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Abstract. This article discusses some smoothing estimates of the initial
value problem for dispersive equations with constant coefficients. In particular,
it is shown that a certain condition for the principal part of the symbol (see the
assumption (1.3) below, which is equivalent to the one “of principal type” in the
paper by Ben-Artzi and Devinatz [2]) is necessary and sufficient for the maximal
smoothing in space-time.

1 Introduction and results

The purpose of this paper is to investigate local and global smoothing properties
of dispersive equations with constant coefficients. In particular, we shall give a
necessary and sufficient condition for the maximal smoothing in space-time. We
consider the initial value problem of the form

. Ou — n+1
(L. ig; tPDu={f(tz2), (tz)€R™,
U(O: Il!) = uO(m): z € R",

whereu = u(t,z), D = i71(8/0z1, . ..,0/dz,), and the symbol P(§) = }_ ;< Gat”
is a real polynomial of degree m > 1.

Heuristically, if the equation is dispersive, a particle (in the sense of semi-
classical approximation) can have any velocity, and the velocity depends on its
frequency. As aresult, some kind of homogenization occurs in space-time. So it is
a reasonable expectation that the solution (¢, =) might be a bit smoother than the
initial datum uo(z). For more than a decade, this phenomenon has attracted a lot of
attention and has been studied by many authors. In studies of the convergence of
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the Schrodinger semi-group, Sjolin [18] and Vega [19] proved that up(z) € L2(R™)
implies (D)/?u(t,z) € L (R™') if P(D) = A and f = 0. Constantin and
Saut [5] generalized this local result for general higher order equations. They
proved that if there exist positive constants ¢ and R such that

2|2 cavim- 1
forallé € R, €| > R,j =1,...,n, thenup(z) € L?(R™) implies (D)(m~1)/24(t, z)
€ L2 (R™*!) for the solutions of the initial value problem (1.1) in the homogeneous
case f = 0. The first interest of this paper is devoted to the relationship between
the above maximal smoothing and a dispersiveness assumption like (1.2).

The global decay and the smoothness estimates were obtained by Kato and
Yajima [13] and Ben-Artzi and Klainerman [3] in the case of the Schrodinger
equation. There are some delicate aspects related the estimates for the low fre-
quency part of the solution, and they affect some involved assumptions for the
exponent and the dimension. However, from their proofs, it is easy to see that for

s >1/2and T > 0, there exists a constant C' such that

(1.2)

T ) 2
/ / (1+ [2]*)7° (D)% €2 ug(z)| dzdt < Clluoll} -
0 n

The second interest of this paper is to generalize this kind of global result to the
initial value problem (1.1).
Let us denote by Py, (€) the principal part of the symbol, namely

Pn(8) = Z aaé”.

laj=m
Also, instead of (1.2), we introduce the following dispersiveness condition:
(1.3) VP () #0, forée S,

where S™~! is the unit sphere {£ € R : |¢] = 1}.
Our first result is

Theorem 1.1. Let x € C°(R™) be a function satisfying x(x) = 1 forz € U,
where U is a non-void bounded open set. Suppose that there exist positive constants
C and T such that, for the solutions of the initial value problem (1.1) in the
homogeneous case [ = 0,

T
(1.4) /0 () ult, Wgomosyse dt < C lfuoliZs.

Then we have (1.3).
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This theorem indicates a necessary condition for the local maximal smoothing.
The converse is also true. We have the following global result.

Theorem 1.2. Let u(t,x) be a solution of the initial value problem (1.1).
Assume that the principal part of symbol satisfies the dispersiveness condition
(1.3). Then, forany s > 1/2 and T > 0, there exists a constant C such that

/T [|=)=* (DY~ 22, ) 3 2t
(1.5) , T
<C (||u0||'22 +/0 ||(2?)’(D)_('"_1)/2f(t,')Ilizdt> :

Notice that the terms (z)~*(D)(™~1/2 and (z)*(D)~(™~1)/2 in (1.5) can be
replaced, respectively, by (D){m~1/2(z)=¢ and (D)~(™~1)/2(z)s. This is be-
cause (D)(m-1/2(g)~s(D)=(m=1)/2(x)s and (D)~ (m=V/2(g)s(D)(m=1/2(g)~* are
bounded in L?(R").

