
M O D U L I  S P A C E S  O F  Q U A D R A T I C  D I F F E R E N T I A L S  

WILLIAM A. VEECH t 

A b s t r a c t .  The cotangent bundle of.Y-(g, n) is a union of complex analytic 
subvarieties, V(n), the level sets of the function "singularity pattern" of quadratic 
differentials. Each V(n) is endowed with a natural affine complex structure and 
volume element. The latter contracts to a real analytic volume element,/~x, on the 
unit hypersurface, V~(n), for the Teichmuller metric./~, is invariant under the 
pure mapping class group, F(g, n), and a certain class of functions is proved to be 
LP(/t~), 0 < p < i ,  over the moduli space V~(n)/F(g,n). In particular, 
l~,(V~(n)/F(g, n)) < 0% a statement which generalizes a theorem by H. Masur. 

0 .  I n t r o d u c t i o n  

J ' (g ,  n), 3 g -  3 + n > 0, denotes the Teichmfiller space of marked closed 
Riemann surfaces of genus g with n punctures. The pure mapping class group, 
F(g, n), acts as a discrete group of biholomorphisms on both ~--(g, n) and its 
cotangentbundleQ(g,  n) P , J'(g, n ). Each q ~ Q(g, n)corresponds toamero-  
morphic quadratic differential ax on any XEp(q).  The poles of a, if any, are 
simple and occur in the puncture set. It makes sense to define the symbol, 
n(q) = n(a), to be the triple rt(q) = (k, v(.), e), where k < n is the number of 
poles of a, v(l) is the number of zeros of a of  order l > 1, and e -- + 1 o r  - 1 a s  a 

is or is not the square of a holomorphic 1-form. 
If n = n ( q )  is the symbol of some q~Q(q ,n ) ,  define V(n )=  

(q~Q(g ,  n)] n ( q ) =  re}. v(n)  is a complex analytic subvariety of Q(g, n), of 
dimension 

e - 3  
(0.1) d i m V ( z t ) = 2 g + k + ~  + ~ v(l) 

c 2 i=l 

(cf. [V86]). Vl(zt) denotes the norm one hypersurface of  V(n) (for the Teichmfiller 
metric). 

The principal goals of  the present paper may now be stated. First, we describe 
for each symbol n an atlas 8(n)  on V(n) with the properties (1) 8(n)-transitions 
are locally complex affine and (2) g(n)-transitions are euclidean measure preserv- 
ing (Sections 1-8). Secondly, we describe a procedure for reducing (a cover of) 
V(n) to (a finite cover of) V(n)/F(g, n) (Sections 9, 12-13). Finally, we note that 
8(n)  endows V(n) with a real analytic volume element whose contraction, 
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denoted p~, on V~(n) is F(g, n)-invariant. With the help of topological "basic 
lemmas" (Sections 10, 11) we establish in Section 14 the finiteness of a class of 
integrals over (V~(zt)/F(g, n), I~). The main result is 

0.2. T h e o r e m .  Define ~(q) to be the minimum length of  a homotopically 
nontrivial path connecting singularities (zeros or poles) of  q (i.e., of any represen- 
tative tr of  q) with respect to the metric [ q [ (i.e. l a I). Then 

f l 
(0.3) O(q) p lt,~(dq) < oo (0 < p < 1). 

vl(~)/r(s, n) 

We obtain (0.3) as a consequence of  a modestly stronger result which is critical 
to the analysis of  cocycles in [V86] (as is the reduction procedure itself). 

It follows from (0.3) that 

(0.4) u.(v~(n)/r(g,  n)) < oo. 

The finiteness of  the volume in (0.4) generalizes the corresponding statement by 
Masur [M82] in the eases which correspond to z~ = (0, (4g - 4, 0 . . . .  ), - l) and 
zt = (0, v, + l) in the present notation. 

The moduli spaces V(zt)/F(g, n) are finitely connected but not, in general, 
connected (Section 13). If  W c_ Vl(zt)/F(g, n) is a component of  the moduli space, 
/~x is uniquely determined, up to a scale factor, as a finite absolutely continuous 
measure which is invariant under the "Teiehmfiller geodesic flow." (See [V86] for 
details and references.) The first instance of this fact is due to Masur ([M82]) for 
n =(0 ,  (4g--  4, 0 . . . .  ), --1). 

It is a classical fact that Vl(n) is foliated by copies of  the unit tangent bundle of  
the Poincar~ upper half-plane, and this foliation is the orbit foliation of an action 
of G = SL(2, R). This (real analytic) action is most easily described directly, i.e., 
without reference to Beltrami differentials (Section 1), and the description makes 
it obvious that ax is preserved by G (Sections 7, 8, 14). The significance of  the 
G-action is that its existence implies, for any noneompact one parameter 
subgroup H, ifa~ is ergodic for G on Vl(n)/F(g, n), then it is automatically mixing 
[Mo66] for H. In particular, the TeichmQller horocycle flow 

is mixing (of all orders) on each component of the moduli space. Ergodieity of  the 
Teiehmfiller flow when it = (0, (4g - 4, 0 , . . .  ), - l) is due to Masur [M84]. See 

[V86] for the ergodic theory of (V~(zt)/F(g, n), ~ ,  G). 
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Most of  the results of  the present paper have first appeared in the preprints 

[V84, I, II] which were circulated in 1984. 

1. F-structures 

Fix g => 0, and let M 2 be a closed oriented surface of  genus g. ~g denotes the set 
of  all (maximal) complex atlases compatible with the orientation. If  n >= 0, S, 
denotes a set in M 2 with n elements. Set Mg 2,. = ~ ,  and let H(g, n) be the group 

of  orientation preserving homeomorphisms ~ such that ~ is. = Id. Ho(g, n) 
denotes the identity component o fH(g ,  n), and F(g, n) = H(g, n)/Ho(g, n) is the 
pure mapping class group. H(g)= H(g, 0) acts upon ~g by ~//_~//~-1 = 
{(OU, f .  ~ -  1) } (U, f )  E a//}. If  3g - 3 + n > 0, the Teichmiiller space is defined 

as ~r(g, n) = ~JHo(g, n). 
IfO//E ~gg, define Q, (~//) to be the set of ~//-meromorphic quadratic differentials 

tr whose poles, if any, are simple and contained in S,. If  r  n), then 
(M2, O//) ~ ,  (M2,a//~ -1) is holomorphic, and O*Q,(~162 When 

3g - 3 + n > 0, it is true that ~//r ~ ~ ~//, ~//~ ~g, 1 ~ (bEHo(g, n). This means 
p-1([~])  is naturally identified with Q,(~//') for any ~ [~//] = ~ n). 

For convenience of  notation, we shall deal only with symbols 7~ = (n, v, e), i.e. 
with k = n in terms of  earlier notation. The study of  V(Tt) is facilitated by use of a 

cover. Define re(n) = ZP_I v(l), and let N(n) = n + m(70. We may and shall 
suppose S~,) = S, U T, where T is partitioned into sets Tt with v(l) elements. 

Define l?(Tt) to be the set o fq  ~ Q(g, N(Tt)) such that (1) 7t(q) = 7t, (2) i fX~p(q) ,  
then trx(q) has a pole at each point ofS, ,  and (3) for each I > 1, ax(q) has a zero of  

order / at each point of  T~. 
Let I?(n) ~ , V(Tt)bethecanonicalmap. Ifaq~=aqz, thereex is t~ l ,~#:~g,  

trj~Qm~)(~llj) , j = 1, 2 and e)~Ho(g, n) such that ~/2 = ~//10 -l  and al = 0*a2. It 
follows that r is unique ( 3 g -  3 + n > 0), and moreover CTz = Tj, l > 1. If 
H(g, 7~) -- {r n) [ (bTt = Tt, 1 > 1}, then F(g, rt) = n(g,  rO/Ho(g, N(n)) is 

the group of  the cover l?(Tt) ~ , V(Tt). The finite group F(g, n)/F(g, NOz)) is the 

group of  the (branched) cover l?((Tt)/F(g, N(rt)) ---- V(Tt)/F(g, n). 
By an F-structure ~ = (Y, ~)  we understand (1) an oriented connected surface 

Y of finite topological type and (2) an atlas ~//for Y with transitions locally of  the 
form z ~ + z + c. o// should be compatible with the fixed orientation and 

maximal with respect to its defining property. Associate to the F-structure ~ (a) a 
complex structure 0//(~) ___ o//, (b) a nowhere zero holomorphic quadratic differen- 
tial ar ar [v=f*dz 2, ( U , f ) ~ l l ,  (c) a Riemannian flat metric h~, h~ Iv = 

f * l d z l  ~, (U,f)~all,  and (d) the h~-volume form 0~, O~ lu--f*(�89 
(U, f )  ~ 0//. 

The assumption (I) above implies Y "" 2 = M~,, for some g, n. The F-structure ~ is 

said to be admissible if  the completion of  Y with respect to the he-distance 
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function is compact  and contains only a finite set o f  ideal points. It is easy to show 
([V8/4]) that i f~  is admissible, then (i) M 2 is the natural  he-completion ofM~, , ,  (ii) 
0//(~) extends to 0// .(~)~ ~g, (iii) t7~ extends to be  ~/*(~) meromorphic  with at 

worst simple poles, and (iv) the norm o f  ar is 

II II = f 

Conversely, i f  q / * ~ g ,  and if  tr~Q.(ql*) has both its poles and its zeros 
contained in S. ,  the atlas q / =  q/(a)  o f  natural parameters  of  tr determines an 
admissible F-s t ructure  on Y = M if, . .  We write ~ = ~(tr). 

Define f l (g ,  n) to be the set o f  admissible F-s t ructures  ~ ~- (M 2, ~, qi). H(g, n) 
acts on fl(g,  n), and we define a "Teichmuller  space" 

~tl(g, n ) = ~(g, n)/Ho(g, n). 

Define ~(~)---n(ar and let d,/(g, n, it) be the corresponding stratum of  

~ ' ( g ,  n). Not ice  that [~) = m ~d , / (g ,  n) defines a function O,, : Sn -~ 
{ - 1, 0, 1 . . . .  } giving the order o fa r  at each point  o f  Sn. Thus n(rn) = (k, v, e), 

where k = I O , ~ (  - 1)1 and v(l) -- IOm~(/)l, l >_- 1. 
It is now possible to describe l?(n) above in terms o f ~ ( g ,  N(It)). Define 

W(n)  --- {m ~ d,/(g, N(~t)) [ i t (m) = ~t, and 

(1.1) 
Ore(s) = - 1 o n & ,  Ore(s) = / o n  Tt}. 

(Recall that 7t = (n, v, e), by assumption.  The requirement  x (m)  = ~t is redun- 
dant in (1.1) i f n  > 0 or i fv(2 j  + l)  > 0 for s o m e j .  However ,  knowing n = 0 and 
v(2j + l)  = 0, all j does not de termine  e in general.) N o w  W(n) and ~?(Tt) are 

canonically identified ([a] ~- [~(a)], [~] ~- [ar 

If  ~ ,  ~2 ~ fl(g,  n), define a "d is tance"  a(~l, ~2) by  

ol(~,,~2)= sup sup l i m s u p  L ( ( f l ( x ' ) - f l ( x ) ~ 2 )  

x ~  U~ N U~ 

where L(z) is the branch o f  log z with - it < arg z < n. I f K  _ H(g, n) is a closed 

subgroup, define DK(~,, ~2)----inf,~Ka(~t, ~2@-t). It is proved in [V84] that if  
DK < ~ on f l(g,  n) • fl(g,  n), then Dr is a complete  K-invariant  pseudometric .  

Moreover,  each orbit  ~r( is Dk-closed, and therefore Dr determines a complete  
metric on l)(g, n)/K. We use Do to denote  the metr ic /pseudometr ic  which arises 

from the choice K = Ho(g, n). The functions m --* Ore(s), s ~Sn and m - ~  i t (m) 
are Do continuous,  and therefore if  we replace n by  N(n) ,  the space W(lt) in (1.1) 
is both open and closed in ~/,~(g, N(lt)). 
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1.2. R e m a r k .  The group F(g, 70, defined earlier in this section, acts natu- 

rally upon W(rt), e.g., because it already acts upon 17(70. F(g, rr) acts as a properly 
discontinuous group of  isometries, and therefore V(Tt) inherits a metric from its 
realization as W(x)/F(g, 70. It is also possible to endow V(rt) with a metric 

directly, using Ho(g, n )=  K and the realization of  V(Tt) as a space of  classes of  
F-structures on M if, , with singularities (i.e., tr~ is allowed to have zeros in M 2, , ). 

The latter approach results in the same metric on V(n). It is possible to relate Do 
to the circular dilatation [LV73] and to prove V(Tt) P r ~ '(g,  n) is contractive 

with respect to the Teichmiiller metric on o~-(g, n) ([V84]). 
We conclude this section with a description of  the action of  G = SL(2, R) on 

J l (g ,  n). The elementary details are found in [V84]. 
If  ~ = (Y, ql) is any F-structure, and i fA E G ,  define A~ = (Y, Aql), where 

Aql = {(U,A o f ) [ (U,  f ) E ~ / } .  The notation A o f  is meaningful i fA  is under- 

stood to be an R-linear transformation of  R 2. Because G normalizes the group 
z ~ + z + c, A~ is again an F-structure. As Id is uniformly Lipschitz relative to 

the metrics h~ and hao ~ ~ A ~  preserves admissibility. Also, A---~(~, A~) is 
continuous, and because G is connected 7r(~) = 7r(A~) and Or ) = OAr ) (in the 
case ~ Eft (g ,  n)). It is clear that A ( ~ )  = (A~)~, A ~G,  ~Ef~(g, n), ~ H ( g ,  n), 
and therefore G acts upon dl(g, n), W(n)~-- l?(n), and V(rr)= 17"(Tr)/F(g, 70 ~-- 

W ( n )/F(g , 7r ). 

1.3.  R e m a r k .  Suppose q~, q2E V(Tt) are such that q2 = Aq~ for some A E 
SL(2, R). Let A = R(O2)Diag(e', e-')R(Oi), where R(Oj), 0j ~R ,  denotes rotation 

matrix and t >_- 0. Then P(q2) = p(R( - 202)q2) andp(ql) = p(R(2Ot)q~), and there- 
fore Id is a TeichmOller map relative to ~/Z~ Ep(qO, ~2Ep(q2). The associated 
quadratic differentials are e-2i~ and e2i~ and the Teichmfiller 

distance is t. Therefore, P(q2) lies in the Teichmiiller disc through P(qt) 
determined by q~. Conversely, any element of  the same disc has the form 
p(AR(OOql) for some 01, and diagonal A ~ G  (this is virtually the definition of  

Teichmi~ller map). 
When 7t = (n, v, - 1), i.e. when e = - 1, W(Tr) will be replaced by a similar 

object on a higher genus surface with e = + 1. For the next several sections it will 

be assumed that e = + 1. We return to e = - 1 in Section 8. 

2. Trajectories of  holomorphic  1-forms 

The next several sections (2-7) will be concerned with admissible positive 
F-structures. In these sections ~ = (Y, ~)  denotes an admissible F-structure such 

that (a) ~//-transitions are locally translations, (b) Yis a subset of  a closed oriented 
surface X, and S(~) -- yc is finite, and (c) ql is compatible with the orientation of 

X. ~ / i s  assumed to be maximal for (a) instead of  for the property of  having 
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transitions z ~ + z + c. In effect, we are working with a double cover of  the space 
of "orientable" admissible F-structures. 

Suppose now X is a closed Riemann surface of  genus g > 0, and let to be a 
nontrivial holomorphic 1-form on X. If S*(to) is the zero set of  to, we suppose 

fixed a finite set S which contains S*(to). Let q/(to) be the atlas of  natural 
parameters of  to on S c = Y. For any 0 E R the foliation of  C by oriented lines 
making an angle 0 with the horizontal lifts, via ql-charts, to an oriented foliation 
~ ( 0 )  of  Y. Leaves of ~r(0) are geodesics for the metric Io9 I. 

I fs  E S is a zero of  to of  order l = l(s), then for each 0 there exist 2(l + 1) leaves 
o f ~ ( 0 )  which terminate or originate at s. These separatrices will be referred to as 

incoming or outgoing. Separatrices from either class partition a disc neighbor- 
hood of  s into 1 + 1 sectors, and every sector contains a separatrix from the 
opposite class. Recall that 

(2.1) Y, l ( s )  = 2 g  - 2 .  
s E S  

A leaf L _ ~ '(0)  is a saddle connection if it has finite I to I length or, what is 

the same, if aL = s ~ -  s2, s~, s2ES.  C(O) denotes the compact set which is the 
union of  S and all saddle connections L ___ ~(0) .  In a dynamical context the 
following well-known fact goes back to A. G. Maier [M43]; see also [$84]. 

2.2. T h e o r e m .  Let notations be as above. I f  W is a component o f  C(O) c, 
then either (1) (W, ~,~(0)]w) is minimal,  i.e. every leaf  L c_ W is dense in W or 
(2) (W, ~ ( 0 )  ]w) is holomorphically equivalent to the foliation o f  an annulus by 
concentric circles. 

It will be our continuing assumption that S ~ ~ ,  an assumption which is 

redundant unless g = 1. When S ~ ~ and C(O) = S, the theorem implies every 
leaf of ~ '(0)  is dense. If  L ___ ~ ( 0 )  is a saddle connection, then 

(2.3) f to = ei~ l L I 

L 

where ILl is the Itol length of  L. The countability of  n l ( X  , S) (integer 
coefficients) implies that C(O) = S for all but a countable set of  0, and for these 
same 0 every leaf of  ~ '(0) is dense in X. 

