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Abs t rac t .  We study Darboux-type transformations associated with the focus- 
ing nonlinear Schr6dinger equation (NLS_) and their effect on spectral properties 
of the underlying Lax operator. The latter is a formally ff-self-adjoint (but non- 
self-adjoint) Dirac-type differential expression of the form 

satisfying ,.TM(q)ff = M(q)*, where ff  is defined by 3" = ( 0 ~ ) C, and C denotes 
the antilinear conjugation map in C 2 , C(a, b) -r = (~,~)T, a, b E C. As one of our 
principal results, we prove that under the most general hypothesis q E /qloe(R) 
on q, the maximally defined operator D(q) generated by M(q) is actually J-self-  
adjoint in L 2 (1R) 2 . Moreover, we establish the existence of Weyl-Titchmarsh-type 
solutions kO+(z, .) E L2([R, 0r 2 and qJ_ (z, .) E L2((-cx), R]) for all R E I~ of 
M(q)~+(z) = z~P:i:(z) for z in the resolvent set of D(q). 

The Darboux transformations considered in this paper are the analogue of the dou- 
ble commutation procedure familiar in the KdV and Schr6dinger operator contexts. 
As in the corresponding case of Schriidinger operators, the Darboux transforma- 
tions in question guarantee that the resulting potentials q are locally nonsingular. 
Moreover, we prove that the construction of N-soliton NLS_ potentials q(N) with 
respect to a general NLS_ background potential q E L~oc(R), associated with the 
Dirac-type operators D(q (N)) and D(q), respectively, amounts to the insertion 
of N complex conjugate pairs of L 2 (R)2_eigenvalues {zl, z l , . . . ,  ZN, ZN } into 
the spectrum (r(D(q)) of D(q), leaving the rest of the spectrum (especially, the 
essential spectrum tre(D(q))) invariant, that is, 

a(D(q(N)) ) = a(D(q)) U {z1,~1, . . . ,  ZN,-2N}, 

ae(n(q(N)) ) = ae(n(q)). 

These results are obtained by establishing the existence of bounded transformation 
operators which intertwine the background Dirac operator D(q) and the Dirac 
operator D (q(N)) obtained after N Darboux-type transformations. 
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1 Introduction 

Various methods of inserting eigenvalues in spectral gaps of one-dimensional 

Schrtdinger operators H(q) associated with differential expressions of the type 

as 
(1.1) L(q) = - dx---- ff + q 

in L2(R) (or in L2((a, oe)), a > - ~ ) ,  with q real-valued and locally integrable, 

have attracted an enormous amount of attention. This is due to their prominent role 

in such diverse fields as the inverse scattering approach, supersymmetric quantum 

mechanics, level comparison theorems, as a tool to construct soliton solutions 

of the Korteweg-de Vries (KdV) hierarchy relative to (general) KdV background 

solutions, and in connection with B~icklund transformations for the KdV hierarchy. 

The literature on this subject is too extensive for us to go into detail here, but we 
refer to the detailed accounts given in [15], [16], [17, App. G], [18], [19] and the 

references cited therein. Historically, these methods of inserting eigenvalues go 

back to Jacobi [26] and Darboux [10], with decisive later contributions by Crum 
[9], Schmincke [42], and, especially, Deift [11]. 

Two particular methods have turned out to be of special importance: The single 

commutation method, also called the Crum-Darboux method [9], [10] (actually 

going back at least to Jacobi [26]) and the double commutation method, to be found, 

for instance, in the seminal work of Gel'fand and Levitan [14]. (The latter can be 

obtained by a composition of two separate single commutation steps, explaining 
the name double commutation.) 

The single commutation method, although very simply implemented, has the 

distinct disadvantage of relying on positivity properties of certain solutions ~/, of  

H(q)~b = A~b, which confines its applicability to the insertion of eigenvalues below 
the spectrum of H(q) (assuming H(q) to be bounded from below). A complete 

spectral characterization of this method has been provided by Deift [11] (see also 

[42]) on the basis of unitary equivalence of A*Alker(a P. and AA*lker(a*)~- for a 
densely defined closed linear operator A in a (complex, separable) Hilbert space. 

The double commutation method, on the other hand, allows one to insert eigen- 

values into any spectral gap of H(q). Although relatively simply implemented 

also, a complete spectral characterization of the double commutation method for 

Schr'6~nger-type operators was more recently achieved in [15] on the basis of  

Weyl-Titchmarsh m-function techniques and subsequently in [19] (for general 
Sturm-Liouville operators on arbitrary intervals) using a functional analytic ap- 

proach based on the notion of (intertwining) transformation operators. 

In this paper, we concentrate on the analogue of the double commutation method 
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for Dirac-type operators associated with the Lax operator for the focusing nonlinear 

Schr6dinger (NLS_) hierarchy. For q locally integrable, the Dirac-type operator 

corresponding to the Lax differential expression in the NLS_ case is associated 
with the 2 x 2 matrix-valued differential expression 

q) (1.2) M(q) = i - ~  

for x E ~ (cf., e.g., [13, Part I, Sect. 1.2], [48], and [49]). The maximally defined 
Dirac-type operator associated with M(q) in the (two-component) Hilbert space 

L2(It~) 2 is then denoted by D(q). By way of contrast, the corresponding (formally 

self-adjoint) Lax differential expression for the defocusing NLS + case is given by 

It turns out there is no natural analogue of the single commutation method 

for the Dirac operators associated with the focusing and defocusing nonlinear 

Schr6dinger hierarchies (NLS• However, the complexified version of the NLS+ 

hierarchies, the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy, supports two 

natural analogues of the single commutation method. In order to describe them 

briefly, we recall that the Dirac-type Lax differential expression associated with 
the AKNS hierarchy is given by 

(1.4) M(p,q) = i -T~ 

(cf., e.g., [ 1] and [ 17, Ch. 3]) in terms of two locally integrable coefficients p, q on 

N. The focusing (NLS _) and defocusing (NLS+) nonlinear SchrSdinger hierarchies 
are then associated with the constraints 

(1.5) NLS+: p(x) = -t-q(x), 

respectively. In this paper, we concentrate on the focusing NLS _ case only. 

The two analogues of the single commutation method for the AKNS case, which 
are usually called elementary Darboux transformations, can then be described as 

follows. Suppose that 

(1.6), 

M(p ,q )~ ( z l , x )  = z l~ ( z l , x ) ,  ~ ( z l , x )  ~-- ( r162 T, (ZI,X) ~ C X ~, 

and 

(1.7) 

M ( p , q ) ~ ( i l , x )  = $1~(~1,x), ff/(51,x) = (r162 -r, (~l,x) E I2 x IR. 
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Then the two elementary Darboux transformations in the AKNS context are given 

by (cf.[291,[30]) 

(1.8) 

where 

(1.9) 

and 

(p,q) ~'> (IS~x,~z~), 

~,(~) = - r 1 6 2  

Oz~(X)=q'(x) - r 1 6 2  2 +2 i z lq (x ) ,  

(1.10) 

where 

(1.11) 

(p, q) ~ ( ~ ,  0~), 

p~, (x) = -p'(x) + ~(21, x)lr (21, x)p(z)  2 + 2izlp(X), 

~ (~) = ~ (Z~, ~ ) /~  (21, ~). 

Similar to the case of Schr6dinger operators, the analogue of the double commuta- 
tion method for Dirac-type operators associated with (1.4) is then obtained by an 
appropriate composition of the two elementary Darboux transformations (1.9) and 
(1.11). This two-step procedure is denoted by 

(p(1) _(1) (1.12) (P,q) ~ , z l ,~ l ,%l ,h)  

and leads to (cf., e.g., [29], [30], [36, Sect. 4.2], [41]) 

_(1) ~x~ 
(1.13) /Jzl'Zlk } : P ( X )  -- 2i(z 1 -- Z l ) ~ / ) 2 ( z 1 , x ) ~ / 3 2 ( 2 1 , x ) / W ( ~ ( Z l , X ) , ~ ( 2 1 , x ) ) ,  

(1) 
qza,~a (x) = q(x) - 2i(21 - Zl)~)l(Zl, X)@I (21, x ) / W ( ~ ( Z l ,  x), r  X)). 

(Here W ( F , G )  denotes the Wronskian of F , G  E Cfl). In contrast to (1.8), (1.9) 
and (1.10), (1.11), the two-step procedure (1.12), (1.13) with 21 = z-i-, is compat- 
ible with the NLS• cases, and one explicitly obtains the following Darboux-type 
transformation in the NLS_ case, 

r (zl, z)r (Zl, z) 
(1.14) q(x) ~ qO~)(x) = q(x) + 4 I m ( z l ) l r  + ]r 

The transformation (1.14) for Dirac-type operators assoiated with (1.2) in the NLS _ 
context represents the analogue of the double commutation method for Schr 6dinger 
operators and leads to locally nonsingular NLS_ potentials q~(]), assuming q to be 
free of local singularities. 
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By analogy to the KdV and Schr6dinger operator case, one expects the NLS_ 

potential q~l,)(x) to produce an eigenvalue at the spectral point zl for the associ- 

ated Dirac operator D(q~l~)), assuming zl to be a point in the resolvent set of the 

"background" operator D(q). Actually, by a simple symmetry consideration, one 

expects a pair of eigenvalues ( z l ,~ )  in the point spectrum of D(q~l~)). To prove 

this fact and to show that the remaining spectral characteristics (especially, the 

essential spectrum of D(q)) remain invariant under the Darboux-type transforma- 

tion (1.14) is the principal purpose of this paper. More precisely, if we denote by 

q(CV) the NLS_ potential obtained after an N-fold iteration of the Darboux-type 

transformation and by D (q~?..,z,,,) the resulting Dirac operator, we prove that 

(1.15) 

(1.16) 

(1.17) 

(D(AN) ~) = a(D(q)) U {z,,gl, ZN,-2N}, 1 7  , , t l z l , . . . , : N  ] . . . , 

ap(D(q (N) )) = ap(D(q)) U { z l , ~  1 . .  ZN ZN}, 

ao(D(AN) ~) = ao(D(q)). \ \ t t Z l , . . . , Z , ~ ]  

(Here a(S), ap(S), and ae(S) denote the spectrum, point spectrum, and essential 

spectrum of a densely defined closed operator S in a complex separable Hilbert 

space 7-/; cf. Section 5 for more details on spectra.) Actually, we go a step beyond 

(1.15)---(1.17) and establish the existence of bounded transformation operators 

which intertwine (N) D(q:~ ..... ~N) andD(q). 

When trying to prove results of the type (1.15)-(1.17) for Dirac-type operators 

associated with the differential expression ( 1.2) in the NLS _ context, one is at a dis- 

tinct disadvantage compared to the case of Schr6dinger operators with real-valued 

potentials. While L in (1.1) is formally self-adjoint for q real-valued, M(q) in (1.2) 

is never self-adjoint (except in the trivial case q = 0). As a consequence, the orig- 

inal approach to a complete spectral characterization of the double commutation 

method for Schr6dinger operators in [ 15], based on Weyl-Titchmarsh theory and 

hence on spectral theory, is doomed from the start, as there simply is no spectral 

function and general Le-eigenfunction expansion, etc., for non-self-adjoint Dirac- 

type operators associated with (1.2) under our general hypothesis q E L~oc(~:). 

That leaves only one possible line of attack, the analogue of the transformation 

operator approach developed in the general Sturm-Liouville context in [19]. As 

it turns out in Section 6, this approach is indeed successful, although it requires 

more sophisticated and elaborate arguments compared to those in [ 19]. 

While the differential expression M (q) in (1.2) is never formally self-adjoint (if 

q ~ 0), it is formally ,.7-self-adjoint, that is, 

(1.18) f fM(q )J  = M(q) ~ 
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Here ,7 is defined by 

(1.19) , 7=  (01 10) C , 

and C denotes the antilinear conjugation map in C 2 , 

(1.20) C(a,b)T = (~,~)T, a,b E C. 

As one of our principal results in this paper, we prove in Section 3 that under the 

most general hypothesis q E L~oc(]~), the maximally defined Dirac operator D(q) 
associated with M(q) is in fact ,f-self-adjoint, 

(1.21) ,TO(q),7 = D(q)* (= D(-q)). 

As an aside, we should mention that the corresponding maximally defined Lax 

operator associated with the defocusing NLS+ differential expression (1.3) is in 

fact self-adjoint, assuming q E L~oc(l~ ) only (this is proved in the references men- 

tioned in Section 3). This should be contrasted with the case of one-dimensional 

SchrSdinger differential expressions L(q) in (1.1) (the Lax differential expression 

associated with the KdV hierarchy). Ifq E L~oc(l~) in (1.1) is real-valued, then L(q) 
is formally self-adjoint, but the maximally defined operator tI(q) in L 2 (lt~) associ- 

ated with L(q) may not be self-adjoint. The latter situation occurs precisely when 

L(q) is in the limit circle case (as opposed to the limit point case) at +oe and/or - ~  

(cf. [8, Ch. 9]). This is in sharp contrast to the focusing (respectively, defocusing) 

NLS case where D(q) is always ff-self-adjoint (respectively, self-adjoint). 

Summarizing, we derive the following principal new results in this paper, 

assuming the optimal condition q E L~oc(ll~). 

- ,7-self-adjointness of D(q). 
- The existence of Weyl-Titchmarsh-type solutions of M (q)�9 = z~ for all 

z E p(D(q)). 
- The existence and boundedness of transformation operators intertwining the 

operators D (q(g)) and D(q). 
- A spectral analysis of NLS_ Darboux transformations (cf. (1.15)-(1.17)). 

Finally, we briefly describe the content of each section. Section 2 introduces 

our main notation and then reviews Darboux transformations for AKNS and NLS _ 

systems. Section 3 is devoted to a proof of the ,7-self-adjointness property (1.21) 

of D(q), assuming q E L~oe(II~) only. Section 4 constructs eigenvalues of D (q(1)) at 

pairs zi, z--i, zi E p(D(q)) and associated L 2 (~)2_eigenfunctions. Section 5 derives 

some basic spectral properties of general Dirac-type operators D (q) and establishes 
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the existence of Weyl-Titchmarsh-type solutions associated with M(q). This shows 

a remarkable similarity to self-adjoint systems and appears to be without precedent 

in this non-self-adjoint context. Our final Section 6 establishes the existence of 

bounded transformation operators intertwining D (qz(11)) and D (q) and then employs 

these transformation operators to prove the spectral properties (1.15)-(1.17). 

All results in the principal part of this paper, Sections 3-6, are proved under 

the optimal condition q E L~oc(~). Moreover, practically all results in Sections 

3-6 are new as long as one goes beyond bounded or periodic potentials q. In par- 

ticular, Theorem 6.14 (characterizing transformation operators) and Theorem 6.15 

(proving (1.15)-(1.17)) appear to be the first of their kind under any assumptions 

on q. 

In this paper, we confine ourselves to a stationary (i.e., time-independent) 

approach only. Applications to the time-dependent focusing NLS_ equation and 

to nonlinear optics will be made in a subsequent paper [3]. 

2 D a r b o u x - t y p e  transformat ions  for A K N S  and NLS_ 
sys tems  

In this section, we take a close look at Darboux-type transformations for non- 

self-adjoint Dirac-type differential expressions M(q) (cf. (2.3)) applicable to AKNS 

systems, with special emphasis on the case of the focusing nonlinear Schr6dinger 

equation NLS_ (cf. (2.7)). 

Throughout this paper, we use the following notation: ' = d/dx; for a matrix A 

with complex-valued entries, A T denotes the transposed matrix, Athe matrix with 

complex conjugate entries, and A* = ~-r = ~ the adjoint matrix. Occasionally, 

we use the following 2 x 2 matrices, 

(2.1) 

IfA = (al, a2) -r and B = (bl, b2) -c are 2 x 1 column-vectors, then (A, B)c~ = B*A = 
albl + a~b-2 denotes the usual scalar product in C 2, [[A]Ic2 = (Ial [2 + [a212)1/2 the 

associated norm, and A • = (a2, - a l )  = A;a4 the 1 x 2 row-vector perpendicular 

to A (in the sense that A• = 0). We also use the notation 

(2.2) W ( A , B )  = B•  = - A Z B  = alb2 - a 2 b l  : (A,B• 

for the Wronskian of A and B. The space of 2 x 2 matrices with entries in C 

is denoted by C 2• and the operator norm of a 2 x 2 matrix A induced by the 
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usual norm in C 2 is denoted by IlAll~x=. In the following, ~ C_ I~ denotes an 

open subset of  R and ACioc(f~) 2• m = 1,2, denotes the set of  2 • m matrices 

with locally absolutely continuous entries on ~] (for 2 • 1 columns we use the 

corresponding notation ACtoc(f~)2). We define I LP(f~) 2• and L~oc(~) 2• m = 

1,2, to consist of  2 • m matrices with entries in LP(Ft) and L~oc(12 ), respectively. 

