B) is
closed under rotations and contractions of the variable, we see from (5.1.1) that the
necessary and sufficient condition is: for each ¢ € T(a, B)

xz)"(1+ uz)”
(1-z)%

(5.2.1) $(Q)*H(z ) 0E #0

for [{|=1,|z|<1, |x|=]|u|=1, where m’'=[a’], v'={a’}. By the Convolution
Theorem this will hold for |¢| <1 if the function

o (QHxz)"(1+uz)”
(522) {—)H(Z, {) z (1_ Z)B'

is in K(a, B) for each fixed 2, x, u in the given ranges. Thus in this case
z—>H(z,{)*;¢(¢) maps T(a,B)— T(a’,B’) for each |{|<1. Since a local
uniform limit of functions in T(a', B') is either =0 or in T(a’, B'), we see that if
(5.2.2) holds for | ¢ ] <1 and if ¢ € T{a, B), then either A¢p =0 or Ap € T(a’,8').
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Note that, though complicated, this condition is a condition purely on the kernel.
The particular cases which we shall consider reduce to this general criterion.

5.3. Theorem. Suppose that 1=6 = min(a’,B')=min(e, B). Let A be a
continuous linear operator on s with kernel H(z,{) satisfying the following two
properties .

(i) for each |{|=1 the function

(5.3.1) z—=>H(z,{)eT(a',B);

(i) for each |z |<1 the function
(5.3.2) (- H(Z,* 1+2) P €K(a—8§8-8).

Then for each ¢ € T(w, B), either Ap =0 or Ad € T(a', B').

5.4. Remark. Since the functions (1 - £z) ' are in all the T(a, B) classes, the
condition (i) is clearly a necessary condition for the mapping property to hold. In
certain interesting cases it also turns out to be sufficient, though this is not the case
in general.

In order to prove the theorem we require the following lemma.

5.5. Lemma. Letf(z,{) be a kernel function such that f(z,{)#0 for |z | <1,
[£]=1, and f(0,£)#0 for |{|=1. Then f(z,{)#0 for |z]|<1, |{|=1.

The proof proceeds by considering the Laurent expansion of 1/f(z, {) in a region
[z|]=r<1, 1-8(r)=|{|=1+8(r), and showing by simple power series argu-
ments and analytic continuation that the resulting series is in fact a Taylor series.

5.6. Proof of Theorem 5.3. We consider first the case a’'=3',50 6 = a'.
Let

_ _(xa)"(ruz)
g(z)—(lﬁz)puaw L(xuz)= (1-2z) '

Then g €11, and since m’'+ y'= a’, for suitable p(x, u) real

a'mr

larg(e® ™" L(x,u,z))|= -~ -

Thus by the Convolution Theorem and (i)
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a'm

(=z)"

(5.6.1) IR

A

H(Z, {) *, a+ xz):’(liui
arg \e*®™

for [{|=1,]z|<1. Also by (ii) the denominator in this expression is non-zero for
|¢|< 1. If we denote the numerator by f(z,¢), then f(z,{)#0 for |z |<1, |{|=1.
Also f(0,{)=H(0,{)#0 for |{|<1 by (ii). Hence by Lemma 5.5 f(z,{) # 0 for
lz] <1, [¢} =1. Thus we can apply the maximum principle to deduce that (5.6.1)
holds for |z|<1, |{|=1. Then applying (ii) we see that for each |z|<1,
|x|={u|=1, the function

(1+xz)"(1+ uz)”
(1-z)¥

{—H(z,{)*.

is the product of a function in K(« — a’, 8 — a') and a function in K{(«a’, @'), so is in
K(e, B). The criterion (5.2.2) is thus satisfied.
Secondly suppose that B’ < a’ so 6§ = B'. Let g(z)=(1+xz)*"® €Il,-5 and

L(x,u,z}= (ixz):le;a)rg tuz)y” .

Then m'+ B'— a'= B'—vy'>0 and hence for suitable p(x, u) real
larg (e L (x, u,z))] 5_3_217_

Similarly to before we deduce that the function (5.2.2) is the product of a function in
K(ax—B',B—B') and a function in K(B', 8'), so is in K{(a, B).

5.7. Corollary. Suppose that « =1, B8 =1 and that A is a continuous linear
operator on o with kernel H(z,{) satisfying
(i) for each |{| =1 the function

z = H(z,{)€ T(a, B);

(ii) for each |z |<1 the function
(—>H@E O+ +z)y " e]] .