2.4. D e f i n i t i o n .  Let ~ = (Y, q/) be an admissible positive F structure, and 
let F(~, 0) be the foliations associated to toe, 0 ~ R. ~ is said to be in general 
position if  C(0) = S = C(n/2). (That is, the horizontal and vertical foliations 
have all leaves dense.) 
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2.5.  R e m a r k .  IfA (0) E SL(2, R) = G is the matrix of rotation by 0, then for 

all but a countable set of  0 A (0)~ is general position. 

3. Weavings  

We suppose fixed ~ = (Y, ~//) as in the first paragraph of  Section 2, and we 
suppose X, to = toe, and S ~ ~ are as in the second paragraph of  Section 2. Later 

on, it will be assumed that ~ is in general position. 

3.1.  De f in i t i on .  An I tor geodesic, 7 = ((a, b), ~u), in the direction 0 is an 
end at s E S  if aT = _+ (x - s), as a 0-chain, where x $ S. The point x ( =  ~u(a +) or 

~u(b-)) is called the terminus of 7. 
The notations ~ and ~r, h for "horizontal" and v for "vertical," are reserved 

for the foliations 3-o~(0) and ~(~r/2), respectively. Accordingly, we speak of  

horizontal or vertical ends. Let 7 be a separatrix for, say, ~ .  If 7 is a saddle 

connection, choose an end, 70, of  7.7 or 70 bisect a sector of ~ ,  and this sector is 
determined by an incoming separatrix, denoted J - (7 )  or J-(70), and an outgoing 

separatrix, denoted J+(7) or J+(70). The same notations, J-+(7) or J-+(70), are 
associated to vertical separatrix, 7, or vertical end, 70. 

3 .2 .  De f in i t i on .  A closed set A _C X shall be called a weaving (of ~ or of  3rh 
and ~r) if 

(a) A is a finite union of  horizontal and vertical ends, 
(b) if7 is a maximal horizontal (resp. vertical) end which is contained in A, and 

i fx  is the terminus ofT, then x is interior to a vertical (resp. horizontal) end in A, 

and 
(c) if s E S, and if 7o is a horizontal or vertical end at s, no subend of  which lies 

in A, then both J -+ (7o) have an end at s which is contained in A. 

If ~ is not in general position, there is an ambiguity in (c). If  7o is, say, a 

horizontal end at x, and if one or both of  J-+(70) are saddle connections, the ends 
to be chosen are the ends which bound the sector of  ~ which 70 determines 

(bisects). 
The following is a consequence of the fact quadratic differentials determine 

decompositions of surfaces into rectangles. See Strebel [$84]. 

3.3.  P r o p o s i t i o n .  Assume ~ is in general position. There exists a weaving A. 

3.4.  R e m a r k .  The conclusion of  the proposition is also true for ~ if ~ is not 
in general position. We do not require the statement, however. 

3.5.  P r o p o s i t i o n .  Assume ~ is in general position. I f  A is a weaving, and i f  
U is a component of  A c, there is a chart, (U, f ) ,  such that R = j'U is a rectangle 

with sides parallel to the axes and f*dz  = toe [u. 
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P r o o f .  ~h [ O is without singularities, and therefore U is an annulus or a disc. 
Recurrent non-periodicity and transversality Of~h and ~ preclude the possibility 

that U is an annulus. Now let f :  U ---- C be a local l-chart function, fex tends  to 
OU, and f ,  au) is a polygonal path with all interior angles 7t/2; i.e. (f, OU) defines a 
rectangle R.  As f :  0U ~ R is of  degree l, f i s a  homeomorphism on U. 

3 .6 .  R e m a r k .  If~ is arbitrary, perhaps not in general position, and if Uis  a 
component o fA c for some weaving, A, then U satisfies one of(a) the conclusion of 

Proposition 3.5, or (b) U is a cylinder of closed leaves of  ~h or ~v- 

4. Weavings  and cohomology 

Notations are as in the first paragraph of  Section 3. It is assumed that ~ is in 

general position, and we fix a weaving, ~., of  ~. 
A determines a chain complex, (~ ,  c3). I f0  < j  < 2, ~j  = ~j(A) is the R-vector 

space o f j  chains with the natural basis (a) i f j  = 0 the set of  vertices of  A, (b) if 
j = 1 the set of  horizontal and vertical edges of  A, carrying the induced orien- 
tation from ~ and ~ ,  and (c) i f j  = 2 the set of components, U _ A c, carrying the 

orientation induced by X. 
By Proposition 3.5 A defines a cellular decomposition of  X, and therefore the 

real homology of  X is the homology of  the complex 

0 0 

(4.1) ~2 ' ~ l  ' ~0. 

Let ( . ,  �9 ) be the natural inner product on ~j  determined by the basis in (a)-(c) 
above. If  ~j  is identified with its dual, -~j, by means of  ( . ,  �9 ), there is the cochain 

complex dual to (4.1), 

0* O* 

(4.2) ~0 ' ~ l  ' ~2. 

If tr is a smooth closed l-form on X, a determines a 1,-cocycle, 8, t~ --- Z #(e)e, 

where the sum extends over all edges of A, and 

(4.3) e(e) = f a. 

e 

Let ~e~ = 2~e~(A) = {aE ~ [ a * a  = 0}. We observe each a~.-~ el has a represen- 

tation a = 8, as above. Indeed, by de Rham's Theorem it is necessary only to 
establish this claim for a E 0 * ~ ,  0. If  u = X u(v)v, the sum extending over all 
vertices of  A, and if a = a 'u ,  then a = df, where f i s  any smooth extension of  

v --, u(v) to X. 
If  a, fl E ~Lr~, choose e~, trp, so that #~ = a and #a = fl, and define the intersec- 

tion form, [a, fl] by 
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(4.4) [a, fl] = f tr~ ̂  ap. 

x 

Of course, it is true that [a, .]----0 i f a ~ a * ~  

With all notations as above, let ~h and ~ be the linear spans in ~1 of the 

horizontal and vertical edges, respectively. Set ~r~ = ~rltq ~h and ~e~_ 

~r~ N ~ .  Let F be the dimension of ~2(A). 

4.5.  L e m m a .  With notations as above 

(4.6) dim ~h = dim ~ = 2g -- 2 + IS I + F. 

P roo f .  Let e be a horizontal edge. e lies on the boundary of a component, U, 

of A c such that if (U, f )  is the chart whose existence is guaranteed by Proposition 

3.5, t h e f U  = R hasfe  on its lower side. Set U = U(e). If z(U) is the number of 

vertical termini and/or elements of S which are interior to the lower side of  U, i.e. 

to f -  ~ (lower side R), the lower side of U contains l + z(U) edges, and 

(4.7) 

dim ~h = ~ (1 + z(U)) 
U 

= F +  ~ z(U). 
U 

Because ~ is assumed to be in general position, the sum on the right-hand side of 

(4.7) represents the total number of outgoing vertical separatrices. The latter 

number equals 2g - 2 + IS I, and (4.6) follows for ~h. The argument for ~v is 

the same, and the lemma is proved. 

4.8.  L e m m a .  I f  a ~  c~ h U ~v, and i f  Oa = O, then a = O. 

Proof .  Suppose a ~ Cgh and Oa = 0. If 7 is a maximal horizontal end in A, and 

if a r is the contribution to a coming from edges of A on 7, then Oa = 0 implies 

Oa r C_ S. It must be that ay = 0, and therefore a = 0. The lemma is proved. 

Denote by Qh and Qv the orthogonal projections on ~h and ~v, respectively, 

relative to ( . ,  �9 ). Lemma 4.8 implies Qh and Q~ are each one-to-one on 0~2, 

because Q~a = 0 implies a ~  qf~, and a = Or implies Oa = 0. We have 

4.9.  L e m m a .  Qh and Q~ are injective on 0~2. 

4.10.  L e m m a .  With notations as above 

(4.11) 

P roo f .  Use • 

definitions imply 

dim ~gr~ = dim ~f~ = 2g - 1 + I SI. 

to denote orthogonal complement relative to ( - , . ) .  The 
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= ( 0 ( ~ 2 )  • n (~h 

= (QhOC~2)" n ~h. 

AS dim 0~2 = F - 1, (4.11) follows from the above and Lemmas 4.5 and 4.9. The 
lemma is proved. 

4 .12 .  L e m m a .  Let V be the set o f  vertices o f  A, and suppose x = 
ZvEv X(V)V6 ~o satisfies O*x E Wh (resp. ~ ) .  I f  e is a vertical (resp. horizontal) 
edge such that Oe = vl - v2, then x(vl) = x(v2). Conversely, any x with this latter 

property satisfies O*x E ~h (resp. ~ ) .  

P r o o f .  I f 0 * x s  Wh, and i f e  is a vertical edge such that 0e = v, - v2, then 

0 = (e, O'x) 

= (Oe, x )  

= x ( v , )  - x ( v g .  

The first assertion follows. The second is obvious, and the lemma is proved. 

Define B ~ = 0 * c g 0 ,  and also set B~ = B  ~ M ~gh and B~ = B  ~ N ~ .  If s ~ S ,  

define xh(s)~ ~o by 

Xh(S) = Y. Xh(S, q)q 
qEV 

where Xh(S, q) = 1 or 0 as q lies on a vertical end at s or not. Similarly, define xv(s) 
in terms of  the horizontal ends at s. If 7h(S) = O*Xh(S), ?,(S) = O*X,(S), Lemma 

4.12 implies B~ and B~ are the linear spans of  {?h(S) I S E S }  and {7v(s) I s ~ S } ,  
respectively. The kernel of  0* on ~0 is one dimensional, spanned by Zses Xh(S) = 
Zs~S X,(S) and therefore both B~ and B~ have dimension I SI - 1. 

4 .13 .  L e m m a .  With notations as above 

(4.14) dim B~ = I S I - 1 = dim B2. 

Let ~o(S) be the linear span o rS  in ~0, and set up the relative cochain complex 

0" 0" 
(4.15) ~0(S) • ' ~ t  ' ~2. 

Because A is cellular decomposition of  X, the relation 

H~(X, S) = ker0* N qg~/O*~o(S) • 

R 
obtains. Let ~ , H~(X, S) be the canonical projection. 
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4.16 .  P r o p o s i t i o n .  With notations as above the restrictions. 

(4.17) 

1 R HI(X, s) 

R 
~ 1  H~(X,  S)  

are onto isomorphisms. 

P r o o f .  Proposition 4.10 implies the three vector spaces in (4.17) have the 

same dimension. Suppose a E ~r~, say, and R a = 0. There exists x E ~0(S) • such 
that a -- O*x. Since x ( s )  = O, s E S ,  and since a E  cgh, Lemma 4.12 implies x = 0. 
Therefore, a -- 0, and R is injective on ~r~, and the proposition is proved. 

In preparation for our final proposition we shall make a construction. Let 
a E ~r~, and select a smooth closed 1-form, tr,, such that #5 = a. Let Av ___ A be the 
union of  the vertical ends in A, and define F,  on Ao by 

(4.18) 

x 

F (x) = f 
$ 

In this formula s E S, and x lies on a vertical end at s. Since tr, is closed, F~ 

extends to a smooth function, satisfying dF, -~ try, on an open set which contains 
Av. We multiply the extended F,  by a smooth cutoff function which is one on a 

neighborhood of  A~, and thus assume Fa is defined on X. Define T~ = tr, - dF~. 

We claim t~ = a. This follows because #,(e) ---- 0 for every vertical edge e, and 

then F , [ r - - 0  by (4.18). That is, ~ = 8~ = a, as claimed. Observe that by 
construction T~ = 0 o n / L .  

If  Uis a component of  A c, represent Uas a rectangle, R,  by Proposition 3.5. Let 
a ~  ~r~, and define a(U) to be the sum ofa(e )  over all horizontal edges which lie 

on the bottom side of  U with respect to its rectangular representation. Iffl  ~ &r~, 
define fl(U) using vertical edges on one side of  U. We shall prove 

4 .19 .  P r o p o s i t i o n .  I f ( o r  • ~ ,  then 

(4.20) #] = o4u)#(u) 

the sum on the right in (4.20) extending over all components, U c_ A c. 

P r o o f .  Let re and zp be smooth closed forms such that (1) ~a = a and tp = fl, 
and (2) za-- 0 on Av and rp ---- 0 on (the corresponding set) Ah. By definition 
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(4.21) 

W .  A. V E E C H  

[o~,Pl--- f ro^~p 
x 

Fix a component U _ A c. Since z~ is closed, there exists a smooth function, f~, on 
Usuch that df~ = r~, and then d(f~zp) = ~ ^ zp on U. By Stokes' Theorem 

(4.22) f 
u 0u 

Because r,------0 on the vertical boundary of U, f~ is constant on each vertical side 
of U. The values are c on the left side of Uand  c + a(U) on the right side of U. 
Since rp = 0 on the horizontal sides of U, and since za integrates to fl(U) over the 
right side of U, the integral (4.22) has the value a(U)fl(U). Now (4.20) follows 
from (4.21), and the proposition is proved. 

5. W e a v i n g s  and variat ion of  F-structure 

Let ~ and A be as in the first paragraph of Section 4. The spaces ~e~ and ~e~ are 
defined in Section 4, and Proposition 4.16 establishes a canonical isomorphism 
between each of them and H~(X, S). To avoid confusion the ~ which has been 

fixed above will be denoted ~o. 
Let e _c A be a horizontal edge, and define ao(e) to be the length o fe  relative to 

the metric I t%l. (Recall that e is a geodesic in the direction 0.) If U is a 
component of  A c such that e c_ OU, and if (U, f )  is the chart determined in 
Proposition 3.5, then a0(e) is the euclidean length offe  C_ OR -= O(fU). Extend ao 
to all edges by setting ao(e)= 0 when e is vertical. The statement that the 
horizontal sides of R have the same length implies 0*ao= 0 ((U, 0*ao)=  
(OU, ao)). That is, a0E ~e~. 

Observe that a0 is positive in the sense that ao(e) > 0 for every horizontal edge 
e. We define P~ = P~(A) to be the set o f a ~  s which are positive in this sense. 

By an entirely analogous procedure we define fl0 E ~_~, in terms of ~0. Define 
p1 = P~(A) to be the set offl  ~ ;Z~ which are positive on vertical edges. Finally, 
define p1 _ ~  pl(A ) by 

(5.1) p, _- p2 • P~ (P' = pl(A)). 

The cones P~ and P~ are open in ~r~ and ~r~, respectively, and the construc- 

tions of ao, tip imply each is nonempty. We define ~o = ( a .  tip) = 2o~ P i. 



MODULI SPACES OF QUADRATIC DIFFERENTIALS 129 

In this section f~d is the set of  admissible positive maximal F-structures, 
= (y,  d//), such that yc _ S (in particular, Y _ X). The subscript 0 is to remind 

that S is allowed to contain properly the set S*(o9r of zeros of oJr ~ E f ~ .  
The goal of  this section is to construct a map, ~" P~(A) --  ~ ,  satisfying the 

following properties: 
(a) a(~(21), ~(22)) is continuous on P l ( A ) •  PI(A), where o~(., .) is defined in 

Section 1. 
(b) ~(20) = ~0, 20 -- (~0, fl0) as above (~0 extended to be maximal). 
(c) A is a weaving for ~(2), all 2 ~PI(A). 
(d) ~(~.) = 2, 2 EP~(A). 

(e) ~(.) modulo H0(X, S) is injective. 
In (e) Ho(X, S) denotes the set of  ~ H ( X )  such that ~ [s = Id and 0 "~ Id by an 
isotopy which fixes S. If Do is the pseudometric determined by Ho(X, S), (a) 
implies ~(. ) is Do continuous, and (a), (e) imply 2 -~ ~(2)H0(X, S) is continuous 
and injective from P~(A) into f~/Ho. In Section 6 we will prove this map is also 

open. 
In preparation of the construction of ~(.)  we introduce some notation. 

denotes the set of  pairs, "r = (R, E), such that (1) R _ C is a rectangle with sides 
parallel to the axes and having 0 for its lower left vertex, and (2) E is a finite subset 
of OR which contains (at least) the four vertices ofR.  E partitions OR into edges;s 
determines a triangulation of R by joining each point of E to the center of  R by a 
straight line segment. 

Ifr j  = (Rj, Ej)~ ~r = l, 2, we say r~ ~ r: if corresponding sides of  R~ and R E 

have the same number of  points of  E~ and E2. When r] ,-- r2, there is a uniquely 
determined PL map, 0 : Rt - -  R> 0 sends the center of  Rt to the center o f  R2, and 
maps a triangle of the canonical triangulation of  R I linearly onto the correspond- 
ing triangle of the canonical triangulation of  R E . 

Continuing with r~, r2 E ~ ,  r~ ,-- r2, and ~, ~ is linear on each edge (not side) of 
R~, and ~ has a well defined locally constant arc length derivative, d(b/ds > 0, on 

ORl -- ~,1. Define J(rl,/'2) by 

dO J(rl, r2) = max [ In - ~  . 

It is easily checked that J ( . ,  �9 ) defines a metric on each equivalence class for ~ .  
If rER ,  and if [r] is the equivalence class of r, then ([r], J ( - ,  -)) is a locally 
compact metric space. 

One can also define J*(r~, r2) by 

,~*(rl, r2)~ sup lira sup L ( e P z ' - ~ z ) .  
z~R~ z'--z \ Z t ~  
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Here Lw = I log w I with - n < arg w < n. An elementary calculation reveals 
there exists for each r, E ~r a constant  C(rO < ~ such that 

(5.2) 5(q, r:) < t~*(rl, rE) < C(rOS(rl, r2)(r2 ~ [q]). 

See [V86], (15.14). 

We now construct the map ~(.) .  I f  U is a component  o f  A c, choose a chart 

(U, f )  by Proposi t ion 3.5, and arrange that R = f U ,  which already has sides 
parallel to the axes, have lower left vertex 0. Let E __. OR be the image of  the set o f  
vertices of  A on OUunderf. Set r(U) = (R, Z )E  ~ .  

