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A b s t r a c t .  We study spectral properties of second-order elliptic operators 
with periodic coefficients in dimension two. These operators act in periodic 
simply-connected waveguides, with either Dirichlet, or Neumann, or the third 
boundary condition. The main result is the absolute continuity of the spectra of 
such operators. The cornerstone of the proof is an isothermal change of variables, 
reducing the metric to a flat one and the waveguide to a straight strip. The main 
technical tool is the quasiconformal variant of the Riemann mapping theorem. 

1 Introduct ion 

According to a common belief, second-order elliptic differential operators with 

periodic coefficients should not have degenerate bands in their spectra or, in other 

words, their spectra should be purely absolutely continuous (see [8], [19], [32]). 

The first rigorous proof of this fact was given by L. Thomas in [33] for the 
Schrrdinger operator - A  + V with a periodic real-valued potential V. Further 

developments in this area were driven by attempts to consider operators with ever 

increasing "strength" of the periodic perturbation, i.e., to pass from zero order 

(as in [33]) to first- and second-order perturbations, and ultimately to tackle the 

absolute continuity of  the elliptic operator 

d 

(1.1) H = E (D i  - a i ) g i t ( D '  - at) + V, D i = - i O j ,  
j , l= 1 

with a periodic variable metric {9~t} = G and a magnetic potential a = {at}, for 
arbitrary d _> 2. 

The case of first-order perturbations, i.e., that of constant G's and variable a's, 

was handled in [i5] (small a's), [6], [7] (d = 2) and [30] (arbitrary d > 2). If the 

metric is conformal, i.e., the matrix G is given by a scalar multiple of the identity 
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matrix, then the problem can be easily reduced to the case of a constant metric. 

This situation is discussed in [8]. The most difficult case, that of a general variable 

G, remained unaccessible until the paper [25], where it was resolved for infinitely 

differentiable G's, a's and d = 2. An important breakthrough was made in recent 

work [11], where the absolute continuity was proved in all dimensions d > 2, 

but with the additional requirement of the reflectional symmetry of the operator. 

Without the symmetry assumption, the question is still open. At present, it is 

known only that without smoothness assumptions on the coefficients the absolute 

continuity may break down. An appropriate example with V = 0, a = 0 and 

"non-smooth" G was constructed in [10]. 

Most of  the progress was achieved in the two-dimensional case, which we shall 

discuss in more detail. The paper [25], as well as all earlier papers on absolute 

continuity, relied on the approach suggested by L. Thomas in [33]. Later it was 

observed in [19] that the general periodic metric can be reduced to a conformal (or 

scalar) periodic one by a suitable isothermal change of variables. This allows one 

to reproduce the results of [25] under much weaker assumptions, by reducing the 

problem to the one considered in [6], [7], [8]. This approach was exploited in [4] 

for an operatol of the form (1.1) with a delta-like periodic potential supported by 

a periodic system of curves. Even more general perturbations are studied in [27], 

[28]. 

The main aim of the present paper is to prove absolute continuity for an operator 

of the form (1.1) with non-constant periodic coefficients defined in a periodic 

domain f~ c R ~ (usually referred to as a waveguide) with the Dirichlet or "natural" 

boundary conditions. In these two cases, we use the notation HD or H~v for the 

operator at hand. By natural boundary conditions, we mean either Neumann or the 

third boundary condition. As in [4], we also include in the operator a delta-like 

periodic perturbation supported by smooth curves, which allows us to study the 

cases of  the Neumann condition and the third boundary condition simultaneously. 

This problem with Dirichlet and Neumann conditions was considered in [31] in 

somewhat restricted generality. In the present paper, the smoothness conditions on 

the coefficients are substantially relaxed; and the case of the third boundary-value 

problem is also treated. This progress is a result of a different approach to the 

problem: instead of Morame's techniques, we now use the isothermal coordinate 

change. A parallel approach is used in [29], which focuses on this problem in 

a slightly different setting. Similar spectral questions for a periodic Helmholz- 

type operator were studied in [9]. More general elliptic operators with constant 

coefficients and a periodic potential perturbation are considered in [ 18], Theorem 

5.4.9. We refer to the book [18], Section 5.4 for further relevant references. 
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The cornerstone of  our method is an isothermal change of  coordinates, which 

reduces the metric to a conformal one. The new coordinates are given by functions 

satisfying the Beltrami equation (see Section 6 below) with a dilatation coefficient 

q determined by the matrix G (see (6.2)), i.e., they define a q-quasiconformal map- 

ping. We use a q-quasiconformal change of variables which maps the waveguide 

f/homeomorphically onto a straight strip. The existence of such a transformation 

follows from the "quasiconformal" version of  Riemann's mapping theorem (see, 

e.g., [17], Ch. 1). Here a key point is that the uniqueness part of Riemann's 

mapping theorem guarantees a certain natural "periodicity" property of the above 

homeomorphism (see (6.4) below). This ensures that the transformed operators 

HD and HN have periodic coefficients. 