We now compare the dispersiveness conditions (1.2) and (1.3). The assumption
(1.2) is not invariant with respect to linear change of variables. For second order
equations, (1.2) is equivalent to (1.3), if we admit a linear change of variables.
However, if m > 3, (1.2) is more restrictive than (1.3). For example, P(§) =
4836 — 6.6 + 1€ satisfies (1.3), but does not satisfy (1.2), even after some linear
change of variables. To see this, let us observe that the assumption (1.2) allows at
most two zeros of OP/3¢;  (j = 1,2) inthe unitcircle S*, but ¢; 0P/ 8 +c2. 0P/ 82
has four zeros, for any real constants ¢; and c;. Moreover, from the point of the
view of microlocal analysis, the condition (1.3) looks natural.

Remark 1.3. In the homogeneous initial problem (i.e., the case f = 0 in
(1.1)), the estimate similar to (1.5) under the assumption (1.3) was first obtained
by Ben-Artzi and Devinatz [2]. They called the assumption equivalent to (1.3)
“of principal type” (cf. (3.1) below and (3.2) in [2]). They also improved their
result to the non-maximal smoothing in space-time. We refer the reader to [2] for
details.

The global result of Theorem 1.2 can be improved to an optimal estimate of
some Besov spaces, which were introduced by Agmon and Hormander [1]. Let
Dy ={xeR":2¥1 < |z|<2¥}fork > 1,and Dy = {z € R" : |z| < 1}. Denote
by x,, the characteristic function of D;. We introduce the function spaces as
follows:

o0

Br = {U € L?oc([O:T] X Rn) : ”u“BT = Z 2k/2”XDku”L2([O,T]XR") < 00},
k=0
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and

By = {u € L2.00.7) < RY)  ullag = 59 2%, uliqoryene) <01

Then it is easy to see that for s > 1/2, (z)~*L?([0,T] x R*) C Br and B4 C
(z)*L?*([0,T] x R"). The refined result is

Theorem 1.4. Let u(t,z) be a solution of the initial value problem (1.1).
Assume that the principal part of the symbol satisfies (1.3). Then for any positive
number T, there exists a constant C such that

(L6) DY 20, < C (lollze + KDY~/ f]l5, )

We now explain our method of proof. Theorem 1.1 is shown by constructing
one-parameter family of solutions, which contradicts the estimate (1.4). The
argument of the proof is similar to those in Doi {8] and Ichinose [11], and it can be
regarded as a version of the energy method initiated by Mizohata [15]. The proofs
of Theorems 1.2 and 1.4 are based on Mourre’s commutator method, which was
also an essential tool in our proof of the results in our previous paper {10]. This
method seems useful for deriving estimates for operators with variable coefficients.
An improvement will be elaborated in a subsequent paper.

The paper is organized as follows. Section 2 contains an argument of the
energy method and the proof of Theorem 1.1. In Section 3, we discuss Mourre’s
commutator method to derive a smoothing estimate related to an inhomogeneous
initial value problem. This is the essential part of the proof of Theorem 1.2. Section
4 is devoted to the completion of the proof of Theorem 1.2. In Section 5, we extend
the arguments in Section 3 in order to prove the improved estimate (1.6).

Remark 1.5. Since this paper was written, the author learned that Chihara [4]
has showed the estimate (1.5) for a class of the equations with variable coefficients.

Acknowledgements. The author is grateful to the referee for useful com-
ments and criticisms.

2 Energy method and necessity

We prove Theorem 1.1 by contradiction. More precisely, we are going to show
that the estimate (1.4) cannot hold if |V P,,| has zeros in the unit sphere.

First take a point x, from the open set U. Also let wg be a point of the unit
sphere S™~! and ¢4 a positive constant to be chosen sufficiently small in the last
part of this section. Take a real-valued smooth function #(¢) € C§°(R") satisfying
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h(¢) = 1 for |¢} < 10710, h(¢) = 0 for |¢] > 2- 10717, and let the initial datum with
a positive large parameter A be

up(z) = h (5—1 (? - wo)) 6(z — o),

where §(z) is the Dirac delta function, and h (6! (£ - wo)) is a pseudodifferential
operator (more precisely, Fourier multiplier) defined in the usual way. Notice that
the energy of ug(z) is concentrated in a neighborhood of (z,£) = (zg, Awg). We
consider the solution u = u(t, z) of the initial value problem (1.1) in the homoge-
neous case f(t,z) = 0. Roughly speaking, the energy of u(t, z) is concentrated in
a neighborhood of the point (zg — tV Py, (Awo), Awp) for small ¢ and large A. Our
first task of the present section is to describe this vague fact precisely.