Let 2 = (a, f l )E  P ~(A). We construct  r (U,  2) = (R (2), Z(2)) as follows. I f  e is a 
horizontal edge on OU, assign fe  a new length, a(e) > 0. (It is possible e occurs on 
both the " top"  and the "bo t tom"  o f  U, in which case fe is not well defined bu t  

occurs naturally as an edge on the top and bo t tom of  R .) The assumptions a ~ ~h 
and 0*a = 0 imply the top and bo t tom of  R (2) have the same length. Similarly, 

use fl to assign new lengths to the vertical edges on OU and OR. The result is an 
element, r(2) = (R(2), X (2))E ~r and r(2) ,~ r(U). We shall also write r(U, 2) 
and R(U, 2). Observe that by construct ion i f 2  = ;to = ~0, then r(U, 20) = r(U). 

I f  ;tl, 22 ~ PI(A), define 

5,(;tl,;t2)=max]lnal(e)+fl'(e) I 
a2(e) + fl2(e) 

the max imum being taken over all edges, e, o fA.  I f S ( . ,  �9 ) is defined as earlier on 
[r(U)], then 

(5.3) 5(r(U, ;t,), r(U, 20)) < 5~(;tl, ;t2). 

Let 0~.a, : r(U, ;t,)--* r(U, ;t2) be the canonical PL map. 
If  U is a component  of  A c, denote  the chart map which defines r (U)  by f u. 

Introduce the charts (U, FAY), ;t EP ' (A) ,  by 

(5.4) F~ v = O~ of  V (U c_ A c) 

where, as before, 20 = ~0. 
Let e be an edge which is c o m m o n  to components ,  U, and Uz, o f A  ~. I f  U~ ~ U2, 

or if  U, = U2 but  e lies on two sides of  U~ -- U2, then along e F~ ,  j = 1, 2 are 
related by 

(5.5) Fz v, = ra  v, + c 

where c E C is a constant. Let ~//'(2) be the atlas for A ~ whose charts are defined by 
(5.4). ~ has no coordinate transitions, and so ~'(;t) = (A ~, o//,(;t)) is trivially a 
positive F-structure.  
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Let e ___ A be an edge. The relation (5.5) implies e is contained in an open set, Ue 
(e.g., U~ = U~ t_; U2 if  U~ # U2, U~ = UI = U2 otherwise), which is the domain of  
an ~'().)-compatible chart function, F~. Let 

~//"(2) = ~//'(2) U {(Ue, Fe) I e ___ A an edge). 

If  V is the set of  vertices of  A, then (V c, q/"().)) = ~"()-) is a positive F-structure.  
If  v ~  V, there is defined an integer, n(v) > O, such that 2rrn(v) is the total angle 

at v determined by rectangles, R(U, )-), such that vEOU. Each summand  deter- 
mining total angle is rt or zt/2, and the summands  remain the same as )- varies. I f  
n(v) = 1, then v is contained in an open set U~, which is the domain  of  a 
~"()-)-compatible chart function, Fv. I f  n(v)> 1, then yES .  Therefore,  we may 

define q/( ) - )= q/"().)t3 [-Jv~s(U~, F~) to obtain a positive F-structure,  ~()-)= 
(S t, r/t()-)). It is evident that ~()-) is admissible, and therefore ~()-)~ f~d. Observe 

t h a t  rt(~()-)) = 7r(~()-0)) = rt(~0); indeed, by the construction coct~) has a zero of  

order n(v) - 1 at v ~ S .  

5.6 .  P r o p o s i t i o n .  The map )- ---" ~(2 ) satisfies the inequality 

(5.7) g(2~, )-2) -< a(~()-,), ~()-2)) ~ C(r(2~))~().~, ~2) 

where C(.)  is the constant in (5.2) and a ( . ,  .) is as in Section 1. 

P r o o f .  Immediate  from (5.2) and the definition o f  a ( . ,  .). 

5 .8 .  P r o p o s i t i o n .  With notat ions as above the map ). ~ ( 2 )  satisfies 
conditions (a ) - (d ) f rom the beginning of  this section. 

P r o o f .  Proposi t ion 5.6 implies a(~(2~), ~(22)) is cont inuous (recall that 
a ( . ,  .) is a pseudometric),  and (a) is established. (b) is immediate,  in the sense id 
that ~0 , ~(20) is an equivalence with derivat ive 1. The construction implies 

each horizontal or vertical maximal end in A is a horizontal or vertical geodesic 
for ~(2), 2 ~P~(A). Therefore,  A is a weaving for ~(2), and (c) is established. 
Finally, (d) is obvious because a(e) + fl(e) is the ~(2) length of  e for each edge, e, 

o f  A. The proposit ion is proved. 

The purpose of  the discussion to follow is to establish that ~( . )  is injective 

modulo  Ho(X, S). We begin with a construction. 
Let e be a horizontal edge of  A, and set 0e = q2 - q~. Let sj ~ S be such that qj 

lies on a vertical end (in A) at sj. Denote  by yj the corresponding vertical geodesic 

from sj to q~, and define a path, ;,(e), by 

(5.9) ~,(e) -- ~,~ + e - ~'2. 
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y(e) is a path from s~ to s2, and therefore y(e) is a cycle modulo  S. 
(O7(e) = s~ -- s, ~ rg0(S).) A similar construction associates a relative cycle to each 
vertical edge. Observe that by (5.9) and the definition o f  ~h 

(5.10) a(e) = (y(e), a) (a~  ~ ) .  

5 . 1 1 .  P r o p o s i t i o n .  With notations as above suppose 2~,22EP~(A) and 
qJEHo(X, S) are such that ~(2,) = ~(22)r Then r = Id and21 = 22. 

P r o o f .  Define A ~ = ~A, and observe that A ~ is a weaving associated to ~(22). 
A 

Define 2~ = r E P~(Ar and set 2~ = (a~, fl~). I f e  is a horizontal edge, form y(e) 
as above,  and let e ~ = 0e and y(e) ~ = ~y(e) be the corresponding objects for A ~. 
We have by the assumption on 2 ,  22 and q~ 

(5.12) a,(e) = a~(e r = (y(e) r a~). 

A and A r are weavings of  ~(22), and therefore A' = A U A * is also a weaving of  
~(22). Let 2~ = (a~, f l g ~ P ~ ( A  ') be defined accordingly (i.e., 2~ = ~(22)). The right 
hand side of  (5.12) can be rewritten as 

(5.13) (y(e)% a~') = (?(e)% a~) 

because y(e) ~ is also a sum of  edges o f  A'. Now ~J,(~.') is canonically identified 
with H~(X, S), and since OEHo(X, S), 0 induces 0* = Id on cohomology. The 
right hand side of  (5.13) becomes  

(y(e)% ,~) = (Oy(e), a'2) 

= ( y ( e ) ,  O*a~) 

(5.14) = (y(e), at) 

= ( r ( e ) ,  a2) 

= a e ( e ) .  

Together, (5.14) and (5.12) imply a~ = a2. Similarly, fll--f12. Therefore, 21 = 22. 
We have now that ~(2~) = ~(21)0. This implies ~ is a T(xO biholomorphism o f  

X. I f g  > 1, then 0 = Id because 0 ~ Id. I f g  = 1, then ~ is a complex translation; 

because S ~ q) and ~ Is ---- Id, 0 = Id. The proposit ion is proved.  

In what follows H(X,  S) = {(~EH(X)Ir = Id}. Let F(X, S) = 
H(X,  S)/Ho(X, S). 

5 .15 .  P r o p o s i t i o n .  With notations as above let 2 ~pI (A) .  There exist a 
neighborhood, E,  o f  2 and an e > 0 such that the following holds: i f  2t, 22 ~ E and 
+EH(X ,  S) satisfy a(~(20, ~(22)0) < e, then OHo(H, S) has finite order in y(X, S). 
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Proof.  Let Do be the pseudometric defined by H0(X, S) on f~d ~. Suppose there 
are sequences {0n} c_ H(X, S) and {27} __c_ PI(A),j  = 1, 2 such that (1) limn 27 = 
2, j - - 1 ,  2, and (2)limna(G(2~), G(2~)On) -- 0. Proposition 5.6 implies that 
limn D0(G(;t~), G(2)) = 0. It follows readily that we may suppose 0n converges in 
H(X, S) to an element 0. Moreover, G(2) = G(2)~. As g >_- 1 and S ~ ~), q~Ho(X, S) 
has finite order in F(X, S). For large n the same must be true of OnH0(X, S). The 
proposition follows. 

5.16.  R e m a r k .  The proof of Proposition 5.15 implies that if for every 
neighborhood, E, of  2 and every e > 0 there exist Ai, A2~E and ( ~ H ( X ,  S) A 
Ho(X, S) c such that a(G(20, G(22)~) < e, then there exists a nontrivial equivalence 
of  F-structures, G(2) , G(2). Of course, OHo(X, S) has finite order (>  1) in 
r(x,  s). 

6. Openness  o f  the map A - -  G(A)H0 

Let G0~ f2ff and A be fixed as in Section 5. A is a weaving for G(2), 2 ~pI(A),  
and therefore we can imagine that G0 = G(20) for any fixed 2o. Do(., �9 ) and a( . ,  �9 ) 
are as in Section 1. 

If e > 0, A, denotes the set obtained by extending each end 7 c_ A to an end 
7(e), relative to G0, of  length 17 Ir + e. Assume e is small enough that A~ and A ~ are 
homotopically the same. 

Let Gn E f~J- be a sequence such that limn D0(Gn, G0) = 0. It is no loss to suppose 
then that limn a(Gn, G0) = 0. For large n each ~,(e) above which is a vertical (resp. 
horizontal) end lies in a sector determined by Fh(G~) (resp. F~(Gn)). In the same 
sector let ~'n(e) be the vertical (resp. horizontal) end of ~n of length I~'(e)Ir -- 
I ~'n(e)Ir and let A~be the union of the ends ~'n(e), ~' C_ A. For large n A~ may be 
"trimmed" to become a weaving An of G~. Moreover, there exists ~n ~ H(X, S) 
such that ~nA --- An, and 0n is uniformly close to Id, meaning ~n EHo(X, S), large 
n. Now Gn~n determines 2n~PI(A)~, and limn2n=2o. As G(2n)Ho(X,S)= 
GnHo(X, S), large n, we have 

6.1.  P r o p o s i t i o n .  With notation as above, the map J2 = G(2)H0(X, S) is 
open from P~(A) to ..r162 = f ~  /Ho(X, S). 

7. T h e  m a n i f o l d  s t r u c t u r e  o f  d /~ (S)  

Let the notations be as in Section 6. We use ~ -- ~ ( S )  to denote the set of  
weavings A which arise from elements G0E ~ which are in general position. 
Proposition 6.1 sets up a correspondence between elements of A and open sets, 
E(A) _ d /~ ,  where E(A) = JPI(A). IfFA ---- J - I  on E(A), then 

(7.1) F^ : E(A)--- P~(A) 

is a homeomorphism. 
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7.2.  D e f i n i t i o n  80 = 8o(S) denotes the set of  charts, (E(A), F^), in (7.1). 
Also, define (~r162 to be the union of  the domains, 

(7.3) (.~r U E(A). 
AE~r 

(.gr contains every class ~7o(X, S) such that ~ ~ fl+ is in general position, 
but of course it contains other classes as well. On the other hand, there will be 
elements of.~r162 which do not occur in (~r 

If  0 E R, define A (0) E G = SL(2, R) to the matrix of  rotation by 0, 

( c ~  sin00) 
A (0) = _ sin 0 cos " 

I f  ~ f l ~ ,  Proposition 2.8 implies A(O)~ is in general position for all but a 
countable set of  0. It follows that 

~ = U A ( O ) ( ~ r  
Oe.R 

and therefore the atlas, 8 = 8 ( S ) ,  defined by 

(7.4) 8 = {A-I(O)E(A), FA.A(O)) ] 0 E R ,  A ~ / r }  

endows ,#r with the structure of  a topological manifold. The discussion to follow 
will enable us to calculate the transitions associated to 8 and to determine the 
action of G on .~r162 in local coordinates. 

Suppose AI, A 2 ~ / r .  Proposition 4.16 implies there are canonical isomor- 
phisms, 

p~,^, �9 ~ ( A , ) - *  s 

(7.5) p,~,^, : ~r~(Al)--* ~rl(A2) 

and that these are related by 

(7.6) 

and 

(7.7) 

In what follows we adopt the notation 

(7.8) fl* = pail e ~r'J,(A) 

rA,A, ---- rA2A, ~ rAv~2 (r -- ph or pV) 

jOA2 ~ / = PAhlA:t ~ 

(fl ~ ~ (A)). 
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The composition 

(7.10) 
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Let A~, AE~r a n d A  E G ,  and define 

K(At, A2, A)) = A -IE(A2) N E(At). 
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and if ( U , f )  is a compatible chart for ~(2), then by definition (U, a o f )  is a 
compatible chart for A~(2). In this coordinate ogAr - f*A*dz, or 

(7.11) o9Ar = (aux + bv~) + i(cu~ + dva). 

We use (7.8) to determine the elements of ~e~ which correspond to Re OJAe(a) and 
Im OgA,(~). They are 

aua + bva -~ aa + bfl*, 
(7.12) 

cu~ + dva ~-- ca + dp*. 

Suppose now AJ(2)EE(AI), and write JA~-~AJ(~), where 2~=(a l ,  fll)E 
pt(A 0. It follows from (7.6)-(7.7) that 

(7.13) 
a, = p ,(aa + bp*), 

= phi(cot  + 

Introduce complex coordinates ( = a + ip* and ~ = ai + ifl*. If  A =A(0) ,  
0 E R, then (7.13) implies 

(7.14) ~l =e-i~ 

where p~,  is C linear on ~e~ ~ C. We have 

7 .15 .  T h e o r e m .  Let N = dim H](X, S). The atlas 8 in (7.4) gives . ~  the 
structure of a complex N-manifold. The coordinate transitions for 8 are represen- 
table in the form (7.14). 

A H~,A, = F^2oA oFL 1 

has the domain F^,K(AI, A2, A ) _ P~(At) and image contained in PI(A2). We shall 
compute (7.10) in these coordinates. 

Let AE~iV and 2~P~(A). If  2 ~ ( a ,  fl), and if o),(x)= u~ + iva in real and 
imaginary parts, condition (c) at the beginning of  Section 5 implies a = u'~ and 
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Proof .  If 0~, 02 ~ R and A = A (01 - 02), a typical transition for r has the form 
(7.10) on the domain F^,K, K = (A1, A2, A) as in (7.9). By (7.14) this function is 
C linear, and the theorem is proved. 

The isomorphisms (7.5) arise as the maps induced on various realizations of  
H~(X, S) by the identity map of X. These induced maps also are defined on the 
level of  the integer cohomology, HI(X,  S); this means each map in (7.5) sends the 
integer lattice in its domain (using the natural coordinate systems of the base 
comprised of edges) onto the integer lattice in its range. The significance of this 
fact is the following: If/z^ is the additive Haar measure on &r~ which assigns 
covolume 1 to the integer lattice, then 

(7.16) phA,/Z^, = #As" 

It follows from (7.14) that if 0 ~ R, A ~ ~t/~, and ifvo, A = A - 1(0)Fs ~(p^ • then 
{Vo, A I 0 ~ R, A E ~ }  determines an everywhere positive real analytic measure,/~, 
on ~r 

7.17.  T h e o r e m .  Let I~ be defined as above on ~tt~ = ~r /~ is invariant 
under the actions of  G and F(X, S) = H(X,  S)/Ho(X, S). 

Proof .  Invariance under F(X, S) is tautological and will not be proved. As 
for G, it is necessary to calculate with (7.10). To this end we use the notations of  
(7.12) and (7.13) to realize H~,  as a 2 • 2 matrix of operators, 

(7.18) H = ( a p  bp) 
cp dp 

where p = p h  and H acts on column vectors 

(~ a e B e  
8" ' 

Because p~^ -- #^, and ad - bc -- 1, (7.18) is measure preserving from ~ (A) X 
~e~(A) to ~e~(Al) X &r~(A0. The theorem follows. 

If ~ ~ f~-, A E  ~/r, and 2 EPI(A) are such that ~(2) = ~, and i f2 = (a, fl), then 
by definition 

' f  (7.19) [a, fl] = ~  w~^(o~. 

X 

The maps (7.5) are isometrics relative to the intersection form, and therefore 
(7.19) is well defined and real analytic on ~//~-. (Real analyticity in local 
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coordinates is a consequence of Proposition 4.19.) The representation (7.12) 
implies 

(7.20) ,f V( H0) = ^ 

x 

is G invariant, and we have 

7.21.  T h e o r e m .  Let m = ~-Io~dl~(S) ,  and define V(m) by (7.20). Then 
(1) V(. ) is real analytic and positive on J l ~ ,  
(2) for each t > 0 the level set Vt- 1 is a real analytic embedded submanifold o f  

.41~(S), and 
(3) Vt- ~ is both G and 1-'(X, S) invariant. 

Proo f .  Statement (2) is easily proved in local coordinates, thanks to Proposi- 
tion 4.19. Statements (1) and (3), save the tautological (F(X, S)) part of  (3), have 
been proved. 

7.22.  R e m a r k .  Define ~ : ~tI+(S)- ,H~(X,  S) by ~(m)  = @, any ~ E m .  
In the notation of (4.17) and (7.1), ~ = R C o F A  on E(A), where RC(a, fl) = 
Rot + iRfl = R(ot + Jr*). It follows ~ is a local biholomorphism and ~q~(S) is a 
Riemann domain. 