To be precise, the quasiconformal Riemann mapping theorem alone is not 

sufficient for our needs. It is also necessary to study the boundary behaviour of 

the quasiconformal homeomorphism. Moreover, we allow the boundary of  the 

waveguide ~ to have comers and inward peaks, which give rise to singularities 

of the map. For conformal maps, this circle of  questions is exhaustively studied 

in the relevant literature (see, e.g., [26]) and is usually associated with the names 

of P. Koebe, O. D. Kellogg and S. E. Warschawski. The extension to the quasi- 

conformal case is either well-known or evident to experts in complex analysis. 

Nevertheless, we have decided to provide precise statements and complete proofs, 

since we have been unable to find them in the literature in the form readily suit- 

able for our purposes. These results along with the quasiconformal analogue of 

Riemann's mapping theorem are collected in Section 7. 

As mentioned earlier, periodic isothermal coordinates were used in [19], [4] 

to establish the absolute continuity of the operator H acting on L2(It~2), which we 

denote below by HR. They were constructed in [19] in the following way. Using 

results from [3], [35], one can define an analytic structure on the two-dimensional 

torus with the help of  local q-quasiconformal coordinates. It then follows from 

the theory of Riemann surfaces that integration of the analytic differential on 

the torus leads to the desired isothermal coordinates in I~ 2 . Note that the above 

analytic differential exists and is unique up to a constant factor, since the torus 

is a surface of  genus one. The secondary aim of our paper is to give another, 

more direct, proof of  the existence of such coordinates. Instead of geometrical 

considerations of  [19], we rely on the well-known fact (see [1], [2], [3], [35]) that 

there exists a unique q-quasiconformal homeomorphism of C which preserves the 

points 0, 2~r and ~ .  Similarly to the waveguide case, a crucial observation here 

is that uniqueness combined with the periodicity of G automatically implies the 

required periodicity of the homeomorphism at hand (see Theorem 6.1). Using the 
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isothermal coordinates as in [ 19] and [4], we obtain the absolute continuity of the 

operator HF. Moreover, applying a stronger regularity result for the coordinate 

change, we are able to relax the smoothness restrictions on G in comparison with 

[19], [4]: for instance, under the assumption de tG = 1, the matrix G does not 

need to be HSlder-continuous, but only bounded. 

After reduction to a conformal metric, the absolute continuity of HF results 

immediately from the earlier papers [7], [8]. As to the operators HD and HN, the 
isothermal change of variables reduces them to operators of the same type acting 

on a straight strip in R 2, with a scalar constant G. From this point on, we follow the 

strategy suggested in [31]. It consists in further reduction to an auxiliary operator 

Hp with periodic conditions on the boundary of the strip of the double width. Then 

a reference to [4] secures the required absolute continuity. 

The paper is organised as follows. Section 2 contains some preliminary material 

and the precise statements of all main results of the paper (Theorems 2.6 and 2.9). 

In Section 3, we make first reductions simplifying the problem. In particular, it 

is shown that it suffices to prove the main results for the case det G = 1. The 

important Section 4 is devoted to a detailed description of the isothermal change of 

variables. Two central theorems of this section (Theorems 4.1 and 4.2) are proved 

in Section 6 after having been translated into the language of the quasiconformal 

maps. The proof of the main results is completed in Section 5. The necessary 

information on the quasiconformal maps and their boundary properties is collected 

in Section 7. 

2 M a i n  results  

2.1 Notation.  Latt ices  and domains .  Let et, e2 be the canonical basis in 

R 2 . Along with the standard two-dimensional square lattice r = (27rZ) 2, introduce 

two "one-dimensional" lattices: 

3'1 = (2rrZ) x {0} = {27rnel,n C Z}, 

?2 = {0} x (2rrZ) = {2rrne2,n C Z}. 

We say that a function f is 7j-periodic (resp., r-periodic), if ] (x + 27rnej) = f(x) 

a.a. x and all n E Z (resp., f (x  + ~) = f(x) a.a. x and all ~ E F). 

For any set ~" C R 2, define its translates as follows: 

.7" ( n ) = { x E R 2 : x - 2 1 r n E J r } ,  n E Z  2, 

.7-(n)=~O,), w i t h n = ( n , O ) ,  n E Z .  
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We say that the set Y is F-periodic if  Y = . ~ ' ( n )  for all n E Z 2 and that Y is 

71-periodic if Y = .T (n) for all n E Z. When it does not lead to confusion, instead 

of  "'rx-" or 'T-periodici ty"  we use the term "periodicity". Similarly, we define the 

periodicity of  sets .7" on the cylinder 

c = IR2/'r2- 

Precisely, .T C C is said to  be periodic (or 0'l-Periodic) if .T (n) = .T for all n E Z. 