Let d = dist(zg, 8U) and let h;(z} € C*(R") be a real-valued function satisfy-
ing hy(zx) =1 for |z| < d-1071% and h;(z) = 0 for |z| > 2d - 107'°. To localize the
energy near the point 2y — tV Py, (Awp), we introduce the following notation:

¢ = ¢(t,z,£) = hi(z — Zo + tVPR(E)),
¢ = ¢{)(t,1,6) = (D2h1)(z — zo + tVPR(E)),

and

®(a)u = ¢)(t,2,D) - h ((25)—1 (? - w0)> "

where the symbol of the operator h ((26)~! (£ — wp)) is

has = h ((25)-1 (§ —wo)) .

The microlocal energy of the solution u = u(t, z) is

aa@)(t) = > ATe (@) u(t, I,

>

la<N
where A > 0, || || = || |lz2(mr»)» ®*(c) is the adjoint operator of ®(a), and N is a
positive integer chosen large below.
We have

Proposition 2.1. Take N so thatn+m — N/4 < 0. Then there exists a positive
constant C such that

@.1) o (w)(t) > exp (—c AT/ t) {ox(w)(0) - C}

for Alarge and 0 < t < \~m+7/4,
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Remark 2.2. Notice that |Jug]| = ¢ (6-A)*2 and C~1(6-1)" < 2(0) < C (-A)™
as A — oo. Thus, for some positive constant c,
(2.2) ox(u)(t) > c(6- M), for Alargeand 0 <t < A~™F7/4)

which means that a large part of the energy of the solution is concentrated near the
point (zg ~ tV P, (Awg), Awp).

Proof of Proposition 2.1. As in the proof of the Lax—Mizohata theorem
[15], we prove (2.1) by deriving a differential inequality. First, observe that
A ®(a) = ®(a) A i ®(a + j) PYY(D)
ot ot et m ’

whgrc a+j={(a,...,a; +1,...,a,) and P,(,{)(D) is an operator with symbol
P(€) = (B,)Pm(€). Hence, by taking the adjoint of the both sides of the
equation, we have

(2.3) %H@‘(a)u“z =2Re (%(@*(a)u), @*(a)u)

=2Re {—if:(P,S,ﬁ (D) ®*(a + j)u, ®*(a)u)

+ @@, 9 (@)}
=2Re {—i f:(P,Sp(D) ®*(a + j)u, ®*(a)u)

+i1(®*(a) P(D)u, ®*(a)u)}.

On the other hand,

PD)#(e) = 3(a) P(D)+Y" ¥(ati) PA(D)+ 3 % (a+a') P (D);

=1 2<]e’|<m
hence
(2.4) ¢*(a) P(D)u = P(D) ®*(2)u + Y _ PY(D)®*(a + j)u
J=1
+ Y e POD) 8 et

(a)!

2<|o’|<m

where PU)(D) and P(®)(D) are operators with symbols P (¢) = (8¢, P)(¢) and
P(®)(¢£) = (82 P)(€), respectively.
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Substitute (2.4) into the last term of the right side of (2.3). Observe that the
value of (P(D) ®*(a)u, ®*(a)u) is real, the operator PU) (D) — ) (D) is of order
m — 2, and the energy of the solution is concentrated in a neighborhood of £ = Awy.
Hence, for large A,

d . YN . .
e (@ ul* > - [x" 2(Z||<r> (a+)ull? + @ (a)un?)
i=1
— S I8 (a4 o)l + 1 () ) - 1].
2<]a’|<m

Multiplying the weight A~1//4 and taking the summation with respect to a, we
have for large A

(2.5) %m\ (w)(t) > — C)\m_7/4a>‘(u)(t)
—cam o Y ATk et (o)l - ¢,
N<]a|<N+m

since m — |&'| + [@/]/4 < m — 7/4 for o satisfying [o’| > 2.
Notice now that
|@* (@) ull = O(A™/?)
for0 <t < A~™*+7/4 and A > 6~!. This follows from the facts that ||u|| = ¢ (§-A)*/2
and that the operator $*(e) is uniformly bounded in L?(R") for 0 < ¢t < A~™+7/4
and A > 6. Hence