Then A maps T(a, B) into T(a, B)U{0}.
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5.8. Definition. A continuous linear operator on & is said to be origin
preserving if Af(0) = f(0) for every f € . It is immediately verified that A is origin
preserving if, and only if, the kernel H(z, {) satisfies H(0,{)=1.

5.9. Theorem. If a=1 and if A is a continuous linear operator origin
preserving on <, then A maps T (a, a) into T(a, ) if, and only if, foreach |{|=1,

zoA (ﬁ)e T(a, ).

As an application we prove a structure preserving theorem for the K(a, 8)
classes.

5.10. Theorem. Suppose that 1=a = and let A be a continuous linear

operator on o with kernel H(z,{) satisfying the following two properties:
(i) for each |{|=1 the function

(5.10.1) 2o M+ el s

(ii) for each |z|<1 the function
(5.102) {—H(z ()€ T(a, B).

Then foreach 0=¢ <o, A mapsK(a —¢,8 —¢) into K(a — ¢, — £ ) U{0} and (in
the case € = a) A maps L., into Il _,.

Proof. Consider first the case @« =1, 8 >1 and assume that
(@) z—=>A((1+¢z) ?)eli, for each |{|=1;
(b) { > H(z,¢)€ T(1,B) for each |z | < 1.

We note that g €I1,_, if, and only if, g(z) = ¢(z)*(1— z)"® where ¢ € T(1, B).
For f € o define

Tf(z)=((1-2)"")*A(f(z)*(1-2)"")

where h; denotes the convolution inverse of h (h *h, = (1-z)™"). T is a continuous
linear opeator on & with kernel J(z, {) satisfying

(5.10.3) (1-2)?*J(z,)=(1- ) *H(z,{).

From (a) and (b) we obtain
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() z—>J(z,{)E T(1,B) for each |{]|=1;

d) (> (1-2)"*J(,¢)EN, for each |z|<1.
Hence by Corollary 5.7 I' maps T(1,8) into T(1,8)U{0}. We show that if
¢(z)=2p.z" €T(1,B), then I'p#0. Let J(2,{)=357.(z)" so by (d)
2o 7. (0){" €11, 5. Hence 74(0) # 0 and by the Convolution Theorem =5 ¢,7, (0)" €
I1,_s. Hence clearly

|5 om0 > 2 o] (1<)

and so I'¢(0) = 25 ¢.7.(0) # 0. Thus A maps [I,_5 to ;4.

Secondly, consider the case « =1, B = 1. Then (i) implies that Al is a non-zero
constant and so A maps II; into Il,. Finally consider the general case 1 = @ = 8 and
put a—B=1—1v, so y=1. We obtain

(i) z—> A1+ ¢2) ) el,;

(iv) (= H(z,{)ET(a, B)C T(1,7),
since a = 1, 8 = y. Hence the previous cases show that A maps I1,-, to I1,_,. Let
fEK(a—¢,B—¢) where 0=¢ =a. Then f=gL where g€Il, 4 |argl|=
(¢ —&)m/2. Assume Af#0. By (ii) and the Convolution Theorem

H(z,{)*g(HL ()
H(z, {)*g({)

arg

é(a—e)zlr

for [{]|<1, |z|<1. Letting { =1 we deduce that

Af(z)

ar
EAg(z)

é(a—s)g,

and since Ag EIl,_p, AfEK(a—¢,B8—¢).

As a final application we establish general criteria for continuous linear operators
on o to preserve convex, starlike and close-to-convex univalent mappings of the
disc. These results generalise the Convolution Theorems established in proving the
Polya-Schoenberg conjecture [13].

5.11. Theorem. Let A be a continuous linear operator on s with kernel
H(z,{). Suppose that
(i) for each |{|=1 the function

.11.1) z A (afzgﬁ)

is starlike in |z ]| <1;
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(ii) for each |z |<1 the function

L H@O-H(,0)
z

(5.11.2) ¢

is convex in |{|<1.
Then if g is starlike, Ag is starlike.

5.12. Theorem. Let [ be a continuous linear operator on o with kernel
J(z,{). Suppose that
(a) for each |{|=1 the function

(5.12.1) 7 J(z,{)

is convex in |z |<1;
(b) for each |z|<1 the function

(5.12.2) {— % J(z,{)

is starlike in || <1.
Then for each convex ¢, ['& is convex, and for each f close-to-convex, I'f is either

close -to -convex or constant.