We are going to study periodic operators in two-dimensional domains of  three 

types: on the entire plane IR 2, on the cylinder C, or on a periodic domain fl C IR2. 

Our model periodic domain will be the straight strip 

(2.1) S=Sd={X=(Xl,X2) EIR2 :O<x2<Trd}, d > 0 .  

m 

Obviously, the cylinder C can be viewed as the closed strip $2 with identified lower 

and upper boundaries. In general, we assume that fl is as described below. 

De f in i t i on  2.1. We say that a domain fl C IR2 is admissible if  there exists a 

finite collection of  bounded domains s j = 1, 2 , . . . ,  N with Lipschitz boundaries 

such that the set 

(2.2) 
N 

Eo= 
j--1 

is connected, and fl = H ~.(n) k.)nEZ~'O " 

Note that the domain fl is automatically "yl-periodic and bounded in the 

direction e2. We also point out that fl satisfies the interior cone condition (see, 

e.g., [24], Section 1.3.3), since the domains s  = 1 ,2 , . . . ,  N do so. Without loss 

of  generality, we a l w a y s  a s s u m e  t h a t  

(2.3) s  < 2 r +  1}. 

Certainly, the choice of  the domains s for a given admissible fl is not unique. 

As a rule, we try to treat all three cases simultaneously, and therefore we use 

the notation A either for IR a or C or ft. Identifying the points that differ by a vector 

of  the lattice, we define 

(2.4) / fl/~x, i f A = f l ;  

T = (  T 2 = R 2 / r ,  i f A = R  2 or C. 
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We also introduce the fundamental domains 

O = 

r 

(0,27r) x(0,21r),  i f A = / l ~  2 or C, 

{ x e g ] : 0 < z a  <27r}, i f A = f k  

In the case A = f~, the set O may be nonconnected. 

Similarly to f~, for our purposes it will be necessary to view I~ 2 as being 

covered by bounded domains. More precisely, we assume that there are finitely 

many bounded domains s j = 1, 2 , . . . ,  N, with Lipschitz boundaries such that 

N 

aCCo= UEj. 
i=X 

S y s t e m  o f  c u r v e s .  We also need to introduce a system of  curves ~ in A 

associated with the covering of  A by s  and their translates. Below, by  a "C re+a- 

arc", m e N, 0 < a < 1, we mean a Jordan arc in IR 2 which is parametrised by a 

Era+a-smooth function ~b : [0, 1] --r ~2 such that [r > 0, t E [0, 1]. 

D e f i n i t i o n  2.2. Let A = R 2 or f~, and let the parameter  n vary over the set Z 2 

(for A = i~ 2) or Z x {0} (for A = 12). Let g i C ~-i, J = 1, 2 , . . .  N, be a finite set o f  

C 1-arcs such that 

eJ "lngj=0, Vn#0. 
Then a (periodic) system of curves ~ in A is a family {Ej } of  the closed sets Ej C 

of  the form 

(2.5) Ej = U ej('l) . 
!1  

Let A = C. Then the set ~ is a system of curves in C if  there exists a system 

of  curves M in IR 2 such that ~ = M/72 ,  the latter being defined as the family 

{Mj/72},  j = 1 , 2 , . . . , N .  

Similarly, one defines 

(2.6) 

/ 
- = = ~ / T x '  i f h = f l  or C, 

t z / r ,  i f A = l ~  2. 

R e m a r k  2.3,  (i) In the above definition, any two curves e~-, el or their parts 

can coincide. This means, in particular, that ~ may contain several "copies"  

of  the same curve. The curves are also allowed to meet  at zero angle. 
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(ii) Definition 2.2 prescribes exactly one curve s for each of  the domains Ej. The 

seemingly more general situation in which there are finitely many curves in 

is easily reduced to the original one by adding a suitable number of  copies 

of  s in (2.2). 

For any bounded set E C A, we denote 

(2.7) = =UeJn) ,  
n 

where n are such that e~ n) N E # 0. Obviously, each Zj,e contains finitely many 

translates of  ej. 

F u n c t i o n  space s .  Apart from the standard notational conventions for classes 

ofdifferentiable functions, we use the notation W 8'p(C), s = 0, 1, p > 1, for the space 

of all 72-periodic functions from W~o~P(/l~ 2 ) equipped with the norm II �9 I Iw. , . (s~) .  

Similarly, Ws'P(T), s = 0, 1, p > 1, is the space of all "/1-periodic (for A = f~) or 

F-periodic (for A = ~2 or A = C) functions u E W~o~P(A) with the norm II �9 I Iw . , . (o ) .  
In the case p = 2, we use the standard notation H s = W s'2. The same convention 

applies to HSlder spaces C m+~. For instance, Cm+~(T), m E N U {0}, a E (0, 1) 

(resp., cm+~(T)) denotes the space of  all 71-periodic (for A = f~) or F-periodic 

(for A = ~2 or A = C) functions u E C r"+~ (A) (resp., C m+~ (A)). Certainly, in the 

cases A = I~ 2 and A = C the space C m+~ (T) coincides with C ""+~ (T). 