XY T @) ul? = opntm Y,
N<}ja|<N+m

Finally, take N so that n + m — N/4 < 0 and integrate both sides of the equation
(2.5) to obtain the desired estimate (2.1). ]

Now we are in position to start the proof of Theorem 1.1. First, observe
that the operator h ((26)~! (£ — wp)) - ®*(a) is uniformly bounded in L?(R") for
0<t<A~™t7/4 and A > 6. Hence there exists a positive constant ¢ such that

n(@ (3 - ) ) & @UDY™ W ox(a)u

We now show that the right hand term of the inequality (2.6) is not small, until the
time when the point zg — tV Py, (Awp) reaches a neighborhood of the boundary oU.
Set

2.6) (DY V2x(z)ull > ¢

d
2.7 T(A) = min [ A=™+7/4, )
( ) ( 2Am—1 . SuP|w—wo|$45 IVPm(UJ)I
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It is clear that 0 < ¢ < T(A) and £ € supphys imply [tVP,(£)] < d/2. Also
(z,€) € supp ¢{®) implies |z — 2o + tVP,(£)| < 2d-107'°, Thus 0 < t < T(\),
€ € supp ha;s and (z,£) € supp ¢ imply
|z — zo| < |z ~ o + VPR (E)| + [tV P (€)]

<2d-1071° 4+ d/2

<d,
and hence x(z) = 1.

On the other hand, the inequality (2.2) shows that there exists a such that

[19* (@) ull > c(@-A)™? for 0 < t < A~™+7/4. Thus we have for some positive
constant ¢;

2.8)

h(@0)7 (3 ) ) & @D DVex(on

(Dym=1/2p, ((2(5)_1 (? - wg)) x(z) ®* (o) u
e A28 (@) ull - ORI

_ O(/\(n+m——3)/2)

v

v

221_ C - 672 \(Hm=1)/2

v

for 0 <t <T(A) and A large.
Now we are in position to finish the proof of Theorem 1.1. Observe that the
estimates (1.4), (2.6) and (2.8) imply that

e (6-A)™ = Clluo|f?

T())
> / DY™=D2x () ulf? dt
0
>(c-q ~cz/2)2 26" - T(A) - A™Tm-1,

Consequently,
T(\) < C-A~m+

for A large. The constant C in the last inequality can be taken independent of
wo € 8™ ! and § > 0, even though the range of the parameter A may depend on
them. This is impossible if |V P, | has zeros on the unit sphere. Indeed, by taking
wp SO that |V Py, (wo)| = 0 and 6 > 0 sufficiently small, the definition (2.7) implies
that, with any given positive number e, the inequality

T(A) Z 6_1 ‘A—m+1;

holds for A large. This completes the proof of Theorem 1.1.
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3 Mourre’s commutator method

As noted in our previous paper {10], the global smoothing estimate (1.5)
is closely related to the limiting absorption principle in spectral theory. It can be re-
garded as an estimate for the Fourier multiplier with singular symbol
(-7 + P(€))~! and depends heavily on the level set {z € R*|r = P(£)} for
T € R. Notice that the dispersiveness assumption (1.3) implies that this level set
is a hypersurface if |7| is large, and its shape becomes similar to the one for the
principal part P, (£) as |r] = oo. In the present section, we derive an estimate
for the high frequency part (see Proposition 3.1 below) from the dispersiveness
assumption (1.3).

We begin by introducing some notation. Let ; (j = £1,...,+n) be a cov-
ering of the unit sphere $"! (i.e., each Q; is open and S™~! C U;§;) such that
Og; Pm(w) > 0 (w € Q;) and 9, Pn(w) < 0 (w € ;) for j = 1,2,...,n. Take
a partition of unity ¢,(w) (j = £1,..., £n) subordinate to this covering (i.e., for
each j, p; € C§°(Q;), 0 < p; < land 3 p;(w) = 1 forw € S*~! ). Choosing
R > 0 sufficiently large so that, for some positive constant ¢,

@) 10, P&)] > clé™1, if|€] > R, and f?l equa,

for all 5 (notice that the hypothesis (1.3) allows us such a choice), we denote by
o a function of class C°(R..) such that 0 < @ < 1, po(A) =1 for A > 2R, and
wo{A) =0for0 < A < R. Set