In the special case f~ = ~ and F ,G  E L2(R) 2, the scalar product of  F and G 

is denoted by (F, G)L~ = fR dx (F(x),  G(x))c  2 with associated norm of  F given 

by IIFIIL= = (fR dz IIF(x)ll~)l/2. Finally, the open complex upper  (respectively, 

lower) half-plane is denoted by C+ (respectively, C ); the domain,  range, and 

kernel (null space) of  a linear operator T are denoted by dora(T), ran(T),  and 

ker(T), respectively. 

Hypothesis 2.1. Let f~ C_ R open and assume p, q E L~oc(f/). 

Assuming Hypothesis  2.1 and z E C, we introduce the 2 • 2 matrix U(z,p ,q)  

and the 2 • 2 matrix-valued differential expression M(p, q) by 

The functions p and q in (2.3) are referred to as AKNS potentials since M(p, q) 

is the Lax differential expression associated with the AKNS hierarchy (see, e.g., 

[1] and [17, Ch. 3]). The particularly important special case p = - 0  will be 

referred to as the NLS_ case (because of  the obvious connection of  (2.3) with 

the zero curvature representation and the Lax operator for the focusing nonlinear 

Schr6dinger equation; see, e.g., [13, Part 1, Sect. 1.2], [48], and [49]), and then q 

is called an NLS_ potential. For given z E ~ f~ C_ 1~ and AKNS potentials (p, q), a 

function O(z,-) E ACio~(f~) ~ is called a z-wave function associated with (t), q) on f~ 

if ~ ' ( z , x )  = U ( z , p , q ) ~ ( z , x )  holds for a.e. x E f~, that is, i f ~  = ( r162  T satisfies 

the first-order system of  differential equations 

(2.4) 

r  = --iZOl(Z,X) + q(x)r ~b~(z,x) = izr  + p ( z ) r  

for a.e. z E 12. Equivalently, r  = (gq(z) , r  "r E AClor 2 is a z-wave 

function associated with (p, q) on f~ if and only if M(p, q)~P(z) = z@(z) on 9t in 

the distributional sense. I f  for some z E C, ql(z) and ,I,(z) are z-wave functions 

associated with (p,q) on f~, their Wronskian is well-known to be constant with 

tFor brevity we write LP(f/) for LP(f~;d,x) and suppress the Lebesgue measure d.z whenever 
possible. 
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respect to x E ft, 

(2.5) d w ( m ( z , z ) , m ( z , z ) )  = O, z f~. 

More generally, if ~(zl)  and O(z2) are zi- and z2-wave functions associated with 

(p, q) on ft, then 

(2.6) 

~x[{Z(~rff(z1, x), (:I)(z2, x)) : i(2' 2 - z 1)[//21 (Zl, x)r x) + ~92(Zl, X)r (22, x)] 

= i ( z 2  - z l ) ~ ( z l , z ) r a l r  

V(z,) = (~,~(zl),~2(zl)) r ,  0(z2) = (r162 r ,  z l , z2  e C, z ~ ft. 

In the NLS_ case p = - ~  we use the notation 

(2.7) 
(,z 

U ( z , q )  = --q-C~) iz  ] '  M(q)  = i _ 

instead of (2.3); we then call any distributional solution ~(z) of M(q)kO(z) = z~(z) 

an NLS_ z-wave function associated with q. 

If ~(z) is a z-wave function associated with (p,q), and ~(z, xo) = 0 for some 

x0 Ef t ,  then ~(z, x) vanishes identically for all x in an open neighborhood of x0 in 

ft by the unique solvability of the Cauchy problem for (2.4). Therefore, we always 

assume that ~(z,x) # 0 for all x E ft. 

lfq = 0 (and analogueously ifp = 0) a.e. on ft, then the system (2.4) decomposes 

and yields 

(2.8) 

r  = C1 exp(-izx), 

(s ) r  = C1 dx'p(x')exp(-2izx') exp(izx) + C2exp(izx) 
o 

for some constants CI, C2 E C, xo E fL 

For further use, we collect some simple consequences of  (2.4). 

introduce the antilinear (i.e., conjugate linear) involution .7 defined by 

with C the antilinear conjugation map 

First we 

(2.10) C(a,b)T = ( ~ , ~ ) T  a,b e C. 
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Moreover ,  we  int roduce the antilinear opera tor /C def ined by  

W e  also note that 

(2.12) IlJF[Ic~ = IlFtJc~, IJK:FIIc~ = IIFJlc~, F e C ~. 

L e m m a  2 .2 .  Assume Hypothesis 2.1, z E C, and suppose 

~(z) = (r r 

is a z-wave function associated with (p, q) on ft. Then the fo l lowing assertions 

hold. 

(i) r  x) = - r  (z, x ) / r  (z, x) satisfies the Riccati-type equation 

(2.13) - r  + q(x ) r  2 + 2 i z r  - p(x) = 0 

on the set {x E f~ : r  7 s 0}. 

(ii) ~(z,  x) = r (z, z ) / r  (z, x) satisfies the Riccati-type equation 

(2.14) -qp'(z, x) - p(x)~(z ,  x) 2 - 2izqp(z, x) + q(x) = 0 

o n t h e s e t { x  E f~ : r  7s 0}. 

Assume in addition the NLS_ case p = -~.  Then the fol lowing assertions hold. 

(iii) / f  qr (z) = (r (z), r (z)) 7- is a z-wave funct ion associated with q, then 

(2.15) KqJ(z) = a4CkD(z) = (~b2(z ) , - r  T = (~(z) 'L) * 

is a -g-wave funct ion associated with q and  

(2.16) M(q) = - ICM(q)E.  

(iv) The fo l lowing identity holds, 

(2.17) (ll~(z,x)ll~)' = 2Im(z)[lCx(z,x)[ 2 -1r  

(v) M(q) and M(q)* are formally unitarily equivalent in the sense that 

(2.18) M(q)* = aaM(q)aa = M ( - q ) .  
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In addition, M (q) is formally  J-sel f -adjoint  in the sense that 

(2.19) J M ( q ) f l  = M(q)*. 

Consider AKNS potentials p, q E L~oc(ft). Fix z, zl, ~1 E C, a zl-wave function 

tg(zl), and a 21-wave function ~'(51) associated with (p,q). Our objective is to 

construct new potentials p(1) q0) E L~oc(ft (1)) for some open set f~0) c_ f~ and the 

corresponding z-wave functions associated with (pO), q(1)) on ~(1). In the NLS_ 

case p = -~ ,  we  choose ~1 = ~ and q (2if) = E~(z l ) ;  see Lemma 2.2 (iii). 

R e m a r k  2.3.  Let r E ACloc(~2) 2x2, A, B E Ll(f~) 2• for some open subset 

f~ C_ ~ suppose that 

(2.20) r ' ( z )  + r ( x ) A ( z )  - B ( x ) r ( x )  = 0 fo r  a .e .  x e f~, 

and assume that ~ E AClor 2 satisfies the first-order system if' = AcI, on f~. 

Then the function ~I ,(1), defined by ~(1) = F~, satisfies ~(1) E ACloc(f~) 2 and the 

first-order system (,I,O))' = B~O) on fL 

L e m m a  2.4.  Assume Hypothesis 2.1 and z, zx E C, In addition, suppose 

Itl(Zl) = (~)l(Zl),~J2(Zl)) 7- is a z l -wave  function associated with (p, q) on f~ and 

introduce 

(2.21) ~Zl = {X E ~ : r  r 0}. 

Define ~z,, (tz~, Fo(q,pz~), and F(z ,q ,~z l )  on (~z, by 

(2.22) 

(2.23) 

(2.24) 

/~zl (x) = - r  (Zl, x)/r  (zl, x), ~1zl (x) = q'(x) + Pzl (x)q(x) 2 + 2izlq(x),  

rO(X'q'Pzl) = - - 2  ~k 7fizl(X) 

F(z ,z ,q ,~z~)  = i(z - zl)a5 + Fo(x,q,Pzl).  

Then F = "F satisfies (2.20) on (~zl, with A and B given by 

(2.25) A ( z , x )  = U(z ,p ,q) ,  B ( z , x ,  z i)  = U(z,pza,qzl) ,  x e (~z,. 

P r o o f .  Using Lemma 2.2 (i) one verifies that F = F0 satisfies (2.20) with 

A = U(z l ,p ,q )  and B = U(zl,/~Zl,~Zl). Since U(z) = U(z l )  - i(z - Zl)a3, the 

conclusion follows. [3 

Similarly, by Lemma 2.2 (ii), one has the following analogueous result. 
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L e m m a  2.5. Assume Hypothesis 2.1 and let z, ix E ~ In addition, suppose 
that ~(zl) = (~';l (51),~2(51)) "r is a 51-wave funct ion associated with (p ,q)on  f~ 
and introduce 

(2.26) 0.~, = {x E f~ : ~2(~l,x) • 0}. 

Define p:,, (t~,, f'o(P, ~., ), and F(z, p, (l:., ) on fl~, by 

(2.27) p~, (x) = -p '(x)  + q:~ (x)p(x) 2 + 2iSlp(x), q:., (x) = (hi (51, x ) /~2 ( i l ,  x), 

1 (p-1 0~.,(x) ) 
(2.28) I'o(x,p,?t~:) = -~ (x) -p(x)O:~(x) ' 

(2.29) I~(z, x, p, (L:~) = i(z - 51 )a6 + I'o (x, p, 4~ ). 

Then F = F satisfies (2.20) on l~/~, with A and B given by 

(2.30) A(z,x)  = U(z,p,q),  B ( z , x , 5 l )  = U(z,p~,O:.,),  x E ~2~. 

The Darboux-type transformations characterized by (2.24) and (2.29) are also 
called elementary Darboux transformations. They have been discussed, for in- 
stance, in [29] and [30]. In the special context of algebro-geometric AKNS solu- 
tions, the effect of elementary Darboux transformations on the underlying compact 
hyperelliptic curve (in connection with the insertion and deletion of eigenvalues as 
well as the isospectral case) was studied in detail in [16], [17, App. G] (see also 
1201, [21]). 

Next, we construct the transformation matrix F(z, ~(zl), ~(:h)) that satisfies 
equation (2.20) with A(z ,x )  = U(z,p,q)  and B ( z , x )  = U'z( ,p~,:~,q:~.~)(l) (l) as the 
product of F(z,/~:~,O~) and ['(z,q,/~:~). Since we choose z'l = z-i in the NLS_ 
context, we omit the 5~-dependence in p(:), q(1), ~(1), (I)(1), etc., in the NLS_ case 
in the following. 

T h e o r e m  2.6. Assume Hypothesis 2.1. 

(i) Suppose z, zl,?.: E C, and assume that ~(z:) = (r162 -r and 

~(5~) = (~(~,~),~(s are z~- and 5~-wave functions, respectively, 
associated with (p, q) on fL In addition, introduce 

(2.31) f~(~)- = {x e f t  : W(~(z~ ,  x), ~ ( ~ ,  x)) ~ 0} 

Definep (~).:~,~,, ~.~,:~,-(:) andF(z ,  9(z: ) ,  ~(~:)) on f~z,,~(~) by 

(2.32) 

(~) (x p ~ , , ~ , .  ) = p ( z )  - 2 i ( : ,  - z~)r ~(:~,z)), 
(2.33) 

(~) 
q,,,,, (z) = q(z) - 2i(~ - z~)r (z~, z )~ ,  (:~, x ) / W ( r  z), ~ ( i : , x ) ) ,  
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i 
2w(v(zl z), ~(~, ~))-~ r(z, z, V(z~), ~(~1)) = -~zX2 - 

(2.34) x (51~(51, x)~(Zl ,  x) • - Zl~(Z~, x)~(2~, x ) •  

Then F satisfies the first-order system 

rt(z,x, ~(Zl) ,  ~(Zl ) )  -{- V(z,x, ~(Zl) ,  ~(5 l ) )U(z ,p ,q )  

a.e. on f~(~)- Thus, i f  T ( z )  is a z-wave function associated with (p, q) on 
Z l  ~Zl  " 

~, then T 0) (z) defined by 

(2.36) T (1)- (z,z)  = r ( z , x ,  ~(z~), J~(5~))T(z,x), 
Z l  ~Zl 

is a z-wave function associated with (n (1) A1) ~ f~(1)_ 

(ii) Assume the NLS_ case p = - ~  and z, zl E C Then, f o r  ~1 = zl--, ~(Zl)  = 
]~ff~ (Zl) = (~b2 (zx), - r  (zx)) v and 

(2.37) ~~!11) = {x e ~~ : W(~(zl ,x) ,]~kD(Zl ,X))  # 0}, 

formulas  (2.33)-(2.34) simplify to 

(2.38) 

q~l 1) (x) = q(x) + 4Im(zl)r (Zl, x)r (z~, ~)Jl~(Zl, x)I1~ 2, 
p(z] ) (x) = p(x) - 4Im(Zl)r X)r (Zl, x)[l~(Zl, x)[l~ 2 

(2.39) = -q!11) (x), 

r(z, z, ~(Zl), JC~(z~)) : - ( i / 2 ) ( z  - z~)X2 

(2.40) + Im(z~)H~ (zl, x)IIb2]C~ (zl, x)~(zl, x) ~ 

f o r  x E ~(1)z~ �9 In particular, i f  T ( z )  is a z-wave function associated with q 

on ~, then T(11 ) (z), defined by 

(2.41) T(~)(z,x) = r(z,~,  ~ ( ~ ) , ~ ( z ~ ) ) r ( z , ~ ) ,  

is a z-wave f.netion associated with q~l) on ~1)  (which may vanish 
fl(1). identically w.r.t, x E ~ , c f  Remark2.8) .  

Proo f .  First, we use Lemma 2.4 for z = zl and ~(Zl) to construct /3z,, 
qz,, F(~l,q,/~z,) as in (2.22)-(2.24). Define ~z~(51) = F(51,q,~z~)~(51). By 
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Lemma 2.4 and Remark 2.3, we conclude that @z~ (51) is a 5~-wave function asso- 
ciated with (/5~a, q~a ). Moreover, 

(2.42) 
2 ' 

where/~z~ is defined in (2.22). We now apply Lemma 2.5, replacing @(51) by 

~z , (Z l )  and (p,q) by (Pz~,~z~). Then qzl,~ = r162 as required by 
(2.27), coincides with q~l) , as defined in (2.33), 

(2.43) 0=~,~,(~) = q(1) (x). 
Zl  ,Z l  

By formula (2.27) for P~,z~ and Lemma 2.2(i) for/5=~ = --r one 
infers 

P~x ,z~ (x) -Pz~ (x) ~(1) " = "' + ~ , ~ ,  (z)~:~ ( z )  ~ + 2 i ~ : ,  ( z )  

(q(x)/~zl(x) 2 + 2iz lpz l (x)  p(x))  - (2) = -- --  + qz , ,~ l  ( x ) P z l  (Z) 2 q- 2 i Z l p z ,  (X )  

(2.44) (1) = Pz,,~, (x). 

Using (2.29) and (2.22)-(2.24), one computes 

(2.45) 

~(z,~z,, O.~,~)~(z, q,~,) 

= - (z - ~1)~6 + ~ 

x ( z - z l ) a s + ~  

-c~zl ,~, / 

= - ( i / 2 ) z I 2  - ( i / 2 ) W ( ~ ( Z l ) ,  @(21)) -1 

• (~1r  (~1) - z lr  
\ (~1 - z l ) r162  

--~ r ( z ,  ~ ( z1 )  , ~J('~l))' 
) 
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To check (2.35), one uses Lemmas 2.4 and 2.5, 

r ' (z ,  ~(z~), ~ ( ~ ) )  

= ['(z,~=,,O:,,~.,)F(z,q,f)z,) + f ' (z ,D.. , ,O:, ,h)["(z ,q, f): , )  

= [- f ' (z ,  t)~,, 0~, .~, )U(z,f):,,  0.., ) 
+ U(z,p, , , : . , ,Oz, ,: . , )F(z,~z, ,O:, ,h)]f ' (z ,q, f): , )  

+ [ ' ( z ,~z , , (h ,~ , ) [ - f ' ( z ,q , [gz , )U(z ,p ,q)  + U(z,~z, ,~z,)[ ' (z ,q, f)z ,)]  

(2.46) = U(z,p: , ,s~,(h, . : . , )r(z ,  ~ (z l ) ,  ~ ( i l ) )  - F(z, ~(z l ) ,  ~(i .1))U(z,p,q) .  