8.  ~ + ( S ,  z) 

Let X, S and ~ - ( S )  be as in previous sections. In this section we suppose there 
is given in addition an element z E H ( X ,  S) such that (a) z 2 = Id, (b) zS = S, and 
(c) Fix(z) c_ S. In this situation l(z) = Card(Fix(z)) is the Lefschetz number of z. 
It is a fact which goes back to Neilsen that if z~ satisfies (a)-(c), and if l(z|) = l(z), 
then z~ = ~ -  ~z~ for some orientation preserving homeomorphism ~, ~S = S. (If 

z Is = z, ]s, one may assume q ~ H ( X , S ) . )  Note that this also implies the 
existence of a commutative diagram 

X , X 

(8.1) c c 

r 
X I t  , XIz  

where c denotes canonical projection. (A proof of(8.1) is given in [V84].) 
Introduce the space ~ + ( S ,  z) _ f~+(S) as 

(8.2) n+(S ,  z) = {~ EE~o+(S) I z*o~r = - o9r 
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Define Z(z) to be the centralizer ofz  in H(X, S), and let Lo(z) = Z(z) O H0(X, S). 
Introduce the objects 

,Ig+(S, z) = f~+(S, z)lLo(z), 

r ( r )  = Z(z)/Lo(r). 

The diagram (8.1) implies dr z) and ~H+(S, Zl) are  isomorphic when l(z~) = 
l(z); the isomorphism is determined up to elements of F(z) and F(z0. In 
particular, the moduli spaces are canonically isomorphic, 

(8.3) ~r z)/F(z) ~- ~r zl)/F(zl) (l(z) = l(zO). 

Let X~ = X / z  in (8.1), and let c - - c , .  If ~ is an admissible F-structure on 
X~ - G S ,  then ~ determines an admissible F-structure, denoted (by abuse of  
notation) ~G, on X - S. If ~ is not positive, i.e. if zt(~) = (k, v, - 1), and if 
rt(~c,) = (0, ~, + 1), then ~c~ determines two elements of fl+(S, z), correspond- 
ing to _ tor Conversely, if r/Ef~+(S, z), there is a second element - r / ~  
f~+(S, z), to_, = -  to~, and the pair {q, - r / }  determines an element ~ on 
X~ - GS such that r/U - r/__c_ ~G. 

While our analysis will apply to . / /+(S, z), only a portion of ~/r z) is 
related to the spaces V(rr) and I7"(70 in Section 1. To understand the connection 
the set SN(,) ---- S, U Tfrom Section 1 will play the role of GS. It will be assumed of  
zt that n = (n, v, - 1), i.e. e = - 1. I f M ( n )  = n + X•=0 v(2l + 1), then for each 
[~] ~ W(n) (see (1.1)) there exists a 2-sheeted branched cover with MOt) branch 
points, X c' , X~, and two elements o f~ /+ (S ,  z) which project to [~]. I f [  _+ r/] 
project to [~], the order of _+ o9~ at points of  r -  ISN(,) = S are determined by it and 
(1.1). Conversely, any [q] ~ d /+(S,  z) which has the prescribed orders at points of  
S projects to [~] E WOO. Define W~(rt) c_ W(rt) to be the set of  [~] which arise 
from some [ r / ]~J /+(S ,  z), and let ~/+(S,  z, ~r) be the corresponding subset of  
d /+(S,  z). Now F(z) projects to a subgroup, F,(g, N(zt)), of  finite index in 
F(g, N(rt)). As (8.1) implies W,(n)F(g, NOr)) = W(zt), it is true that the moduli 
spaces involved are canonically isomorphic, i.e., 

(8.4) 
l?(rt) /F(g,  N(zt ) )  _--__ W(zt)/F(g, NOt)) 

_~ W~(rt)/F~(g, NOt)) ~t+(S,  z, n)/F(n). 

Because of (8.4), we will study ~r + (S, z) and its moduli space d t+  (S, z)/F(z). 
There is no further need for the symbol ft. 

Let ~//'(S, z) be the set of  weavings A E ~r such that (a) A arises from some 
E fl  +(S, z) in general position and (b) zA = A. Recalling that Fix(z) C S, it is 

true that z a n  a = ~ when a is an open edge or face o f A ~ t r ( S ,  z). 
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I f A ~ ' W ( S ,  r), define ~ , . ~  = ~g,~(A) for �9 = h or vto  be the - 1 eigenspace 
of  3" in ~g(A).  If A arises from ~ + ( S ,  z), ~ determines an element ~E  
P~(A) = P~,~ • P~,, where P~,, = P~ N s , .,~, . = h  or v. Conversely, if 2 ~  
P~(A), then ~(;t)~f~+(S, z). 

In what follows the group L(z) is used to determine a metric on ,~t/+ (S, z) (i.e. 

use K = L(z) in the discussion preceding Remark 1.2). Corresponding to Propo- 
sition 6.1 we have 

8.5.  P r o p o s i t i o n .  Let A E ~ ( S ,  z). The map J~A = ~(2)L(z) is a homeo- 
morphism between P~ (A) and an open set E~(A) = J~P~ (A) ___ dr z). 

Notice that 

(8.6) dimi AvI,,,(A) = g(X) - 1 + �89 Card S ( ,  = h or v). 

The reason is that l(z) enters in two formulas, (i) d im(B~N ~e~, , )=  

�89 - l ( z ) ) ,  * = h or v, and (ii) l ( z )=  2 + v -  - v  +, where v -+ are the dimen- 
sions of  the + 1 eigenspaces of  z* on HI(X), v § + v-  = 2g. When (X, S, 3) arise 
from V(n), then l(z) = M(rt) above, Card S = 2N(rt) - M(rt), and 

(8.7) dim Z 1, ,(A) -- 2g(X0 + N(rt) - 2. 

8.8.  R e m a r k .  Note that (8.7) is 1 less than dim2 H I ( X ,  Ss(.)). We~will see 
that (8.7) is the complex dimension of  V(lt) when e(n) = - 1, so in all cases 

e - 3  
(8.9) d i m ,  V(n) = 2g + N(n)  + 

2 

where g is the genus of  the surface carrying V(rt) ( =  g(XO above when e = - 1). 

8 .10 .  T h e o r e m .  Let 

$(S,  z) = {A-'(O)E,(A), F~ oA(O)) I O ~R, A~'~r z)}, 

where F~ = J; -~ in Proposition 8.5. Introducing complex coordinates 
(a + ifl*E ~ s as in Section 7, 8(S,  z) gives Mt+(S, z) the structure o f  
an affine complex manifoM. Moreover, $(S,  z) coordinate transitions are eucli- 
dean measure preserving. 

The last statement in Theorem 8.10 follows as in (7.16). (The integer lattices of  
the + l-eigenspaces of  z* correspond under ph, . )  It follows that ~(S, 3) deter- 
mines an everywhere positive real analytic volume element/z and that /z  is 

invariant under both G and F(T). 
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9. Special weavings 

X, S, and ~ -  = f ~ ( S )  have the usual meanings (Section 5). In this and the 
next two sections we shall establish topological lemmas, Lemmas 10.26 and 
11.22, which will play a critical role in establishing the finiteness of  certain 

integrals. Let #~' -~ ~t/(S) be the set of  weavings defined in the first paragraph of  

Section 7. 

9. I a. A contains a single horizontal end, 7, and 7 is outgoing. 

9. lb. A contains a vertical edge, et, such that 0e~ = st - xt with st E S  and xt 

the terminus of  7. 

9. lc. If x is a vertex of  A, then either x = xt in 9. lb, x E S ,  or x is a vertical 

terminus. 

9.2.  N o t a t i o n .  If A is a special weaving, the notations 9.1 a-c will be used 

in reference to A. In addition, we write 
(i) So for the element of S at which 7 is a (horizontal) end, 
(ii) er (T for terminal) for the edge of  A on 7 which has xl (9.1b) for its 

right-hand endpoint, 
(iii) e0 for the vertical edge whose upper endpoint is xL and yl for the other 

endpoint of  e0, Oe0 = xt - yt (note Yt is interior to 7 because e0 + eL is an 

end at st (9.1b)), and 
(iv) eR for the edge on 7 which has YL for right-hand endpoint. 

9.3.  L e m m a .  Let A be a special weaving. I f  x is a vertex of  A which is 

interior to y, and i f  ex is the unique vertical edge which has x as one endpoint, then 

either x = y~ and ex -- e0 (9.2(iii)) or there exist sx ~ S  and e(x) = +_ l such that 

Oex = e(x)(Sx - x). 

P r o o f .  Let s~ be the endpoint ofe~ which is different from x. I f x  ~ y~, then 
sx ~ x~. If  s~ ff S, then by 9. lc both x and s~ are vertical termini. This is not 

possible because e~, being an edge of  A, has no point of  S in its interior. The 

lemma is proved. 

9.4.  P r o p o s i t i o n .  Let ~ f ~ ( S )  be in general position. There exists a 

special weaving for ~. 

P r o o f .  It is our continuing assumption that S v~ ~ (Section 2, paragraph 2). 

Fix soES, and let 70 be an outgoing horizontal end at so. Select st E S ,  perhaps 
s~ = So, and let ~0 be an incoming vertical separatrix at s~. Define x~ to be the final 

point of  intersection between 70 and ~0, before 60 reaches s~. Then define 7 to be 
the horizontal end obtained by truncating 70 at xt. ~o intersects 7 infinitely often. 
In particular there is a point Yl ~ t~0 f') 7 such that if 6 is the vertical end obtained 

by truncating ~0 at Yt, then ~ N 7 = {Yt, xt} (plus possibly So--st). Finally, for 
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each s ~ S and vertical separatrix, 0, at s such that (s, 0) :~ (Sl, ~0), let Xo be the 
final point of intersection of  0 and 7, before s. Define ex, to be 0 truncated at x. 

A E 7 U 6 U U ex 0 is the desired special weaving. 

9.5.  R e m a r k .  The convention that el be an incoming end at s~, in 9.1b, is 
purely for notational convenience in this section. In later sections el will be 

allowed to be outgoing (0e~ = x ~ -  sO, and with obvious modifications in the 
definition and notations, the weaving will still be called special. One may also 
define "special weaving" by interchanging the occurrences of the words "horizon- 
tal" and "vertical" in Definition 9.1. This will not arise in the present chapter. 

The two lemmas which follow are immediate consequences of  the definition 

and Lemma 9.3. Proofs are omitted. 

9 .6 .  L e m m a .  Let A be a special weaving, and let U be a component o f  A ~. I f l  

is the left side of  U (i.e., corresponding to the left side o f  the associated rectangle 

R(U)),  there are three possibilities for l: 

(i) l = eso where eso is a vertical end at So (see 9.2(i)), 
(ii) l is the union o f  two vertical edges which are ends at some s ~ S ,  

(iii) l is the union o f  ey I, el, and possibly a third vertical edge, e~, such that 

Oe~ = x~ - Sl, x~ interior to 7. 

Lemma 9.6 implies in all cases that l contains an element of  s. 

9.7.  L e m m a .  Let A and U be as in L e m m a  9.6. I f  r is the right-hand side of  

U, there are two possibilities for r: 

(i) r = ey,, 

(ii) r is the union o f  two vertical edges which are ends at some s E S .  

9.8.  C o r o l l a r y .  Let A, U, r, and I be as in Lemmas  9.6-9.7. Then l contains 

an element o f  s, and i f  r § eye, r contains an element o f  S. 

9.9.  N o t a t i o n .  U1 will denote the component of  A c whose right-hand side is 

ey I (as in (i) above). 

1 0 .  B a s i c  L e m m a  - -  P a r t  I 

In this section A denotes a special weaving associated to some ~ ~ f~0 + (S) in 
general position. Let there be fixed linearly independent sets, A = (al . . . . .  aN) _C 

&r~ and B = {ill . . . .  , fiN) _C_ ~e~, such that 
(1) A c_ P] and B _c P~, 

(2) Z~=l a, ~ P~, and 

(3) for each i, 1 < i _-< N, a~ is an extremal of  the cone P~. 
We assume p, q are integers such that a < p, q < N and 
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(10.1) [ai, flj] = 0 ( l < j < p , q < i < N ) .  

V and W shall denote the linear spans of  {aq+~ . . . .  , a s}  and {pt , . . .  ,pp}. 
Finally, define a* ~ V r P~ and p* E W N P~ by 

N p 

(10.2) a * =  Y. ai and /3*--Y. flj. 
i ~ q + l  j - I  

Observe that i fa*(e)  -- 0, then a(e) -- 0 for all a ~  V. A corresponding statement 
holds forfl* andfl  ~W. This section is devoted to provingp < q; moreover p -- q 
only iffl*(e0 > 0 (Lemma 10.26). 

10.3. L e m m a .  With notations and assumptions f ixed as above, the con- 
dition (10.1) is equivalent to each o f  the conditions (10.4) and (10.5) below: 

(10.4) [a*, fl*] -- 0, 

(10.5) a*(U)fl*(U) = 0 (all components U c_ A0. 

P roo f .  Assumption (1) of  the first paragraph and Proposition 4.19 imply 
[a;, Pi] > 0 for all i, j .  Therefore, (10. l) and (10.4) are equivalent. Assumption (1) 
also implies the left side of(10.5) is nonnegative for all components U _C A c, and 
Proposition 4.19 implies (10.4) and (10.5) are equivalent. The lemma is proved. 

10.6. L e m m a .  With notations and assumptions f ixed as above, suppose 
a ~ ~'~h, fl ~ W, a n d f E  C~o(S) l are such that 

(10.7) a + ,8 ---- O*f. 

I f  U is a component o f  A c distinct from Ui (see 9.9), and i f  fl*(U) --- O, then j 
vanishes at the four corners o f  U. In particular, 

(IO.8) a (U)  = 0 (b'*(U) -- 0, U § U,). 

Proof .  Let e be a vertical edge of  A on OU. Iffl*(U) = 0, then fl*(e) -~ O, and 
by the remark preceding the lemma f l (e)= O. Since e is vertical, a(e)= 0 
automatically, and (10.7) implies O*f(e) = O. That is, f assumes the same value at 
each endpoint of  e. It followsfis constant (on the set of  vertices) along each side 
of U. If  U ~ Ut, the fact f [ s  = 0 combines with Corollary 9.8 to imply the 
constants are both zero. The lemma is proved. 

In the case that fl*(Ut) = 0, the argument above does imply f i s  zero along the 
left side of  U and also that O*f (ey , )= f (x l ) - f (Y l ) - -0 .  If  it is assumed or 
otherwise known that fl*(eO -- 0, then f (y0  = f(x~) = f(st) = 0. We can state 
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10.9 .  L e m m a .  Let  notations and assumptions be fixed as above. I f  B* and 

el satisfy 

(10.10) fl*(el) = 0 

and iron, r ,  and f satisfy the hypotheses o f  Lemma  10.6, then (10.8) holds for all U, 
including U = U~ (assuming fl*(U~) -~ 0). 

10.11 .  L e m m a .  Let notations and assumptions be f ixed as above. I f  
fl*(e~) = O, then V and W are linearly independent modulo O* ~o(S) • 

P r o o f .  Let a E  V, fl E W, f E  ~0(S) • be such that (10.7) holds. It is to be 
proved that ot = 0 = p. To this end, let e _ A be a horizontal edge such that 
a*(e) > 0. Set Oe = al - -  a2. Because A is a special weaving, there exists f o r j  -- 1 
or 2 a component, U j ___ A c, such that aj is a comer of  UJ and e ___ OU j. Since 

a*(U j) > a*(e) > 0, (10.5) implies fl*(UO = 0. Since fl*(el) = 0 by assumption, 
Lemma 10.9 implies f ( a j ) = 0 ,  j = 1, 2. Now (10.7) implies a(e)=O. Since 
a ( e ) = 0  is automatic when a* (e ) - -0 ,  we have a = 0 .  Lemma 4.12 implies 
~ A O*~o(S) • -- {0}, and fl -- 0 follows from (10.7) and the fact a = 0. The 

lemma is proved. 

If  we do not assume fl*(et) -- 0, the argument used in Lemma 10.11 applies to 
every horizontal edge except e -- eR. (If e -- er, choose U j above to be distinct 
from U~. That is, if U ~ -- Ul, select U2.) The conclusion is that i f a E  V, f i e  W, 

a n d f ~  ~0(S) ~ satisfy (10.7), then a = ceR for some c ER.  We have 

10 .12 .  L e m m a .  Let notations and assumptions be fixed as above. Then 
V N ( W  + O*~o(S)• That is, i f  a ~  V, f l ~  W, and f ~  ~o(S) l satisfy 
(10.7), then there exists c E R such that 

(10.13) a = ce~. 

Observe that if 0*eR § 0, then c ---0 in (10.13). The necessary and sufficient 

conditions that 0*eR = 0 is that e~ lie on both top and bottom of U~, when U~ is 
realized as a rectangle in C, using a chart which is compatible with ~. It is 

equivalent to require that el is interior to U~. 

10 .14 .  L e m m a .  Let  notations and assumptions be fixed as above. Suppose 
i, 1 < i < q, is such that there exists a solution (vi, wi, f~) E V • W • O* ~o(S) • to 

(tO.15) ai = vi + wi + O*fi. 

Then also 

(10.16) ai(e) = vi(e) (e • eR, a*(e) > 0). 

Iffl*(el) = O, and i f  a*(eR) > O, then (10.16) holds for e = e~. 
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Proof .  Let a = a i - v ~ ,  / 3 = - w i ,  and f = f ,  in (10.7). If  e * e R ,  and if 
a*(e) > 0, the proof of  Lemma 10.11 showsf~ vanishes on 0e. Therefore (10.16) is 

true. If  fl*(e~)= 0, and if a*(eR) > 0, then c3*f(eR)= O, and (10.16) holds for 

e = e R .  