$5(6) = woll€) 5 (%) ,
m .6 k
Qi) = i€’ + {Z G (a2, P) (5)} . sgnj,
k=1

Gj(e,ey(D) = (D) (i0; + P(D) + Qjy(c.ey(D) 7Y,
forj = +1,...,+n, and
G =) Gjee(D)
i

Observe thatIm Q; (. y(£) > 0for£ € suppy;; hence the operator G is well-defined
as a Fourier multiplier, with small positive parameters ¢ and ¢'.
The purpose of the present section is to prove

Proposition 3.1. Assume (3.1). Then, for s > 1/2, the operator norm

(=)~ (D)™ G(x) ~* |l gqz2(rntry)

has a bound which is independent of the small positive parameters € and €'.
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Since it suffices to prove the assertion for each Gj ) (D), we abbreviate
below Qj .y (D) by Q(D), Gj (c,e'y(D) by G(D), 1 by ¢, and || ||¢(z2(mn+1)) by
|| [I- Also, without loss of generality, we may assume j > 0. First we show the
assertion in the special case s = 1. Then we give the proof of the general case
1/2<s<1.

Denote

Go = (i8; + P(D) + Q(D))™L.

Observe that Go might not be well-defined, but that the operators (D) Gy,
(8¢, ¥)(D) Go and ¥'/2(D) G, are well-defined nevertheless. Let

F = (z)"Y(D)™'9(D)Go(z) ™"

Then a direct calculation shows

O = @ (DY WD), Golla)
= (&) 2, (D)"P(D)Go ()" ~ (o) (D)™ (D), ;]G0 () !

+ (2) D)™ Y(D)Go z(z)

Observe now that 0 < ¥(£) < 1 and the smoothness of 1 imply 1(£) < */2(¢)
and |Vy(€)| < C'/2(¢) for some positive constant C. Hence we arrive at the
following inequality, which plays an important role in our procedure.

dF

3.2) e

< € (D)™ 44/2(D)Go(a) ™| + [itz) ™ Go( D)™ 9" *(D)]) .

The following lemma uses mainly the ideas of Mourre [16].

Lemma 3.1. There exist positive constants €y and C such that for 0 < € < €
and e >0,

(3.3) IF|| < C-€7,
34 (D)™~ 9 2(D)Go(z) || + [|{z) " Go(D)™ 1 */4(D))|
< C-eVE R
Proof of Lemma 3.2. Both inequalities follow from the hypothesis (3.1).

Indeed, the inequality (3.3) is a consequence of the fact that there exist positive
constants ¢y and C such that

™ (€)Go(8)] < (O™ (&) - [Im Q(&)|~*
<C-¢et!

for 0 < € < ¢p.
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To obtain (3.4), observe that

I(DY™ 11 /2(D)Go ()~ fI* = ((z) "' G5(D)*™ *$(D)Go(z) " £, f)

and
[(m 1)/2] ( )2k+1

G — G = 2G}, (ze + Z SR (82"+1P)(D)) Go

Thus
(DY 2(D)Gote) ™ £
< C (@G0 (D)=, )~ () (DI H(D)Goke) ™, )|
< Z0F i1,

which implies the estimate for (D)™~ 14/2(D)Gy(x)".
The evaluation of the operator norm of (z) ~'Gg(D)™4'/2(D) is similar, after
taking its adjoint. |

Now we are in position to finish the proof in the case s = 1. The argument is
quite routine. First, (3.2), (3.3) and (3.4) yield

dF
de

<C-e

After integrating this inequality with respect to €, we apply (3.2) and (3.4) again.

Then
dF

< -1/2 12,
T C-e 4 log ¢

so that
IFll <C,

which shows that the operator norm of (z) (D)™ !G(D){(z)~! has a bound inde-
pendent of € and €’. This completes the proof in the case s = 1.

Proof of Proposition 3.1 for the general case 1/2 < s < 1. Here we shall
make some modifications in the above arguments. First put

Gy = (8, + P(D) + Q(e + n, €))7,

where 0 < 7 € 1 and Q(e + 1,€') = Qj (ec4ne)(D). As in the case s = 1, the
operators ¥(D) Gy, (8¢, ¥){(D) Gy and ¢*/?(D) G, are well-defined, even though G;
might not be well-defined. Set

W= ()7 (n]z] + 1),
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and
Fy = W(D)™ '9(D) G, W.
Then
ﬂ _ aw m-1 m—1,;¢ dGl
(3.5) G = g (DD WD) (D) W
LW DG G

The evaluation of the second term on the right side of (3.5) is similar to that in the

case s = 1. In fact,
W -zl < C-np°!

and

W {(D)y™! (D)@W = -W (D) "(D)[z;, G\|W

= -Waz; (DY" '9(D)G, W — W[(D)™ '¢(D), z;)JG\ W
+ W (D)"'¢(D) G, z;W

imply

”W@W”w)fﬁl

< Con (DY 9ADIGIW | + W Go(D)™ 92 (D)]]) .