We use boldface letters to denote spaces of  vector-valued functions, e.g., I.P(A). 

The symbol ~ f  stands for the Jacobian matrix of  the function f. Slightly abusing 

notation, we do not always distinguish between I_ 2 (C) and I_ 2 ($2) (t- 2 (T) and L 2 (69)). 

Function spaces on Z are defined in a natural way. Namely, by definition the 

space I.P(E) is the set of  functions tr = {~rj} such that aj E I-P(Ej),j = 1, 2 , . . . ,  N. 

One defines I.P(.=.) similarly. We say that tr is real-valued if all the components ~rj 

are real-valued. 

The definition of  traces on Z of  functions on A requires special comment. 

Suppose that f E Hi(A). The trace f[lj is defined to be the trace of  the function 

flEj E H1(s Sometimes we write f instead of the trace fll~ when it does not 

cause confusion. By the embedding theorems and multiplicative inequality for 

traces (see [23], Corollary 1.4.7/2), f E I-~(ej) with any r < oo and 

(2.8) II.fllt.'(t~) < ell~TullL=(C~) + Cj(e)llulh.=(~j) 

for all ~ > 0. Similarly, one defines the traces on the translates g~"), which leads in a 

natural way to the collection of  traces fir .  = {f[r,j }. Note that if  an arc e = ej = e~ 

belongs to s N Er,, then flt~ = f l t ~ .  On the other hand, if e c as  tq 0Cm for two 

distinct j and m, then flt~ may be different from flt~. The latter situation can 
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occur  in the case when A = f~ and g is a part of  the boundary of  f~ such that f~ lies 

on both sides of  g. 

W e i g h t s  a n d  c o e f f i c i e n t s .  We work in the weighted space k2(#, A) with the 

norm 

Ilull .  -- l u l 2 ~ d x  , 

where # is a real-valued periodic function, satisfying the conditions 

~ mes{x E A :p (x )  < 0} = 0, 

(2.9) L/z 6 I-t(T), t > 1. 

When it does not cause any confusion, the subscript # will be omitted from the 

norm. We are interested in the properties of  the Schr6dinger-type periodic operators 

in 13(#, A), defined by the formal expression 

l v n = I ( ( D  - a ) ,w2G(D - a)) + + aJ~., D = - i V ,  
# /.t 

where V, w, a, G are real-valued periodic (vector/matrix) functions defined on A 

and a is a real-valued function defined on a system of  curves ~ .  Let us now 

give a precise definition of  the operators in question. The electric potential V, the 

magnetic vector-potential a and the function tr are assumed to satisfy the conditions 

(2.10) a6LS(T), s>2;  V6LP(T) ,p> 1, 

(2.11) tr 6 Lr(-=-), r > 1. 

The coefficient G = {g3t (x)}, j ,  l = 1,2 is a symmetric matrix-valued function on 

T with real-valued entries gjt (x) that satisfy 

/ cl~l 2 < <G(x)~,~) _< Cl~l  ~, 

(2.12) [ d e t  G(x)  = C',  V~ 6 R 2, a.a. x 6 T. 

Here and below we denote by C and c with or without indices various positive 

constants whose precise value is unimportant. As a rule, we assume that det G = 1, 

but sometimes it is convenient not to have this restriction. 

As to w, it is a real-valued function on T, such that 

(2.13) c < w ( x ) _ < C ,  a.a. x E T .  

We are interested in four different realisations of  the operator  H.  Namely, we study 



QUASICONFORMAL MAPPINGS 75 

�9 H as an operator on L 2 (/~, R 2), which will be later referred to as the "full" 

operator HF ; 

�9 H as an operator on L2(/z, C), or which is the same, as an operator on L2(#, $2) 

with periodic conditions on the boundary of  $2. In this case, we write Hp; 

�9 H acting on L2(#, f~) with the Dirichlet or natural boundary condition. In 

these cases we write HD or HN, respectively. 

When we need to treat all four situations simultaneously, we use the notation H,, 
where ~ can mean any of  the four letters F, P, D, N. 

For each of  these four problems the operator will be defined via its quadratic 

form. To give this definition it suffices to assume (2.9), (2.10), (2.11), (2.12) and 

(2.13), although later on we shall need more restrictive conditions on G and w. 

Consider the quadratic form 

h [u ]=  fA w 2 ( G ( D -  a)u, ( D -  a)u)dx + fAV,U,2dx+ s (2.14) 

where 

(2.15) 
N 

j = t  J 

defined either on 79F = Hi(R2) (for the full problem), or 79p = Hi(C) (for the 

72-periodic problem), or 79D = H0X(f~) or 79N = H 1 (f~). Depending on the domain, 

we denote the form h by hF, hp, hD or hN, respectively. Sometimes,  in order to 

distinguish operators defined on different domains and/or with different coefficients 

and weights, we use the full notation H~ (w, G, a, V,/z, tr; A) or such short variants 

as H~ (w, G). A similar convention applies to the notation for the quadratic forms 

hR. 