Formulas (2.39)-(2.40) follow from (2.32)-(2.34), since by Lemma 2.2 (iii), 

(2.47) W(@(zl ) , t~(~) )  = W ( ~ ( z l ) , K ~ ( z i ) )  = -1]~2(zl)ll~. [] 

For a general treatment of  B~icklund (Darboux) and gauge transformations and 

their interrelations we refer, for instance, to [36, Sect. 4.1 ] and [41]. 

Finally, we add a few more facts valid in the NLS_ case. 

R e m a r k  2,7.  Assume the NLS_ case p = -~.  I f T ( z )  = (vl(z),v.~(z)) r is a 

z-wave function associated with q, then KT(z ,  x) is a y-wave function associated 

with q, and 

T(I)(Y x) = 

(2.48) = 

r (y ,z ,  ~(z,),x:,~(z~))v('~,z) 
r(y,  x, qJ(z~ ), x:v (z~))pc'r(z, z) 

Jc'r~',)(z,x) 

is a Y-wave function associated with q~l) (cf. Lemma 2.2(iii)). 

R e m a r k  2.8.  Assume the NLS_ case p = -~.  

(i) Take z = zl and T(zx) = tI,(zl) in Theorem 2.6. Then 

(2.49) ~(~l](zl,x) = F(z I , x ,  q~(zl) ,KkO(zl))~(Zl,X) = O, 

since q ( z l ) •  = O. 

(ii) Take z = z--i- and KT(z l )  = K:q~(zl ) in Theorem 2.6. Then 

( l )  z (2.50) K:q,., ( ~ , z )  = F ( ~ , z ,  *(z~),lC*(zl))lO~(z~,z) = 0, 

since kV(zl)• = IIq'(z,)ll~-2 by Lemma 2.2(iii). 
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In the NLS_ case, Theorem 2.6 also shows that q~l) is locally nonsingular 
whenever q is. More precisely, one has the following result. 

C o r o l l a r y  2.9. Assume the NLS_ case p = - ~  and suppose zl E C, Then, i f  

q E L~oc(N)forsomep E [1,c~) U {cx~} (respectively, ifq E C~(N)forsome k E No), 
the NLS_ potential qOJ given by (2.38) also satisfies q(1) E L~oc(N) (respectively, 
q~l a) e Ck(I~)). 

Proof .  Since tr (zx, x)r (zl, x)ltl �9 (zx, x)t1~ 1/2, one concludes from (2.38) 
that (q(~l 1) - q) E L~(~) .  Again by (2.38), q and ~zl'(1) share the same L~o c and C k 
properties since by (2.4) (with p = -q--) one has O'~r .) E ACloc(~), j = 1, 2, 
whenever Omq E L~oc(l~). [] 

3 J-self-adjointness of NLS_ Dirac-type operators 

It is known that the Dirac-type Lax differential expression in the defocusing 
NLS+ case is always in the limit point case at +co. Put differently, the maximally 
defined Dirac-type operator corresponding to the defocusing NLS + case (cf. (1.3)) 
is always self-adjoint. Classical references in this context are [34, Sect. 8.6], [47], 
which use some additional conditions (such as real-valuedness and/or regularity) 
of the coefficient q. A simple proof of this fact under most general conditions 
on q was recently communicated to us by Hinton [25] (cf. also [6], [7] and [31] 
for matrix-valued extensions of this result). In this section, we show that the 
analogueous result holds for Dirac-type differential expressions M(q) in (2.7) in 
the focusing NLS_ case, when self-adjointness is replaced by 3"-self-adjointness. 

First, we recall some basic facts about J -symmetr ic  and 3"-self-adjoint opera- 
tors in a complex Hilbert space 7/(see, e.g., [12, Sect. 111.5] and [22, p. 76]) with 
scalar product denoted by (., .)n (linear in the first and antilinear in the second 
place) and corresponding norm denoted by I1" I1 ~. Let 3" be a conjugation operator 
in 7/, that is, ,7 is an antilinear involution satisfying 

(3.1) ( Ju ,  v)7~ = (3"v,u)n fo ra l lu ,  v E 7/, f l :  = I. 

In particular, 

(3.2) (flu, f lv )n  = (v,u)n,  u,v  6 7/. 

A densely defined linear operator S in 7/ is  called J-symmetr ic  if 

(3.3) S C_ J S * J  (equivalently, if J S J  c_ S*). 
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Clearly, (3.3) is equivalent to 

(3.4) (flu, Sv)n = ( JSu ,  v)n, u,v C dora(S). 

Here S* denotes the adjoint operator of S in 7-/. If S is J-symmetric,  so is its 

closure S. The operator S is called :7-self-adjoint if 

(3.5) S = J S * f l  (equivalently, if J S J  = S*). 

Finally, a densely defined, closable operator T is called essentially fi-self-adjoint 

if its closure T is J - se l f  adjoint, that is, if 

(3.6) T = J T * J .  

Next, assuming S to be J-symmetric,  one introduces the following inner product 

(-, .), on dom(,TS*ff) = dora(S ' J )  according to [28] (see also [39]), 

(3.7) (u,v). = (flu, f lv)n + (S*flu, S*flv)n, u,v E dom(ffS*J) ,  

which renders dom(JS*f l )  a Hilbert space. Denoting the identity operator in 7/ 

by I, we have the following theorem. 

T h e o r e m  3.1 (Race [39]). Let S be a densely defined closed J-symmetric 
operator. Then 

(3.8) dom(ffS*ff) = dora(S) @, ker((S*ff) 2 + I), 

where @, means the orthogonal direct sum with respect to the inner product (., .),. 

In particular, a densely defined closed J-symmetric operator S is J-self-adjoint i f  

and only if 

(3.9) ker((S*ff) 2 + I) = {0}. 

We apply (3.9) to (maximally defined) Dirac-type operators associated with 
the differential expression M(q) in (2.7) relevant to the focusing NLS_ hierarchy 

and prove the fundamental fact that such Dirac operators are always J-self-adjoint 

under most general conditions on the coefficient q (cf. Theorem 3.5). 

It is convenient to make the following NLS_ assumption throughout the re- 
mainder of this section. 

H y p o t h e s i s  3.2. Suppose q E L~oc(R) and assume the NLS_ case p = -~. 
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Assuming Hypothesis 3.2, we now introduce the following maximal and min- 

imal Dirac-type operators in L2(I~) 2 associated with the differential expression 
M(q), 

(3.10) nmax(q)F = M(q)F, 

F E dom(Dma• = {G E L2(IR) 2 : G E ACloc(]~)2; M(q)G E L2(IIO 2 }, 

(3.11) Dmin(q)E = U(q)F, 

F E dom(Dmin(q)) = {G E dom(Dmax(q)) : supp(G) is compact}. 

It follows by standard techniques (see, e.g., [34, Ch. 8] and [47]) that under 

Hypothesis 3.2, Drain(q) is densely defined and closable in L:(IR) ~ and Dmax(q) 

is a densely defined closed operator in L~(~) 2 . Moreover (cf. (2.18)), one infers 

(see, e.g., [34, Lemma 8.6.2] and [47] in the analogueous case of symmetric Dirac 
operators) 

(3.12) Drain(q) -- Dmax(-q)* or, equivalently, Dmln(q)* -- Dmax(-q). 

The following result is the crucial ingredient in the proof of Theorem 3.5, the 
principal result of this section. 

T h e o r e m  3.3. Assume Hypothesis 3.2. Let N ( q) be the (formally self-adjoint ) 
differential expression 

and let/gmax (q) be the maximally defined Dirac-type operator in L2 (ll~) 2 associated 
with N(q), 

(3.14) /gma• = N(q)F, 

F e dom(/~max(q)) --- {G e L2(I~) ~ : a e ACloc(]~)2; N(q)G e L2(~) 2 }. 

Then the following hold. 

(i) We have 

(3.15) M(-q)M(q)  = N(q) 2. 

(ii) Let Uq = Uq (x) satisfy the initial value problem 
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Then {Uq(x)}xO~ is a family of unitary matrices in U. 2 with entries in 
ACIoc(It~) Cl L~(t~) satisfying 

(3.17) U~-~ N(q)Uq = i d  I2. 

(iii) Let blq denote the multiplication operator with Uq(-) on L2(~) 2. Then 
/gma,,(q) is unitarily equivalent to the nw.ximally defined operator in 
L 2 (~) 2 associated with ttle differential expression i a~ I2, 

= ( i r  , /-~q 1 Omax (q)Uq (3.18) \ - -  
(/X ,'/max 

dom (('d-~x/2) max ) = Hl'2(~) 2 

= {FE L2(/l~) ~ : F E  aCloc(I~)2; F ' E  L2(/I~)2}. 

Moreover, 

(3.19) 

Uql Dmax(-q)Dmax(q)Llq = ( - d~12)  max, 

dom ( ( -  d-~12)ma~ ) = H2'2(I1~) 2 

= { F ~  L2(~) 2 : F , F ' c  AGo~(I~)2; F ' , F " e  L2(~)2}. 

Proof.  That N(q) is formally self-adjoint and M(-q)M(q) = N(q) 2 as stated 
in (i) is an elementary matrix calculation. 

To prove (ii), we note that the initial value problcm (3.16) is well-posed in the 
sense of Carath6odory since q e L~oc(ll~) (cf., e.g., [23, Lemma IX.2.2], [24, p. 
45-45]) with a solution matrix Uq with entries in AC~oc(l~). Moreover, for each 
x e IR, Uq(x) is a unitary matrix in C20 since Ur = -B(q)Uq, with B(q) = (~ ~ q) 

skew-adjoint. Thus, the entries Uq,j,~, 1 <_ j ,k  _< 2 of Uq (as well as those ofUq -1) 
actually satisfy 

(3.20) Uq,j,k E AC~oc(I~) f3 L~(R), 1 _< j, k < 2. 

Next, fix F E AQoc(ll~) 2, such that l l~ lF  e Hl'2(I~) 2. Then 

= i d F  + iUq(UqlB(q)*)F 

(3.21) = N(q)F, 
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where we have used the fact that (Uq-X) ' = UqlB(q) *. Thus, (ii) follows. 

Moreover, by (3.21) one concludes dora( Dmax (q)) =/-'/q H 1'2 (ll~) 2 by (3.20) and 

the fact that Uq is unitary in C 2. This proves (3.18). 

Clearly (i) and (ii) yield the relation 

d 2 
(3.22) U~ -IM(-q)M(q)Uq - dx 212. 

Thus, (3.19) follows once we prove the following facts: 

(3.23) (i) UqF E L2(I~) 2 if and only i f F  E L2(I1r 2, 

(3.24) (ii) UqF E ACioc(R) 2 if and only if F E ACIoc(R) 2, 

(3.25) (iii) M(q)UqF E L2(n~) 2 if and only if F ' E  L~(II~) 2, 

(3.26) (iv) M(q)UqF E ACior162 2 if and only if F ' E  ACtoc(II~) 2 , 

(3.27) (v) M(-q)M(q)UqF E L2(~) 2 if and only if F " E  L2(I~) 2 . 

Clearly, (3.23) and (3.27) hold since Uq is unitary in C 2 . Also, (3.24) is valid, since 

Uq,j,k, U~,), k E ACio~(~) N L~(R),  j, k = 1, 2. Next, an explicit computation yields 

= q , l , l / 1  -b q,l,2f2 F = (:1:2) "r. 
(3.28) M(q)UqF i \-Uq,2,af~ - Uq,2,2f~] 

Introducing 

= (U ,l,1 -Vq,l,2  
(3.29) Vq = a3Uqa3 \-Uq,2,x Uq,2,2 ] '  

one infers Vq,j,k, Vq.jl, k E ACIoc(R) M L~176162 j, k = 1, 2 and 

(3.30) V ( '  M (q)UqF = i(f;, _f~)T, 

and hence (3.25) and (3.26) hold. This proves (3.19). [] 

R e m a r k  3.4. Note that by (3.18), Omax (q), the maximally defined, self-adjoint 

operator in L2(R) 2 associated with the 2 x 2 matrix-valued differential expression 

N(q), has a purely absolutely continuous spectrum which equals I~ 

(3.31) O'( / )max(q) )  ---- O 'ac( / )max(q) )  = ~,. 

(Refer to Section 5 for a discussion of  various spectral decompositions. In the 

present context, a(T) and aae(T) denote the spectrum and absolutely continuous 

spectrum of  a self-adjoint operator T in a separable complex Hilbert space 7-/.) 
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The principal result of this section then reads as follows. 

T h e o r e m  3.5. Assume Hypothesis 3.2. Then the minimally defined Dirac-type 
operator Dmin (q) associated w[th the Lax differential expression 

introduced in (3.11) is essentially J-self-adjoint in L 2 (11~) 2, that is, 

(3.33) Drain (q) = ~ e m l n  (q)* ~J, 

where J is the conjugation defined in (2.9). Moreover, 

(3.34) Dmin(q) = Dmax(q); 

hence Dmax(q) is ff-self-adjoint. 

First recall (cf. (3.12)) that 

Dmin (q)* = Dmax(-q)  

Proof .  

(3.35) 

and also note 

(3.36) f lDmax(-q)fl  = Dmax(q). 

Since Drain(q) is closed and J-symmetr ic  (cf. (2.I9)), its 3"-self-adjointness is 
equivalent (cf. (3.9)) to 

(3.37) ker (Omin(q)*JDmin(q)*J + I2) = ker(Dmax(-q)Dmax(q) + 12) - {0}. 

Since, by (3.19), Dmax(-q)Dmax(q) is unitarily equivalent to (-d2/dx212)max >_ O, 
one concludes Dmax(-q)Dmax(q) > 0; hence (3.37) obviously holds. Then (3.34) 
follows from (3.33) and (3.35), since 

(3.38) Drain(q) = fiDmin(q)*ff = f f D m a x ( - q ) , J  --- Dmax(q). 

As mentioned in the introductory paragraph to this section, Theorem 3.5 in the 
J-self-adjoint context can be viewed as an analogue of the result of the corm- 
sponding (self-adjoint) Dirac operator relevant in the defocusing NLS + case of the 
nonlinear SchrSdinger equation. 
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4 Constructing L2(]~)~-wave functions for ff-self-adjoint 
Dirac-type operators 

In this section, we  discuss how to construct L2(]1~)2-wave functions for non- 

self-adjoint (but 3"-self-adjoint) Dirac-type operators associated with the Lax dif- 

ferential expression for the NLS_ system. 

By  Remark 2.8, in order to obtain a nonzero z l -wave function associated with 

q(1), we have to apply the transformation matrix r ( z l ,  e/(zl), E ~ ( z l ) )  to a zl-wave 

function if(z1) associated with q that is linearly independent with the original zl- 

wave function g'(zl) associated with q. Similarly, in order to obtain a nonzero 

~ - w a v e  function associated with q(1), we have to apply the transformation matrix 

F(~i-, gs (zl),/C~ (zl)) to a 2i-wave function/Cr (zl) associated with q that is linearly 

independent with the original ~ - w a v e  funct ion/C~(z l )  associated with q. The 

function ~(zl)  is constructed as follows. 

Let qJ(z) = (r (z), r -r, z E C, be a z-wave function associated with q on I~ 

and introduce 

(4.1) f~z = {z e ~ : r162 # o). 

Next, consider 

(4.2) �9 # ( z , x )  = (1/2)(r  - 1 , - r  T, x E f~ ,  

such that 

(4.3) 

Let x0, x E f~z be such that [x0, x] C f~z and define 

w ( v # ( z ,  z), r  ~)) = 1. 