10 .17 .  L e m m a .  Keep the same notations and assumptions as in L e m m a  

10.14. I f  fl*(e~) = O, then v~ = O. 

P r o o f .  If  e is an edge such that v~(e) ~ O, then because v~ ~ V, we have also 
a*(e) > 0. Lemma 10.14 now implies v~ > 0, i.e., v~ ~P~.  Recall the assumption 

(3) of  the first paragraph of  this section: ai is an extremal of  the cone P~. Since 
O l i  - -  l) i ~ P~ and vi E P~, it follows that there exists t > 0 such that v~ -- tai. Since 
i _-< q, and since A is by assumption a linearly independent set, it cannot be that 

ai ~ V. Therefore, t = 0, and v~ = 0. The lemma is proved. 

Iffl*(e~) = 0, Lemma 10.17 reduces the study of  the equation (10.15) to the 

equation 

(10.18) oti= wi + O*fi. 

Lemmas 10.6 and 10.9 imply the relation 

(10.19) a,(U) = 0 (fl*(U) = 0). 

In preparation for the next lemma, define L(fl*) to be the union of  the closures, 

0,  of  all components U _ A c such that fl*(U) = 0. Similarly, define L(a*). We 

observe that (10.5) implies L(a*)  t3 L(fl*) = X.  

10.20 .  L e m m a .  I f  the hypothesis o f  L e m m a  10.14 is true for each i, 

1 <= i < q, then fl*(el) > 0. 

P r o o f .  If  fl*(el) = 0, then Lemma 10.17 and the discussion which precedes 
this lemma imply (10.19) is true for 1 _-< i =< q. Let e be a horizontal edge in L (fl*). 

By (10.19) and the definition of  L(fl*) it must be that ai(e) = O, 1 < i <= q. 
Assumption (2) of  the first paragraph of  this section now implies tz*(e) > 0. Now 

(10.5) implies fl*(U) = 0 for every component o f A  c which has e on its boundary. 
Therefore, e f~OL(fl*). Since e is an arbitrary horizontal edge in the closed set 
L(fl*), we have OL(]3*)c_ ~ .  Lemma 4.8 implies OL(]3*)= 0, and therefore 

L(fl*) = X or L(fl*) = ~5. If  L(fl*) -- X, then fl* = 0, contradicting the assump- 
tion p >_- 1. If  L(fl*) = ~ ,  then L(a*)  = X,  and a* = 0. This contradicts the 

assumption q < N. The lemma is proved. 

The lemma which follows is the first form of our basic lemma. 

10 .21 .  L e m m a .  Let notations and assumptions be as in the first two para- 

graphs o f  this section. I f  N = dim ~e~, and i f  fl*(e~) = O, then p < q. 
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P r o o f .  Let 17 and W be the images of  V and W in H~(X, S) under the 
canonical projection. Proposition 4.16 implies dim 17=dim V = N - q  and 
dim W = d i m  W = p .  Since fl*(eO=O, Lemma 10.11 implies 17and W a r e  

linearly independent in H~. As N = dim H~(X, S) by assumption (and Proposi- 
tion 4.16), it follows p + ( N - q ) < N  or p < q .  If p - - q ,  then I7+ W =  

H~t(X, S), and it follows the hypothesis of  Lemma 10.14 is true for 1 =< i < q. But 
fl*(e~) = 0, and we have reached a contradiction to Lemma 10.20. The lemma is 
proved. 

If(10.10) is not true, the conclusion of Lemma 10.21 may also not be true. The 

lemmas which follow will lead to a second form of  the basic lemma. Recall from 

Lemma 10.12 that V A (W + a* ~0(S) 1) ___ ReR. 

10.22.  L e m m a .  I f  V N (W + O* cg0(S)• ) = ReR, then 
(a) eR is the left-hand edge on the top o f  U~, and 
(b) i f  e ~ eR is a horizontal edge on aU~, then a*(e) = O. 

P r o o f .  The hypothesis implies there exist fl E W, f ~  cg0(S)• such that eR = 

fl + O*f. Since a*(eR) > 0, the proof of  Lernma 10.6 implies f (x ' )  = 0, where 
tier = y~ -- X'. Because a*(U,) > a*(eR) > 0, (10.5) implies fl*(U~) = 0, and there- 

fore f(Y0 = f(xl). Since O*f(eR) = 1, f(YO = f(xl)  = 1 ~ 0. Choose the edge e on 
top of U~ which satisfies both 

(i) a*(e) > 0 and 
(ii) the fight endpoint, x",  o f e  is closest to x~, subject to (i). 

I f e  4 eR, Lemma 10.6 impliesf(x")  = 0, and (i)-(ii) implyf(x~) = f(x").  This is 
impossible, and therefore e = eg. We claim x', the left endpoint of  eg, is interior 

to the base of  U~. For otherwise eR is the entire base of  U~, and consideration of  
~ -~  ai ~P~ implies eR is the entire top of  U~. But then U~ is a cylinder of  closed 
leaves for ~ (~ ) .  This contradicts the assumption ~ E D,0 + (S) is in general position. 
Finally, since x '  is interior to the base of  U~, x '  is the terminus of  an outgoing 

vertical end. This implies x '  is the left-hand endpoint of the top of  U~, and the 
lemma is proved. 

10.23.  L e m m a .  Suppose V N ( W  + 0*c~0(S) ") = ReR. There exist io, q < 
io < N, and t > 0 such that 0% = teR. Moreover, i f  1 < i < N and i ~ io, then 
~;(eR) = 0. 

P r o o f .  Let  1 _-< io < N b e  such that a~o(eR) > 0. The hypothesis o f  the lemma 
implies eR EP~, and the choice ofio implies there exists e > 0 such that a~ - eeR 
P~. Arguing as in the proof of  Lemma 10.17, there exists ~ > 0 such that 

eeR = Ja~o. This time, e > 0 implies c~ > 0, and therefore a, 0 = (e/~)eR. The facts 
io>  q and io is unique follow from a*(eR)> 0 and the assumed linear indepen- 
dence ofA = {al,.  �9 �9 a~}. 

In the event that V (~ ( W + d* ~0(S) • = ReR, Lemma 10.23 implies there is no 
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loss of  generality in assuming a~+l = eR and a,(eD --- 0, I _-< i < N, i # i~ In this 
situation let V~ be the linear span of aq+2 . . . .  , am Replace q by q + 1 in the 
second paragraph of  the introduction. Because V~ tq ReR = {0}, Lemma 10.12 
yields 

10.24.  L e m m a .  Let the assumptions be as in Lemma 10.23. Then I7" 1 and I1/ 
are linearly independent subspaces of  H~(X, S). 

We continue to assume the hypothesis of  Lemma 10.23. It is possible that 
q + 1 -- N, but in this case it is automatic that p < q. In what follows we suppose 
q + 1 < N, and we use & --- Y~ff-q +2 aito correspond to o~*. Replace V by VI and a* 
by & in the statement of Lemma 10.14. Because &(eR)= 0, the conclusion of  
Lemma 10.17 is ~,alid, even though necessarily fl*(eO > O. 

Lemma 10.23 implies p < q  + 1. I fp  = q  + 1, then I71 + W = H ~ ( X , S ) .  The 
hypothesis ofLemma 10.14 is therefore true for I _-< i _-< q, with Vreplaced by V1. 
Now Lemma 10.6 (but not I 0.9) applies as in (10.19), to yield 

(10.25) oli( U ) = 0 (1 <_~ i <_~ q,  f l*( U)  -~- 0, U ~ UI). 

Now define L0(f l*) - -L(f l*) -Ol .  (Observe that f l * ( U 0 = 0  because 
a*(Ul) > a*(eR) > 0.) Because eR is interior to Ui, eR ~ L0(fl*). I f e  is a horizontal 
edge which lies in Lo(fl*), the argument used in Lemma 10.20 implies e ~ 0L0(fl*). 
It follows as before that 01,o(,8")= 0, and since L0(fl*)§ X, it must be that 
Lo(f l*) - -~ .  That is, L(f l*)= 01. As L(a*)U L(fl*)= X, it is the case that 
L(a*) = (Ul) c. Lemma 10.22 implies q = N -  1 (and V =  ReR), contradicting 
the assumption q + 1 < N. We have 

10.26.  L e m m a .  (Basic Lemma - -  Part I). Let the notations and assump- 
tions be as in the first two paragraphs of this section. Then p <= q, and p = q only i f  
fl*(eO > O. 

1 1 .  B a s i c  L e m m a  - -  P a r t  I I  

In this section we shall establish a counterpart to Lemma 10.26 for certain 
weavings associated to f/+(S, z) (see (8.5)). Some preparations are necessary. 

11.1. D e f i n i t i o n .  Let ~ ~ f l  + (S, z) be in general position. A weaving A of  
shall be called z-special if  

(a) A is a special weaving, and 

(b) in the notation of  9. la, b, z~, r ez -- O (i.e., z7 contains no point interior 
tO el). 

l l . 2 .  L e m m a .  Let ~ = ~+(S, z). I f  ~ is in general position, there exists a 
z-special weaving of ~. 
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Proof .  Let So, ~)0, Sl, ~0, and Xl be as in the proof of Proposition 9.4. Define 
x* ~ ztf0 n 70 to be the last point of  the intersection before zS0 reaches ZSl. Let a~ be 
the arc length along 80 from Xl to &, and let a2 be the arc length along zS0 from Xl* 
to zs~. Ifa~ < a2, continue with the proof of  Proposition 9.4. If a2 < a~, replace 80 
by zS0, Xl by x*, and reletter. Again continue with the proof of  Proposition 9.4. 
Since z7 n e~ § ~ if and only if ~ n ze~ ~ ~ ,  the construction above implies 

z7 n el = ~ .  The lemma is proved. 

If A is a z-special weaving, define As by 

(11.3) As =y  u zy u ( A n  zA). 

We prove 

11.4. L e m m a .  Let A be a z-special weaving, and let As be defined by (11.3). 

As satisfies 
(i) As is a weaving, 
(ii) zA~ = A~, 
(iii) A, contains e~ and ze~ as edges. 

Proof .  Since zS = S, As is a finite union of ends. Fix s ~ S ,  and let ~ be a 
vertical separatrix at s. Because A is (z-) special, A and zA contain ends, e' and e" 
respectively, of~,  and A~ O J -- e' n e". I f x  is the terminus ofe '  O e", then x is 
the terminus of one ofe'  or e", and therefore x is interior to one of 7 or z?. Since s 
and 6 are arbitrary, A~ satisfies the weaving property at each vertical terminus. 
Since A, contains an end of every vertical separatrix, As satisfies the weaving 
property at every s ES .  Finally let e" _ zA be the maximal vertical end at s~ such 
that e " n  (ey I + et) is nontrivial. Because A is z-special, e" contains e~. Also, 
because z7 N 7 = ~ (z interchanges notions of "incoming" and "outgoing"), e" 
contains e~ properly. Therefore, x~ is interior to the vertical end e" n (ey, + e~) _ 
As. The weaving property is established for x~ and, by the symmetry of(11.3), for 
zxa. Property (i) is proved. Property (ii) is obvious from (11.3), and Property (iii) 
has already been noted. The lemma is proved. 

In all that follows A is a fixed z-special weaving associated to an element 
E fl  + (S, z) which is in general position. A~ is defined by (1 1.3). Denote by U* 

the component of A~ which has x~ in its upper-right hand comer. In the notation 
used for the proof of the previous lemma, the right-hand side of U* is an edge, 
e* = e" n ey 1, which contains no element of  S. e* and ze* c_ OzU* are the only 
sides of components of  A~ which do not contain elements of S. We have 

11.5. L e m m a .  Let notations be as above, and suppose U is a component of 
A~. I f  U § U*, zU*, both vertical sides of U contain an element of S. I f  U = U*, 
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the left side of U contains an element of  S; i f  U = rU*, the right side of U contains 
an element of  S. 

P r o o f .  re* is the left side ofrU*. IfrU* = U*, then U* contains a fixed point 

of  r (at its center with respect to a ~-compatible chart), contradicting the 

assumption Fix(r) ___ S. Therefore, rU* # U*, and re* is not the left side of  U*. 

The lemma now follows from the preceding discussion. 

Let N = dim ~et = ~ , , ( A , ) .  We recall that N is the dimension of  the - 1 h , ' r  

eigenspaces for r* on H](X, S) and for r on .~eL(A,), m = h or v. 

Let there now be given linearly independent  sets (bases), A = {al . . . . .  aN} __. 

~e~ and B = {,81, fiN} c ~e~ We assume in addit ion the properties h ; z ' ,  " " ~ ' - -  V , T  ~ 

(1) A __. P~., and B c_ P2, 3, and 

(2) for each i, 1 < i < N, ai is an extremal of  P~.,. 

With notations as above, assume integers p and q are such that  1 < p,  q < N and 

(l 1.6) [o~,,sj] = 0 (q<i<=N,l<=j<=p). 

V and W denote the linear spans o f  {aq+t . . . . .  as} and {fil . . . . .  tip}, respec- 
tively. Also, define a* = X~u=q+ 1 ai and ,8* = Ee= 1 ,sj. 

As in Lemma 10.3 the assumption (1) above implies (11.6) is equivalent to each 

of  the conditions 

(11.7) [c~*, ,8*] = 0 

and 

(11.8) o~*(U)p*(U) = 0 (all components  U ___ A~). 

Lemma 10.6 is concerned with the equation 

(11.9) o~ + p = O*f 

in which a E  ~e~, ,8~  W, a n d f ~  eg0(S)• I f  U ~ U*, zU*, the conclusion (10.8) 

has the same proof, word for word, and  we have 

11 .10 .  L e m m a .  With notations as above 

( l l . l l )  o~(U) = 0 (U=# U*,rUI*,fl*(U)=O). 

Moreover, f vanishes at the four corners of  U. I f  U = U* (resp. U = rU*), f 
vanishes at the left-hand (resp. right-hand) corners of U, and f is constant along the 
right (resp. left) side of U. I f  p*(el)=O, (11.11) holds also for U =  U*, zU*, 
assuming p*(U*) = O. 

The next result has the same proof, word for word, as L e m m a  10.11: 
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11.12.  L e m m a .  I f  fl*(el)= O, then V and W are linearly independent 
modulo O* ~o(S) • 

Denote by eR* the edge on the bottom o f  U* whose right-hand endpoint is the 
lower right-hand corner o f  U*. We have by analogy with Lemma 10.14 

11.13.  L e m m a .  Suppose 1 < i <= q is such that there exists a solution, 

(vi, wi, f ) E  V • W • O*qr to 

(11.14) ai = v, + wi + O*f. 

Then also 

(11.15) ai(e) = vi(e) (e 4: e*, re*, a*(e) > 0). 

I f  fl*(el) = O, and i f  a*(e*) > 0, then (11.15) holds also for e = eR. 

P r o o f .  The proof  uses Lemma I 1.10 exactly the same way the proof of  
Lemma 10.14 uses Lemma 10.6 and (the proof of) Lemma 10.11. 

If we assume fl*(el) = 0 (which is equivalent to fl*(Tem) = 0), the argument used 
in Lemma 10.17 implies vi = 0 in (11.14). (From (11.15) and the fact v ie  V it 
follows that vi~ V O P~ _ p/,~, and then ai = vi + (ai - vi) with vi, c q -  v i e  

P~,, .) Just as in (10.19) the conclusion is 

Let notations and assumptions be as in Lemma 11.13. I f  11.16. Lemma.  
fl*(eO = O, then 

(11.17) o~(u )  = o ( p * ( u )  = o). 

Because A = {ai, �9 �9 a~} C_ P~,~ is a basis for r ~ it must be that Zff+l t ~ i  = 

a0EP~, ,, i.e., ao(e)> 0 for every horizontal edge, e _ A~. The proof  of  Lemma 
10.20 may be repeated, essentially word-for-word, and from this we obtain 

11.18.  L e m m a .  Let notations and assumptions be as in (11.6) and the 
paragraphs which precede (11.6). I f  fl*(eO = O, then p < q. 

P r o o f .  Denote by 17" and W the images of  V and W in Hi(X ,  S) under the 
canonical projection. 17" and W are linearly independent subspaces of  the (N- 

dimensional) - 1 eigenspace for z*, and therefore 

(N - q) + p = dim V + dim W 

-- dim 17" + dim W 

- - < N .  

Thus, p _-< q, and if equality holds, (11.14) admits a solution for 1 < i _-< q. The 

analog of  Lemma 10.20, mentioned above, implies / /*(el)> 0, contrary to 

hypothesis, therefore, p < q, and the lemma is proved. 
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Suppose now a ~  V, fl E W, f ~ qgo( S)  • are such that (11.9) holds, a + fl = O*f . 

Since a * ( e ) - - 0  implies a ( e ) - - 0 ,  L e m m a  11.10 applies to tell us a = c~e* + 

c2re*. In order that  ra  = - a, it is necessary that c~ = - c2, a -- t (e* - re*)  for 

some t E R. 
It is possible e* - re*q~ ~lh. Indeed, because re*f~OU* (else rU* = U*, see 

the proof of  L e m m a  11.5), O*(e* - re*)  = 0 i f  and only i f  e* lies on the bot tom 

and top of  U*. In particular, it is necessary that  ey, + el _ e"  in the notat ion of  the 

proof  of  Lemma 11.4. Observe this condit ion is t an tamount  to the requirement 

(11.19) U* -- Ui, zU~' ---- zU~. 

11 .20 .  Let  the notations and assumptions be as in L e m m a  11.18, except that 

possibly fl*( e~) > O. I f(11.19) is false, then p < q. 

In what follows we assume (11.19) is true, and we also assume eR*( -- eR) lies on 

both the top and bot tom of  U* -- UI. Define ao = e *  - z e * .  I f  1 _-< i < N ,  and if  

a~(e*) > 0, then there exists t > 0 such that  ai - t a0E P~,~. As a0E P~.,, it follows 

that  a0 -- t ' a i fo r  some t '  > 0, because a ; is  extremal. Because A is by assumption a 

linearly independent  set, the value o f  i above is unique. We have 

11 .21 .  L e m m a .  I f  V A ( W  + O*~o(S)• ~ {0}, there exist io, q < io < N 

and t > 0 such that a~ = ta~ Moreover, a~(e*) = O for i ~ io. 