Proof. Let H(z,{)= 25 0.(2){" so that
z — o n—1
A (—(1 — (z)2> = Z no.(z){

is starlike in z for each [{|=1, and so =0 at z = 0. Hence 0.(0) =0 (n = 1). Thus
for f € A, A(zf(2)).-0= 0. Define for f € o

1
A*f(2) =~ AGf(2)),
so A* is a continuous linear operator on & with kernel
1
H*(z,{)= e (H(z,{)— H(z,0)).

The conditions (i) and (ii) imply
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zoA*(1-¢z) e H,z for each [{|=1;
{—>H*(z,{)€ T(,3) for each |z]|<1.

Hence by Theorem 5.10 A* maps I1_, to [1_;, so A maps S to §§. Furthermore A*
maps K(1,3) to K(1,3) U{0}. Since f is close-to-convex if, and only if, f' € K(1,3),
we see that if f is close-to-convex, Azf' is either identically zero or has the form zh’
where h is close-to-convex.

To prove 5.12 define for f € o

1
1-z

M@= gy T (loe 25+ £2))

Then (a) and (b) imply (i) and (ii) and hence if ¢ is convex and f close-to-convex,
I'(¢(z)— ¢(0)) is convex and I'(f(z) — f(0)) is either close-to-convex or identically
zero. Finally writing J(z, {) = 25 7.(2){", the condition (b) implies that 74(z) = 0, so
I'l = 14(z) is constant. Hence I'¢ is convex and I'f close-to-convex or constant.

5.13. Example. Suppose that we wish to know which subdomains of |z | < 1
are mapped by every convex univalent function onto a convex region. This was a
problem first solved by Pommerenke [9] and later studied by Heins [3]. Such a
domain is clearly convex. Let w = o(z) be univalent and map |z | <1 onto such a
domain. Then the linear operator

Ap(z)=d(o(2))
preserves convex univalence. The kernel of the operator is given by

1
HEO T %)

Theorem 5.12 gives the following conditions as sufficient for the desired property:

(5.13.1) z—> S convex foreach |{|=1;
1-{o(z)
(5.13.2) L a _g(;giz))z starlike for each |z | < 1.

Clearly (5.13.1) implies that o(z) is univalent so ¢'(z) # 0. Hence since [o(2)[ <1
the condition (5.13.2) is automatically satisfied. Thus (5.13.1) is both a necessary
and a sufficient condition. Writing
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T = Re (1 + Z:(S))

this condition becomes

(5.13.3) T+Re12f§—%(%>o (¢1=1,1z]<1).
This gives
(5.13.4) 'U—ZTU~<%(1+]UF)-R60_'Z%.

If c =0(z)-20'(z)/T, p=|z0'(z)|/T, then p is the radius of curvature of the
curve I', ={w = o(re”)} at w = o(z) (]z|=r) and c is the centre of curvature.
¢| <1+ p. Therefore

Clearly

zo'

2lc|<1+|o|'-2Red T

It+laP+]cf=laf-p’

and hence [c[°—2|c|+1>p?, which gives |c|+ p < 1. Conversely, this condition
implies (5.13.4). Thus the necessary and sufficient condition is that the circle of
curvature at each point of T, lies entirely in |w|<1.

6. Concluding remarks and an open question

6.1. Apart from the case o = 1 the definition of the classes T(«a, 8) is not an
easy one to work with. As it implies a variety of ‘‘positivity” conditions it would be
interesting to know whether any of these represent sufficient conditions. The case
a not an integer is particularly interesting. Is it true that ¢ € T(e, B) if

6.1.1) s+ 0 (xl=1zl<D)

where a = 1, 8 = 1? By Lemma 2.7 it would be enough to establish either of the
implications

(6-1.1):~¢<z>*“(j—_"§§3¢0 A)x]=1,]z]<1),

(6.1.‘1):«¢<z)*(11f—j§5#0 (Ix|=1,|z|<1).

This conjecture is made very tentatively as I have not even managed to show that
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the condition (6.1.1) represents a normal family of functions. The truth of the
conjecture would settle affirmatively the coefficient conjecture for K(a, B) (¢ 2 1,

B=1)

6.2. The further study of non-zero convolution conditions seems well worth
pursuing and could throw new light on old problems. For example f(z)=
z 4+ a,z>+ - - - is schlicht in |z |< 1 if, and only if,

(6.2.1) f(ZZ)*(I-xz)l(1~yz);éo (Ix[=lyl=1,]z[<D).