1 f , ~ x ' (  q(x') + q(x') ) 
(4.4) R(z,  x, Xo) = - 5 Jxo \ r  x') 2 r (z, x') 2 - ' 

(4.5) ~ (z ,x )  = g ' # ( z , x ) + R ( z , x ,  xo)~( z , x ) ,  [x0,x] C f~z- 

Using (2.4), we have ( ~ # ) '  = U(p,q)~ # - R~qt. Thus, W(r  q~) = 1 and q~(z) is a 

z-wave function associated with q, since 

(4.6) ~' = (~#) '  + R ' ~  + R ~ '  = Uq/# - R ' ~  + R ' ~  + R U ~  = U~. 

We note that q j l ~ #  = 1 implies 1CkV(z)~(z)J-c~(z) = 1C~(z). 

Thus, if F (z, �9 (zl), /C~ (zl)) is defined using ~ (zl) as in (2.40), then the z l -wave 

function ff(~l~)(z 1) associated with q~(11), as prescribed in Theorem 2.6, is computed 
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as follows, 

(~(zll) (Zx, X) = r(z, ,  x, �9 (z,), x) 

(4.7) = Im(zl)ll~(zl, x)li~2Kgd(zl, x). 

Moreover, by Remark 2.7, Eft !t)(zt) is computed as 

(4.8) = -Im(zl)ll  (zx, x) l15 2 �9 x). 

By (4.7) and (2.40), for each z E C, the z-wave function ff (1)(z) associated with 
q(~) (constructed using the z-wave function if(z) associated with q) is computed by Z, 

~I~(zl) (Z, X) : r (z ,  x, ~I~(Zl), ~lI/(Zl))r , x) 

= - ( i l 2 ) ( z  - zl)ff(z, x) + @(z', ) (zl, z)@(z,, x)J-,~(z, x) 

(4.9) = --(i/2)(Z - -  Z 1 ) o ( z ,  X )  - -  W(~(z l ,  x), O(z, x))O(zl, ) (Zl, x). 

Formulas (2.38) and (4.7) now imply 

(4.10) qz(~,)(x) = q(x) + 4r (z, ,x)r (z , ,x) ,  

where/l~(~l,)(z,x) = r Cz x~ "all) (z ,x)  ) -r, gg(z,x) = (r (z ,x) ,  r  -r. kWI,Zl k ~ 1~ W2~Zl 

R e m a r k  4.1. We emphasize that while R(z,  x, Xo) in (4.4), and hence ~(z, x) 
in (4.5), will in general have singularities on ~ formulas (4.7)-(4.10) are well- 
defined for all x E IlL 

The next hypothesis is crucial in our attempt to construct z;- and ~l-wave 
functions in L2(~) e associated with the Dirac-type differential expression M (gl)) .  

H y p o t h e s i s  4.2. Suppose q E L~oc(lI~), assume the NLS_ case p = -~,  and let 

zo E C~ Suppose q~(zo) to be a zo-wave function associated with q which satisfies 
the condition [l~(z0, .)1t~ 1 E L2(~), that is, 

/? (4.11) dz like(z0, x)[l~ z < oo. 
to 

If a zo-wave function ~(zo) associated with q satisfies condition (4. I 1), we say 
that ~(zo) satisfies Hypothesis 4.2 at z0. 

R e m a r k  4.3. Assume Hypothesis 3.2 and suppose that ~(z) satisfies 
Hypothesis 4.2 at z. Then 

(i) by H61der's inequality, iI,(z) r L2((-oo, R]) 2 tA L2([R, to)) 2 for all R E 1~; 
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(ii) IC~(z) satisfies Hypothesis 4.2 at ~ by Lemma 2.2 (iii). 

R e m a r k  4.4. Assume Hypothesis 3.2 and let A ~ R. Then all A-wave functions 

tg(A) associated with q satisfy [l~I'(A,x)ll~ = c(A) (independently of  x ~ I~). In 

particular, [[~(A, ")[[c~, ][kO(A, .)[l~ 1 ~ L2([R, +c~)), R ~ IIL and hence there exists 

no A-wave function associated with q that satisfies Hypothesis 4.2 at A ~ l~ 

The principal result of  this section then reads as follows. 

T h e o r e m  4.5. Assume Hypothesis 3.2. Let Zl C C\~  and suppose that the 
zl-wave function ~(zl)  associated with q satisfies Hypothesis 4.2 at zl. Let q~Z) 

be given by (2.38). Then zl and ~ are eigenvalues o f  the maximal Dirac-type 
operator D~a• (q~)) associated with M (q~l )) o f  geometric muhiplicity equal to 

one. The corresponding eigenfi~nctions ~b(~)~zz~ t ~ ) amt ICcb~,)(z~) are given by. (4.7) 
and (4.8), respectively, that is, 

(4.12) 

(4.13) 

(4.14) 

(b~l~>(zl),K:Oil~)(z,) E dom(Dmax (q~l~))), 

D,.~x/~(1)~r ~ r ' ~t/zl  ] zl ~ IJ = Z l  . 

Dmaxt"(1)~]~(1)'zkt/:t ) zl ~ 1/~ : z - ' i - I K : ~ l l ) ( z l )  �9 

Proof.  Indeed, using (4.11) at zl one obtains 

/? (4.15) 0 < II ??(zl)ll 2. --lira(z1)[ 2 dxll~(za,x)ll~41l~V(zl,x)ll~ < oo. 
oo 

In order to show that z~ has geometric multiplicity equal to one as an eigen- 
value of  Omax(q~lz)), assume that ~1~)(zl,.) E L2(I~) 2 and ~l~)(zl,-) E Le(/~) ~ 

are linearly independent zl-wave functions associated with q~l). Then clearly 

cb (1)" dom(Dmax (q~l) ) :, t z , , ' ) ,~l , ) (z , ,  ") E ) and 

(4.16) W ('I~l~)(zt, .),'~l~)(zl,-)) E L~(IR). 

However, W (r (z~, x), ,~,~l)(zl, x)) is constant with respect to x e/R by (2.5); thus 

(4.16) represents a contradiction and hence z l has geometric multiplicity equal to 

one. Analogueous arguments apply to ~ .  13 

The argument that Oma, (q~l,)) has only eigenvalues of  geometric multiplicity 
equal to one applies of  course in complete generality to any D(q) with q e L~or ). 

Next we show that condition (4.11) is preserved under iterations, a fact of  

great relevance in connection with the multi-soliton solutions relative to arbitrary 

backgrounds discussed at the end of Section 6. 
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L e m m a  4.6.  Assume Hypothesis 3. 2 and let z l, z,2 E C, Fix a zl -wave function 

�9 (z~) and a z,z-wavefimction r associated with q. Using ~P(zl ), construct the 

NLS_ potential q~l) by formula (2.38) and consider the transformation matrix 

F(z2, kO(zl), AT, kl'(zl)) given by formula (2 .40)for  z = z2. Let r be the z2- 

wave function associated with q~) as in (4.9). l f  ~b(z2) satisfies Hypothesis 4.2 at 

z2, then r satisfies Hypothesis 4.2 at z.z. 

P r o o f .  Without loss of  generality, we may assume Im(zl)Im(z2) > 0. 

Formulas (2.12), (4.7), and (4.9) imply 

21 \ - /  

1 1 
= ~ Iz2 - z112110(22)IIb~ + ~ IT - zx 121l'I'(zl )ll,~ 4 IlX:'I'(zl )),I' (zl)-Lr 

1 Re (((z2 - zx)r ( ~  - zt)tl~P(z~)il~21(~(zi )tI '(zl)•162 2 ) 
2 

= 41}z2 - zl }2llr + ~ l ~  - z11211~(zl)ll~l~,(z,)-LO(z2)i~ 

+ �89177162 - z l ) ( ~ -  zl)) 

1 
= ~ tz2 - zl [21lr + [[ff'(z~ )11~2[~(z~ )•162 

1 
( 4 . 17 )  > ~Jz2 - z 1211O(z2)l} . 

Thus, iff~_~176162 < oo, then f~_~dz (1) 

it is shown in Remark 6.1 that for any z E p(Dm~(qll))), all but two z-wave 
, (1)] functions of  Dmax (qzt t satisfy Hypothesis  4.2 at z. 

5 Some spectral properties and the existence of Weyi- 
Titchmarsh-type solutions for J-self-adjoint Dirac- 
type operators 

The principal purpose of  this section is to establish the existence of  Weyl -  

Titchmarsh-type solutions for formally ff-self-adjoint Dirac differential expres- 

sions M(q) associated with the focusing NLS_ case. The latter are well-known 

to exist in the case of  self-adjoint Dirac operators (in particular, in the context o f  

the defocusing NLS+ equation) and are a fundamental ingredient in the spectral 

analysis in the self-adjoint context (cf., for instance, [33, Chs. 3, 4]). As far as 

we know, no such result is known in the general ff-self-adjoint case studied in this 

section. Along the way, we also collect some results concerning spectral properties 

of  Dmax (q). 
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Thus, assuming the NLS_ case and hence the basic Hypothesis 3.2 throughout 

this section, we adopt the simplified notation (cf. Section 3) 

(5.1) D(q) = Dmin(q) = Dmax(q), q E L~oc(~). 

We also denote by I2 the identity operator in L 2 (~)2 (as well as in C 2). Moreover, 

we find it convenient to introduce the following notations, 

(5.2) 
n2oc([-c~, c~)) = {f :  l~ -+ C is measurable : f e L2((-c~,R])  for all R e ]~}, 

n~oc((-~,cx~]) = { f :  I~ ---r C is measurable : f e n2([R,c~)) for all R e l~}. 

We start with the following auxiliary result (the variation of  parameters 
formula). 

L e m m a  S.1, Assume Hypothesis 3.2 and let (z, xo) E C • • Let ~l(z)  

and ~2(z) be linearly independent z-wave functions for  M(q) defined on [x0, c~), 

and denote by E(z,x) = [~l(z ,x) ,~2(z,x)]  the 2 • 2 fundamental matrix so- 

lution o f  M(q)--(z) = zE(z). Assume the Wronskian o f  'I~l and ~2 satisfies 
W ( ~ I  (z, x), ~2 (z, x)) = det(E(z, z)) = 1 for  some (and hence for  all) x E [x0, cx~). 

Moreover, suppose B E L~oc([x0, oo))2• Then ~(z, .) E ACloc(~) 2 satisfies 

M(q)~(z) = z~(z) + B~(z)  i f  and only if  

s (5.3) r  az 'Z(z,x)Z(z,z ' ) - l~3B(z ' ) r  x ___zo 
0 

for  some C = (el, e2) r E C 2 independent o f  x. Moreover, O(z,x) = O for  all x >_ Xo 
i f  and only i f  C = 0. 

P r o o f .  The computation 

= zO(x) + B(x)O(x) + iM(q) E(x) dx' Z(x')-la3B(x')eb(x ') 
0 

(5.4) = z ( ~ ( x ) + i f ~ : d x ' . E ( x ) - - ( x ' ) - l a 3 B ( x ' ) r  

shows that if ff satisfies M(q)~(z) = z~(z) + B~(z) ,  then �9 satisfies (5.3), since 

is a fundamental matrix for the first-order linear differential system M(q)e2(z) = 

zkV(z). Conversely, if  ff satisfies (5.3), then one readily verifies that �9 satisfies 

M(q)~(z) = zr + Be(z ) .  That ~I,(z, x) = 0 for all x > x0 if and only if 
C = 0 follows upon iterating the Volterra-type integral equation (5.3) in a standard 
manner. [] 
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Next, we find it convenient to recall a number of basic definitions and well- 

known facts in connection with the spectral theory of non-self-adjoint operators 

(we refer to [12, Chs. 1, II1, IX], [22, Sects. 1, 21-231, and [40, pp. 178-179] for 

more details). Let S be a densely defined closed operator in a complex Hilbert 

space 7-/. Denote by/3(7-/) the Banach space of  all bounded linear operators on 

7-/. The spectrum a(S), point spectrum (the set of eigenvalues) ao(S ), continuous 

spectrum at(S) ,  residual spectrum c~r(S), approximate point spectrum aa(S), es- 

sential spectrum ae(S), field of  regularity rr(S), resolvent set p(S), and A(S) are 

defined by 

(5.5) a(S) = {), ~ r : 

(5.6) Crp(S) = {A E C : 

(5.7) crc(S) = {,~ ~ C : 

(5 .8 )  a t ( S )  = {,~ ~ C : 

(5.9) aa(S) = {A E C : 

(5.10) 

(s  - ~ I )  -~ r t~(7~)}, 

ker(S - A1) ~ {0}} ,  

ker(S - AI) = {0} and ran(S - AI) is dense in 7t 

but not equal to 7-/}, 

ker(S - AI) = {0} and ran(S - AI) is not dense in 7-/}, 

there exists a sequence {fn },,oN E dom(S) with 

Ilf,,ll~ = 1, n E N and lim II(S - hI)f, , l l~ = 0}, 
I~l ..--~ o o  

ae(S) = {A E C : there exists a sequence {fn}naN C dom(S) s.t. {fn}nc,~ 
contains no convergent subsequence, [[f,~lln = 1, n E N, 

and lim [[(S - AI)fnl[n = 0}, 
n - - - + o o  

(5.11) rr(S) = {z E C : there exists kz > 0 s.L[[(S- zl)u[]~ >_ kzlIul]n 

for all u E dora(S)}, 

(5.12) p(S) = C\a(S) ,  

(5.13) 

A(S) = {z E C : dim(ker(S - zI)) < oo and ran(S - zI) is closed}, 

respectively. One then has 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

G(S) = ap(S) ua~(S) ua,(S) 

= ap(S) u G h ( S ) u a , ( S ) ,  

a~(S) c o~(S)\(~p(S)ua~(S)), 

a~(S) = ap(S')'\ap(S), 

(disjoint union) 
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(5.18) aa(S) = {~E C : foralle>O, thereexistsO~f~Edom(S) 

s.t.  It(S - A / ' ) f ~ l l ~  < e l l f ~ l l ~ }  

(5.19) = C\Tr(S), 

(5.20) ~r(S)\a~(S) C at(S), a(S)\cr~(S) is open, 

(5.21) ae(S) = {A E C : there exists a sequence {gn}neN E dom(S) s.t. 

w-limn-~oo gu = 0, llgnll~ -- 1, n e N, 

and lim It(S - AI)g, Hn = 0} 

(5.22) = c \ ~ ( s ) ,  

(5.23) ae(S) C ~r~(S) C a(S) (all three sets are closed), 

(5.24) p(S) C re(S) C_ A(S) (all three sets are open). 

Here ~" in the context of (5.17) denotes the complex conjugate of  the set ~ C_ C, 

that is, 

(5.25) w" = {~ E C : A E w}. 

For future reference, we note that the sequence {fn}ncN in (5.10) (and the sequence 

{gn }n~N in (5.21)) is called a singular (or Weft) sequence of S corresponding to A. 

We also note that there are several versions of the concept of the essential spectrum 

in the non-self-adjoint context (cf. [12, Ch. IX]), but we only use the one in (5.10) 

(respectively, (5.21)) in this paper. 

In the special case where S is 3r-self-adjoint, one obtains the following simpli- 

fications (cf. [12, p. 118], [22, p. 76]): 

(5.26) a(S) " Crp(S) U Crc(S ) 

(5.27) = ap(S) U ae(S), 

(5.28)  ,rr(S) = O, 

(5.29) crp(S) = ao(S')" , 

(5.30)  a , ( S )  = a (S) ,  

(5.31)  ~(s )  = p(s) ,  

whenever S is J-self-adjoint. Note that 7r(S) = 0 may occur for J-symmetr ic  op- 

erators (see [39]) in sharp contrast to the case of  densely defined, closed, symmetric 

operators T, where any nonreal number is in the field of  regularity rr(T). 

Returning to the NLS_ case, we next recall an elementary but useful conse- 

quence of (2.16) and (2.18). 
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(5.32) 

(5.33) 

Consequently. 

(5.34) 

Moreover, 

L e m m a  S.2. Assume Hypothesis 3.2. Then 

ED(q)E  = -D(q ) ,  

a3D(q)a3 = D(q)* = D( -q ) .  

a(D(q))" = a(D(q)) = a (D( -q ) ) .  

i f  zo E ap(D(q)) and D(q)F = zoF for  some F E dom(D(q)), 

(5.35) then D(q )KF  = TJCF. 

