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Abs t rac t .  This article discusses some smoothing estimates of the initial 
value problem for dispersive equations with constant coefficients. In particular, 
it is shown that a certain condition for the principal part of the symbol (see the 
assumption (1.3) below, which is equivalent to the one "of principal type" in the 
paper by Ben-Artzi and Devinatz [2]) is necessary and sufficient for the maximal 
smoothing in space-time. 

1 I n t r o d u c t i o n  a n d  r e s u l t s  

The purpose of  this paper is to investigate local and global smoothing properties 

of dispersive equations with constant coefficients. In particular, we shall give a 

necessary and sufficient condition for the maximal smoothing in space-time. We 

consider the initial value problem of the form 

(1.1) i - ~  + P(D)u = f ( t , x ) ,  (t,x) E R n+l, 

u(O, x) = uo(z) ,  z e R n, 

where u = u(t, x), D = i -1 (O/OXl,. . . ,  O/Oxn), and the symbol P(~) = ~l~l_<m a ~  ~ 
is a real polynomial of  degree m > 1. 

Heuristically, if the equation is dispersive, a particle (in the sense of  semi- 

classical approximation) can have any velocity, and the velocity depends on its 

frequency. As a result, some kind of homogenization occurs in space-time. So it is 

a reasonable expectation that the solution u(t, x) might be a bit smoother than the 

initial datum u0 (x). For more than a decade, this phenomenon has attracted a lot of 

attention and has been studied by many authors. In studies of the convergence of 
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the Schrbdinger semi-group, Sj61in [18] and Vega [19] proved that uo(x) E L2(R n) 

implies <D)l/2u(t,z) ~ L~oc(R n+l) if P(D) = A and f = 0. Constantin and 

Saut [5] generalized this local result for general higher order equations. They 

proved that if there exist positive constants c and R such that 

0 P  (1.2) ~--~j (~) > c(1 + I~l) m - l .  [~jl 
- I r  ' 

for all r E R n, I~]-> R, j = 1, . . .  ,n, then uo(x) E L~(R n) implies (D)(m-1)/2u(t,x) 

E L~o c (R n+l) for the solutions of  the initial value problem (1. l) in the homogeneous 

case f = 0. The first interest of this paper is devoted to the relationship between 

the above maximal smoothing and a dispersiveness assumption like (1.2). 

The global decay and the smoothness estimates were obtained by Kato and 

Yajima [13] and Ben-Artzi and Klainerman [3] in the case of the Schr6dinger 

equation. There are some delicate aspects related the estimates for the low fre- 

quency part of the solution, and they affect some involved assumptions for the 

exponent and the dimension. However, from their proofs, it is easy to see that for 

s > 1/2 and T > 0, there exists a constant C such that 

~oT /R  (D)~/2 eUa uo(x) 2 . (1 + Ix]2) -s dxdt <_ C ]lu0ll~2. 

The second interest of  this paper is to generalize this kind of global result to the 

initial value problem (1.1). 

Let us denote by Pm (~) the principal part of the symbol, namely 

Pro({) = Z a~r 
I~l=m 

Also, instead of (1.2), we introduce the following dispersiveness condition: 

(1.3) IVPm(r r 0, for ~ E S '~-1, 

where S n-1 is the unit sphere {r E R n : Ir -- 1}.  

Our first result is 

T h e o r e m  1.1. Let X E C ~ ( R  n) be a function satisfying X(X) = l for  x E U, 
where U is a non-void bounded open set. Suppose that there exist positive constants 

C and T such that, for  the solutions o f  the initial value problem (1.1) in the 
homogeneous case f =_ O, 

(1.4) ItX(') 2 u(t, ")llm~-l>/~ dt <_ C Iluoll  . 

Then we have (1.3). 
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This theorem indicates a necessary condition for the local maximal smoothing. 

The converse is also true. We have the following global result. 

T h e o r e m  1.2. Let u(t, z) be a solution of the initial value problem (1.1). 

Assume that the principal part of symbol satisfies the dispersiveness condition 
(1.3). Then, for any s > 1/2 and T > O, there exists a constant C such that 

fo T I](x)-8(D)(m-1)/2u(t, ")ll~2dt 
(1.5) 

<__ c Ilu011~2 + II(z)8(D)-(m-1)12/(t,')ll~dt �9 

Notice that the terms (x)-8(D)(m-1)/2 and (x)S(D) -(m-l)~2 in (1.5) can be 

replaced, respectively, by (D)(m-1)/l(x) -8 and (O)-(m-1)12(x> 8. This is be- 
cause (D) (m-1)/2 (x)-8 (D)-(m-1)/2 (x)8 and (D)-(m-1)/2 (x)8 (D)(m-i)/2 (x)-8 are 

bounded in L 2 (Rn). 

We now compare the dispersiveness conditions (1.2) and (1.3). The assumption 

(1.2) is not invariant with respect to linear change of variables. For second order 

equations, (1.2) is equivalent to (1.3), if  we admit a linear change of  variables. 