If  the hypothesis o f  Lemma 11.20 is in force, it is no loss o f  generality to 

suppose a q +  1 = Or0. O f  c o u r s e ,  

(11.22) V n (W + 0* ~0(S) • = Rot0. 

Define V~ to be the linear span of  {aq+2 . . . .  , a~}. The discussion above implies 

I?R and W are linearly independent  subspaces of  the - 1 eigenspace of  T*, and it 

follows that  p < q + 1. Should p = q + 1, then (11.14) admits  a solution for 

1 < i _-< q. Because &(eR*) = 0, where a = ZN_q+2 oti, (11.15) holds for all edges e 

such that  &(e )>0 ,  and then v , - -0 ,  1 < i < q. Next, we find a~(U)- -0  for 

I < i _-< q a n d  all components  U __ A c such that  U § U~*, zU~*andfl*(U) -- 0. The 

argument preceding Lemma 10.26 implies q = N - 1, a~ -- oL0, and p < N - 1. 

We have 

11 .23 .  L e m m a .  (Basic Lemma - -  Part  II). Let  the notations and assump- 

tions be as in (11.6) and the paragraph which precedes (11.6). Then p < q, and 

p = q only iffl*(e,) > O. 

11 .24 .  R e m a r k .  I f  A is a q-special weaving, it can be shown there is a 
version o f L e m m a  11.23 for the weaving A U zA. We believe there are versions o f  

the Basic Lemma(s) for a large class o f  weavings, perhaps all weavings. 



MODULI SPACES OF QUADRATIC DIFFERENTIALS 151 

12. Operat ions  on weav ings  

Let ~0E F/~'(S), and let A be a weaving o f ~ .  If2 ~PI(A) is in general position, it 
is possible to construct from the pair (A, ~(2)) an infinite set of  weavings of  ~(2). 

The construction will be described in this section. In Section 13 the construction 
will be used to define finite covers of  moduli spaces by "nice" open sets. 

12.1.  L e m m a .  Assume  Go E f~ + ( S )  is in general position . I f  A is a weaving o f  

~o, A contains a horizontal edge e such that Oe = +_ (x  - y), where x is a horizontal 
terminus and y ~ S .  

P r o o f .  A must contain a vertical end c~. If  yl is the terminus oft~, yt is interior 
to a horizontal end 7 - A. Let x be the terminus ofT. Between y~ and x on 3' there 
is a vertex y, y =~ x, which is nearest to x. Let e be the edge such that 
Oe = _+ (x - y). By construction y ~ S ,  and the lemma is proved. 

In what follows there is given a weaving A of  ~0 ~ f ~  (S), ~ in general position. 
Let e be an edge which satisfies the conclusion of  Lemma 12.1. We construct a 

new weaving AI according to the dichotomy (A) A~ - {e} is a weaving or (B) 
A~ - {e} is not a weaving. 

Procedure A. (A~ - {e} is a weaving.) In this case we remark that if  A has v 

horizontal or vertical edges, then A~ has v - 1 horizontal or vertical edges (recall 
Lemma 4.5). If  m = h or v, and if  p" ~ ( A ) - - -  ~ I ( A , )  is the canonical map 
(Proposition 4.16), then 

(12.2) ppI(A) ___ pI(A,). 

Indeed, if 2 = (a, fl)EpI(A), pct is the restriction of  a to the horizontal edges 

other than e, while pfl(~) = fl(~) for each vertical edge ~ which is also an edge of  A, 

andpfl(~) = fl(eO + fl(e2) for the unique edge ~ -- et U e2, el, e2 distinct edges of  A. 
Procedure B. (A - {e} is not a weaving.) In this case the construction of  A, will 

depend upon a given 2 ~P~(A). In preparation of  the construction let U + and U-  
be the components o fA  c which have e on their bot tom and top sides, respectively. 

Because Oe = _+ (x - y ) ,  where y ~ S  and x is a horizontal terminus, one of  U + 
has e for an entire side. We claim this implies U + ~ U- .  For if U + = U- ,  e is 
(say) the bottom of  U + and a portion of  the top of  U +. Consideration of  elements 
aEP~(A)  implies e is the entire top of  U +. It follows then that ~,~r~(~0) has closed 

leaves, contrary to the assumption ~0 is in general position. Therefore U + ~ U- .  
We now describe the construction. Let A, e be as above, and let ;t ~P~(A). If  

0e -- +_ (x - y), also as above, let t~ be the vertical end which contains y. Since 
A - {e} is not a weaving, y must be the terminus oftL Assume for concreteness t~ 

is an incoming end so that the left hand side of  U + is contained in t~or contains t~. 
Consideration of  R ( U - ,  2) (Section 5) shows that t~ can be extended as a 
~(;t)-geodesic until it reaches A again for the first time. Moreover, if t~' is the 
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extended end, the terminus of  J '  lies in A - (e} (e is not on the bottom of U-) .  
Now define A, = (A - {e}) O ~'. A~ is a weaving of~(4), provided the terminus of  

~' is not already a (vertical) terminus of  A or an element of  S. For example, if 
4 EP~(A) is chosen so that ~(4) is in general position, A, is a weaving in the sense 
of  Section 3. It should be emphasized that Al can be a weaving even when ~(4) is 

not in general position. Note that A, depends upon the choice of  4. 
In both cases A and B above there are canonical isomorphisms, p" ~e~(A) 

~e~(A,), for m -- h or v. However, (12.2) cannot be expected to hold always in the 

case of  B. 

12.3.  R e m a r k .  Let v = v(A) be the number of  horizontal or vertical edges 
of A. We have 

v(A) - 1 Procedure A, 

(12.4) v(A0 -- = 
v(A) Procedure B. 

The dichotomy (12.4) depends upon the choice o fe  with 0e = _+ (x - y), y $ S. If  
y E S, it is possible to construct AI; however, it may be necessary to add two edges 
to effect the weaving property, and (12.4) would not be true. 

12.5.  N o t a t i o n .  When Procedure B is used, e' will denote the new vertical 
edge which is added, that is, ~' = ~ O e'. 

12.6.  L e m m a .  With notations as above suppose 4 ~ P ' ( A )  is such that 
p4i ~P~(A0. There exists OEHo(X, S) such that 

(12.7) ~(4,) = ~(P4,)0. 

Proof .  We shall give the proof only when Procedure B is followed in the 
construction of  A,. It is necessary first to recall the construction of  the map(s) ~(. ) 
in (12.7). Let U be a component of  A c, and let 2o = ~0, ,t EP'(A).  Then the 
~(2)-chart function on U is 

(12.8) F v __ ~ o f  V 

where (U, f u )  is an ~o-chart (see (5.4)). The map 0 ~  is canonically determined by 
objects r(U) and r(U, 2) (r(U) = r(U, 2o)), and the construction implies for all 

41E P'(A) 

(12.9) q~x, = q~, * 0 ~ .  

Here ~ ,  is canonically determined by r(U, 2) and r(U, 2,). 
In what follows we set U -- U -  U e U U +. While Uis  not a component of  A c, 

the discussion in Procedure B implies there is an ~-compatible chart, (U, f u )  __ 

(U, f ) ,  such that f U -  -- R(U-)  a n d f U  + -- R(U +) + c for some constant c § 0. 
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�9 �9 U • The definmons of q~a,, etc., can be modified to determine continuous maps which 
satisfy (12.9) o n f U .  

Nowfa  v, U -- U + U e U U- ,  is defined by (12.8), and Fa v is a chart function for 
both ~(2) and ~(p2). Of  course, (12.9) implies 

(12.10) F~ = q~W, o f  v. 

Let V + and V- be the components of At which have e' on their left and right 
sides, respectively. 

Fa v is a chart function for ~(pA) on Ubecause AI is defined in terms of~(;t). Let 
0~a, be defined, as above, on FavU = F v ( V  + U e' U V-), so that 

(12.11) Fp~,---q~pvap~, oFp~ 

is a chart function on U for ~(p2~). Now we define ~ on X by 

x (x ~ 0), 
(12.12) ~ x ) =  (F~, ) - I~  (x~(] ) .  

It is clear that ~O~Ho(X, S). Because F~ = F~, for every component V __C_ At such 
that V N U - ~ ,  (12.12) implies ~(2) - ~(p2,)q~. The lemma is proved. 

If;t ~PI(A), l = (a, fl), introduce norms 

l a l =  E a(e), 
e ~ A  

(12.13) 
Jill = E t (e) .  

e ~ A  

Observe that I~l (resp. I t I ) is the sum of  the ~(2)-lengths of the horizontal (resp. 
vertical) ends which are contained in A. 

If Procedure B is followed in the construction of Ai, and if 2~PI(A) ,  
p2 EpI(A0,  then 

(12.14) 
IP~I = I'~1- a(e), 

IpPl--IPl + pfl(e'). 

It is clear that pfl(e') is at least as large as the smallest value off l(e") ,  e" c_ A a 
vertical edge, and so (12.14) implies 

(12.15) 

IpPI~ IPI+ min fl(e"), 
e " ~ A  

e �9 vertical 

pfl(e') > min fl(e"). 
e"C_A 

e* vertical 
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Assume now that 2 ~ P I(A) is in general position. Select e by Lemma 12.1, and 
let Ai and 21 = p2 UPI(A~) be constructed by the applicable procedure, A or B. 
Select el _ AI by Lemma 12.1, and repeat the above. There results a sequence 
(A,, 2,, e,), n > 1, such that J2 --J21 = J22- �9 �9 (e.g., if  2~ = 2  in (12.12), then 
~ =  Id). Also, 2,+1 =p2 , ;  and by (12.4) v(2,) is a nonincreasing sequence of  
integers. Moreover, if n is sufficiently large, (12.4) implies A,+I arises from 
(A,, 2,, e,) by Procedure B. By (12.15) 

(12.16) lim IP, I = + oo. 
" ~ Q O  

Because ~(2) is in general position, each separatrix of  ~r~(2) is dense in X. It 
follows from this that 

(12.17) ,-~lim \e~A.(max a , (e))  = 0. 

Again because v(A,) is bounded, (12.17) implies 

(12.18) lim la.I = 0 .  
. ~ o 0  

It is possible to apply the procedure abox;e with the roles of  "horizontal" and 
"vertical" reversed. Indeed, when Procedure B is used to produce Al and the 
vertical edge e'  from A and the horizontal edge e, for given 2 EP~(A), the reverse 
procedure produces A, e, and 2 = p -  ~p2 from AI, e', and p2. 

12 .19 .  E x a m p l e .  Let A be a special weaving, Definition 9.1 being 
amended as in Remark 9.5. In this case there is a unique choice for e, e = er in the 
notation of  9.2(ii). I f2  EPI(A), only Procedure B applies to (A, 2, er), and since 
er is unique, we define 

~(A,  2) -- (Ai, p2) 
(12.20) 

= ( A i ,  21). 

It has been remarked in the description of Procedure B that AI can fail to be a 
weaving. In the present setting A1 fails to be a weaving if and only ifer is the base 
of U § and the top of U- .  

To invert q / w e  observe that while A has many vertical ends, the edge which 
satisfies the conclusion of the ("vertical version" of) Lemma 12.1 is unique; it is 
the edge e0 defined in 9.2(iii). Apply Procedure B to A, 2 and e0, with "horizontal" 
and "vertical" interchanged. If  the new horizontal end, the extension of  ? as an 
end for ~ (~ (2 ) )  to its next encounter with A, is not a saddle connection, there 
will result a weaving A_ ~ and 2_ 1~ P~(A_ l) such that 

(12.21) ~ ~, 2_0  = (A, 2). 
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We set (A_l, 4_1)  ---- ~ 4). 

1 2 . 2 2 .  P r o p o s i t i o n .  I f  A is a special weaving, and i f  2 Epl(A)  is such 
that ~(2) is in general position, then ~ (A, 4) = (A ~n~, 2 ~n~) is defined for all n ~ Z.  
I f  e~V) is the unique terminal horizontal edge o f  An, there exists a unique value o f  n 
such that 

(12.23) 1 < l an I < 1 + an(e~,n)). 

Proof .  Apply (12.16) with horizontal and vertical interchanged to conclude 

lim l a -n  I = + oo. 
n ~ o o  

Combine  this with (12.18) to conclude there is a value of  n such that 

Ic~n+ll < 1 < Ic~nl. 

Now (12.14) implies l an + ~1 = l an I - an(e~)), and the proposit ion follows. 

1 2 . 2 4 .  E x a m p l e .  Let notations be as in Section 11. I f  {0~f~+(S,  z) is in 
general position, and if  A is a r-special weaving of  G0, define A~ as in (11.3). A~ 

admits  two terminal horizontal edges. One, which we denote by e~, lies on 7, 
while the other, ze~, lies on zT. Let U, -+ ___ Af be associated to e~, and form 

Ut = U~ + U e~ U U~-. We claim rUt n U~ = ~ .  For  otherwise since zU~ + ~ U~ + , 
we have zU~ + = U7 ,  and e$ is the bo t tom of  U~ and the top of  U~-. This implies 

Go has a saddle connect ion and contradicts  the assumption Go is in general 
position. 

I f  2 E P  2 (At), apply Procedure  B to A~, 2 and e~, re~ (simultaneously or one 

after the other). Call the result ~//~(A,, 2) = (A*, 4*). 

1 2 . 2 5 .  L e m m a .  With notations as above suppose ~(2) is in general posit ion 
and A* is a weaving o f  ~(2 ) and ~(2 "). There exists a r-special weaving, A ~ of~(2) 

such that A* = (A~ 

P r o o f .  Let 70 = 7 n A* (7 as in (11.3)). I f  c5 is a vertical end in A*, the 

terminus of  3 is interior to 70 or to zT0. In the latter case, extend c~ until its terminus 
is interior to 7. Let A ~ be the union of  S, 70, and the ends just  described. A ~ is a 
special weaving, and clearly A* =70 u rT0 U (A~ zA~ Let et ~ be such that 
0e~ = +_ (s o - x~ where s ~  and x ~ is the terminus of  70. Since e ~ is an edge of  

A*, it cannot be that zT0 n e ~ ~ ~ .  That is, A ~ is z special. The lemma is proved.  

1 2 . 2 6 .  P r o p o s i t i o n .  Let A, A, be as above, and define a//(A, 4) = (A*, 2"). 
/ f  ~ ( 2 ) ~ + ( S ,  z) is in general position, there exists a unique n such that i f  

P, (A, ), then 
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(12.27) 1 <= [a.I < I +2a.(e~.,.). 

P r o o f .  e~,, is to A~ ") as e~ is to A~. The proof of the lemma is similar to that of  

Proposition 12.22 and will be omitted. 

13. M o d u l i  spaces  

The moduli spaces . ~ ( S ) / F ( X ,  S) and ~ §  z)/F(r) can be studied with the 
help of  special and z-special weavings. Let ~/'*(S) be the set of  special weavings 

(Definition 9.1), and let ~ * ( S ,  z) be the set of  weavings A~ such that A is 
z-special (see (11.3)). Each of  the "moduli spaces" ~#/*(S)/H(X,S) and 
~'*(S,  z)/Z(z) is finite. We denote these moduli spaces by ~//'*(S) and ~r z), 

respectively. 
With notations as above, select a complete set of  representatives {A�91 . . . . .  AN} 

for ~ * ( S )  (resp. ~"*(S,z) ) ,  and let Oj =(JP'(Aj))F(X,S) (resp. 
Oj = (JP~(Aj))F(z), 1 < j  < N. The open sets {O1 . . . .  , ON} cover the moduli 
space in question, but for a set of  real codimension 2 ([V86], Proposition 2.12). In 

fact, if we define 

Q'(Aj) = {2 =(a, f l )EP ' (a j ) [ l  < Ic~l < 1 +a(er)} 
and 

Q~(Aj) = {2 EP~(Aj) [ 1 < I~1 < 1 + 2a(e~)}, 

as AjE '# '* (S)  or A j E ~ * ( S , z ) ,  the sets Oi=(JQI(Aj))F(X,S) (resp. 
0j = JQ~t (A~)F(z)), 1 _<j =< N, also cover the moduli space(s) modulo a (more 

complicated) set of  real codimension 1. This statement follows from Propositions 

12.22 and 12.26. 
The analysis in Section 14 will be directed toward proving the constant volume 

hypersurfaces Oj (~ V- 11, Vthe volume function, have finite volume with respect 

to the contraction of the measure(s)/~ from Theorems 7.17 and (the remark 
following) Theorem 8.10. The remainder of  the present section is devoted to the 
observation that the moduli spaces V(n)/F(g, n) are not connected in general. 

In what follows we suppose n = 0 and n = (0, v, + 1). Because 3g - 3 + n > 

0, by assumption, g > 1, and the sum N(n) = Y~?~_, v(l) is positive. The space 
W(rt) ~_ l?(rt) from Section 1 is identified with a subspace, Y(n), of  or162 S), 
X = Mg, S = SNt,). Strictly speaking, the canonical map Y(n) --* W(n) is two-to- 

one because elements of  Y(n) are "oriented." 
Let Y0(n)= ./r ~ N Y(n), where J l J  is defined by (7.3). As noted earlier, 

Proposition 2.12 of  [V86] implies (Y0(n)) ~ has real codimension at least 2 in Y(n). 
As Y0(rt) is open, Y0(Tt) is connected if  Y0t) is connected. In what follows we will 
describe nonempty pairwise disjoint open sets U,(n) . . . . .  U~(lt), v = v(Tt), which 
exhaust Y0(rt). In certain instances we can show that v > 1, and therefore Y(n) is 
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not connected. These open sets will also satisfy Uj(rr)F(X, S) = Uj(n), all j ,  and 

therefore the moduli space Y(rt)/F(X, S)  is also not connected. In the notation of  
Section 1 the moduli space l?(rt)/F(g, N(rt)) is not connected. The constructions 
will imply the components of l?(rr)/F(g, N(n)) are invariant under the (finite) 
group of  the cover l?(rt)/F(g, N(rt)) ~ V(rt)/F(g, n ) (Section 1 ), and therefore the 

moduli space V(rt)/F(g, n), n = (n, v, e) is not, in general connected. (Recall we 

are assuming n = 0 and e = + 1.) 
In what follows f~o(m), m > 0 denotes the set of  irreducible permutations 

a : k ---, ak,  1 < k < m.  We recall the Rauzy operations ([R79]) a ~ ca, where 

c = a or b is defined by 

I aj, j ~ a -Ira, [ a j ,  j < am,  

I 
a a ( j ) =  j a m ,  j < a - l r n  + 1, b a ( j ) =  ) a j  + 1, am  <-_aj < m ,  

I I 
[ a ( j -  1), other j ,  ( a m  + 1, aj = m.  