P r o o f .  Relations (5.32) and (5.33) are clear from (2.16), (2.18), (3.10), 

(3.12), and (5.1). Since (D(q)" - zI2) -1 = [(D(q) - ~I2)-~] ", a(D(q)*) = a(D(q))" 

and hence (5.34) follows from (5.33). Finally, (5.35) is clear from (5.32) and 
E 2 = - 1 2 .  []  

Next we introduce the basic hypothesis to be assumed for the remainder of  this 

section. 

H y p o t h e s i s  S.3. Suppose q E L~oc(~), assume the NLS_ case p = -~, 

and suppose that the (J-self-adjoint)  operator D(q) has nonempty resolvent set, 

p(D(q)) r O. 

Recalling the standard notation 

(5.36) nul(T) = dim(ker(T)), 

(5.37) def(T) = dim(ran(T) • = dim(ker(T*)) = nul(T*), 

where T denotes a densely defined closed operator in 7/, we can state the following 

fundamental result, establishing the existence of  Weyl-Titchmarsh-type solutions 

for ff-self-adjoint Dirac-type operators relevant to the NLS_ case. 

T h e o r e m  S.4. Assume Hypothesis 5.3 and pick z E p(D(q)). Then there 

exist two unique (up to constant multiples) linearly independent z-wave functions 

3 _  (z, -) and 3 + (z, .) associated with q satisfying 

(5.38) ~_(z , . )  ~ L ~ o d [ - ~ , ~ ) ? ,  ~+(z , . )  e L,~oc((-oo, oo]) 2, 

(5.39) I I ,~ - (z , . ) l l b  ~ E Z~oc((-oo, oo]), [J'I'+(z,.)llb I ~ L~or 

( 5 . 4 0 )  l im II'I'• = lira II,I,• a =0 ,  
z - ~ + ~  z - ~  

[(L (5.41) sup dx I I~-(z ,x) l l~  dm II~+(z,z)ll < oo. 
rER 
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The corresponding 5-wave functions K;~+(z, x) associated with q satisfy (5.38)- 

(5.41) with z replaced by -~. 

P r o o f .  We prove the existence of  the two z-wave functions following the lines 

of  [12, Sect 10.4]. To this end, we introduce the operators 

Omax(q;-(:x:))F = M(q)F, 

(5.42) F E dom(Dmax(q;-oo))  = {G E L2(( -co ,0] )  2 : G E ACloc((-co,0]) 2, 

M(q)G E L2((-co,0])2},  

Drain(q; -co)F = i ( q ) F ,  

(5.43) F E dom(Dmin(q;-co))  = {G E dom(nmax(q; -co) )  : G(0) = 0; 

supp(G) c ( - co ,  0] is compact}, 

nmax(q; oc )F  = i ( q ) F ,  

(5.44) F E dom(Dmax(q; co)) = {G E L2([0, oo))2 : G G ACloc([0, o0)) 2, 

M(q)G E L2([0, co))2}, 

Drain(q; co)F  = M(q)F, 

(5.45) dom(Omin(q; co)) = {G E doln(Omax(q; oo)) : G(0) = 0; 

supp(G) c [0, cx3) is compact}. 

In close analogy to [12, Theorem III.10.20], one can prove that for all z E 

p(D(q)), 

(5.46) d e f ( ~  - zI2) = def(Dmin(q; - c o )  - zI2) +def(Dmin(q; oo) - zI2) - 2. 

Since D(q) = Omin(q) is ff-self-adjoint and z E p(D(q)), we necessarily have (see, 

e.g., [12, Theorem III.5.5]) that 

d e f ( ~  - zI2) = def(D(q) - zI2) = O. (5.47) 

Thus, 

(5.48) def(Dmin(q; - c o )  - zI2) + def(Dmin(q; oo) - zI2) = 2. 

We claim that the only possibility is 

(5.49) def(Dmin(q;-oo)  - zI2) = dee(Drain(q; co) - zI2) = 1. 

Indeed, arguing by contradiction, we assume, for instance, that 

(5.50) def(Omin(q;-co)  - z012) -- 0. 
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This implies 

(5.51) nul(Dmax(-q; cx~) - 2-'oI2) = 2, 

since (Drnin(q); oo)* -- Dmax(-q; ~ ) .  Thus all T - w a v e  functions for the NLS_ 

potential - q  are in L~oc((-cc, c~]) 2. According to Remark 4.4, this is clearly 

impossible for ~ E I~ ~ p(D( -q ) ) .  Next we show that this is impossible also for 

2-5 C (C\I~) N p ( D ( - q ) ) .  Using Lemma 2.2 (iii), we can simplify notation and 

replace ~-6 by Zo without loss of  generality. Moreover, to avoid confusion with the 

change q --+ - q  and the corresponding change for q~10), we simply use q instead of  

- q  in the proof  of  (5.38) below. 

To this end, fix zo E p(D(q)) with Im(zo) ~ 0 and ~l(Zo), ~2(Zo) two linearly 

independent Zo-wave functions associated with the background potential q. The 

latter are in L2([0, c~-)) 2 by hypothesis (5.51). Then for any zo-wave function 

�9 (zo) = (~bl(Zo),r r associated with the NLS_ potential q, one infers (cf. 

(4.7) and (4.10)) that O~lo)(Zo ) = Im(zo)E~P(zo)[l~P(zo)l[~ 2 is a zo-wave function 

associated with the NLS_ potential 

(5.52) q~l o) = q + 4Im(zo)~bx (zo)r 2. 

Thus 'I'!1o ) (zo) satisfies 

go (b~lo) (Zo) = M(q (1))~(1 o) (zo) : M(q)r ) (Zo) - B ( z o ) ~ 1  o) (zo), (5.53) 

where 

(5.54) 

belongs to L~ 2• . In particular, 

(5.55) ess supxeRllB(zo, z)llc~x~ < 2lIm(z0)l. 

( 0  x/z0x ) 
B(zo,x)  = 4iIm(zo)ll~(zo,x)ll~ 2 ~)l(ZO,X)~)2(zo,x) 

Since no confusion can arise, we occasionally suppress the explicit z0-dependence 

in the calculations below. The variation of  parameters formula (5.3) then yields the 

following for the fundamental system of  solutions E = [91, ~2], W(~x,  ~2) = 1, 

associated with q and z0: 

(5.56) 

~lo)(X ) = E(x)C - i dx '  ~ ( x )~ (x t ) - l o3B(x t ) e~ ( lo ) ( ,T t  ) 

/: = c x ~ l ( x ) + c 2 ~ 2 ( x ) - i T : ( x )  ax" '-'~(xt'-la) 31:~( t-~O(1),xt,) zo ( ), x _ > a > O ,  
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where C = (cl, c2) q- # 0 depends on a and we assume W(q#l, q#2) = I according to 

Lemma 5.1. Hence one obtains 

(5.57) IlZ(z)llc~,: _< 2 ~t2 max (11@1 (z)llc~, 11@2(z)llc~). 

Moreover, writing ~ j  = (r162 r  r ,  j = 1, 2, one infers 

(5.58) llr <_ K(a), j,k = 1,2 

for some constant K(a) > 0 with 

( 5 . 5 9 )  l i m  K(a) = O. 
aToo 

Hence, 

\ ,~,,,(x,)) 
(5.60) < 4K(a) 2. 

Thus, (5.55)-(5.60) yield for x >_ a, 

(5.61) 

IIr _< Icllll@l(x)llc~ + Ic2111@2(x)11c~ 
z . \ 112 

+ 2't241Im(zo)lK@max (ll'rl(~)llc=, ll@=(x)llc:)(L dx' II,r . 

Squaring (5.61) and integrating the result from a to x, one estimates 

L x  ~(1) x' 2 (5.62) ax'll :o ()11~ 

s /; _ 31cll 2 dx' lt~',(z')tl~ + 31c21 ~ dx' 11@2(z')ll~ 
Z t 

+ 961Im(zo)12K(a)2 L dz' L dz" max(l l ' r ,0e) l lc~, l l ' r2( :e) l l~) l l<~{ 'o ' (~") l l ,~ 

s 6K(a)2(lc, I 2 + Ic~l 2) 

L'/," +961Im(zo)12K(a) ~ dx" ,,dz' ma,x(ll~l(z')llc~, ll@~(z')llc~) It czo(')r )lie 
<_ 6K(a)2(Icxl ~ + Ic=l 2) 

/: /: + 961Im(zo)12K(a) 2 dz" 1tr ax' max (llil(z')llc~,llV2(z')llc~) 

_< 6K(a)2(Icll 2 + lc=l =) + 1921Im(zo)12K(a) 4 L~dz" 11r 
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Here we have applied the Fubini-Tonelli theorem to the integrand 

(5.63) max (/l~l(x')llc~ 11~2(x')ltc~) (1) ,, 2 I1% ( )lie , " - 

, xI~,~ ] (x  ) > 0 

(XA the characteristic function of the set A C I~) to prove equality of the iterated 
integrals f ~  dx' f f  dx" . . . and f z  a dx" f~ ,  dx' . . . in (5.62). Hence, if one chooses 
a large enough (such that 1921Im(zo)12K(a) 4 < 1), then 

~ (1) , 2 6K(a)~(icll2 (5.64) [1 - 192[Im(zo)[~K(a) 4] dx' Itci, zo (z0,x)11c2 < + Ic212), 

and thus, ff(~lo)(z0 , -) E L2([a,c~)) 2. Since II   o)(Z0, )11  - - t l ~ ( z 0 , ) l l ~  x this con- 
tradicts the assumption ~'(zo, .) E L2([0, oo)) 2. This proves (5.49). 

Finally, if ~_(z)  and ~+(z) satisfying (5.38) were linearly dependent then it 
would follow that z E av(D(q))  by (5.38), contradicting the initial assumption 
z E p(D(q)).  To sum up, (5.49) implies existence and uniqueness (up to constant 
multiples) of ~•  (z) satisfying (5.38). 

To prove (5.39), we assume without loss of generality that 

(5.65) W ( ~ _ ( z , x ) , e l + ( z , x ) )  = 1, x E 1~. 

Then one computes 

1 + [(qt_(z, x), $ + ( z , z ) ) c  212 = II~+(z,z)ll~ II~-(z,z)ll~ _> 1 (5.66) 

and hence, 

(5.67) I I~=(z ,x ) l lb  1 ~ II~• x e ~. 

Thus, IlqJ_(z, .)lib 1 E L~oc((-or cr The fact that ]l~+(z,-)I]~ 1 E g~oc([-cr cr 
in (5.39) is proved analogueously. 

From (5.38) and (5.39), one infers 

(5.68) liminf II~• x) lIc~ = liminf II~:(z, x)]l~ 1 = 0. 
x--+•162 :e--+•162 

To prove (5.40), one first integrates (2.17) to obtain 
(5.69) 

f[' H'I'• x2)l[g -II~• = 2h-n(z) dx [[r 2 -Ir177 
1 

Thus, lim,-~• ll,r• exist and hence equal 0 by (5.68). By (5.67), one 
then has 

(5.70) lim Ifq,~:(z ,x) l l~  1 = 0. 
z--+:t:oo 
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What remains to be proved is (5.41). To this end, consider the Green's function 

for the Dirac-type operator D(q). It can be written in terms of the z-wave functions 

(5.71) 
�9 _ ( z , x )  = ( r 1 6 2  T, ~ + ( z , z )  = (r162 T, 

whose existence is guaranteed by (5.38) and whose Wronskian is still assumed to 

satisfy (5.65). More precisely, define the 2 • 2 matrix-valued function on R e 

r 
(5.72) G(z , x , x ' )  i ~ rw+(z ' z )~ - ( z ' z ' )Ta i '  x > x', = z E p(D(q)). 

t �9 _ ( z , x ) ~ + ( z , z ' ) s a i ,  z < z ' ,  

Explicitly, 

(5.73) 

G(z,  x, z')  = i 

( r162  _ ( z , x ' )  

r (z, z)r (z, x') 

r (z, z)r z') 
r (z, z)r (z, x') 

r z)r (~, x')] ' 

r x)r , 
r X)r (Z, Xt) ]  

X :> Xt~ 

X < X  I. 

To prove that (5.72) does indeed represent the Green's function associated with the 

J-self-adjoint operator D(q), one can argue as follows. One introduces a densely 
defined operator R(z) in L 2 (R)2 by 

fRdx '  G( z , x , x ' )F (x ' ) ,  z E p(D(q)), x E 1~, (5.74) (R(z)F)(x)  

(5.75) F E dom(R(z)) = {G E L2(]~)) 2 : supp(G) is compact}. 

By inspection, one sees that 

(5.76) R ( z ) F  E ACloc(~) 2 ~ L2(I~) 2 and M ( q ) R ( z ) F  E L2~I~) 2. 

Thus, R(z) maps L2(~) 2-elements of compact support into the domain of D(q). 
Moreover, an explicit computation shows that 

(M(q) - z I )  [R(z)F - (D(q) - z I ) - i F ]  

(5.77) = (D(q) - z I ) [ R ( z ) f -  (D(q) - zX) - iF]  = O, F E dom(R(z)). 

Since by hypothesis, z E p(D(q)), (5.77) implies 

(5.78) R ( z ) F  = (D(q) - z I ) - l F ,  F E dom(R(z)). 

Hence R(z) extends boundedly to all of L2(N) 2, and its closure coincides with 

the resolvent (D(q) - z I ) - I  of D(q). Being the closure of the Carleman operator 
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R(z), (D(q) - zI) -1 is a Carleman operator and hence has a Carleman integral 

kernel. Moreover, the integral kernels of R(z) and (D(q) - zI) -1 are easily seen to 

coincide when considering restriction of  both operators to L2((a, b)) 2 for arbitrary 

a, b C ]L a < b. This proves that (5.72) is the integral kernel of (D(q) - zl)-1. 
Thus, z E p(D(q)) is equivalent to the boundedness of  the operator 

(5.79) L2(II~) 2 ~ F(x) :  ~G(z ,x ,y )F(y)dy  

f2 = i~+(z,x) ~_(z,y)ralF(y)dy 
o o  

) foo ralF + i~_(z,x ~+(z,y)  (y)dy 
J X  

in L~(~) 2. Taking z E p(D(q)) and F = (f,0) T and F = (0,f)  T, one sees that the 

operators 

J/ L2(I~) 9 f(x) ~-~r ek,-(z,y)f(y)dy 

/5 (5.80) + r  ek,+(z,y)f(y)dy, j,k = 1,2 

are bounded in L2(I~). The last statement implies the relations (in fact, it is 

equivalent to them, cf. [37] and Lemma 6.2) 

For simplicity, we consider the case j = k = 1. (The proof for the remaining 

combinations of  indices j,  k proceeds analogously; cf. also [4].) Assume (5.80) for 

j = k = 1; then there exists a constant C > 0 such that 

/. 1 r f_2 r dy + r ~~176162 

(5.82) <_ C fu [f(x)12 dx. 

For fixed r E IR and f E L2(lt~) satisfying f(x) = 0 for all x > r, the inequality 

(5.82) implies (restricting the interval of  integration) 

(5.83) ( fr *[r dx) [ L  r 2 < C L lf(x)[2 dx" 

Thus, choosing f(x) = r for x < r and f(x) = 0 otherwise (then clearly 

f e L2(R)), one obtains (5.81) with j = k = 1. Since I I ~ ( z ) t l ~  = ]r177 + 
lr177 z, (5.8I) yields (5.41). 
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Finally, since I I~ (z ) l l c~  = II~(z)llc=, the statement about the 2-wave functions 

associated with q holds. [] 

The solutions �9 • (z, z) in (5.38) are analogues of the familiar Weyl-Titchmarsh 

solutions in the context of self-adjoint Dirac-type operators (cf. [33, Ch. 3]). 

The following is a consequence of (5.38) and Remark 4.4. 

Coro l l a ry  5.5. Assume q E L~oc(l~) and suppose the NLS_ case p = -~.  Then 

(5.84) ac(D(q)) D_ R, 

(5.85) ae(D(q)) D_ I~, 

(5.86) ap(D(q)) M R = O. 

Proof .  Relation (5.86) holds by Remark 4.4, which excludes the existence of 

an L2(I~) 2 solution F of M(q)F  = AF near +oo for all A E k To prove (5.84), we 

can restrict ourselves to the case in which p(D(q)) ~ 0. Pick A0 E I~. Then Remark 

4.4, (5.38), and (5.86) imply that A0 ~ p(D(q)) U ap(D(q)). Since ar(D(q)) = 0 
by (5.28), it follows by (5.14) that A0 C ac(D(q)). Relation (5.85) is then obvious 

from (5.16). [] 

As a consequence of (5.84), our frequent assumption z E p(D(q)) (especially 

in Section 6) automatically implies z E C\I~. 