Let us check that these forms are closed in L2(p, A). To this end, split the form 

(2.14) into the unperturbed form and the perturbation form: 

= + 

h(~~ = f ,  w2(GDu,  Du)dx,  

[u] = f ,  [_w2 (GDu,  a)~ - w2u(Ga,  Du) + w2 (Ga,  a)lul 2] dx w~t 

The necessary properties of  these forms are contained in 
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P r o p o s i t i o n  2.4, Let # satisfy the condition (2.9) and let a, V and tr satisfy 

(2.10), (2.11). Then 

(i) the standard H 1 -norm is equivalent to the norm induced by the form h (~ ~ i.e., 

(2.16) c-~((Ivull~ +llull~) <_ h~~ < c(llVull~ +llull~), Vu �9 D~, 

with some constant C depending on w, G, #; 

(ii) the forms h(~ ~ with the domains D~ are closed in ks(#, A); 

(iii) for  any ~ > O, there exists a constant C, such that 

(2.17) Iw~[u]l < eh(~~ + C, Ilull~, Vu �9 7~,  

so that the perturbed forms h~ are also closed. 

The plan of the proof is to establish the required estimates on the domain E0 

using the embedding theorems for the domains with the interior cone condition, 

and the estimate (2.8) for the traces. The bounds for the entire A are obtained by 

using the periodicity of  A and an appropriate partition of unity. The details are 

fairly standard and are omitted. 

By Proposition 2.4, all four forms hz are closed; and therefore they uniquely 

define four self-adjoint operators on L ~ (#, A), which we denote by HE, Hp, HD 

and HN. We do not need to know the domains of  these operators, although they 

can be specified under supplementary regularity conditions on the coefficients, the 

boundary of  ~ and the curves from ~.  For instance, if the system of curves contains 

only the boundary 0fl, then HN is the operator of the third boundary value problem 

with the condition 

w 2 ( G ( v - i ~ ) ~ , , . )  +o,~ =o ,  x �9 a~, 

where n = n(x) is the exterior unit normal to the boundary at x E aft. If ~ contains 

a curve which has an arc g strictly inside f~ and separated from other components 

of  ~2, then the integral over ~, in (2.14) induces the condition 

[w2(GVu, n)] + au  = 0, x �9 e, 

on the jump [... ] of the conormal derivative across the curve e. 

An important role will be played by the general observation that the singular 

continuous spectra of the operators H~ are empty, which we state separately for 

later reference. 
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Proposition 2.5. Let A be either ~2 or C or fL Suppose that the conditions 

(2.9), (2.10), (2.12), (2.13) and (2.11) are fulfilled. Then the singular continuous 

spectra of H~ are empty. 

The proof of this property is based on the standard direct integral representation 

for H~, known as the Floquet decomposition. The crucial fact is that the resolvents 

of the fibers of H~ in this representation are compact operator-functions, analytic in 

the quasi-momentum. We are not going to provide all the details of this argument, 

but refer to the comprehensive exposition of this issue in [18], and also to [19], 

[15] and [36]. The Floquet decomposition for HF can be found, for example, in 

[4] and [8]. For the operators HD and H~v, it is clearly explained in [5]. 

2.2 Resul ts .  Our main goal is to go further and prove that the spectrum of 

H~ is absolutely continuous. Here R takes the values F, D or N. The operator 

Hp plays an auxiliary role: we prove its absolute continuity only in the case of a 

diagonal constant matrix G. This result will be decisive in the proofs for the cases 

D and N. 

Now the conditions (2.12), (2.13) are insufficient. Suppose, in addition, that 

(2.18) w E wl'q(T) and GVw E wI'q(T), q > 1. 

As far as G is concerned, a number of  results will be obtained under the additional 

restriction 

(2.19) G E Ca(T), a E (0,1). 

Clearly, for a uniformly Lipschitz matrix G, the condition (2.18) is equivalent to 

w E W 2,q, q > 1. One is tempted to say that due to the presence of the function w 

in (2.14), the condition det G = const in (2.12) does not restrict generality. We 

emphasise, however, that the smoothness conditions for the functions G and w are 

different. 

The main result for the operator HF is contained in the next theorem. 

T h e o r e m  2.6. Let A = I~ 2 and tr = O. Suppose that the conditions (2.9), 

(2.10), (2.12), (2.13), and (2.18) are fulfilled. Then the spectrum of  HF is absolutely 

continuous. 