Also, define R a  = trmatrm, where trmj = m - j  + 1, 1 < j  < m. The operations on 
a, b, R generate a group of  transformations of  f~o. If a E  f~~ we use O(a) to 

denote the orbit of  a under this group. O(a) is an extended Rauzy  class. (Rauzy 

classes arise from a, b alone.) 
Let [~] ~ Y0(rr) be such that ~ is in general position; by definition the form % ,  

o9~ = a t is given along with ~. Let A be a special weaving of~ with horizontal end y 

(Definition 9.1). Identify y with the interval [0, l Y It] C_ R +, and let the compo- 
nents of A c be represented as rectangles with bases on [0, I Y It]. The map which 

sends the base of  one of  these rectangles to the subinterval of[0, I Y Ir to which the 
top is identified is an (r/, a)-interval exchange for some m, a E (~o and t /~  (R +) m, 

def 
I r/I = y" r/j = I 7 It. The procedure "erase er" and elongate the vertical end which 
abuts the left endpoint of  er corresponds to one of  the Rauzy operations 

(tl, a) ---" (rl', ca), c = a or b, as extended to "zippered rectangles" in [V82]. (Note: 

I r/'l = 17 It - Ier It.) Proposition 9.1 of  [V82] asserts that the Rauzy class of  a 
depends only upon ~ and the separatrix upon which 7 lies. On the other hand 
every ~(2), 2 UpI(A), is assigned the same Rauzy class. 

If  we extend the definition of  "special" weaving in the obvious way to allow the 

single horizontal end 7 ___ A to be incoming, the edge which corresponds to eriS an 
initial edge el, i.e., the left-most edge of  A on 7. Erasure of  e/and extension of  the 
vertical end of  A which abuts the right endpoint of  ez has the following 

counterpart for the (r/, a) exchange: Let t = min(r/l, ~]tx-tl), and let (~/', a') be the 
interval exchange which is equivalent to the exchange obtained from the first 

return map on [t, I r/I). It is clear that there is a choice c = a or b such that 

a t =  am[C(tTmaffm)]tTm, and therefore a 'E  O(a). 

Having fixed A as above with 7, say, outgoing, suppose 5 is a distinct horizontal 

separatrix. Truncate 5 when it first meets a vertical .edge of  A, and let 71 be the 
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horizontal end which results. There is a unique weaving AI of ~which has 71 for its 
horizontal end. Notice that fi is allowed to be incoming or outgoing. Let 71" _C 7 be 
the projection of 71 "down" to 7. (A1, ~) induces an interval exchange on 71 and 7*, 
and this interval exchange can be obtained from (A, ~) as follows: Iterate the 
operation q / f rom (12.20) until the right endpoint ofT* is the right endpoint of  the 
horizontal end ofA, ,  ~//" (A, ~) = (A,, 2,). This corresponds to the application of 
a series of operations c = a or b on the permutation a associated to A. Next, apply 
erasure operations from the left as in the preceding paragraph, stopping when the 
left endpoint of  71" is reached. This corresponds to a series of operations 
a ' ' ~  tTrr, C(tTmatTm)tTm, C = a or b. The rectangle between 71 and 71" is now parti- 
tioned into m rectangles. If the bases of these rectangles are now erased, the 
weaving A I is obtained. It follows that if a and a l are the permutations associated 
to A and AI, then O(ot) = O(oh). It makes sense to define O([~]) = O(a), initially 
for [~] E Y0(n) such that ~ is in general position. If [~] ~ Y0(2z) is such that ~ is not 
in general position, there exists A as above which is a weaving of ~. If A1 is a 
second such weaving, then [~] ~E(A)  n E(AI), and therefore there exists [~'] E 
E(A) N E(A1) with ~' in general position. It follows from the first part of  the 
discussion that O([~])= O(a), a the permutation determined by A, does not 
depend upon the choice of A. 

A moment 's reflection shows that if [~'] ~ Y0(~) corresponds to the form - oor 
then O([~']) = amO([~])- ~am = O([~])-1. 

E x a m p l e .  When m = 2p and ct = am, the class O(am) is just the Rauzy class 
of  am. O(am) has 2 m- ~ - 1 elements ([R79]). Moreover, O(am) = O(am) -I. In this 

instance the corresponding symbol 7t is ~z = (0, v, + 1) with v(l) = ~1, 2p-2, r the 
Kronecker delta. (That is, X is of  genus p, S = {s } is a singleton, and o3r has a 
single zero of order 2p - 2 if [~] ~ Y(re).) However, when p = 3, there is a second 
Rauzy class which gives rise to the same symbol ~. This class has 134 elements 
and is the class of the permutation (ao 1 . . . . .  a06) = (4, 6, 5, 3, 2, 1). It follows 
that Y(n) is not connected. 

Let Yl(re) and Y2(lt) be the open sets identified in the previous paragraph. That 

is, Y~(n) = ([~] ] O([~]) = O(a6} and YE(Tt)= ([~] I O([~]) = O(a0) }. Each of r~, 
}'2 is invariant under the Teichmi~ller geodesic flow, and when this flow is 
restricted to the level surfaces V-11 n Yj, it is ergodic [V86]. In particular, 
V-~I n Y~ is the closure of an embedded line. It follows that YI and }'2 are 
connected sets. Finally, one finds by inspection that if a ~ (#0 gives rise to 
an element of Y(n) (by the zippered rectangle construction [V82]), then 

aEO(a6 u O(ad. 

13.1. T h e o r e m .  Let  ~t = (0, v, + 1) with v ( l ) =  ~14. The modufi  space 

Y(~)/F(3) has two components,  one corresponding to O(a6) and  one corresponding 

to O(ao). 
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R e m a r k .  If [~] E Y~(rr) above, it can be seen that ~ endows X with the 
structure of a (genus 3) hyperelliptic surface. The elements of Y2(n) correspond to 
(genus 3) surfaces which, while not hyperelliptic, support holomorphic 1-forms 
with a single zero (of order 2p - 2 = 4). It has been pointed out to us by R. Bryant 
that the Fermat quartic (x 4 + y4 = z 4) is an example of  such a surface. 

R e m a r k .  Y(rt)/F(g, n) is always finitely connected. It would be interesting 
to express the connectivity in terms of  rr. In this regard we mention that a 
computer calculation by P. Arnoux (private communication) implies that in 
genus 4, rt =(0 ,  v, + 1), v(l)=Jt6, l > 1, Y(n)/F(4) has three components, 
corresponding to the permutations as and a(1, 2 , . . . ,  8) -- (6, 8, 7, 5, 4, 3, 2, 1) 
and (6, 5, 8, 7, 4, 3, 2, 1). In each case the extended Rauzy class is the same as the 
Rauzy class; Arnoux's calculation shows the classes have, respectively, 
127( = 27 - -  1), 2327, and 5209 elements. (In effect, our proof that Y(It)/F(4) has 
finite volume consists of  proving each of the 7,663 sets in its "natural" cover has 
finite volume.) 

14.  F i n i t e n e s s  o f  in tegra l s  over the  mo du l i  s pa c e s  

We begin by introducing notation which enables us to give a unified treatment 
of  "finite integral" statements. 

In this section A denotes either (a) a special weaving of a ~ ~ fl~ (S) in general 
position, or (b) the weaving A~ associated to a r-special weaving of ~ E fl+(S, z) 
in general position. The notations ~r l, P~, etc. have the usual meanings when A is 
as in (a) above; however, when A is as in (b), ~ ,  P~ etc. shall be understood to 
denote the ( - 1 eigen-) spaces ~r~, 3, P~, 3, etc. In all that follows N denotes 

N ---- dim ~r~. 

N is the complex dimension of d/J-(S) or d/+(z) ,  depending on (a), (b). 

14.1 .  R e m a r k .  Let H(A) be the set of  horizontal edges e c_ A such that 0e 
contains a horizontal terminus. We have In(A)  I = 1 or 2 as A falls under (a) or 
(b) above. In the case of(b) a( . )  is constant on H(A) for each a E  .~r]. Similarly, if  
et is as in Section 11, fl(eO = r (  - ze~) for all fl E ~r~. 

Select bases A = { a l ,  . . . , O ~ N }  and B = {fl~ . . . .  , fiN} for ~r~ and &r~, respec- 
tively. A and B will be further restricted below; for now we require only the 
additional property that each be an integral basis for the respective integral 
lattice. Both A and B project to bases, either for HI(X,  S) or for the - 1 
eigenspace of z* in HI(X,  S), under the canonical projection of  Section 4. 

Superscripts will be used to denote coordinate functions, i.e., a = ,EaJaj, 

fl = Y.,flJflj. Introduce volume forms, E(a) and ]~(fl), where 



160 w.A.  VEECH 

Z ( a ) = d a l ^ . . .  Ada  N and E ( f l ) = d f l l A . . .  Adfl ~. 

Also, define a(x) on R ~ by 

N A 

a ( x )  = Y~ ( - 1 ) % d x '  ^ . . .  ^ d x  ~ ^ �9 �9 �9 ^ d x  ~ 

i z l  

where ^ denotes  omission. 

Define F~ �9 R ~ • R + ~ R u by F~(a, O) = Oa. We have 

(14.2) Fl*Z(a) = ( - 1)uOU-la(a) ^ dO + 0UZ(a). 

Next,  define F2" R u X R + • R + ~ R u by F2(b, O, () = (b/O. This t ime we com- 

pute 

( N - 1  

(14.3) F*Z(fl)  = ( - 1)u--~--  a(b)  ^ d (  + E , Z ( b ) + E 2 ^ d O  

where E~ is a scalar and E~ an N - 1 form. Define F :  R u • R s • R + • R + 

R u • R u by F(a, b, 0, ( )  = (F~(a, 0), F2(b, 0, ()). In t roduce  the form 

oJ(a, b, O) = a(a) ^ dO/O ̂  ~(b ), 

and compute  f rom (14.2)-(14.3) 

(14.4) F*(E(a)  ^ E(fl)) = (U-'o.~(a, b, O)^d(  + E3 A Z(a)  + E4A Z(b) 

where E3 and E4 are N-forms.  

In t roduce on ~r~ • &r~ two functions.  The  first is 0(a, fl) = Ze a(e) = O(a), the 

sum extending over  all (horizontal)  edges o f  A. The  second is the intersection 

pairing, ( (a ,  fl) = [a, fl]. Define E _ ~ • ~r~_~ R u • RUby 

E = {(a, b) l O(a, b) = 1 = ((a, b)}. 

Let Fe be the restriction o f  F to E • R + • R +. FE is a d i f feomorphism onto  its 

image, and 

F*Y~(a) ^ Z(fl) = i*F*Z(a) ^ Z(fl) 

where E X R + • R + ~ , (R u • R u) • R + • R + is the inclusion map. The  defi- 

ni t ion o f  E combines  with (14.4) to imply 

(14.5) F*Z(a )  ^ Z(fl) = (N- 'i*o~(a, b, O) ̂  d(.  

Observe f rom the definitions that  P~ is in the image o f  bE. Indeed i f  E + = 

E A P~, then 

(14.6) PI = FE(E + X R + • R+). 

This being so, use (14.5) to construct  forms r and gA on pl ,  
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(14.7) 

By construction 

(14.8) 

(~OA = (~E 1 )* o i*og(a, b, 0), 

cr A = ( F i  I )* o i*~ u -  t d~. 

OJA ̂  *A : X(~) A Xq~). 

Let there now be given a pair A~, A2 as above, and suppose T is a diffeomor- 
phism from an open set Oi c_ PI(A2) onto an open set 02 _ pI(Az) .  Let r/A be the 
form on the right in (14.8), and assume of T tha t  

T ~ A 2  = ~AI, 

(14.9) 
(2 o T =  ~1 

((, (2) = [a, fl ], 2 = (a, fl) E O j). The second line of (14.9) implies 

(14.10) T*aA2 = trA,. 

Also, there exists a scalar function, 0, and a 2N - 1 form, tbA on Oi, such that (a) 
69^, A trA~ = 0, and (b) T*OgA2 = etOA, + tbA,. From (14.10), (14.8) and the first line 
of (14.9) it follows that r 1. We have 

14.11.  L e m m a .  With  all notat ions  as above we have 

T*O)A2 = O~At "~ (~OAt , 

(14.12) 
(~)A, A 0"AI = 0.  

Consider now the manifolds ./r and J//+(S, z). Each of  these manifolds 
admits an atlas of the form {(A - I (q~)E(A) ,  F A o A (~b))} (E(A) = E(A, z) in the case 
of J /+ (S ,  z)). If  T is a coordinate transition for this atlas, T satisfies (14.9)- 
(14.10), and therefore (FA ~ is a 2 N -  1 form modulo the kernel of  
(FA o A (q~))*aA under wedge product. With notations as in Sections 7-8, it follows 
OgA restricts to a volume form on each "constant energy" surface V- It, t > 0. 
Moreover, if ogX is the restriction of 09A, we have 

~*oJX = ~oX 

for each element 7 E G -- SL(2, R). 
We shall now consider the forms 

r I (14.13) Io~(a, b, 0)1 = 0"(a)A - -  A(:r(b) 
0 

which by the above discussion determine a (real analytic) invariant measure for 
the action of G on the level sets of  V(. ) in the manifolds ~tcd-(S) and dr z). 
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Let tu(a) be the value a ( . )  assumes on H(A) (see Remark 14.1). If  E 0 =  
{(a, b, O) I 1 _-< 0 < 1 + ~,(a)}, the first three paragraphs of  Section 13 lead us to 

consider the integrals 

f I~o(a, b, 0)1 = f log(1 + ~u(a)) la(a)^a(b)l  

Eo E 

(14.14) 
< f ~,(a)la(a)^cr(b)l .  

E 

The object of  the discussion which follows is a proof  of the finiteness of the 

right side of  (14.14). 

14 .15 .  R e m a r k .  pI(A) = P~ X P~ is a product of  cones which are defined 
by finite sets of rational linear inequalities. It follows that P~ and P~ are each a 
finite union of  cones with simplex bases, each cone being spanned by extremals of  
P~ or P~. In what follows we shall suppose given sets A and B as at the beginning of  
this section, with the additional properties (a) A C_ P~ and B ___ P~, (b) I~il = 1, 
1 < i < N, and (c) each element ai or ,aj is an extremal. 

Let A = co A, and let Cg(A) be the cone with base A, ~(A) = R+A. 
If a CA, denote by El(a) the simplex 

{,a, ,aN } 
(14.16) E , ( a ) = c o  [ a , , a d  . . . . .  [a -flN] " 

Also, define E(A) __ E by 

(14.17) E ( A ) =  U {a}XE~(a ) .  
aEA 

If  a CA, E(A) contains the set of (a, b) such that 

(a, b ) C E  n (R+A X R + co{,a~ . . . . .  ,aN}). 

Let E2(a) = {tb I 0 < t < 1, b CE~(a)}. Replace a by b and 0 by t in (14.2) to 

find 

(14.18) 
1 

E2(a) El(a) 

The value of  the integral on the left side of (14.18) differs by a constant factor, 
C = C(N,  ,01 . . . . .  ,aN) from the determinant  of the diagonal matrix with i th 
diagonal entry [a, ,ai]-~. From (14.18) and (14.17) we conclude 
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~'(a) I a (a)  ^ o(b)l = NC ~ l a ( a ) l .  

H fld E(A) a 

On A the form [a(a) l  is a dimensional constant  times the euclidean measure 

on A. 

In order to analyze the right hand side of  (14.19) set up on ~ = ~(A) the 

function, 0, defined by 

N 

(14.20) ~ a ) =  ~,(a) 1I [a,PA-' 
j z l  

Let F be a face of  ~, such that 1 < dim F - q < N. There exist 1 =< il < �9 �9 �9 < 

iq < N such that F is spanned by {as,, �9 �9 �9 ai,}. Call this latter set s(F). 
Define m(F) _ F = {fl, . . . . .  flu} by 

(14.21) M(F) = {flj liar, flj] = 0, a ~ s ( r ) } .  

We observe that F~ c F2 implies M(FO CC_ M(F2). Also, define M+(F) C M(F) by 

(14.22) M+(F) = {flj ~M(F)  I flj(e3 > o} 

(see Remark 14.1). It is possible that  M ( F ) - ~  or that  M ( F ) §  
and M+(F)= 0. In present notation the Basic Lemma,  Parts I and II, f rom 

Sections 10, and 11, yields 

14 .23 .  L e m m a .  I f  F is a face of ~ such that 1 < dim F < N, then 

(14.24) Card M(F) < dim F.  

I f  equality holds in (14.24), then 

(14.25) M+(F) ~ ~ (Card M ( F )  = dim F). 

Associate to F a function ~F, on ~ ,  where 

1, M+(F) = J~, 

(14.26) ~UF(a) = min [a,pj] ,  M+(F) § ~ .  
flj~ M + ( F) 

Because rg has a simplex base, each a E rg has a unique representation 

a -- a '  + a" ,  where a ' ~ F  and a"EF'  = span{ai l aiq~s(F)}. The definition 

(14.26) implies 

(14.27) ~F(a) ~ q l F ( a ' )  (a = a' + a", a '~F ,  a"EF'). 