The second dual problem is thus of great interest.
7. Some additional remarks
7.1. The ranges of the parameters x, y and u in Theorems 4.1, 4.2 and 4.9 can
be reduced to two cases: (i) |x|=|u|=]y|=1or(ii))x =u = ~y and |x | < 1. This
follows from the following sharpened version of Ruscheweyh’s duality theorem:
7.2. Theorem. Suppose that g(z.,z,,-"-,2.) is analytic for |z.]<1
(1=k =n) and that g(0,---,0)= 1. Denote by T(g) the class of functions ¢ € A
satisfying
(7.2.1) d(z)*xg(xiz, -, x.2)#0
for|x.|=1(1=k =n)and |z|<1.Letf(z)=1+27a.z" € A and suppose that

(7.22) f(@)*d(z)#0  ([z[<1)

foreach ¢ € T(g). Then there is a probability measure y on the torus T" = {| x| = 1,
1=k = n} such that

(72.3) f(z)= f g(x:1z, - -+, X2 )dp.

Furthermore if A, and A, are continuous linear functionals on A such that
(7.2.4) Ag(xiz, -, x.2)#0

for |x,|=1(1=k =n)and forx,=x,=---=x,and |x,| <1, then for some values
of the parameters x, in this range
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Af(z) Ag(xiz, -, x.2)
Asf(2) B Asg(xiz,- -, x2)

(7.2.5)

7,3. The proof of (7.2.5) follows Ruscheweyh’s original argument [11] with one
additional ingredient to reduce the range of the parameters x.. This is the following
known lemma brought to my attention by D. Aharonov: if h(z,, - - -, z,) is analytic
in the closed polydisc |z, [=1 1=k =n) and if h(z,,---,z,)#0 when |z, |=1
and also when z,=z,=---=2,=7z and [z| <1, then h(z,,---,2,)#0 for [z, | =
1.

To prove the representation (7.2.3) we observe that f(z) lies in the closed convex
hull of the functions g(y.z, - -, y.z) with |y, | = 1. But for any analytic function g
and parameters y, satisfying |y.| =1 we can find a probability measure 4 on T"
such that

(7.3.1) gz,  +,yaz) = f g(x:z, -+, x,2)du.
2

This is seen from the fact that the function

1?[1_1))1(2’( ('zkl<1)

has a representation in the form

o
Hl_Yka_Jnl‘kak du
P

(see e.g. T. Sheil-Small, On the convolution of analytic functions, J. Reine Angew.
Math. 258 (1973), 137-152). Thus

1
1—yezi

g(ze Ynzn) = 821, Za) * l—.[
= f g(zixy, -, Zaxn)du
o

and (7.3.1) follows. Thus f must lie in the closed convex hull of the functions
g(x1z,- -+, x.2) (|x«|=1) and (7.2.3) follows from Choquet’s theorem.

7.4. Theorem. Let f(z)=1+2%7a.z" € K(a,B), where a=1 and B = 1.
Then there is a probability measure yu on the torus T such that
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(7.4.1) f(z)= f ﬁl_ﬂ‘iL

(1-yz )B
Furthermore
(7.4.2) f(zy< L2y

(1-2)°"

Proof. The following extreme point argument is due to J. Clunie.
Let h(z) be an extreme point of the closed convex hull of K(a, 8). By Theorem
1.2 and the preceding remarks h(z) has the form

(1+xz)"(1+uz)”
(1-yz)°

(7.4.3) h(z)=

where [x|=|u|=|y|=1 and m =[a], y ={a}. We may assume 0 <y <1. To
prove the result it will be sufficient to show that x = u. Now

(A+x2)"""" (1+x2)7"(1+ uz)
(1-yz)*" 1-yz

h(z) =

[ A+ xz) 14 vz
—f (1-yz)* ' 1-vz du (v)

where p is a probability measure on T and |{|= 1. We have thus represented h as
a convex combination of elements in K(a, 8) and, since k is an extreme point, the
measure p must be a point mass. Hence for some [{|=|v|=1

(1+xz)' 1+ {oz
h(z )—(1 yz)f ' 1—vz

The relation x = u follows easily.

7.5. In a forthcoming paper St. Ruscheweyh [Some convexity and convolution
theorems for analytic functions, Math. Ann.] also obtains Theorem 7.4. In addition
Ruscheweyh establishes the following interesting consequence of the convolution
theorem. For @ 20, 8 =2 0 denote by S(a, B) the functions of the form

f)= 53
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where g€, h€llg f g€ T(a+1,B+1), then ¢ *f € S(a, B). In particular
this shows that if p(z)= z + --- belongs to the class V, of functions of bounded
boundary rotation at most k, then so does z¢ *p for each ¢ € TGk, 3k +2).
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