On the other hand, concerning the other terms, let us notice that

%g=@_nwwwn«WM+m”

implies

11%%
— I < .pnf—1
i H C-n" .

Thus, applying the argument of the proof of (3.4), we arrive at the following
inequality, which plays an important role in our procedure:

o) |G| < 0onm (KD D)6 W+ 1w GuDy (D))

<C R

Now we are in position to finish the proof for the general case. As in the case
s = 1, the argument is quite routine. At first, let us assume that

IRl < C-n7



DECAY AND REGULARITY FOR DISPERSIVE EQUATIONS 223

for some positive constant . Substituting this inequality into (3.6) yields

|5

< C- 3—3/2—7/2,
dn (|~ "

so that
|Fill < C-ne=t /202,

Observe now that if s > 1/2,
§—1/2—y/2—-(—y)>s-1/2>0,

which shows that the exponent increases a fixed amount after such a procedure.
We conclude that, starting from the estimate ||F|| < C -7, after a finite number
of steps the above procedure yields

“FIH S C)

which immediately implies that the operator norm of (z) ~*(D)™~! G (. (D) (z)~*
has a bound independent of ¢ and ¢'. This completes the proof.

4 Global smoothing estimate

In this section, we discuss the reduction of Theorem 1.2 to Proposition 3.1. We
derive the estimate (1.5) by reducing it to special cases as follows.

Case (i). The estimate of the high frequency part in the case up(z) =0
First, we explain the relationship between Proposition 3.1 and the initial value
problem (1.1). The argument here was already described in our previous paper
[10]. Denote
ue (t,2) = (i6; + P(D) + ie') ' f(t, z),

and
u(t,z) = Bi% ue (¢, ).

Here the operator (i8; + P(D) + i€')~! is defined as a Fourier multiplier, and
u(t,z) has a sense (at least) when the right hand side has a limit in the space of
distributions. Then u(t,z) is a solution of (1.1) with ug(z) = 0 if f(¢,z) = 0 for
t < 0. In fact, Cauchy’s integral formula shows that

s _]-_ —irgs_ Pt
u(0, z) —B% Py //e (=7 + P(D) + i) f(s,z) dsdr

=—i /O f(s,z)ds.
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Thus, by taking the limit ¢ — 0 in Proposition 3.1, we arrive at the estimate of
the high frequency part as follows. Let u = u(¢,z) be a solution of (1.1) with
up(z) = 0. Then, for s > 1/2, there exists a constant C, such that

CRY /0°° 42) =2 (D)™ =D 200(|D]) u(t, )13 - dt

< G /0°° l|(y*(D)~m=172 £ (¢, )] dt.

Case (ii). The estimate (1.5) in the case ug =0

The estimate (4.1) does not include any information about the low frequency
part of the solution u(t,z). So it remains to prove that part of the estimate (1.5)
This is a consequence of standard facts concerning the initial value problem (1.1)
Indeed, the representation

t
“2) €)= =i [ XIPOf(s, )ds
0
implies that
T
“.3) sup_ [t lea < Cr [t s
0<t<T 0
for the solution of (1.1) with ug(z) = 0. Observe also that
T
/ [I{2)=* (DY D/2 (1~ o (ID)) u(t, )72t < C- sup ||(D)~ ™D 2u(t, )7
0 0<t<T