Interesting restrictions on the permissible location of eigenvalues of if-self- 

adjoint Dirac-type operators D(q) under strong additional constraints on q were 

recently derived in [27]. 

R e m a r k  5.6. Given normalized Weyl-Titchmarsh-type solutions ~ + (z, z, z0) 

of M(q)~( z , x )  = zff2(z, x) for z E p(D(q)) satisfying 

(5.87) ~bl,+(Z, Xo,Xo) = 1, z E p(D(q)) 

for some x0 E R, one can formally introduce associated Weyl-Titchmarsh m- 

functions as follows. Denote by E(z, x, Xo) a normalized 2 x 2 fundamental system 

of solutions of 

(5.88) M(q)~2(z,x) = zk~(z,x), z E C 

at some z0 E R, that is, E(z, z, z0) satisfies (5.88) for a.e. z E I~ and 

(5.89) F.(z, z0, x0) = Is, z E C. 

One then partitions .q(z, z, z0) as 

(5.90) E(z , z ,  zo) = (O(z , z ,  zo) ~ ( z , z ,  zo)) = (8~(z , z ,  zo) d~,(z,z, zo)~ 



SPECTRAL ANALYSIS OF DARBOUX TRANSFORMATIONS 175 

where O)(z,x, Xo) and Cj(z,x, zo), j = 1,2, are entire with respect to z C C and 

normalized according to (5.89). Then the normalized Weyl-Titchmarsh solutions 
9~(z, x, x0) can be expressed.in terms of the basis (O(z, x, Xo) ,I,(z, x, x0)) as 

(5.91) ~• xo) = O(z,z, xo) + m•162 z E p(D(q)) 

for some coefficients m• (z, x0). Clearly, m• (z, x0) are analytic on 

p(D(q)) \ {z e C: (b(z,-,Xo) e L2((Xo, =t=(x)))2}; 

they are the obvious analogues of the half-line Weyl-Titchmarsh coefficients, 

familiar from (second:order scalar and first-order 2 x 2) self-adjoint differential 

and difference operators (cf., e.g., [2, w VII.l], [33, Chs. 2, 3]). It is tempting to 

conjecture that appropriate boundary values of m • x0) as z approaches a(D(q)) 
encode the spectral information on D(q), but this is left for future investigations. 

6 Transformation operators for J-seif-adjoint Dirac- 
type operators 

The aim of this section is to construct transformation operators in L2(R) 2 that 

intertwine the J-self-adjoint operators O(q) and O(q~1, )) corresponding to the 

Lax differential expressions M(q) and M (q~l)) in the focusing NLS_-case and to 
use these transformation operators to relate the spectra of D(q) and D (q~ll)), the 

principal goal of  this paper. 

In the following, we always assume Hypothesis 5.3 and freely use the nota- 

tion established in Section 5 for D(q) as the maximally defined ,7-self-adjoint 

Dirac operator in the focusing NLS_ case and the Weyl-Titchmarsh-type solutions 
�9 • x), z E p(D(q)), established in Theorem 5.4. 

We start with an elementary but important observation. 

R e m a r k  6.1. Since the two z-wave functions ~_(z)  and 9+(z) of D(q) are 
linearly independent, 

(6.1) W(~_(z ,z) ,  ~+(z,z)) = c(z) # O, 

all other (nontrivial) z-wave functions 9 satisfy 

(6.2) �9 (z) = a~_(z) +/~I'+(z) for somea,  B e C\{0}. 

In addition, as we prove next, 

(6.3) ll~(z,')ll~ 1 e L2(R). 
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Indeed, ~(z) = a ~ _  (z) + ~3~+(z); hence 

(6.4) II~'(z)ll~ 1 ___ [[~lllq'+(z)llc~ - ININ'-(z)llc~ 1-1, 

(5.40), and the fact that ~+(z,  .) E ACloc(ll~) 2, yield the existence of constants 
C+ > 0 such that 

II~(z, x)ll~ 1 -- (ll~• x)llc~ II~(z, x)ll~ 1) II~• x)ll~ 1 

(6.5) < C•177 1, x E IIL 

By (5.39), this implies that all z-wave functions ~(z) associated with q, except 
�9 +(z), satisfy (4.11). Hence, Hypothesis 5.3 guarantees the existence of z-wave 
functions ~(z) satisfying Hypothesis 4.2 for all z E p(D(q)). In particular, all but 
two z-wave functions of D(q) (viz., ~• satisfy Hypothesis 4.2 at z E p(D(q)). 

Without loss of generality we restrict our considerations to the special case 
a = ~ = 1 in (6.2) for the remainder of this section up to (6.126), that is, we choose 

(6.6) 'I,(z) = ~_(z) + ~I,+(z) 

in the following. 
Next, we pick some fixed zl E p(D(q)). We take ~(zx) as in (6.6), ~(zl) = 

�9 - (z l )  + kt,+(zl), where ~I'+(zl) satisfy (5.38)-(5.41) with z replaced by Zl, and 
let/C~(zl) be the corresponding gi--wave function associated with q. By Theorem 
5.4, IC~• .) satisfy (5.38)-(5.41) with z replaced by gi-. Moreover, 

(6.7) 1Cq~(z~) = Eq~-(zl) + E~+(Zl).  

Define the NLS potential q(~l 1) as in (2.38) and consider the Zl-wave function 
(~(zll) (Zl) = (~1)(Z 1), ~1)(Z1))T associated with q(1) as defined in (4.7), 

(6.8) ~]~(zll ) (Zl, X) : Im(z~)ll~(Zl, z)[l~2/OI'(z~, x), 

and the gil-wave function/Co(~l~ ) (zl) associated with q(1) as defined in (4.8), 

(6.9) /Cq~(~l ) (zx, x) = -Im(z~)[liIJ(Zl, x)11~2~(zl, x). 

Recall that according to (4.10) the new NLS_ potential is then given by 

(6.10) q~]) (x) = q(x) + 4r 1) (Zl, x)r (zl, x). 

Of course, both n(q) and n (associated with the differential expressions i ( q )  
and i (qi~,)), respectively) are ff-self-adjoint by Theorem 3.5 and Corollary 2.9. 
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In order to motivate the introduction of transformation operators, one can argue 
as follows. Since 

(6.11) r(z, ~(Zl), ~ ( z l ) )  = - ( i / 2 ) ( z  - zl)~2 + r 

one computes, for every z-wave function T(z, .) associated with q, 

(6.12) T(1) (z  x)  = F ( z , x ,  f f2 (Zl ) , ]C~(Zl ) )T(z ,x )  

: - - ( i / 2 ) ( Z  - -  Zl)T(z, X) + (~ll)(Zl, X)tIl(Zl, X)-LT(z, X) 
= - ( i / 2 ) ( z  - z ~ ) T ( z ,  x) - r x)W(~(zl ,  x), T(z, ~)) 
= - ( i / 2 ) ( z  - z l ) T ( z , x )  - O01) ( z l , x )W(q_( z l , x  ) + ~P+(zl,x), T(z,x)) 

- ( i / 2 ) ( z  - z~) I T(z, x) + 2r ~) 

• [ f:od.'~-(z,,x') %,T(z,.') - ff d.'~+(zl,.')T~,T(z,.')] } 
- O ~ l ) ( z l , x ) [ W ( q _ ( z l , - a ) , T ( z , - a ) )  + W( q + ( z l , a ) ,T ( z , a ) ) ] ,  a > O. 

To arrive at (6.12), we have used the integrated form of (2.6). Replacing T(z) by 
F E L2(~) 2 in (6.12), noting that 

(6.13) l imin f}W(q•  = O, F E L2(]l{) 2 , 
a~'oo 

and repeating the same argument with T(z) replaced by K:T(z) then leads to the 
introduction of the following transformation operators Tz~ and T~i-, in L 2 ( ~ )  2 , 

(6.14) L2(~) 2 9 F(x)  ~ (Tz~F)(x) = F(z )  + 20(zl)(Zl,X) 

[L I ] x dx' ~ _ ( z l , x ' ) r a l F ( x  ') -- dx' ~+(Zl, x ' ) r a lF (x ' )  , 

(6.15) L~(R) ~ ~ F(~) ~ #~rF)(~) = F(~) + 2JCr 

x [ F  oo ( ~ : ~ _ ( z ~ , ~ ' ) V ~ I F ( ~ ' )  - L~176 ' (lCff2+(Zl,X'))To'lF(x')], 
zl e p(D(q)). 

That Tz~ and :~-  are in fact bounded operators in L2(R) 2 follows from Lcmmas 
6.2 and 6.3 below. 

L e m m a  6.2 (Talenti [44], Tomaselli [45] (see also Chisholm and Everitt [4], 
Chisholm, Everitt and Littlejohn [5], and Muckcnhoupt [37]). Let f E L2(R), 
U E L2((-oo, R]), V E L2([R, oo)) for  all R E ]~ Then the following assertions 

(i)-(iii) are equivalent. 
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(i) There exists a finite constant C > 0 such that 

(6.16) f n d x  U(x) f ~ d x ' V ( x ' ) f ( x ' )  2 < C fRdx l f (x ) ,  2 

(ii) There exists a finite constant D > 0 such that 

U(z')/(z')  "2 f (6.17) f ]  dx V ( x ) /  dx' < D jndxl f(x)[2.  
JR  O 0  

(iii) 

(6.18) [I; II; I] sup dx IU(x)l 2 dx IV(x)I 2 < c~. 
rER 

L e m m a  6.3. Assume Hypothesis 5.3 and zl E p(D(q)). Then the operators 

1 s 
(6.19) L2(ll~) ~ f (x)  ~ II~+(zl ,x)l lo dx' II~+(Zl,X')llc~ f(x'), 

O O  

(6.20) L2(~) ~ /(x)  ~ II'I'• ~ dx' ii~• I(x') 

are bounded in L 2 (N). 

Proof .  Using (5.38), (5.39), (5.41), and (5.67), we obtain 

(6.21) 

and 

(6.22) 

(L  x )(/5 sup dxll~-(zx,  ) l l c ~  dxll~-(Zl,x)ll  < c~ 
rER 

(L ) sup dxllkO+(zl,x)ll dxll@+(zl,x)[l~ < ~ .  
rER 

By Lemma 5.2, (5.21) is a necessary and sufficient condition for the operators 
associated with ~ - (z l ,  .) in (6.19) and (6.20) to be bounded in L2(R). Similarly, 
(5.22) is a necessary and sufficient condition for the operators associated with 
�9 +(zl, .) in (6.19) and (6.20) to be bounded in L2(R). [] 

Thus, (6.19), (4.7), and (4.8) imply the following result. 

C o r o l l a r y  6.4. Assume Hypothesis 5.3 and zl E p( D(q) ). Then the operators 
Tz~ and :F~ defined in (6.14) and (6.15) are bounded operators in L 2(R) 2 . 
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P r o o f .  By (6.8), we have II~,~,)(z~,~)llc~ = IIm(zl)l t l~(z, ,z)l{~ 1. Applying 
(6.5) then yields the existence of constants C• > 0 such that 

(6.23) 

I]~,i',)(--1, x)llc~ = I~m(z,)tll~'(z,, x)llS' 
< IIrn(z,)lC~.ll '~• ~, x ~ ~. 

At this point, an application of  Lemma 6.3 proves the boundedness  of  T:~ in L2(R) 2 . 
Since ll/CGIlc~ -- IIGNc~ for all G E C 2, the same arguments prove boundedness of 
T---7 in L2(R) 2 . [] 

In order to motivate the introduction of  the inverse transformation operators, 
we invert the matrix F(z, r 1Cr to obtain 

(6.24) F(z, ~(z~),/C~(z, ))-1 = c(z, z~)[ - ( i /2)(z - -r{)h + 1C~(z, )K:r177 

where 

(6.25) c(z, zl)  = - 4 ( z  - z l ) - l ( z  - ~l) -1. 

Thus, for z-wave functions l..,'~'(l)'(z, z) associated with q~l), 

(6.26) T(z,  z) = F(z, x, �9 (z,), ICq~(z,))-' T(~I ) (z, z)  

= ~(z, z,){ - ( ~ / 2 ) ( ~ -  ~)T~'?(z, ~) 

= 2i(z - z l ) - ' - l [ ' ( l ) :z l  ~z ,  t , x~, + 2K~+ (z, , x) a dx' (K~5~l)(zl , x')) Ta,  T~l)(z, x ') 

/: } 

Replacing T~l,)(z) by F E L2(1R) 2 in (6.26) and repeating the same argument for 
/CT(~I~ ) (z) instead of  TO, ) (z) then leads to the introduction of  the fol lowing (inverse) 
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transformation operators S ~  and Szl in L 2 (~)e, 

L2(It~) 2 9 F(x) ~-+(S~F)(x) = F(x) 

+ 2~+(zl, x)./_~ ax' (~r (zl, xl)) Tffl F(x') 

(6.27) - 2K:@_ (zi, x ) / c r  dx' (K:@ (11) (zi, x')) Sai F(x'), 

n2(a) ~ ~ F(~) ~ ( $ ~ F ) ( ~ )  = F(~) 

f (6.28) + 2@+(zi, x) dx I @(i)(zi, x')VaiF(x ') 
--O0 
oo @(1) , T , 

- 2~- (z i ,x )  dx' z~ (z i ,x )  alF(x) ,  zi 6 p(D(q)). 

Equations (6.20), (4.7), and (4.8) then imply the following result. 

C o r o l l a r y  6.5. Assume Hypothesis 5.3 and zl E p(D(q)). Then the operators 
S ~  and Sz~ defined in (6.27) and (6.28) are bounded operators in L 2(~) 2. 

Proof .  Again using the estimate (6.23), one can follow the arguments in the 
proof of Corollary 6.4. [] 

We define two vectors F,G 6 L2(~) 2 to be J-orthogonal if 

(6.29) (F, ,.,qG)L 2 = 0, 

and we then write 

(6,30) 

Since 

(6.31) 

F_I_,zG is equivalent to 

F• 

(F(x), ja(x))c~ = (3"a(x))*F(x) = a (x ) rm  F(z), 

(F,,TG)L2 = JrcdxG(x)TalF(x) = O, F,G 6 L~(I~) 2. 

We also introduce the following notation of the ,7-orthogonal complement V • to 
a subset V C L2(I~) 2, 

(6.32) V • = {F 6 L2(N) 2 : F.•  for all G 6 Y}. 

In analogy to the orthogonality property of eigenvectors corresponding to different 
(necessarily real) eigenvalues of a symmetric operator in some complex Hilbert 
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space 7-/, one infers the J-orthogonali ty of  eigenvectors corresponding to different 

eigenvalues of  a ,V-symmetric operator S in 7/. Indeed, S f j  = z j f j ,  j = 1, 2, with 

zl r z2 implies 

(6.33) 

22(J11 ,  f2)7-t ---- (,.7"fl, S/2)7-t = ( J ' S f l ,  f2)7-t = ( J z l f l ,  f2)7-t ---- z-i-l(J'fl, f2)7-t 

and hence 

(6.34) (Zl - z2)(f l , ,Tf2)n = 0, implying(f l , ,Tf2)n = 0. 

Next, let a0 be an isolated subset of  a(D(q(l~))) in the sense that a0 can be 

surrounded by a positively oriented rectifiable simple closed countour 7,~0 C 

p(D(q(~ll))) separating a0 from the remaining spectrum cr(D(q~(lx)))\a0. Then the 

Riesz projection onto the spectral subspace corresponding to a0 is given by 

1 ~ dz(D(q~11))_zi2))-I  (6.35) P(~) (ao) -  2rci ~o 

The spectral subspace E(~)(a0) corresponding to ao is then the range of  the Riesz 
projection, E(1)(do) = p(1)(ao)L 2 (~)2. 

We record the following result. 

L e m m a  6.6. Assume Hypothesis 5.3. 