However, if m > 3, (1.2) is more restrictive than (1.3). For example, P(~) = 

f ~ + r  1 3 g~2 satisfies (1.3), but does not satisfy (1.2), even after some linear 

change of  variables. To see this, let us observe that the assumption (1.2) allows at 

most two zeros of OP/O~j (j = 1, 2) in the unit circle S 1, but cl OP/a~l +c2aP/O~2 
has four zeros, for any real constants cl and c2. Moreover, from the point of  the 

view of  microlocal analysis, the condition (1.3) looks natural. 

R e m a r k  1.3. In the homogeneous initial problem (i.e., the case f = 0 in 

(1.1)), the estimate similar to (1.5) under the assumption (1.3) was first obtained 

by Ben-Artzi and Devinatz [2]. They called the assumption equivalent to (1.3) 

"of  principal type" (cf. (3.1) below and (3.2) in [2]). They also improved their 

result to the non-maximal smoothing in space-time. We refer the reader to [2] for 

details. 

The global result of  Theorem 1.2 can be improved to an optimal estimate of 

some Besov spaces, which were introduced by Agmon and Hbrmander [1]. Let 

Dk = {x 6 R "  : 2 k-1 < Ixl ___ 2 k} for k > 1, and Do -- {x E R '~ : Ixl < 1}. Denote 

by XD~ the characteristic function of  D~. We introduce the function spaces as 

follows: 

{ ~2k/2' lX~ uIIL2([~215 } BT = u E L2~([O,T] x R n) : IlullB~ = < oo , 
k=O 
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and 

B~. = ~u E L~oc([O,T] x R'~): Ilul,u~. = sup 2-k/2[IXokUllL2([O,Z]xR~) < O0 I 
( k_>0 ) 

Then it is easy to see that for s > 1/2, (x)-SL2([O,T] x R n) C BT and B~ C 

(x)'L~([0, T] x Rn). The refined result is 

T h e o r e m  1,4. Let u(t,x) be a solution of  the initial value problem (1.1). 

Assume that the principal part of  the symbol satisfies (1.3). Then for any positive 
number T, there exists a constant C such that 

(1.6) II(D)(m-x)/euJlB~ <_ C (llu011L= + II(D)-(m-~)/2IIIBT) . 

We now explain our method of proof. Theorem 1.1 is shown by constructing 

one-parameter family of solutions, which contradicts the estimate (1.4). The 

argument of the proof is similar to those in Doi [8] and Ichinose [ 11 ], and it can be 

regarded as a version of the energy method initiated by Mizohata [ 15]. The proofs 

of Theorems 1.2 and 1.4 are based on Mourre's commutator method, which was 

also an essential tool in our proof of the results in our previous paper [10]. This 

method seems useful for deriving estimates for operators with variable coefficients. 

An improvement will be elaborated in a subsequent paper. 

The paper is organized as follows. Section 2 contains an argument of the 

energy method and the proof of Theorem 1.1. In Section 3, we discuss Mourre's 

commutator method to derive a smoothing estimate related to an inhomogeneous 

initial value problem. This is the essential part of the proof of Theorem 1.2. Section 

4 is devoted to the completion of the proof of Theorem 1.2. In Section 5, we extend 

the arguments in Section 3 in order to prove the improved estimate (1.6). 

R e m a r k  1.5. Since this paper was written, the author learned that Chihara [4] 

has showed the estimate (1.5) for a class of the equations with variable coefficients. 

A c k n o w l e d g e m e n t s ,  The author is grateful to the referee for useful com- 

ments and criticisms. 

2 Energy method and necessity 

We prove Theorem 1.1 by contradiction. More precisely, we are going to show 

that the estimate (1.4) cannot hold if IVPml has zeros in the unit sphere. 

First take a point x0 from the open set U. Also let w0 be a point of the unit 

sphere S n-1 and t~ a positive constant to be chosen sufficiently small in the last 

part of this section. Take a real-valued smooth function h(~) E C~  (R'*) satisfying 
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h(~) = 1 for I~l ~ 10-1~ h(~) = 0 for I~[ ~ 2 . 1 0  -x~ and let the initial datum with 

a positive large parameter A be 

Uo(x) = h ( 5 - 1 (  D - wo) ) ' (x  - xo), 

where ~(x) is the Dirac delta function, and h (5 -1 (D _ ~0)) is a pseudodifferential 

operator (more precisely, Fourier multiplier) defined in the usual way. Notice that 

the energy of  uo(x) is concentrated in a neighborhood of  (x, ~) = (x0, AWo). We 

consider the solution u = u(t, x) of the initial value problem (1.1) in the homoge- 

neous case f( t ,  x) =_ O. Roughly speaking, the energy of  u(t, x) is concentrated in 

a neighborhood of  the point (x0 - tVPm(Aw0), Awo) for small t and large A. Our 

first task of  the present section is to describe this vague fact precisely. 