R e m a r k  2.7. For a variable G satisfying (2.19), Theorem 2.6 was proved in 

[4] even with tr # 0. R. Shterenberg [28] recently proved the absolute continuity 

of HF under the reduced smoothness assumption w E W 1'~, q > 2. For our proof, 

we need an earlier result from the paper [7], where Theorem 2.6 was established 

for constant matrices G and w = 1. 
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To prove the absolute continuity of the operators HD and HN, we need to 

impose some extra conditions on the domain fL We assume that f~ is ~'l-periodic 

and that there exists a homeomorphism of ~ onto $1. This means, in particular, 

that the boundary of  f~ consists of  two disjoint ~'l-Periodic Jordan curves, which 

we denote by e_, e~. We impose the following condition on these curves. 

C o n d i t i o n  2.8. (1) Locally, each curve ~_, e+, is a piecewise C l+a-smooth 

Jordan arc with a E (0, 1). 

(2) The domain ~ does not have any outward peaks, i.e., the interior angle 

between any two smooth components of  the boundary at each point of  non- 

smoothness is strictly greater than zero. 

Note that Condition 2.8 does not exclude inward peaks, and that the cone 

condition is satisfied. Using this fact and recalling that every bounded domain 

with the cone condition can be represented as a union of  finitely many domains 

with the Lipschitz boundaries (see, e.g., [23]), one can easily show that the domain 

f~ is admissible in the sense of  Definition 2.1. 

Without loss of  generality, the parameter t~ above can be chosen to be the same 

as in the condition (2.19). Below, we denote by n(x),  a.a. x E 0f~, the exterior unit 

normal to the boundary 0~  and by Z C 0f~ the discrete set where the smoothness 

of  the boundary breaks down. Clearly, Z has no finite accumulation points. 

T h e o r e m  2.9. Let A = fL Suppose that the domain f~ satisfies Condition 

2.8, the set ~, is a .system of  curves in 12 in the sense of Definition 2.2, and that 

conditions (2.9), (2.10), (2.12), (2.13), (2.11), (2.18), and  (2.19) are fulfilled. Then 

the spectra of  liD and HN are absolutely continuous. 

For later convenience, we make a couple of  simplifying assumptions which do 

not restrict generality. 

First, we include the boundary 0f~ in the system of  curves ~ ,  even if ~ already 

contains either pieces of 0f~ or the entire boundary. The notation for the components 

of  ~ will be as follows. By Condition 2.8, there are finitely many Cl+'~-arcs 

ej C cgf~, j = 1 ,2 , . . . ,  M < oo, such that 

M 

= U s,, 
j----1 

where Ej are defined by (2.5). Since the boundary ON is a Jordan curve, we 

can assume that no pair of  arcs l~, e, with s, j = 1, 2 , . . . ,  M has common interior 

points. Moreover, since outward peaks are absent, there are M bounded domains 
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s C ft with Lipschitz boundaries such that ej C s This allows us to include 

E~, j = 1, 2 , . . . ,  M,  in the initial system of  curves in ft. From now on, we consider 

the sets Ei,  j = 1 , 2 , . . . ,  M, to be the first M components  of  ~ ,  and the original 

components  of  ~ will be relabelled to have numbers from M + 1 to N.  Also we set 

trj = 0, j = 1, 2 , . . . ,  M. Obviously, this procedure does not change the operators 

Ho and HN, since the quadratic form (2.14) remains unchanged. 

Secondly, we assume that if a curve ei, j = 1 , 2 , . . . , N ,  contains a point 

z E Z, then z is either the start or the end point of  g3, i.e., given a parametrisation 

tbj : [0, 1] ~ ej, we have ~j (0)  = z or ~bj (1) = z. This can be done by breaking, if 

necessary, every ej containing a z E Z into subarcs, and using Remark 2.3(ii). 

3 Preliminary conclusions 

3.1 R e d u c t i o n  to  # = w = 1. Proposition 2.5 allows one to show that it 

suffices to prove Theorems 2.6 and 2.9 for w = # = 1. The following lemma is 

a variant of  a well-known result (see e.g., [8]) and is a crucial ingredient in our 

argument. 

L e m m a  3.1.  In addition to the conditions of  Proposition 2.5, assume also that 

(2.18) is satisfied. In the case of the operator H N, assume also that Condition 2.8 

is fulfilled. Then 

(3.1) w-tHe(a), V, tr)co -t = H~(I, IY,&), 

I? = '~-2V + ~-~(V, GV)'~, 

- w - l ( G V w ,  n), i f j = l , 2 , . . . , M ,  
6- i = 

w-2ai, if  j = M + 1 , . . . , N .  

Proof .  We prove the lemma only for the case R = N. To avoid cumbersome 

calculations, assume that a = 0, V = 0, tr = 0. The general case requires only 

obvious modifications. The second condition in (2.18) and (2.12) imply that 

VW E Lh(T) with some h > 2. Therefore,  w E wl'h(T) C C(T); and, using (2.13), 

one can show that the functions w, w -1 are multipliers in Hl(fl).  This implies that 

the quadratic forms o f  the operators in the r.h.s, and 1.h.s. o f  (3.1) are both closed 

on H I (fl). Thus it suffices to prove that the corresponding bilinear forms coincide. 