(i) Let zo,~,o ~ ap(n(ql]))),  Zo r ~,o. 
(]~(ll)(Z0), (I)(zll)(Z0) corresponding to 
fl-orthogonal, 

(ii) 

Then the L 2 (~)2_eigenfunctions 

zo and zo, respectively, are 

(6.36) r 

Let Zo E ap ( D ( q~ l ) ) ) and ao be an isolated subset o f  a ( D (q(1))) which does 
not contain Zo. Then the L2(I~) 2 -eigenfunction (I)(zl~) (z0) corresponding to 
Zo is fl-orthogonal to the spectral subspace E(zl~ ) (a0) corresponding to do, 

(6.37) �9 lil)(zo)• (oo) 

Proof .  Assertion (i) is clear from (6.33) and (6.34). To prove (ii), we choose 

a positively oriented rectifiable simple closed contour "~0 which separates a0 and 
{Zo}. For F E L2(I~) 2, we compute 

(p(1)(ao)F,jr - 1 f~ dz(D(q~ll))_zi2)-aF, j~ill)(zo))L2 
2rri ,,o 

_ 1 ~ dz (F ,  f l (D(qO) )_z i2 ) - l~O) ( zo ) )L2  
27ri ~o 

_ 1 f~ dz(zo_z)_l(F,j~!l)(zo))L2 =0. 
27ri ,,o 
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Here we have used the fact that since D(q~l~ )) is ,.7-self-adjoint, so is 
(D(qil,)) - zI2) -1. [] 

R e m a r k  6.7. From Lemma 6.6 and Theorem 4.5, we conclude that 

(6.38) 'I' 11, ) (zl)-/-3"K:(I'i',)(z, ), 

since zl is a nonreal eigenvalue. Thus, 

(6.39) r e {E(I)ll)(z,)} •  

R e m a r k  6.8. By Corollary 6.5, the operator , ~ ,  zl E p(D(q)), is well-defined 
and bounded in L2(R) 2. However, for future considerations, it is more appropriate 
to restrict it to the closed subspace {K:(bil~)(zl)} "t''7. Hence, from now on, we 
denote  by S T  the restriction of  S ~  to { K(I,i] ) ( z l ) } • 

(6.40) S ~  = ~-Tl{~:,~?)(~)}l.z, zl E p(D(q)). 

An elementary computat ion (based on (6.31)) then reveals that 

f (S:~--G)(z) = (~,-a)(x)  = a(z) + 2/C~(z~,z) az' (~:~](z~,x')) r~a ( z ' ) ,  

(6.41) 

a e 1" 

we prove several results leading up to the principal theorems of  this Next, 
section. 

L e m m a  6.9.  Assume Hypothesis 5.3 and zl E p(D(q)). Then 

(6.42) 

(6.43) 

(6.44) 

(6.45) 

P r o o f ,  For brevity, we introduce 

(6.46) 

ran(Tz,) C_ {Kr •  r e ker(S~),  

(*~l~)(Zl),flr = ImCz,)(2W(~+Czl),  ~_(z , ) ) )  -1 r 0, 

T z , S ~ G = G  ...................... (a '3"r 'I'~',)(zl), G e  {~,I,~')(zl)} L" 
(1) (1) ( r  (z, ), ,7"r (zl))L~ 

S~Tz,  F = F, F e L2(1tr 2. 

f ff ~r F) = dx' @-(zl , x ' ) T a l F ( x  ') - dx' @+(z l ,x ' )TalF(x ' ) ,  
o o  

F ~ L2(t~) 2 , z ~ ~, 
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such that 

(6.47) 

Using 

(6.48) 

(Tz, F)(x) = F(x) + 2O~l~)(zl,x)~(x;F), F e L2(II() "2. 

( , (x;  F = ~(za,x)TalF(X) for a.e. x E R, 

(6.50) 

yields 

By 

r t x 
_< llm(zl)lUll,O(zl,x)ll~2 [ ]_,.~ dx' II~-(zl,x')llollf(x')llc~ 

+/? 
[ /; <_. [Im(zl)[21[~(zl,x)[l~ 1 C-i l~-(z l ,x)[ l~ 1 dx'l[~-(zl,x')llc:IlF(x')[[c2 

+C+ll~+(z~,z)llg dx' II'P+(z~,x')llollF(z')llc~ 

(6.51) 11~1,)(z1,-)11~ 15( ;F)I E LI(I~), 

by (6.3) and (6.19). Thus, 

(6.52) lim inf [[,I)~1,)(zl, x)[[~ [~(x; F)[ = 0 
x ~ + c r  

(actually, limz~+oo 1..-[ = 0 in (6.52) since all Lebesgue integrals involved in 
(6.49) are finite), which was to be proven. Hence, K,I, !l 1) (zl)-l-sran(T., ). 

To justify the integration by parts step in (6.49), one can argue as follows. 
(6.23), the estimate 

we have 

(6.49) 

(Tz~ F, JK:(b~ll)(zl ))z: : (F, ffK)bil)(zl ))L2 + 2 ((1)~I~)(zl)(('; F),  ff/C(bil)(z, ))L: 

(F, K:(b (1) z fR 2 x = ,7 ,, ( ~))L' - ( Im(z~))-~ dx (lt~i,)(.,,~)lt~).~(;V) 

= (F,S~:~i',)(.,)). + (Imz,)-' f~ ax II~,i',)(z,,~)ll~ ~(*,,~Vo, F(~) 

= (F, JK+~',)(z,))L, + I m ( z , ) f d x  H~(zl,x)[lc"~(z,,x)Va, S(x) 

= O, F e L2(I~) 2. 
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Next, using (2.6), Lemma 2.2 (iii), (6.8), (6.39), and (6.41), one computes 

(6.53) 

f (s~,~(1)(zl))(x) ~m, z  x) + 2 ~ ( z ~ , x )  d~' (~:~p(z1,x'))T~l~O)(zl,x ') 

= ~(1)(zl, x) - 2E~(zl, x)(2Im(zl))-i W (K~(X)(zl ,) (Zx, X), (I)(zll ) (Zl, Z)) 

= ~ ( ~ l ) ( z t , x )  - t : ~ ( z l , x ) ( X m ( z ~ ) ) - l l l ~ ( ~ l l ( z ~ , x ) l l ~  

= ~(z] ) (zl, x) - Im(zl)H~(zl, x)llb2tSk~(z,, x) 

O, 

and hence if(l)(zl) e ker(S~). 
For the proof of (6.43), we next assume G e {Eff(~P (zx)} • Using 

(6.54) 2Im(z)q/v(zl, x)r~rl]~ff2(Zl, X) -~-- W ( ~ ( Z l ,  x), ]C~(z, x))x 
(cf. (2.6)), we then compute 

(6.55) (T~,SwG)(x) = (S~-ei-G)(x) + 2'~(~])(zi,x){(x; SwG) 

F = a(~) + 2~(z1 ,~)  e~' (~:<p (~1, x'))%la(~') + 2<I)(z1,~)~(~; a) 

+ 2(Im(zl))-I O(p (zl, x) 

X [ L  dxlW(~-(Zl'Xl)']~'ff(zl'xt))a:t/-:r'ffz,~dxll (]~'(ll)(Zl'X"I))T~ 

--Jfre'~ f_X'c dxtt (](Tff2~:'(Zl,Xtt,)To'lG(Xtt,]. 
By (6.23), one estimates 

f :  (1) , < tl~(z,,x)ltc=ll~(zl,x)tlc~ dx' []% (zi,x)tic= llG(x')llc = oo 
/: < tlq~(zl,x)Hc~ll@(zl,z)ltc~thn(zl)l dz' ll~(zl,x')lljIlC(=')llc~ 

<_ lXm(zl)lC~:ll~:~(zl,z)llc~[lt~-(zl,x)llc~ + tl~+(zl,x)tlc~] 

f[ 1I; (6.56) x dz' ll~:L(Zl,Z') ItG(z')llc~; 

hence the left-hand side of (6.56) is in L 1 ((:F~, R]) for all R ~ N, by Lemma 6.3. 
Thus, 

1 /; 1 (6.57) liminf W(~:(z l ,x ) ,K.~(z l ,x ) )  dx' (tC~'(])(zl,x'))TaiG(x ') = O. 
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An integration by parts, using (6.57) and 

(6.58) (Im(zl))-l,I,~l)(zl,x)W(t~(zl,x),lC~(zl,x)) = -lC~(z, ,x) ,  

then yields 

(6.59) 

(Tz~ S~-i-G)(x) = G(x) + 2~I,(zl, ) (zl, x)~(x; G) - 2(Im(zl))-i r x) 

X [fx__o ~ dxlW(~_(Zl,Xt),]~9(Zl,Xt))(]~_.e~!ll)(zt,x'))TolG(X' ) 

- fx~ 

= + 

x dx' (9_(Zl, x') (x') - dx' O+(zl, x') (x' . 
oo :g 1 

(Again, l i rn~a:~  I""  I = 0 in (6.57) since all Lebesgue integrals involved are 
finite.) Here we have introduced the abbreviation 

(6.60) O~(zl,x) = ~• + ~(zx,x)ll~(zx,x)tl~2W(~P• 

Actually, using the Jacob• identity 

(6.61) AW(B,  C) + BW(C, A) + CW(A, B) = O, A, B, C E C 2, 

we obtain 
(6.62) 
9• , ~(zl))-.I-9(z1)W(9::l=(Zl) , K~9(Zl )  ) = t~i~(Zl)W(t~i(Zl), ~[~(z1)), 

which in turn implies 

(6.63) O• ) = (Im(zt))-ll/v(gi(zl,x),kraT(zl,x))cb~ll)(Zl,X). 

Combining (6.59) and (6.63) results in 

(Tzl Sz~-eFG)(x) = G(x) + 2(Im(zl ))-1W(@_ (zl, x), 9+ (zl, X))~}!11 ) (Zl, X) 

(6.64) x ~ dx' ,~0)(z,, x')-C alG(x'). 

Thus, 

(6 .65 )  

= a ( z )  

+ 2(Im(Zl))-I W(9_  (zl, x), 9+ (zl, x)) (G, ff~(1)(zl)) L 2 ~O)(Zl, x). 
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Applying (6.65) to G = r (z1) E {)~(I)~11 ) (Z 1 ) } ]-3", we obtain the relation 

(6.66) 0 = 1 + 2(Im(zx))-lW(~_(zl ,x) ,  ~+(Zl,X))(@!~l)(zx),,.7@(~l)(z~))L2, 

which proves (6.43). Insertion of (6.66) into (6.65) proves (6.44). 
Finally, let F E L2(I~) 2. Then TzxF E {E@(lx)(Zl)} • by (6.42), and hence 

(6.41) yields 

(6.67) (S-~Tzl F)(x) = F(x) + 2@(1~ ) (zl, x)~(x; F) 

/ "}- 2]~kT/(Z 1 X) dx ! (]~r t T , ( z I ,X ) )  o'I[F(x t) +2r 
o o  

/ = F(x)+ z+!ll)(Zl, x)~(~; F)+  2~:~(z1, ~) e~' (~c+~ll)(Z~, ~'))~o~F(x ') 
- - O O  

/ - 2(Im(zl))-llC~(z~,x) dx' (W(]~r 
o o  

using 

(6.68) - 2Im(Zl ) (~  r (Zl, x)) Tar , x) = W (~ r ) (zl, x), r x)) z" 

The estimate 

[I]~,ff~(Zl,X)W(K'-,r r x))~(x; F) [[c: 

_< II r x)llc~ 21Im(zl)l [[r X))11~-,2 [~(Z; F)[ 

<_ 2[Im(Zl )13ll'~ (z~, x)llg l~(x; F)] 

-- 2llm(Zl)la[l~(zl,x)llg [ f f~ dx' II~-(Zl,Z')llc~llF(x')[Ic~ 

+ ff~ lle~+(Zm,z')llc~llF(x')llc~] 

[ / _< 2[Im(zy)l 3 C_ll,I,_(z~,~)llb 1 dx' [l~_(Zl,X')llc ~ IIF(x')llc~ 
o o  

/? ] + C+llgl+(Zl,X)ll~,~ dx' [l~+(za, z')llc~ IlF(z')llc~ (6.69) 

then proves 

(6.70) HK.~(Zl)W (K;r (zl), r (Zl))~('; F)I[c2 E L2(R), 

by (6.19). An integration by parts in the last term of (6.67), using (5.8), (5.9), and 

lim inf II1C~(z1,x)W(lC@~11)(z1,x), r F)[]c 2 

(6.71) <_ 12Im(Zl)Iliminfllr162 =0 
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(6.75) 

(6.76) 

(6.77) 

Proof .  

by (6.70) (in fact, l im**_~ I""  I = 0 in (6.71) since all Lebesgue integrals involved 
are finite), then proves S~rT~ a F = F and hence (6.45). [] 

Next, we further restrict S T and define the operator Sz~,-er by 

(6.72) Sz, ,~ = S~i-I f~(,),~ , ~  ~ ~ ,),~c+(x)'~ tzlJ,"'J = S~i-I {~()~)(~),,c~(2,)(zl)I• �9 

L e m m a  6.10.  Assume  Hypothes is  5.3 and  zl  �9 p(D(q)). Then 

(6.73) ker(T~) = {0}, ran(T~) = {r  •  

(6.74) ker(S~)  = span{q,(~l)(z~)}, ran(S~)  = L2(R) 2. 

Moreover, S,~,-er is the inverse ofTen, that is, 

ker(Sz~,~) = {0}, ran(Sz~,~) = L2(R) 2, 

Szl,-erT~, = I2 on L2(l~) 2, 

Tz, S z , , ~  = 12 o n  {(I)(11) (Zl), K~(:i)zl(1) (Zl) } •  . 

Suppose  T,~F = 0 for some F �9 L2(II~) 2. Then (6.45) yields 0 = 
S-erTzlF = F,  and hence ker(Tzl) = {0}. The assertion ran(S~)  = L2(I~) 2 in 
(6.74) is also clear f rom (6.45). Next, assume Sz~--G = 0 for some G E dom(S~)  = 
{/C~)~lx ) (Zl) } •  (cf. (6.40)). Then (6.44) implies 

(6.78) 0 = Tzl S~-rG 

(C' s (Zl)) L2 (I)!11) (Zl), a ~ {K~zl(1) (Z1)} •  , 
= a -  (+(1)(zl), je( l?  (zl)) L2 

and hence G = cff(l~)(zl) for some c �9 C. This proves (6.75). 
Next, suppose G �9 {ff(lx)(zl),/~ff(zl~)(zl)} •  Then (G,,.7"~(ll))L 2 = 0 and (6.44) 

imply Tz~ S~--rG = G, and hence 

(6.79) {(]~(zll)(Zl), ]~I~!I)(zl)} • C_ ran(Tz,) C_ {K:O(1)(z,)} •  

taking ran(Tz~) C_ {Kff(l~ ) (zl)} •  in (6 .42) into  account. The computat ion 

(6.80) (~(la)(Zl) ,JTz,  Sz~-iG)L2 = (O(~l,)(zl) ,JC)L, - (C, flr 2 = 0  

then proves ~(1)(Zl)-Ljran(Tzl ) and 

(6.81) ran(Tz,) : { (I)!l) (Zl), K~(I)!l) (Zl) }'kJ, 

since ran(Sw) = L2(~) 2 . 
Finally, (6.76) and (6.77) are clear f rom (6.44), (6.45), (6.73), and (6.74). [] 
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Next we state an auxiliary result. 

L e m m a  6,11. Assume Hypothesis 3.2 and let ~ E AClor @ = (r r T E 
ACloc(II~) 2, F = (fi, f2) T E dom(D(q)), and 

(6.82) 

(6.83) 

Then 

A_ E {G E ACloc(~) 2 : G,M(q)G E L2oc([-~,oc))2}, 

A+ E {G E ACbc(l~) 2 : G,M(q)G E L~oc((-oo, oc])2}. 