and

T X 2 T
(/ ||(D)_(m_l)/‘f(t,')||mdt) ST/O (D)= (=112 £ (2, |2, dt

]
T
sT/|mrwrm*Wﬂumbm

0

Thus we have for the low frequency part

T
@.4) A lltz)=*(DY™=V/2(1 = o(|D])) ult, |25 dt
T
< € [ 1@*D) 011, ) .
0

Now (4.1} and (4.4) immediately imply the estimate (1.5) in the case ug(z) = 0.
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Remark 4.1. We comment here on the relationship between the smoothing
estimate (4.1) and the dispersiveness assumption (1.3). In general, smoothing
estimates are closely related to the level set {£ € R : P(£) = 7} for r € R. The
assumption (1.3) implies that the level set is a hypersurface if |7| is sufficiently
large. Moreover, it becomes asymptotically similar as |7| — oco; hence the estimate
(4.1) holds. However, the assumption (1.3) does not affect the level set for small
|7|. It might be a point, or a point plus a hypersurface for some value of 7, so we
can only get the trivial estimate (4.3). It seems rather difficult to discuss significant
estimates for the low frequency part, since there are some involved features even
in the case of the Schrédinger equation (cf. (3] and [13]).

Case (iii). The estimate (1.5) in the case f(t,z) =0

The result for the homogenous initial value problem comes from the above
estimate for the inhomogenous case. The procedure below (which is called the
T*T method) was described already in our previous paper {10]. First let

u(t,z) =1 1%1 {(i8, + P(D) + ie)™! — (8, + P(D) —ie)™*} f(t, ).
Then
T . -~
a9 = [ PO (s, )as
]

if one extends the function f so that f(¢,z) = 0 fort ¢ [0, T]. Thus the arguments
up to this point imply the following estimate for the correspondence f — u of the
functions in [0, T] x R":

T T
/ )~ (DY D2 u(t, Y22 de < C / I{z)*(Dy~=D72 f(1, )|, dt.
0 0

On the other hand, it is clear that the function u{¢, z) satisfies the homogeneous
equation (i3, + P(D))u = 0, and

u(0,z) = /0 ) e P f(5 1) ds.
Denote the correspondence
F=fitz) = up=u(0,z)
by U. Then its adjoint U* becomes

Ug P U= e“ P(D)UQ,
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and the above correspondence f — u becomes U*U. Therefore, we have

U fII7-
= |(Uf, Uf)rewn)|

= |(u, f)r2(0, Tjxr™)|

< (/T ll(2) (D)™ 2 ut, )17 dt)
0

1 L
2 2

T
: (/0 l(z)* (D)~ "= D2 £ (t, )l dt)

T
<c /0 [(z)* (D)=m=D72 (¢, |12 dt,

so that

T 1/2
|(U*u0, 2o, 7ixrm) | < Clluollz - ( / Il2)* (DY~ D2 18, )IIE dt) :
Finally, observe that the last inequality is equivalent to
T
| 10y U el dt < Clualf,

which completes the proof of the estimate (1.5) in the case of the homogeneous
initial value problem.

S Besov space estimate

In this section, we prove the improved estimate (1.6). As preparation for the
proof, we recall the arguments and the procedures mentioned in Section 3 and
Section 4. First, the estimate for the homogeneous initial value problem comes
from the estimate for the inhomogeneous one. This argument was discussed in the
case (iii) of the previous section. Second, the estimate for the low frequency part
immediately comes from the representation (4.2) and the fact that Br C L? C B#.
The similar argument to see this was discussed in the case (ii) of the previous
section. It remains to prove the estimate for the high frequency part as (4.1), and
this is the essential part of the proof. We follow below the procedure of Jensen and
Perry [12], where the arguments of the proof are based on those in Mourre [17].

Let

By = {z € R" : |z| < 2},

and denote by x, the characteristic function of the ball Bx. We use the notation
introduced in Section 3. The required estimate is a consequence of the following
bound for the operator G defined in Section 3.
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Proposition 5.1. Assume the dispersiveness assumption (1.3). Then
X5, (D)™ G X, l(L2(rrt1y) € C-206+E)/2,
where C is a constant independent of ¢, €', k and k'

Admitting this proposition for the moment, let us proceed to the proof of the
estimate for the high frequency part. It is clear that
27%2||x,, (DY™'G fllL2(o, T)xR")
<27k Z x5, (D)™ G xp,, le(r2mn+ry) - IXo,, fllL2(o, T)xRA)
kl

<272 Z lxs, (DY™'G x5, New2rmsry) - lIXo,, fllLzgo, TixRr)
kl

<2720 2® I ix,  Fllago, 7ixmm)
kl

< Cz2k’/2 . “XD,‘, f”L’([O,T]XR")’
kl

provided f(t,z) = 0 fort ¢ [0, T]. Hence we have

[corm-vr2G ¢

< € |(py-tm-vrz g

B3 Br

Taking the limit of the last inequality as ¢ — 0 and ¢/ — 0, we arrive at the required
estimate for the high frequency part

[koy=072 oDl u|

T

<clorer,

This completes the proof of Theorem 1.4.