Let d = dist(x0, OU) and let hi (x) E C ~ (R n) be a real-valued function satisfy- 

ing ht(x) = 1 for Ixl ___ d .  10 -1~ and hx(x) = 0 for I~1 >_ 2d- 10 -1~ To localize the 

energy near the point Xo - tVPm(AWo), we introduce the following notation: 

r = ep(t,z,~) = hl(x - x o  + tVPm(~)), 

r = r ) = (D~hl)(x - Xo + tVPm(~)), 

and 

eP(r = r . h ((2~)-l ( D  - w o ) l  U, 

where the symbol  of  the operator h ((25) -1 ( ~  - ~,o)) is 

h2,5 = h ((2~)-I ( ~  - w o )  ) �9 

The microlocal energy of  the solution u = u(t, x) is 

o : , ( u ) ( t )  = A-1 '/411 '( )uCt,)ll2, 
I~l_<S 

where A > 0, II II = II IIL~cB~), ~ ' ( ~ )  is the adjoint operator of  ff(c~), and N is a 

positive integer chosen large below. 

We have 

P r o p o s i t i o n  2.1.  Take N so that n + m - N/  4 <_ O. Then there exists a positive 
constant C such that 

(2.1) ax(u)(t) >_ exp ( - C .  A m-v/ '  . t )  { a x ( u ) ( O ) - C }  

for A large and 0 < t < •-rn+7/4. 
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R e m a r k  2.2. Notice that [lu0 II = c (6-A) n/~ and C -1 (6") t )  n ~ O" A (0)  _~ C (6")~)n 

as A --> ~ .  Thus, for some positive constant c, 

(2.2) ax(u)(t) > c (6. A) n, for A large and 0 < t < A -m+7/4, 

which means that a large part of the energy of the solution is concentrated near the 

point (x0 - tVPm (Aw0), Aw0). 

P r o o f  o f  P r o p o s i t i o n  2.1. As in the proof of the Lax-Mizohata theorem 
[15], we prove (2.1) by deriving a differential inequality. First, observe that 

o 0 ~ 
'~(a) = ~(o~) -~ + i E 'h(o~ + j) P(mJ)(D), 

j = l  

where a + j = (a l , .~ . ,  a j  + 1,. . . ,a,~) and P~)(D) is an operator with symbol 
P(m j) (~) = (0~#)Pm(~). Hence, by taking the adjoint of the both sides of the 
equation, we have 

(2.3) d.,~*(o~)u.l~ =2Re (O(~*(~)u),cI,*(o~)u) 

=2Re { - i  E ( P 2  ) (D) r (a + j)u, r 
j = l  

+ 

71 

=2Re { - i  E(P2)(D) ~*(a + j)u, ~*(a)u) 
j = l  

+ i((~*(a) P(D)u, @*(a)u)}. 

On the other hand, 

n 1 
P(D)r = ~(cOP(D)+ E r ~ (a')! 

j=l 2_<{odl<_m 

hence 

! t 
- -  ~ ( c t + a  ) p (a  )(D); 

n 

(2.4) r ((~) P(D)u = P(D) ~* (cOu + E P(j) (D) r (~ + j)u 
j = l  

1 p(c,,)(D)~.(a + a')u, + 

2<_]odl<m 

where P(J)(D) and P(a)(D) are operators with symbols P(J)(~) = (O~P)(~) and 
P(") (~) = (0~ P) (~), respectively. 
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Substitute (2.4) into the last term of  the right side of  (2,3). Observe that the 

value of (P(D) ~* (a)u, ~* (a)u) is real, the operator P(J) (D) - P~) (D) is of  order 

m - 2, and the energy of the solution is concentrated in a neighborhood of ~ = A w0. 

Hence, for large A, 

- ~ ;~m-I~'l(ll~'*(~ + ~')ull 2 + II~*(cdull 2) - 11. 
2<l~'l<m J 

Multiplying the weight A-1~I/4 and taking the summation with respect to a, we 

have for large 

d 
(2.5) dS ax(u)(t) > - cAm-7/4ax(u)(t) 

- CA m ~ A- i< ' i / 4  II<I>*(a ) u l l  ~ - c ,  
NSI<~I<N+m 

since m - t<Zl + I~ '1 /4  _< m - 714 for  <~' sa t is fy ing  I<~'1 -> 2. 
Notice now that 

I1~*(~) ull = o(A "/2) 

for 0 < t < A -re+r/4 and A > (f -1. This follows from the facts that Null = c (~. ;~)~/2 
and that the operator ~*(a) is uniformly bounded in L2(R n) for 0 < t < A -'-"+7/4 

and A > (f -1. Hence 

Ar, ~ A-1~l/411r )ull 2 = O(A~+m-NI,). 
N<_iai<N+m 

Finally, take N so that n + m - N/4 <__ 0 and integrate both sides of  the equation 

(2.5) to obtain the desired estimate (2. I). [] 