Let  us consider the form of  the operator in the 1.h.s. for u,v E HX(fl) (all integrals 



80 E. SHARGORODSKY AND A. V. SOBOLEV 

below are over fl unless indicated otherwise): 

h(~)(w)[w-lu, w-lv] = Z w2<GV(w-lu), V(w-lv)>dx 

= S W2 (G(w-1Vu - w-2uVw), ~ -  1~--~ _ w-2VVw)dx 

=/<Gvu, vv>dx +/~-~<Gw, v~>~dx 

i i w i  1 U <GVw ' ~ >  dx i i W--I <GV~, VW ) vdx I 

Integrate the last integral by parts, recalling that GVw 6 ~/~l,q, q > 1; and using the 

notation n(x) for the exterior unit normal to the boundary af~ at the point x: 

-/~-lIGW, w>~dx = -/oo ~-'<Gw,.>~ds 

/~-'~<Gw, W>~x + /~-'~<v, + GV)wdx 

- f w -2 <GVw, Vw)u~dx. 

Substituting this in the initial formula for the bilinear form, we arrive at the relation 

h(ON)(W)[W-lU, W-iV] = h~'(1)[u,v] + S IZuvdx- __L~ W-I(GVW'")u~dS 
= hg(1, ~d, d)[u, v]. 

It remains to notice that 

M 

L w-l<GVw'n>u~dS=Z~ w-I<GVw'n>u~dS' 
j = l  J 

which completes the proof. [] 

C o r o l l a r y  3.2. It suffices to prove Theorems 2.6 and 2.9for w = 1 and # = 1. 

Proof .  To be definite, consider the case of  Theorem 2.9 only. Suppose that 

it holds forw =/~ = 1. First we show that the operator H~(1, V,#), R = D,N,  is 

absolutely continuous if # satisfies (2.9). According to Proposition 2.5, it suffices 

to check that it has no point spectrum. Aiming for a contradiction, let us suppose 

that A is an eigenvalue of H~ with an eigenfunction u. Recall that by Proposition 
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2.4 the quadratic form h~ is closed on the domain 79~ independent of  it. Therefore,  

the equality 

h~(1, V, it, o ' )[u,v]-A f uVitdx=O, VvE79~, 

implies that the point A = 0 is an eigenvalue of  the operator 

It~ = H~(1, V - Ait, 1, o'). 

On the other hand, the potential V - A# satisfies (2.10), so that by Theorem 2.9 

with w = It = 1, the spectrum of  H~ is absolutely continuous. This contradiction 

proves the claim. 

Let  us now remove  the condition w = 1. Again, in view of  Proposition 2.5, it 

suffices to show that the operator H~ (w, V, It, or) has no point spectrum. Assuming 

the contrary, we obtain from (3.1) that for any eigenfunction u of  H~(w, V, It, or) 
associated with an eigenvalue A, the function wu will be an eigenfunction of  the 

operator/-I~ = H~(1, 1:" - Aw -2, #, ~)  associated with the eigenvalue A = 0. This 

contradicts the absolute continuity o f  H~, which follows f rom Theorem 2.9 with 

arbitrary it and w = 1 in the same way as in the first part o f  the proof.  [] 

Referring to this Corollary, from now on w e  a l w a y s  a s s u m e  t h a t  w = it = 1. 

3.2 Absolute continuity. The proof  of  Theorem 2.9 will be based on the 

further reduction to the operator H e ( I ,  B, a, V, 1, or; C) with a constant diagonal 
matrix B. 

Proposition 3.3.  Let w = # = 1. Suppose that the conditions (2.10), (2.11) 

are fulfilled and that G = B is a constant d iagonal  matrix with positive entries. 
Then the operator Hp(1, B, a, V, 1, or; C) is absolutely continuous. 

Although this result is not contained in [4], it follows immediately from the 

estimates obtained in [4]; we do not comment  on the details. 

4 I s o t h e r m a l  c o o r d i n a t e s .  P r o o f  o f  T h e o r e m  2.6 

As was already explained, the proofs of  Theorems 2.6 and 2.9 are based on 

a reduction o f  the operator H~(G)  to the canonical form, i.e., to the operator 

H~(A) with a constant positive-definite matrix A. (Recall again that we may 

assume without loss of  generality that w = # = 1.) This reduction is done using 

isothermal coordinates. The required properties of  this coordinate change are 

stated in Theorems 4.1 and 4.2. Their  p roof  is postponed until Section 6. 
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We cons ider  two mappings .  One  is a h o m e o m o r p h i s m  o f  the entire plane onto  

itself, and the other  is a h o m e o m o r p h i s m  of  the per iodic  domain  f~ onto  the straight 

strip Sd. 