(6.84) (M(q)~)(x)  = i~'(x)(r (x), - r  (x)) s + ~(x)(M(q)ff)(x) for a.e. x E 

and 

(6.85) 

(6.86) 

F f dx' A_(x')T al(M(q)F)(x ') = dx' (M(q)A_)(x')T alF(X ') 
o o  o o  

+ iA_ (x)• 

/5 /5 dx' A+(x')Tai (M(q)F)(x') = dx' (M(q)A+)(x')T alF(x  ') 

- iA+(x)• 

for all x E R 

Proo f .  Assertion (6.84) follows directly from the definition of M(q). To prove 
assertion (6.85) one integrates by parts and obtains 

(6.87) 

/ ~ d x '  A_ (x')Tai (M(q)F)(x') = i[a2,_ (x)fl (x) - ai , -  (x)f2 (x)] 
c ~  

f al  (~t x 1 +i  dx' ( - a i , - ~ f l  - a2,-qf2,- + 1 , - f 2  - 2 , - f l ) (  ) 
o o  

= dx' ((M(q)A_)(x'))TalF(x ') + iA_(x)•  

using lim infz$-o~ IA-(x) • I = 0 (actually, limz~_~ 1---I = 0). Relation (6.86) 
is proved analogueously. O 

The following result shows that T~ 1 and S~- intertwine D (q~(11)) and D(q). 

L e m m a  6.12. Assume Hypothesis 5.3 and zi E p(D(q)). Then 

(6.88) D(q(ll))Tza = Tz, D(q), 

(6.89) S-zTD(q(ll )) = D(q)S~. 
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Proof.  Using formula (4. I0), we have 

(6.90) M ( q ( l l ) ) - M ( q ) = 4 i (  0 -r 01 ) 1 , z 1 (  )r 
r (zl)r \ 2,zl 

Relation (6.84) applied to M(q (1)) with q~ = q~(1)@1) and (cf. (6.46)) 

/2 /; {(x) = ~(x; F) = dx' ~-(Zl , X " ) T o ' I F ( X  t) -- dx' k~+(Zl, x')3-alF(X'), 
O D  

(6.91) F C dom(D(q)) 

then yields 

_,~0) (Zl, z))3- (M(qO,)) (~(.; F)~(~11)(zl)))(x) = i~ ( z l , x )  T o'IF(x)(r  (z1, x) ,  W2,z, 

(6.92) + Zl if(l)@1, x)~(x; F), 

(1) (1) since M(qz~ )~z~ (zl) = zl(~(z])(zl). By (6.85), with A_ = r and A+ = 
e2+(zl), we obtain 

/: L dx' q~+(zl ,x ' )ral(M(q)F)(x  ') = zl dx' q~+(zl,x')TalF(X ') 
4-0o +co 

(6.93) + i~• F E dom(D(q)) 

since (M(q)~+(zl))  r = zl~2• T. Thus, 

(M(qil,))Tzl - T z i i ( q ) ) F  = (M(qil~)) - i ( q ) ) F  

+ 2M (q~l)) (~(1)(zl )~(.; F)) - 2~1~ ) (zl)~(. ;M(q)F) 

- 4i( - ~,(1) (zt)r (z l )r  -- ,,F2~Z I WI,Zl 

+ 2i [~(zl)-ral F] ((~1)(Z 1 ), __(~1)(Z 1 )) T + 2Z 10(zll)(Z I)~(.;  F) 

- 2zlO0)(zl)~(.; F) - 2i [r • ( r  (zl),,s(1) (zl)) 3" "F2,Zl 
(6.94) = 0, F e dom(D(q)). 

This computation also proves that 

( 6 . 9 5 )  Tz, dom(D(q)) C_ dom(D(q~l))) andhence T~D(q) C_ D(q~l))Tz~. 

Next, choosing G E dom(D(q)S-z-s (i.e., G E L2(I~) 2 such that Sz~--G E dom(D(q))), 
(6.95) implies 

S~D(qil,))Tz~S~ - G  = S-zyD(qil~))[ G - ((I)(1~)(zl), ,7~(1)~-1z, JL: (a,'-7~ill)(zl))L 2] 

(6.96) = S~D(q(I~))G = SwTzID(q)S~--G = D(q)Sz~-G, G ~ dom(n(q)S~) .  
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Here we have used successively (6.44), S~(z~)(z~) = 0 (cf. (6.42)), and (6.45). 
Thus, we conclude 

dom(D(q(ll))) C_ dom(D(q)S~) and hence S-z-iD(q(l, )) C_ D(q)S~. (6.97) 

Hence, 

(6.98) dom(D(q(l~))Tz~) = {F E L2(~) 2 : Tz~F E dom(D(q(11))) } C_ dom(D(q)), 

since S~(Tz~ F) = F C dom(D(q))for F E dom (n  (q(~1~))Tz~) by (5.97). Combining 
(5.95) and (5.98) then proves (5.88). Equations (6.88), (6.44), and (5.45) in turn 
imply 

S-e-(D(q(zl ))Tz, S ~  = SwD(qli )) [I - (~)(zl)(zl), J~ll))-i  (-, J~(ll)(z1))L~ ] 
L 2 

(6.99) = S~vD(o(1)5 = S~Tz, D(q)S-~ = n(q)S~,  1 \':[ Z 1 ] 

and hence (6.89). [] 

R e m a r k  6.13. One can prove, similarly to Lemma 6.12, that 

D(q(la)):F~= T~D(q) and ker(:T~)= {0}, 

(6.100) Sz~D(q(z]))=D(q)Sz~ and ker(Szl)=span{lCO(zl)(zl)} 

and that T~ and Sz, ] (r ~ are transformation operators (inverse to 

each other). 

Summarizing the results of Corollaries 6.4 and 6.5 and Lemmas 6.9-6.12 
obtained thus far, we are now in position to state one of the principal results of this 
section. 

T h e o r e m  6.14. Assume Hypothesis 5.3 and let zl E p(D(q)). Then Tzx and 
S-e-f are bounded linear operators in L~(~) 2 which intertwine the operators D(q) 
and D (q(11)), 

D(qO,))Tz~ = Tz~D(q), 

S~D(q(~ )) = n(q)S W. 

(6.101) 

(6.102) 

Moreover, 

(6.103) 

(6.104) 

ker(Tzl) = {0), ran(Tzl)--- f~(1)'z ' KN]}(D(Zl)}• 

ker(S~) = span {0~l,)(zl)}, ran(S~) = L2(~) 2, 

and Sz,,~ (cf (6.72)) is the inverse ofTzl, that is, 

(6.105) Szl,~Tz, = I2 on L2(~) 2, 

(6.106) TziSz,,~ = 12 on { O(zl,)(zl), /C(hz,(1) (zl) } • . 
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An analogueous statement can be formulated when z~ is replaced by ~ ,  that is, 

for the operators T ~  and :~z~ ; we choose not to dwell on it here due to the symmetry 

of  the arguments. 

We conclude with the principal spectral theoretic result of  this paper. 

T h e o r e m  6,15.  Assume Hypothesis 5.3 and 2 zl E p(D(q)). Then 

(6.107) 

(6.108) 

(6.109) 

a(D(q~l))) = a(D(q)) (J {z1,5i'1 }, 

ap( D(q~l~)) ) = ap(D(q)) U {z1, "-5~1}, 
(1) ae(n(q~ )) = ae(D(q)). 

In other words, constructing the new NLS_ potential q~ t ) amounts to inserting a pair 
of  complex conjugate (nonreal ) L2(~)2-eigenvalues, zl and 2-{1, into the spectrum 
of  the background operator D(q), leaving the rest of  its spectrum invariant. 

P r o o f .  We prove (6.108) and (6.109) from which (6.107) follows by (5.27). 

By Theorem 4.5, one has z l , ~  E ap(D(q~))). Thus, (6.108) is equivalent to 

(6. 110) 

Let 

(6.111) 

D" (t), Since (q--,) is 

ap(D(q~l~)) ) \ { z l , ~ }  = ap(D(q)). 

x " )  = i J  

,:7-self-adjoint, X (1} is a closed, D(q~13))-invariant subspace. 

Denote by D(q~t,))]x,, , the part of  D(q!', )) in X (') with 

( 6 . 1 1 2 )  dom(D(q~]))lx(~,) = X (1) N dom (D (q~l~))). 

From (6.101) and Theorem 6.14, it follows that 

D(qi'))lx,,, = TD(q)T - t  on X (1) (6.113) 

and 

(6.114) -1 (t) D(q)= T D(qz, )Ix(~,T onL2(IR) 2, 

with T = Tz~ and T -1 = S~]~'r • (cf. Lemma 6.10). Assume that 

# E ap(D(q)) and 

(6.115) D(q)F(#) = #F(#) ,  0 ~ F(~)  E dom(D(q)); 

2Recall that z E p(D(q)) implies z E C~R by Corollary 5.5. 
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then (6.113) implies 

(6.116) D (q~ll)) ]x~I)TF(#) = #TF(#) .  

Since ker(T) = {0} (cf. (6.103)), this implies 

(6.117) ap (D(q)) Cap  (D (q(1))) and hence ap (D (q)) C_ ap (D (q~l))) \{zl, ~q(}. 

Conversely, assuming u E ap(D(q(~la ) ) ) \ { z l , ~ }  and 

(6.118) D(q(1,))lxmF(1)(u ) = uF(1)(u), 0 7~ FO)(v) E dom(D(q!~))), 

we have from (6.114) that 

(6.119) D(q)T -1F (1) (u) = uT -1F (1) (u). 

Since ker(T -1) = {0} (cf. (6.75)), one concludes T-iF(i)( t , )  r 0 and hence 

(6.120) ap(D(q)) D_ ap(D(q!ll)))\{zl,5-{}, 

which implies (6.108). 
Next, observe that (6.114) also implies 

(6.121) ae(D(q) ) = ae(D(q(~ )) Ix,))" 

To prove (6.109), we note that (6.121) implies 

(6.122) ae(D(q)) = ae(D(q(zll))lxm) C_ ae(D(q~l))). 

Conversely, let A e a~ (D (q~(]))) and let {a~I~N be a singular sequence of D (q~(l)) 
corresponding to A, that is, a bounded sequence in dom(D(q(~l,))) without any 
convergent subsequence such that limn-~oo (D(q~])) - M)an = 0. Since L~(I~) z 
admits the direct sum decomposition (not to be confused with an orthogonal direct 
sum decomposition) 

(6.123) L2(R) ~ = X(1)-i - span {(I)(I) (z,), E'I'(I) (zl)} 

~(1)~ z ~• ,..~(1), (here one uses the fact that z~ ~ l) s ~  zl tzl), cf. (6.38)), one can write 
(6.124) 

(a,,, (1) (a,,,,ypcr ~'~()~)(~), sr (zl)) .  r 
a . =  F.+ (~(1)(zl), S~!lj(~))~ ~ (~.~!~)(z~),S~.~(1)(zl))L~ 

where F,~ e X (1) A dom(D(qz(ll))) is the projection of Gn onto the space XO), 
the projection being parallel to the subspace span { ~)(1)(zl), Er ) (zl) }. Since the 
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coefficients of  (I, ~1~ ) (z1) and/Cff ~11 ) (Za) in (6.124) are bounded with respect to n E N, 

one can assume that they are convergent by restricting to a subsequence. Thus, for 

some real numbers cl and c2, one has 

(6.125) (D(q~al)) - -  ) ~ I ) F  n . c1(I)~11) (z1) --[- c2K~(I~(z11) (z1). n--+oo 

Since X (1) is D(q~lx))-invariant, Fn E X (1) implies (D(q(~a:)) - AI)Fn C X(1); and 

since X (a) is closed, the limit cl (I'(1)z~ (zl) + c2)Uff~l~)(zl) also belongs to X (1). But 

this implies cl = c2 = 0, because (~lx)(Zl),qE~(1)(zx))z2~, ~, = 0 (cf. (6.38)) and 

((1)~11) (Z 1 ), O'~(11 ) (g I )) L2 r 0, (J~(I)~ll) (Z1), JK~(I)(11) (z1))L2 r 0 (cf. (6.43)). Thus, one 

concludes that {Fn }nan C X(1) is a singular sequence of  D (q~l~)) [xcx) correspond- 

ing to A, since it is bounded and has no convergent subsequence. (Otherwise, by 

(6.124), {Gn }n~N would have a convergent subsequence, contradicting the assump- 

tion that it is a singular sequence.) It follows that A E ~re (D (q(X))i x(1)) = Cre(D(q)), 

andhencea~(D(q))=a~(D(q~lx))lx(1)) D ae(D(q(X~)));thisproves(6.109). [] 

Theorems 6.14 and 6.15 are new. We note that they have been proved under 

the optimal assumption q E L~oc(II~) (but they seem to be new under virtually any 

assumptions on q). 

In the special periodic case, where the machinery of  Floquet theory can be 

applied, the issue of  isospectral Darboux transformations is briefly mentioned in 

[35, Theorem 3]. This excludes the insertion of  eigenvalues as in Theorem 6.15. 

Inserting eigenvalues into the spectrum of  a self-adjoint one-dimensional Dirac 

operator (not applicable in the present NLS_ context) was investigated by means 

of  transformation operators (along the lines of  [19]) in [45]. 

We conclude this section with a few facts on N-soliton NLS_ potentials. As 

shown in Lemma 4.6, the insertion of  pairs of  complex conjugate eigenvalues 

into the spectrum of  the background operator D(q) can be iterated. To fix the 

proper notation, we now slightly extend our approach of  Section 6 and consider 

a more general linear combination ~.~ (z, z) of  ~+(z,  z). Assuming zk E C\II~, 

k = 1 , . . . ,  N,  we define 

(6.126) qt.r~(Zk,X) = ~-(Zk,X)  -]-Tk~+(Zk,X), "ffk E C\{0}, k = 1 . . . , N  

(as opposed to our choice 7k = 1 in (6.6)). In obvious notation, we then denote the 

corresponding Nth iteration of  the construction of  q(~x ) (x) presented in Sections 2 
and 4 (cf. (2.38), (4.10)), identifying tXl(Zl, X) and ~-r~ (zl, x), by ,,(N) tx ~ ~ Z l  , . . . Z N  ,~?1 , . . . ~ [ N  \ I �9 

In order to describe a well-known explicit formula for .(N) ~ , . . . ~ , ' r l  ..... "r~(x) (cf., 

e.g., [36, Sect. 4.2], [38], [43]) we introduce the quantities 

r (z~, z) + "r~2,+ (zk, z) 
(6.127) qok (z) = ~bl,- (zk, z) + 7k!bl,+ (z~, z ) '  
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and the 2N x 2N Vandermonde-type matrices 

(6.128) 
'1 zl �9 �9 �9 Z l  N - 1  ~91  

1 Z N  . . .  z N - ~  ~ N  

and 

(6.129) 

v N(x) = 

. . .  

Z N ~ N  . . .  Z N N - I ~ o N  

= 

N-1 N-1 
1 Z N + I  �9 �9 �9 Z N + I  ~ N + I  Z N + l q O N + I  �9 � 9  Z N +  1 ~ / V + I  

�9 : : �9 : . 

N - -  N - 1  
Z 2 N  . . "  z � 8 9  1 ~ 2 N  Z 2 N q O 2 N  . . .  Z 2 N  ~ 2 N  1 

<I zl ... z N-1 r Zl~x .. .  zl N 
: �9 : �9 . . 

1 Z N  . . .  z N - 1  qON Z N ~ N  . . .  Z N 

N - 1  N 
1 Z N + I  �9 � 9  Z N +  1 q O N + l  Z N + I ~ O N + I  �9 �9 �9 Z N +  1 

: : : �9 : : 

kl Z2N z2NN 1 ~2N Z2N~2N zN . . . . . .  2 N  

The Nth iteration .(N) rx~ is then explicitly given by t lZ l  , , . . Z N  ,~[1),*,)~IN I, ) 

(6.130) a (N)  (x~ = q ( x )  - 2 i  det(V2N (x)) 
~zl, . . .ZN,~I ..... "y~v , , d e t ( V 2 N ( X )  ) " 

D" (N) , Denote by tqzl,...z~,,-rl ..... .~) the associated ff-self-adjoint operator in L2(~) 2" 

repeated application of Theorem 6.15 then yields 

(6.131) 

(6.132) 

(6.133) 

a (  D ( o  (N)  ~ ~ = a (  D ( q )  ) tJ {zl, 2i-,..., zN,Tff}, 
~. ~ , " I Z l ) . . , Z N ) " : I ) , , . ) T N / ]  

a r D r  ~ = a p ( D ( q ) )  U {Zl,Z'l, , Z N , - 2 ~ } ,  
P k  \ ~ I Z l ) . . . Z N ) ' Y I ) . . . ) " / N ] ]  " " " 

a e ( D ( a ( N )  ~ = a e ( D ( q ) ) .  
\ k ' I Z l ) . . , Z N ) ~ [ 1 ) . . . ) ' ~ ' N I /  
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