Now we are in position to start the proof of  Theorem 1.1. First, observe 

that the operator h ((26) -1 (D _ w0))" r is uniformly bounded in L2(R ") for 

0 .( t </~-ra+7/4 and A > 6 -1. Hence there exists a positive constant c such that 

(2.6) ,,(D)(m-1)/2X(x)ull ~_ c Ilh ( (2 ' )  -1 ( D  _wo)  ) f.(a)(D)(m_l)/~X(x)ul " 

We now show that the fight hand term of  the inequality (2.6) is not small, until the 

time when the point Xo - tVPm(Awo) reaches a neighborhood of  the boundary OU. 
Set 

(2.7) T(A) = min /~-m-1-7/4, 2A m-1 . suPl~-~01<46 IVe,~(w)l " 
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It is clear that 0 < t < T(A) and ~ E supph26 imply ItVPm(()l  < d/2. Also 

(z,~) E supp~ (~) implies Ix - x0 + tVPm(~)l < 2d. 10 -1~ Thus 0 < t < T(A), 

E supp h26 and (z, ~) E supp ~b (~) imply 

Ix - Xol < Ix - Xo + WPm(~)I + ItVPm(~)l 

< 2d. 10 - l~ + d / 2  

< d, 

and hence X(x) = 1. 

On the other hand, the inequality (2.2) shows that there exists a such that 

IN'*(cdull ___ c(~.  ;gn/2 for 0 < t < A -m+7/4. Thus we have for some positive 

constant Cl 

(2.8) 11 h ((2(~)__ 1 (D _wo))r [ 

"___ c,;~(m-x)/211~*(c,) ull - O(~ ("+m-3)/=) 
> C1 (~n/2 ~(n+ra--1)/2, 
_ ~ -  "C2 �9 

for 0 < t < T(A) and A large. 

Now we are in position to finish the proof of  Theorem 1.1. Observe that the 

estimates (1.4), (2.6) and (2.8) imply that 

co (~. a)" = Clluoll ~ 

fo T(x) > II(D)(~-l)/2X(z) ull 2 dt 

> (c .c l  �9 c2/2) 2. 5n. T (A) .  A "+m-1. 

Consequently, 
T(A) ___ C.  A -re+x, 

for A large. The constant C in the last inequality can be taken independent of 

~o0 E S n-x and 5 > 0, even though the range of  the parameter A may depend on 

them. This is impossible if [VPr, I has zeros on the unit sphere. Indeed, by taking 

w0 so that IVPm@0)I = 0 and 5 > 0 sufficiently small, the definition (2.7) implies 
that, with any given positive number ~, the inequality 

T(~) > c -1 .A -re+l, 

holds for A large. This completes the proof of Theorem 1.1. 
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3 M o u r r e ' s  c o m m u t a t o r  m e t h o d  

As noted in our previous paper [10], the global smoothing estimate (1.5) 

is closely related to the limiting absorption principle in spectral theory. It can be re- 

garded as an estimate for the Fourier multiplier with singular symbol 

( - r  + p(~))- i  and depends heavily on the level set {x E Rnl r = P(~)} for 

r E R. Notice that the dispersiveness assumption (1.3) implies that this level set 

is a hypersurface if ITI is large, and its shape becomes similar to the one for the 

principal part Pm(~) as ]r[ --+ ~ .  In the present section, we derive an estimate 

for the high frequency part (see Proposition 3.1 below) from the dispersiveness 

assumption (1.3). 

We begin by introducing some notation. Let f~j (j = + 1 , . . . ,  +n) be a cov- 

ering of the unit sphere S n-x (i.e., each ~j  is open and S n-1 C Ujf~j) such that 

O~jPm(w) > 0 (w E 9tj) and O~Pm(w) < 0 (w E t - j )  for j = 1 ,2 , . . . , n .  Take 

a partition of unity ~ ( w )  (j = +1 , . . . ,  +n) subordinate to this covering (i.e., for 

each j ,  r E C~(f~j), 0 <_ qoj <_ 1 and ~j~oj(w) = 1 fo rw E S n-1 ). Choosing 

R > 0 sufficiently large so that, for some positive constant e, 

(3.1) 1O~iP(~)l> cl~] m-l,  i f l ~ l > R ,  a n d l ~ [ e f ~ j u f ~ _ 3  

for all j (notice that the hypothesis (1.3) allows us such a choice), we denote by 

~o0 a function of class C ~ ( R + )  such that 0 < qo0 < 1, ~o0(A) = 1 for A > 2R, and 

~0(A) = 0 for 0 < A < R. Set 

= 

O J ' ( ' " ' ) ( ' ) = i " + { ~  (ie)k } 

Gj,(~,e)(D ) = r  (iOt + P(D) + Qj,(,,e)(D)) -1, 

f o r j  = + l , . . . , + n ,  and 

G = 

J 
Observe that Im Qj,(,,e) (~) > 0 for ~ E supp Cj; hence the operator G is well-defined 

as a Fourier multiplier, with small positive parameters e and e'. 