Proof of Proposition 5.1. Since G = }°; Gj, it suffices to show the estimate
for each j. We adopt below the abbreviations in Proposition 3.1. For example, we
denote G; by G as in the proof of that proposition. The proof of Proposition 5.1 is
accomplished by decomposing the balls B, and By into slabs.

First let x, (¢ = 0,%1,%2,... ) be the characteristic function of the slab
{zeR*: €< z; <l+1}, ie, x,(z;) =1forl <z; <€+1andx,(z;) =0
otherwise. Moreover, let us denote x _, = an_:l_oo xm and x5, = 300, Xm-

Lemma 5.1. Assume the dispersiveness assumption (1.3). Then
lIx. (D)™! G x,. ll2(zaqmn+y)

has a bound independent of ¢, €', £ and m.
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Proof. The following arguments are due to Mourre [17]. The point of the
proof is to derive the estimate when |¢ — m| is large. First observe that

(5.1) X (D)™ ' G x,. = x, (D)™ 9(D)Go x.,
= X¢ X< (D)™ (D) Go X..,
+ X Xom (D)™ (D) Gi X,
+ X, X5 (D)™ (D) G5 (Q° - Q) Go X..-

For the third term of the right side of (5.1), the argument in the proof of the estimate
(3.4) implies that

l1Xe X5 (D)™ (D) G5 (Q* — Q) Go x.. I

lIx, G& €'/*(D)y™=" />(D)| - |le=*2$*/*(D) (Q" - Q) Go X..|

Cllx, G5 /*(Dy™ " ' /2(D)|| - |le"/>9*/*(D) (D)™ 1 Go x,,

C' lIx, (D)™ 1 (D) (G5 — Go) x,I'"? - lIx,. (D)™ ' (D) (G§ ~ Go) x.. I'"2.

IA A A

Hence one sees that it has a bound independent of £ and m. Concerning the other
terms we have

Lemma 5.2. Assume the dispersiveness assumption (1.3). Then

1X < (DY (D) Go ... llg(L2(R7+1))

and
X5 (D)™ (D) Gp X, lls(L2(R7+1Y)

have bounds independent of ¢, ¢ and m.

Proof. Asin Proposition 3.1, the proof is based on a differential inequality. Here
we consider the first operator norm. The proof of the second one is quite similar.
Let G, be as in the proof of Proposition 3.1 for the general case 1/2 < s < 1. For
small positive 7, denote

Fy=x_,e"= ™ (Dym=1 (D) G, Xom -

Then
dF. . -
Gy = Xen€" ST (@j = m) (D)™ Y(D) G x.,
= X<m€" T (D)™ Y(D) 25, Gi] X
= Xcn€" "™ [z, (D)™ $(D)] G1 X,

+ Xem€" (D)™ (D) Gy - (25— m) - X,
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Concerning the first term on the right side of the last inequality, the argument in
the proof of the estimate (3.4) shows that

lIx <€ @™ [z, (DY (D) G x.. |l
< CDY™ 1y *3(D) G x|

< C Y2 x DY (D) Gr x,, |12
< C”'ﬂ_l/2.

On the other hand, concerning the second term, we have
X <me™ E MDY H(D) G1 - (25 ~m) - Xl

X €™ & =™ (DY (D) Gy x|l
(1 F2l-

IN A

Also, it is clear that || F3|] < C-n~!. Thus, from these observations, one can easily
conclude that || Fy|| < C, which implies the desired bound.

End of the proof of Proposition 5.1. Now we are in position to finish the
proof of Proposition 5.1. It is quite straightfoward. Indeed, denoting

Fl,m = X XB,c (D>m_1 GXBk, Xm (—2k < ¢ < 2ka _2kl < 14 S 2k,)»
9¢ = X¢ X3, (D>m_1 GXB,C, f fm = Xm X5, 5

we obtain

ol = 2, NP

—2k< <2k

Z “ Z Ft,m fm”2

—2K<E<A* oK Sm<o¥!

> SRS DY wlP

-2k <e<2% gk <m <ok’ —2% <m<2

<C- 2 I fll3 2, xmy-

IN

This completes the proof of Proposition 5.1.
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