Associate to the face F a function OF on ~ ,  defined by 
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(14.28) r X [a,jSjl-'. 
fl j e  M ( F ) 

I fa  = a" + a", a ' E F ,  a" ~F ' ,  as above, the definition of  M(F)  implies [a", f l i ]= 
O, f l jEM(F),  and using (14.27) we find 

(14.29) OF(a)=OF(a') (a = a '  + a " , a ' ~ F , a " E F ' ) .  

Finally, associate to the face F a function B(F, a) on cg, defined by 

(14.30) 

By construction 

(14.31) 

14.32.  L e m m a .  
- vr, where 

(14.33) 

O(a) 
B(F, a) = - - .  

OF(a) 

O(a) = B(F, a)OF(a). 

With notations as above, OF is homogeneous o f  degree 

'["F < d i m  F .  

P r o o f .  Immediate  from the definitions (14.28) and (14.26) and Lemma 
14.23. 

Let Ft C F2 be faces of ~ .  Define s(F~, F2) = s(FO c N s(F2). I f a  EF2, express a 
as a ---- a" + a", where a ' ~ F t  and a"  is in the span ofs(F~, F2). Define for e > 0 

Q(F~, F2, e)-- ~a EF2 ]a = a ' +  a", a 'EF~,  a " =  Y, Tiai, ?, >--e, all i~. 
t a,Es(Fj, F9 J 

14.34.  L e m m a .  
R(e) < oo such that 

Let F~ c_ 1;'2 be faces, and let e > O. There exists R = 

B(F1, a) 
(14.35) sup ~ < R .  

aEQ(FI, FI, e) B(F2, a) 

P r o o f .  By definition the quotient in (14.35) has the form 

(14.36) 

B(FI, a) = Op2(a) 

B(F2, a) OF,(a) 

= ~'F,(a) I'I [a,fl/] -~ 
~F,(a) mu(m 

To say pj CM(F2) tq M(FI)  c is to say in particular there exists ai ~s(F~, F2) such 
that [a ; , f l / ]>0.  It follows the product  on the right in (14.36) is uniformly 
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bounded on Q(Ft, F2, e). I f M + ( F 0  § ~ ,  or ifM+(F2) = 0, ~,Fz(a)/u =< 1. In 
the case that M+(Fl)  = ~ but M+(Fz) v~ O, we have 

~uF~(a) 
(14.37) ~ =  min [a,flj]. 

~F,(a) ~, ~m+(v~) 

Since M+(F2) c_ M(F2) N M(FO c, it is true for each a ~ Q(Ft, F2, e) that (14.37) is 

dominated by some [a, flj] which appears in the denominator in (!4.36). The 

lemma is proved. 

14.38.  P r o p o s i t i o n .  Let 0 be a positive function on ~ such that ~ is 
homogeneous of  degree - v, v < dim ~ .  Assume for each face F there exists a 
representation O = (~FB(F, .) such that (~F depends only upon F. 
(~F(a' + a") = r as above.) l f  ~)F satisfies the conclusion of  Lemma 14.32, 
and if  B(F, .) satisfies the conclusion of  Lemma 14.34, then 

(14.39) f ~(a)la(a)l < oo. 

A 

P r o o f .  This is the content of  Proposition 13.2 of  [V82]. 

14 .40.  T h e o r e m .  Let t > 0 and let #t be the natural measure (above) on the 
surface V-at c_ ~r162 or dr z). Then 

(14.41) a t ( V  - I t / r )  < GO 

where F = F(X, S) or F(z). 

We now will establish Theorem 0.2. Let ~ ~ ~td-(S) be in general position, and 
let 6 be an l-geodesic with endpoints in S. If  A is any weaving of  ~, the natural 
projection of  6 on the horizontal end in A will have length at least min a(e), 

= (a, b)~P~(A), as e ranges over the horizontal edges of  A. (This minimum 
may be less than the minimum width of  a component of  AC.) Proposition 14.38 

and the proof of  Theorem 14.40 imply the function which is the reciprocal of  this 
minimum belongs to L v on V-11 N ~I~(S)/F(X,  S) for 0 < p < 1. This is valid 

for ~//d(S) or J / + ( S ,  z). We have 

14 .42 .  T h e o r e m ,  Define ~x ) ,  x ~ V(n) to be the minimum length of  a [q I 
goedesic t~ with endpoints in the singular set of  a quadratic differential q which 
represents x.  Then 0 -1 ~ L P ( VI ( rt )/F(g , n ) ), 0 < p < 1, relative to the "Liouville 
measure" #~. 
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15. Degenerate F-structures 

Let ~oEf2~'(S) be in general position, and let A be a fixed weaving of  ~. Set 
20 = ~0Epm(A) �9 Recall from Section 5 that we associate to ~ and each component 

U _C_c A c an clement r(U) = r(U, ~ ) ~  ~r For each U, r(U) = (R(U), ~,), where 
R(U) c C is a rectangle in the first quadrant having z = 0 for one vertex, and 

E c_ OR (U) is a finite set containing the vertices. There is a ?,0-compatible chart 

(U, f u )  such that f u U  = R(U) and ( fu )  -m E is the set of  vertices of  A on aU. 
If 2 = (a, fl)~P~(A), 2 is used to associate to each U as above an element 

r(U, 2)U ~ ,  r(U, 2) ~. r(U) in the sense of  Section 5, and ~;~ : R ( U ) ~ R ( U ,  2) 

is the canonical map. A partial atlas for ~(2)~ f2~(S) is defined by (5.4), 

(15.1) Fff(x) = Oz~ ~ f V(x) (x ~ (1). 

If 2 ~ el(A), there is a natural definition of  r(U, ;t). I f  e is an edge on 0 U such 

that a(e) + fl(e) = 0, the corresponding edge on r(U) is assigned length 0, and two 
vertices of  A on 0 U are identified. This means r(U, 2) does not in general satisfy 

r(U) .-. r(U, 2). Indeed, R(U, 2) may degenerate to a line segment or even a 
point; and even when R(U,  2) is a rectangle, distinct vertices on OU may 

correspond to the same point on OR(U, 2). 

I f 2  ~PI(A)  as above, there is still a canonical map, 0 ~  --" r(U, 2). This map 
sends the center of  R(U) to the center of  R(U, 2), elements of  Y. ___ OR(U) to 

corresponding points on OR (U), albeit in a many to one fashion, and is extended 
to R (U) to be PL. Now define Fa v as in (15.1). 

I f2  is fixed as above, define xE~ x, y ~ 0, to be the relation F~(x) = F~(y). 
Define xEay to be the closed equivalence relation on X generated by E ~ Let 
X(2) = X/Ea be the space of  equivalence classes with the quotient topology, and 
let X ~' , X(2) be the canonical projection. 

If  U is a component of  A c, define U(2) = naU. There is a natural homeomor- 

phism r : U ~ R ( U ,  2) such that the diagram 

(15.2) 

U 

~ff(z) 
, R ( U ,  , l)  

is commutative. 



MODULI SPACES OF QUADRATIC DIFFERENTIALS 167 

Let X~ be the "two dimensional interior" of X(2). X~ is the union of (a) 
the sets U(2) such that R ( U, 2) is a rectangle and (b) edges e such that (i) rqe is not 
degenerate and (ii) e c OU implies U(2) c_ X~ 

With notations as above, define ~176 to be the set of charts (U(2), ~ua vta~) such 
that U(2 ) C_ X~ It follows from ( 15.1 )-(15.2) that transitions associated to ~~ ) 
on sets Ul(2) n U2(2) n X~ are locally given by z ---z + c, and a//~ extends to 
an atlas ~ such that ~(2) = (X~ ~ is an F-structure. It is possible that 
X~ = ~ ,  but this will not occur in the cases which are of interest to us. 

The F-structure ~(2) will not in general be admissible. For while X~ is totally 
bounded relative to dr the completion of  X~ will in general involve adding a 
one-dimensional set. In the case that every set U(2) is two-dimensional, X(2) will 
be a surface of genus g -- g(X), and rt a is a homotopy equivalence. However, 7to 
cannot be one-to-one if 2 E 0P~(A). 

In what follows we shall consider the case of 2 --(a,  fl) when fl EP~(A) and 
a E P~ (A). In this situation U(2) c X~ as soon as 0 U contains one horizontal 
edge e such that a(e) > O. 

15.3. P r o p o s i t i o n .  Suppose2 = (a, r )  satisfies (i) 2 ~ P~ • P~ and (ii) a is a 
rational vector. Then ~(~(2))  consists entirely o f  closed leaves and saddle con- 
nections. 

Proof .  The remark which precedes the proposition implies X~ is a surface 
with boundary consisting of images, nae, of  vertical edges e ___ A. It is no loss of  
generality to suppose a is an integral vector. Define A ~ = n~A n X~ and let A ~ 
be the "horizontal part" of  A ~ If x ~ A ~ x lies on an edge e ~ -- rt~e of integer 
length. Define r to be the distance from x to the left endpoint o f e  ~ relative to 
~(2), but measured modulo 1. Also, i f0  < ~ x )  < 1, define Tx E A  ~ to be the next 
point of  intersection between A ~ and the vertical geodesic through x, oriented in 
the "upward direction." The condition x ~ A ~ implies there is a component U(2) 
such that x lies on the base of U(2), and Tx is the point on the top of 
U(2)=--R(U, 2) which lies above x. If 0 < ~ x ) <  1, then T x ~ A  ~ and ~ x ) =  
r Since {x' I r = r is a finite set, and since Tis one-to-one, Tnx = x 

for some n > 0, and the vertical leaf through x is closed. The conclusion of the 
proposition follows readily. 

Let 2 --- (a,//) be as in Proposition 15.3. a descends to an element a 0 of P~(A0). 
Moreover, if a' E P~ (A~ there exists a" E P~ (A) which descends to a'. Indeed, if 
e c_ A is a horizontal edge such that nae ___ X~ is not degenerate, define 
a"(e) = a'(n~e). The condition a*a' -- 0 and the obvious identity. 

(U, O*a") -- (U(2), O*a') 

imply a*a"(U) -- 0 for all U such that U(2) is not degenerate. Since a*a"(U) = 0 
trivially when U(2) is degenerate, the claim is established. 
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Continuing with 2 = (a, fl) as above, define Y(2) _ X~ to be the complement  

of  the critical set for ~r~(~(2)). Let Yt(2) be a component  of  Y(2), and let 

Y2(~ , )  - -  Y~(2). Write , 0 _  a0 + aO, where a~  the restriction of  a ~ A ~ f3 Yj(A). 

We can state 

15 .4 .  P r o p o s i t i o n .  Let 2 = (a, fl) be as above, and suppose a is an extremal 

element o f  P2(A~ Then (a) a is a multiple o f  a rational vector, and (b) Y(2) is 

connected. 

Proof .  P~ (A ~ is a cone defined by a finite set of  rational linear equalities and 

inequalities. This implies (a). As for (b), let tx descend to a ~ and suppose 

a ~  a ~  ct2 ~ as in the discussion preceding the proposition. Then a ~ lifts to 

aj~P~,  and a = (9/1-31- (3/2. Since a is an extremal, a j =  tja and then a ~  tja o If, 

say, a ~ ~ 0, it must  be that t~ # 0, and then that t2 = 0. That  is, a ~ = 0 and 

Y~(2)~ = ~5. The proposition is proved. 

At this point  it is worthwhile remarking on the si tuation when ~ f l + ( S ,  z), 

zA = A, and 2 = (a, f l )EP~, ,  X P~, ~. All constructions are the same. I f  a is an 

extremal o f  P2,,, a is a multiple o f  a rational vector. I f  Y~(2) is a component  o f  

Y(2), define YT(2) = YI(2) U zY~(2), and let Y~ = (Y[)~. I f  a ~ is the restriction o f  

a~ to Y], then a ~ E P~,, (A~ and so aj E P2,,(Ah). The argument  used in Proposi- 

tion 15.4 implies a ~ = 0 for some j ,  and we have 

15.5 .  P r o p o s i t i o n .  Let 2 = (~, fl) ~ p1 ~ X pl,,, and suppose a is an extre- 

real. Then (a) a is a multiple o f  a rational vector, and (b) Y(2) has one or two 

components. In the latter case the components are permuted by z. 

With notat ions as above, let Yt(;t) be a component  o f  the complement  of  the 

critical set. While Am(A) is not a closed surface, Theorem 2.3 applies, and Y~(2) is 

holomorphically equivalent to an annulus,  A = {z I r < I z l  < s}, in such a way 

that the biholomorphism, Y~(2) , A, satisfies 

(15.6) q),dz = r162 
Z 

This is because the vertical foliation of  (dz)/z  is the foliation o f  A by circles 

centered at 0. 

Because YI(2) has finite volume relative to ~(2), the numbers  r and s above 

satisfy 0 < r < s < oo. We normalize and assume r = 1, s --- s/r = R.  In the case 

of  a E P 2 , ,  (zA = A), i f  Y~(2)~ zY~(2), each component  is assigned the same 

annulus A and form (dz)/z.  (The annuli  are the same because they are biholomor- 

phic and have inner  radii 1.) In ei ther  case the fact z*tar = -- ta~(a) implies z 

induces A ~~ A such that 
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dz dz 

z z 

This implies z0z = R / z ,  up to a scalar factor of  absolute value one. 

16. Primitive J e n k i n s - S t r e b e l  differentials  

Let Xbe a closed Riemann surface of genus g >_- 0, and let S _ Xbe  a nonempty 
finite set. If tr E M ( X )  is such that S*(e) C_ S, we follow the convention that each 
point s of  S is a zero of  ~ of order l(s) >= O. Let ~(tr) be the associated special 
F-structure. 

I f c ( a ) - -  + 1, define ~ ( t r ) =  ~(~(tr)). I f e ( t r )=  - 1, let ~'(tr) q ~ ~(tr)be the 
canonical positive extension with sheet interchange r. Because z ~ ( ~ ' ( a ) ) =  

~(~'(tr)), ~r~(~'(a)) projects under q to a foliation, ~(~(a)) ,  with singularities in 
S. In this case ~ (~ (a ) )  is a nonorientable foliation. 

Let C(a)  be the union of  S and the set of  separatrices of  ~ (~ ' ( a ) )  in the case 
e(tr) = - 1. C(a)  contains C(n/2) from Section 2 when e(tr) = + 1. C(tr) is the 
critical set of tr. 

16.1.  De f in i t i on .  With notations as above, tr is a Jenkins-Strebel  differen- 
tial if C(tr) is compact. 

By construction C ( t r ) §  ~ (i.e., even when g -  1). Theorem 2.3 implies 
C(o)  c decomposes into a finite union of  cylinders (annuli) of  closed leaves. 

16.2.  De f in i t i on .  A Jenkins-Strebel differential o shall be said to be 
primitive if C(o)  ~ is connected. 

In what follows we shall describe a procedure for constructing primitive 
Jenkins-Strebel differentials. 

Notations are as in the second paragraph of Section 14. In what follows we 
suppose Al and A2 are weavings of~  and that (Aj, ~) , j  -- 1, 2, satisfy (a) or (b) of  
that paragraph. Define A = Ai t3 As, observing that zA = A when (v) applies. 
There is a commutative diagram of canonical maps, 

(16.3) 

PI(A) // 
pl(A2) P~' , Pl(Al) 
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However, P2t is defined only on  p2el(A).  Since ~ EP~(A), the domain ofp2~ is a 
nonempty open subcone of P~(A2). 

Because pI(A) is a product space, the domain of p22 has the form U • V. We 
shall be interested in the case that U = P'(A2), i.e., that 

(16.4) p2P~ (A) -- p~ (A2). 

It is useful to observe that i f A  and A~ are as in Section 12, and if in (16.4) we 
replace A by A t3 A~ and A2 by Al, then (1 6.4) is true. 

Let us now assume in addition to (16.4) 

(16.5) P2IP~ (Az) _ P~(A,) U (0}. 

Suppose now 22 = (a2, f12) = p2(o~, r )  -- p22, aEP~(A) and fl ~P2(A). From 
(16.3) we have that p,2 =P2122, and (16.5) implies pl~.EPI(AI). If Ut is a 
component of  A~, then U~ is a union of(edges and) components ofA c. Moreover, 
because p~2 ~P~(A,), one of these components, call it U, has the property that 
U(2) __ X~ If U~ = haUl, then Ur is a union of (edges and) components of  
(A~ c, and there is determined a natural map U~I-'R(U,,p~2) which is an 
isometry. It follows that X~ is a closed Riemann surface and there is an 

equivalence ~(2) ~ , ~(P12). 
Suppose now p2a is an extremal of  P~ (A2). Propositions 15.4-15.5 imply the 

complement of  the critical set of  ~(~(2))  is one or two components, each 
biholomorphic to an annulus, and that ~(~(2))  corresponds to the foliation of 
the annulus (annuli) by concentric circles. It follows that ~ (~(p ,  2)) has the same 
property. If we are in Case (a), ar a) is a primitive Jenkins-Strebel differential. If 
we are in Case (b), then ar162 projects on X/z  to a primitive Jenkins-Strebel 
differential. Indeed, if there are two annuli in X, these project to a single annulus 
in X/r.  

16.6. P r o p o s i t i o n .  Let notations and assumptions be as above. I f  2 = 
(a, r )  E P ~(A2) is such that a is an extremal o f  a ~ e~ (A 9, then ~ (1o 2, 2 ) = ~ satisfies 
either (1) (in Case (a)) ar is a primitive JenkJns-Strebel differential or (2) (in Case 
(b)) er projects under z to a primitive JenMns-Strebel differential on X/z ,  relative 
to the quotient T(~) complex structure. 
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