The purpose of the present section is to prove 

Proposition 3.1. Assume (3.1). Then, for s > 1/2, the operator norm 

II(z)-'(O) m-lG(x)-sll~(L=(rt-+~)) 
has a bound which is independent of the small positive parameters c and g. 
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Since it suffices to prove the assertion for each Gj,(,,,,)(D), we abbreviate 

below Qj,(,,,,)(D) by Q(D), Gj,(,,,,)(D) by G(D), Cj by r and II II~(n2(rt~+l)) by 
II II- Also, without loss of  generality, we may assume j > 0. First we show the 

assertion in the special case s = 1. Then we give the proof of the general case 

1/2 < s < 1. 
Denote 

Go = (iOt + P(D) + Q(D)) -1. 

Observe that Go might not be well-defined, but that the operators r  

(Or r  Go and r (D) Go are well-defined nevertheless. Let 

F = (x) -1 (D)m-lr 

Then a direct calculation shows 

dF - (x)-I(D)m-I~(D)[xj,  G0](x) -1 
de 

= -(x)-Y xj (D)m-Ir (x)-I _ (x)-i [ (n)m-lr  ' xj]Go (x)-i  

+ (x)-i (D)m-1 r xj (x)-i .  

Observe now that 0 _< r < 1 and the smoothness of r imply r _< r 

and IVr _< Cr for some positive constant C. Hence we arrive at the 

following inequality, which plays an important role in our procedure. 

(3.2.) d~ <_ C (ll(n)m-lr + I](x)-iGo(n)m-l~bl/2(D)ll) . 

The following lemma uses mainly the ideas of Mourre [16]. 

L e m m a  3.1. There exist positive constants eo and C such that for 0 < e < eo 
and e' > O, 

(3.3) IIFII < c .  e - i ,  

(3.4) II(D)m-lcl/2(O)ao(z)-lll + [[(x)-YGo(O)m-lr 

< C . e  -a/2. [[F][ 1/2. 

P r o o f  o f  L e m m a  3.2. Both inequalities follow from the hypothesis (3.1). 

Indeed, the inequality (3.3) is a consequence of the fact that there exist positive 
constants e0 and C such that 

1(5)m-ic(5)G0(5)l < (~)m-lr iim Q(5)I-, 

< c . e - 1  

for 0 < ~ < co. 
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and 

To obtain (3.4), observe that 

I[(D)m-lr yll 2 = ((x)-lG;(D)2m-2r f, f) 

[(m--I)/2] (ie)2k+l ) 
G ; - C 0  = 2G; i e '+  Z (2k+ 1)!' (O~k+IP)(D) Go. 

k=0 

Thus 

[l(/))'~-lr e 
C <- --[((x)-IG;(D)m-~r f ) -  ((x) -~ (D)m-~r - i f ,  f)] 

< 2CIIFflI" II]11, 
s 

which implies the estimate for (D)m-lr -1. 
The evaluation of the operator norm of (x)-IC, o(D)m-Ir is similar, after 

taking its adjoint. [] 

Now we are in position to finish the proof in the case s = 1. The argument is 

quite routine. First, (3.2), (3.3) and (3.4) yield 

- < C ' : 1 .  

After integrating this inequality with respect to e, we apply (3.2) and (3.4) again, 

Then 
-~ S C. f.--1/2llog r 

so that 

IIFII S c ,  

which shows that the operator norm of (x)-1 (D)m-IG(D)(z)-1 has a bound inde- 

pendent of e and e'. This completes the proof in the case s = 1. 

P r o o f  of  P r o p o s i t i o n  3.1 fo r  the  g e n e r a l  ease  1/2 < s < 1. Here we shall 

make some modifications in the above arguments. First put 

G1 = (Or + P(D) + Q(e + 71, e')) -1, 

w h e r e O <  ~/ << 1 a n d Q ( e + r l ,  e' ) = Qi,(~+~.,,)(D). As in the case8  = 1, the 

operators r  G1, (8~jr G1 and ~pl/2(D) GI are well-defined, even though G1 

might not be well-defined. Set 

w =  (x)-" ( ~ l x l §  
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and 

Then 

(3.5) 

F1 =W(D)m-Ir 

dGl 
dF......~tdr/ = dW_._W.dr I (P)m-t~p(D)G1W + W (D)m- t~ (D)  �9 -'-~-0 " W 

dW 
+ W ( D ) m - I r  �9 - -  

do 

The evaluation of the second term on the right side of  (3.5) is similar to that in the 

cases  = 1. In fact, 

I IW-zj l l  _< c .  r/s--I 

and 

W ( D ) m - ' r  dG, --d~-W = - W  ( D ) ' - 1 r  GI] W 

= - W  x i (D)m- l r  G1 W - W[(D) '~-Ir  xj]Gt W 

+ W (D)m- l r  a l  x j W  

imply 

dGt W W (D)m- ' r  

< 6'. o " "  (II(D)m-'f'/2(DIG, WII + IIW G,(D>"'- 'e ' /2(D)II)  �9 

On the other hand, concerning the other terms, let us notice that 

dW 
= (s - t ) - ( z ) - " .  I x l - ( n l z l  + 1)"-2  

dr/ 

implies 

Thus, applying the argument of  the proof of  (3.4), we arrive at the following 

inequality, which plays an important role in our procedure: 

(3.6) [ - ~  _< c . r / ' - '  (II<D)"-xr + IIWG,(D>m-'@/2(D)II) 

< C'-~'-3/211F~11~/~. 

