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Summary. — When a state of a physical system dynamically changes to another state,
it is important to know the correlation existing between the initial state and the final
state. This correlation is deseribed by a compound state (measure) in classical systems.
In this note, we show a way Low to construct such a compound state in quantum
systems which is an extension of the classical compound state.

It is rather important in many physical sciences to study the dynamical change of
states ot a system. One of the most general description of this state change for classical
systems is suggested in the communication theory of Shannon,

A state of a classical dynamical system is expressed by a probability measure on
that system and its dynamical change is generally considered as follows (}): let X, H
be compact Hausdorff spaces and .#y, Fy be their Borel fields, respectively. We denote
the set of all regular probability measures (states) on (X, %) by P(X) and on (¥, Fy)
by P(Y). A mapping 2: X X #y, — R+ satisfying the following two conditions is cal-
led a channel: i) A(z, -) € P(Y) for each fixed € X and ii) A(-, @) is a continuous meas-
urable function on X for each fixed Q € #,. This mapping is often called a transition
(or Markov) kernel and is useful to study, for instance, information transmission and
stochastic processes. A channel so defined provides a mechanism of state change.
Namely, a state ¢ € P(X) is transferred to a state v € (YY) under a channel A such as

(1) »@) = 22, Q)otdn), QeFy.
X

Moreover, in order to study the process of state change and the property of a channel
itself, we need a compound state (joint probability) indicating the correlation existing

(*) H. UMEGAEKIL: J. Math. Anal. Appl., 25, 41 (1969).
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between the initial state ¢ and the final state . The compound state & is given by

() (s, Q) = [4(@, Q) #(da)
<

for any @, € #y and Q,e F5.

In quantum dynamics, we take two (*-systems (s, &(«)) and (#, &(A)), one of
which describes an initial {(input) system corresponding to (X, #;, P(X)) above and
another describes a final (output) system corresponding to (Y, #y, P(Y)). Here &
(respectively, %) is a O*-algebra with unity I (respectively, Ig) and &(«) (respectively,
&(#)) is the set of all states (i.e. normalized positive linear functionals) on .« (respectively,
Z#) (%). Then let us consider a mapping A* from &(«) to &(%) such that its dual map 4.
1% —4 is completely positive (2) with AT g4 = I, . This mapping A* is called a channel be-
tween two quantum-dynamical systems (2). In particular, when.o = C(X), the set of all
continuous functions on X, and 4 = O(Y), the formula (1) defines a channel A* from
P(X) to P(Y) (t.e. ¢y = A*¢p) because every probability measure ¢ on (X, Fy) can
be regarded as a state on C(X) by tho Riesz-Markov-Kakutani theorem. We meet
several channels in several fields of physics. For example, time evolution automorphism
group, dynamical semi-group and conditional expectation on a certain algebra are typi-
cal channels,

Now it is well known (%) that the joint probability measure does not generally exist
in quantum systems. ITence it has been difficult to define a compound state describing
the correlation existing between an initial state ¢ € () and its final state A*p e S(#).
The aim of this note is to construct such a compound state and to show that our com-
pound state is an extension of the classical one given by (2).

For an initial state ¢ and the final state A*@, a compound state & on & Q@ %
of ¢ and A*g should satisfy the following two conditions: i) &(A @ Ig) = ¢(4) for
any 4 € and ii) ¢(Iy ® B) = A*@(B) for any B € 4. There exist many states satisfy-
ing these conditions, for instance, &, = ¢ ® A*¢p is such a state. But this state does
not carry any correlation between ¢ and A*g.

For any weak *.compact convex subset & of &(&), there exists a maximal meas-
ure p such that ¢ is the barycentre of x and x is pseudosupported by the set e x¥ of
all extreme points of & in the sense that u(Q) = 1 for every Baire subset @ of & with
@Dex& (5). In this case, we write

(3) o =fwd,4.
(e X )

Note that the above maximal measure i is not always unique, and we denote the set
of all such measures by M ().

We now construct a « true » compound state of ¢ and A*p. For each u e M (¥),
define

) pu=[0® 1 0du.
(e X))

It is easy to see that this state &, satisfies the conditions i) and ii) mentioned above.
Let us now show that the compound state defined by (4) is indeed an extension of the

(*) M. TarEsari: Theory of operalor algebra I (Berlin, 1981).
(*) M. OHYA: J. Math. Anal. Appl., 84, No. 2, 318 (1981).
(*) K. UrBANIK: Studia Math., 21, 117 (1961).
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classical one. When & — P(X), the extremal decomposition of a state ¢ € P(X) is
unique and given by

(5) v = [d.9(d0),

X

where d, is the Dirac measure concentrated at a point z e X. Since (A*4,)(Q,) =
= Az, Q,) for any ¢, e Fy, we have

B,(Q, % Q) = j 0,(Q0) A* 5,(Qy) p(dz) = f lo.() Az, Q) plda) = f;.(w, Q. ¢(da) ,
X D ¢ Q1

for any Q, e #y and @, € Fy.

We finally consider the case of & = C(s#)) = C(s#,) + CI, where C() is the set
of all compact operators on a separable Hilbert space 5. Then &(«) contains the set
T(#1),,, of all positive trace class operators on #°; with unit trace and so does &(%).
Moreover, a channel A* is a trace-preserving completely positive map from T'(s#,).,
to T{#,),,. In this case, if an extremal decomposition of a state g € T(#)). ; i8 given

by ¢ =3 Z,0,, then our compound state is
n

g = Z}'ngn@)A*Q'n .
n

Among these compound states, the following is the most important:

(6) 0p =S I E, & A*E, .
n

The symbols appearing in (6) mean the following: a) i, is the eigenvalue of g, and the
eigenvalue of multiplicity m is repeated precisely m times. b) E, = \x,><{,| in Dirac’s
notation, where r, is an eigenvector associated with 4, and it is unique if and only if
4, is nondegenerate (5). ¢) E represents {E,}. The compound state o, depends on E,
hence on the choice of the eigenvectors {x,}. This compound state is first introduced
in (*). but it is a special case of our compound state @, as just discussed.

The compound state coustructed for quantum systems plays a similar role as the
joint probability measure for classical systems, so that it is useful to formulate quan-
tum communication theory (8) and to study the dynamics of state change (7).
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