Now we are in position to finish the proof for the general case. As in the case 

s = 1, the argument is quite routine. At first, let us assume that 

l it, II < c .  ,1-" 
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for some positive constant 7- Substituting this inequality into (3.6) yields 

I ~  <_C.7]~-3/2-'y/2, 

so that 

Observe now that i f s  > 1/2, 

IIFlll 5_ c .  ~s--112--712. 

s -  1 / 2 -  7 / 2 -  ( -7 )  > s -  1/2 > O, 

which shows that the exponent increases a fixed amount after such a procedure. 

We conclude that, starting from the estimate IIFlll _< c -  7 -1, after a finite number 

of steps the above procedure yields 

IIFlll ~ c ,  

which immediately implies that the operator norm of (x)-" (D) m- 1 G j,(e,e, ) ( D ) (x)-s 
has a bound independent of  e and e'. This completes the proof. 

4 Global smoothing  estimate 

In this section, we discuss the reduction of  Theorem 1.2 to Proposition 3.1. We 

derive the estimate (1.5) by reducing it to special cases as follows. 

Case (i). The estimate of the high frequency part in the case Uo(X) = 0 
First, we explain the relationship between Proposition 3.1 and the initial value 

problem (1.1). The argument here was already described in our previous paper 

[10]. Denote 

u~,(t,x) = (lOt + P(D) + ie')-l f ( t ,x) ,  

and 

u(t, x) = lim u,, (t, x). 
e'~.O 

Here the operator (iOt + P(D) + ie') -1 is defined as a Fourier multiplier, and 

u(t, x) has a sense (at least) when the right hand side has a limit in the space of  

distributions. Then u(t,x) is a solution of  (1.1) with Uo(X) = 0 if ](t ,x) =_ 0 for 

t < O. In fact, Cauchy's integral formula shows that 

u(O,x)---lim 1 / /  ,'m ~ e-i~8(-v + P(D) + ie ' )- l f (s ,  x) dsd'r 

= - i  f(s,  x) ds. 
o o  
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Thus, by taking the limit ~ --r 0 in Proposition 3. I, we arrive at the estimate of 

the high frequency pan as follows. Let u = u( t , x )  be a solution of (1.1) with 

Uo(X) = O. Then, for s > 1/2, there exists a constant C, such that 

(4.1) o ~ II(x)- ' (D)(m-1)/2~o(IDI)  u(t,  .)ll2L: dt 

/o <_ Cs II(x)S(D) -(m-l)~2 f(t, ")11~2 dt. 

Case  (ii). The est imate (1.5) in the case uo = 0 

The estimate (4.1) does not include any information about the low frequency 

part of the solution u(t,  x). So it remains to prove that part of the estimate (1.5) 

This is a consequence of standard facts concerning the initial value problem (t. 1 ) 

Indeed, the representation 

(4.2) 

implies that 

(4.3) 

f0 t fz(t, ~) = - i  e ~(t-s) P(~) f ( s ,  ( )ds  

fo T sup Ilu(t,')llL2 < CT Ikf(t,.)liL~ tit, 
O<_t<_T 

for the solution of (1.1) with u0 (x) - O. Observe also that 

fo T II(x)-'(D)(m-1)/2(1 - ~o0(IDI)) u(t, ")ll~,=dt ___ C- sup 
0<t<T 

and 

( fo  T II(D)-(m-1)/zf(t, ")IIL~ dt) 

II(O)-(m-1)/2u(t, ")lift.: 

f0 T < T II(D)-(m-1)/2f( t, -)11~ dt 

T 
< Z~o  II(x)S(D)-(m-1)/2f( t , ' ) l l~2 dr. 

Thus we have for the low frequency pan 

// (4.4) II(x)-'(D)("-x)/2(1 - ~o0(IDI)) u(t, ")11~ clt 

< C II(z)"(D)-(m-x)/2f( t, ")11~ dr. 

Now (4.1) and (4.4) immediately imply the estimate (1.5) in the case uo(x) =-- O. 
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R e m a r k  4,1.  We comment here on the relationship between the smoothing 

estimate (4.1) and the dispersiveness assumption (1.3). In general, smoothing 

estimates are closely related to the level set {~ E R '~ : P(~) = ~-} for T E R.  The 

assumption (1.3) implies that the level set is a hypersurface if Irl is sufficiently 

large. Moreover, it becomes asymptotically similar as Irl ~ c~; hence the estimate 

(4.1) holds. However,  the assumption (1.3) does not affect the level set for small 

IT[. It might be a point, or a point plus a hypersurface for some value of  T, SO we 

can only get the trivial estimate (4.3). It seems rather difficult to discuss significant 

estimates for the low frequency part, since there are some involved features even 

in the case of  the Schr6dinger equation (cf. [3] and [13]). 

Case (iii). The est imate (1.5) in the case f ( t , x )  =_- 0 

The result for the homogenous initial value problem comes from the above 

estimate for the inhomogenous case. The procedure below (which is called the 

T*T  method) was described already in our previous paper [ 10]. First let 

u( t , x )  = i lim {(/at + P(D)  + ie) -1 - (iOt + P ( D )  - ie) -1} f ( t , x ) .  
c40 

Then 

f0 T fi(t, ~) = e i(t-s) P(~)](s, ~)ds 

if one extends the function f so that f ( t ,  x) - 0 for t ~ [0, T]. Thus the arguments 

up to this point imply the following estimate for the correspondence f ~ u of  the 
functions in [0, T] x Rn: 

[[(x)-"(D) (m-1)/2 u(t,  .)[[~2 dt < C [ l (x )" (D)- (m-1) /2 f ( t ,  ")1[[2 dt. 

On the other hand, it is clear that the function u(t,  z )  satisfies the homogeneous 

equation (iOt + P ( D ) ) u  = 0, and 

u(O, X) = e - i s P ( D l f ( s , x )  ds. 

Denote the correspondence 

f = f ( t ,  x) ~-r u0 = u(0, x) 

by U. Then its adjoint U* becomes 

It 0 ~ U ~ eit P(D)uo, 
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and the above correspondence f ~ u becomes U*U. Therefore, we have 

IlUfll~: 
--[(Uf, U f)L=fR~)I 
= I(u, f)L~ClO, Tl• 

(z T )o (/o T 
< II(x)-~(D) (m-1)/2 u(t ,  ")ll~ dt �9 II(x)'(D)-(m-1)/2f( t, ")lift: dt 

/: < C II(x)"(D)-fm-~)/2.f(t,')ll~: dr, 

so that 

(z ): [(U*uo, f)L'([O,T]• <_ Cllu01lL, - [l(z)"(D)-(m-1)/2f(t,.)[l~ dt 

Finally, observe that the last inequality is equivalent to 

T 
o H(x)-S(D)(m-x)/2 U*u011~= dt CIl~,oll~, 

which completes the proof of the estimate (1.5) in the case of the homogeneous 

initial value problem. 

5 Besov  space  e s t imate  

In this section, we prove the improved estimate (1.6). As preparation for the 

proof, we recall the arguments and the procedures mentioned in Section 3 and 

Section 4. First, the estimate for the homogeneous initial value problem comes 

from the estimate for the inhomogeneous one. This argument was discussed in the 

case (iii) of the previous section. Second, the estimate for the low frequency part 

immediately comes from the representation (4.2) and the fact that BT C L 2 C B~. 

The similar argument to see this was discussed in the case (ii) of the previous 

section. It remains to prove the estimate for the high frequency part as (4.1), and 

this is the essential part of the proof. We follow below the procedure of Jensen and 

Perry [ 12], where the arguments of the proof are based on those in Mourre [ 17]. 

Let 

Bk = {X E R n :  Ixl < 2k}, 

and denote by Xs~ the characteristic function of the ball Bk. We use the notation 

introduced in Section 3. The required estimate is a consequence of the following 

bound for the operator G defined in Section 3. 
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Proposition 5.1. Assume the dispersiveness assumption (1.3). Then 

IIx.~ (D> m-1 GXB~, [[~(L=(R-+')) --< C.  2 (k+k')/2, 

where C is a constant independent of  r c', k and k'. 

Admitting this proposition for the moment, let us proceed to the proof of the 

estimate for the high frequency part. It is clear that 

2-k/21lXo ~ (D)m-IG fllL2([0 ' TI •  '~ ) 

_< 2 -~/~ ' ~  Ilxo~ (O)m-tGxo~, II=(L2(R-+I)) �9 Ilxo~, flIL=(t0, TI• 
k'  

___ 2 -k/2 ~ IIx,,~ (D)m-IGxs,, II=(L~tR-+')) " Ilxo,, /IIL2(I0, TIxR") 
k '  

<_ 2 -k/2 ~ C .  2 (k+k')/= " llxo~, f]IL2([0, T]xR") 
k '  

<- C E 2k'/2 �9 I lxo~ ,  I[IL~(tO, TI• 
k' 

provided f( t ,  z) = 0 for t ~ [0, T]. Hence we have 

<D>(m-I)/2 G fI B~. <- C {D)-(m-l)/2 f 
Br" 

Taking the limit of the last inequality as e ~ 0 and e' ~ 0, we arrive at the required 

estimate for the high frequency part 

This completes the proof of Theorem 1.4. 

P r o o f  o f  P ropos i t i on  5.1. Since G = ~ j  Gj, it suffices to show the estimate 

for each j. We adopt below the abbreviations in Proposition 3.1. For example, we 

denote Gj by G as in the proof of that proposition. The proof of Proposition 5.1 is 

accomplished by decomposing the balls Bk and Bk, into slabs. 

First let Xt (e = 0 ,+1 ,+2 , . . .  ) be the characteristic function of the slab 

{x 6 R n : e <_ xj < e + 1}, i.e., Xt(xi) = 1 for e < zj < e + 1 and Xt(Xj) = 0 
l - 1  cx~ otherwise. Moreover, let us denote X<t = ~, ,~=-~ X,~ and X>_t = ~"~m=t Xm. 

L e m m a  5.1. Assume the dispersiveness assumption (1.3). Then 

IIx, (V) " - 1  G X..II~(L=tR-+~)) 

has a bound independent o f  ~, 4, ~ and m. 
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Proo f .  The following arguments are due to Mourre [17]. The point of the 

proof is to derive the estimate when I~ - ml is large. First observe that 

(5.1) x t ( D ) m - I G x . ,  =xt(D)m-I~b(D)Gox, , ,  

= X, X<~(D) m-I g.,(D) Go X,,, 

+ Xt X>_., (D) m-1 ~h(V) G; X., 

+ X, X>,~(D) m-1%b(D)G; (Q* - Q)Gox, , .  

For the third term of the right side of (5.1), the argument in the proof of the estimate 

(3.4) implies that 

IIx, x>_. (n) m-1 r  G; (Q* - Q) G0 X,~ 11 

_ IIx, G; el/2(o)m-1 r �9 []e-1/2~bl/2(O) (Q* - Q) Go X .  II 

___ c IIx, G; d/2(O) m-1 r �9 IId/=r (o )m- lao  X .  II 

< (7' [IX, (O) m-1 ~b(O)(G; - Go)X, II 1 / u  IIx.. (O) m-x r  - Go)x .  II 1/5. 

Hence one sees that it has a bound independent of e and m. Concerning the other 
terms we have 

L e m m a  5.2. Assume the dispersiveness assumption (1.3). Then 

and 

[[X<m (D) m-* ~b(D) Go X,,, [[s 

I[X>_,, (D) m-1 r  G~) X,, IIs 

have bounds independent o /  e, e' and ra. 

Proof. As in Proposition 3. l, the proof is based on a differential inequality. Here 

we consider the first operator norm. The proof of the second one is quite similar. 

Let G1 be as in the proof of Proposition 3.1 for the general case 1/2 < s < 1. For 
small positive 7/, denote 

Then 

(zj -m) F2 = X<,,en (D) m-1%b(D) G, X,,. 

dF2 
d~ 

= x<.e "(~'-m). (x i - m). (D) m-* ~b(D)GI X. 

- x<~e" (xi-'*) (D) m-1 r G,]X. 

= x<~e o(z~-m) [xj, (D) m-' r Cl X.~ 

+ Z<,,,e '7(zj-m) (m) m-1 r  Ga �9 (xj - m) "X.,. 
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Concerning the first term on the right side of the last inequality, the argument in 

the proof of the estimate (3.4) shows that 

Ilx<me u(~-m) [x3, (D) m-: r G: X~ 11 

< CI](D) m-: Ca/2(D)aa X.,II 

< C ' .  n -1/2. IIX~ (O) r~-~ ~(D) Gx x,,l[ ~/2 

_< C" - ~-1/2. 

On the other hand, concerning the second term, we have 

IIx<,,~' ( ~ - ' )  ( D )  m - :  r �9 ( x j  - m )  . )~ m II 

< [Ix<e n(xj-m) (O) m-1 r Gax~ll 

< IlF.2[I. 

Also, it is clear that IIF~II _< C-~-a .  Thus, from these observations, one can easily 

conclude that IIF211 ___ C, which implies the desired bound. 

E n d  of  the  proof of Proposition 5.1. Now we are in position to finish the 

proof of Proposition 5.1. It is quite straightfoward. Indeed, denoting 

Fe,m= X, XB~(D)m-IGx,~, X., ( -2k < g < 2 k ,  --2k' < g < 2 k ' ) ,  

ge = Xe X ,  k (D) m-1 G XB~, : ,  f m =  X,~X,~, : ,  

we obtain 

2 
IlgllL=(B~• = ~ IIg, II = 

= Z II Z  ',m:mll 
--2 k <~<2 k _2 k' <rn<2 k' 

<- E Z IfV',mlZ Z IJ: 'l  
- 2  k<g<2 k _2 ~' < m < 2  ~' --2 k' < m < 2  ~' 

< C .  2 k+k' �9 I1f11~=r • 

This completes the proof of Proposition 5.1. 
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