We a lways  denote  F = ~ and assume that 

(4.1) det G = 1, 

so that det  F --- 1 as well. 

4.1 Change  o f  variables.  Let 

 (01 ol) 
T h e  first theorem below descr ibes  a suitable coord ina te  change  in 11{ 2 . 

T h e o r e m  4 .1 .  Let  G satisfy (2.12) and (4.1). Then there exists a unique 

homeomorphism f = fR~ = ( f l ,  f2) : II~ ~ ~ l~ 2, f E H~,~ (It~; ) such that 

(i) f(O) = O, f(2zrel) = 2~'el, and If(x)l -~ oo as Ixl -~ oo; and 

(ii) the components f l ,  f2 satisfy the equation 

(4.2) V f2 = J G V f l ,  a.a. x 6 lI~ 2. 

Moreover, the map f possesses the following properties. 

(iii) The Jacobian J r (x)  = det ( :Df(x))  is positive a.a. x 6 R 2. The function f and 

its inverse f-1 both belong to W~,~r (IR 2 ) with some T > 2. 

(iv) For any u 6 H~r the usual chain rule holds: 

V(u  o f)  = [~f] r (~Tu o f) ,  a.a. x 6 R e. 

Moreover, for  any h 6 I-~or 2 ), the function h o f belongs to L ~ ( J f ,  II~ 2 ) and 

f f ( ~ )  h(y)dy = f~  (h o f ) ( x ) J f ( x ) d x  

for  any open bounded f~l C ~2. 

(v) For hi = 2rrel and some linearly independent vector h2, one has 

f ( x  + 2rrn) = f (x)  + n l h l  + n2h2 

for  all x E R 2 and all n 6 Z 2. 
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(vi) I f  (2.19) is fulfilled, then f E C 1+'~ (IR 2 ) and the Jacobian satisfies the estimate 

Jr(x) _> c for  all x E R 2. 

Note that the properties stated in Theorem 4.1(iv) are certainly standard for 

smooth, or even Lipschitz maps f. For homeomorphisms f of  class 1 H~o ~, such 

"standard" results as the chain rule or the change of  variables under the integral are 

not obvious. They require in addition that the functions f and f-1 should map sets 

of  measure zero into sets of  measure zero. This property follows from Theorem 

4.1(iii) according to [13], Ch. 5, w 

Let us now state the appropriate result for an admissible domain ft satisfying 

Condition 2.8. Recall that the boundary Oft consists of two disjoint Jordan curves 

e+ and e_. Without loss of  generality, we assume that 0 C L .  As defined in 

Section 2, Z C Oft is the set of  the boundary points where the smoothness of  ~+, 

~_ breaks down. 

T h e o r e m  4.2.  Suppose that an admissible domain f~ satisfies Condition 2.8. 

Let G satisfy (2.12), (4.1), and (2.19). Then there exists a unique homeomorphism 

f = ff~ = (f l ,  f2) : f/--* $ = $1, f E H~or such that 

(i) f(0) = 0, f l  (x) ~ +co as xl --~ +oo, and f l  (x) ---r - oo  as xl  --~ -oo; and 

(ii) the components f l ,  f2 satisfy the equation (4.2)for a.a. x �9 f~. 

The map f satisfies the following properties. 

(iii) For some number h > O, one has 

f(x + 27rnel) = f(x) + 2 rnhe t  

for  all x �9 [2 and all n �9 Z. 

(iv) f �9 C l + a ( ~  \ Z), f -x �9 c l + a ( ~  \ f (Z)) ,  andthe  Jacobian Jr(x) isposit ive 

everywhere in ft. Moreover, for  each Xo �9 Z, there exist a number u E (0, 2] 

and four  non-degenerate Hiffder-continuous matrix-functions M,  T and ~, if2 

with real-valued entries such that in the vicinity o f  xo and Zo = f(xo) �9 f(Z), 

one has the representations 

( x-  x~ )M(x), 
~ f ( x )  = Ix - x01X/v-a'I ' ix _ x01 

(4.3) 

~ f - X ( z ) = ] z - z ~  Iz zol T(z).  

The next lemma establishes some further properties of  f that follow from 

Theorems 4.1 and 4.2. 
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L e m m a  4.3. Let the matrix G and the map f be as in Theorem 4.1 or 4.2. 

Then the fol lowing identities hold: 

(4.4) V f l  = - J G V f 2 ,  

(4.5) (FV/1, FVf2) = O, 

(4.6) Jr : IFVfl[ 2 = IFVf2[ 2, 

(4.7) J f i e f  G ~ f T  = I. 

P r o o f .  As det F = det G = 1, a direct calculation shows that 

J = G J G ,  J = F J F .  

Noticing also that j2 = - I ,  from (4.2) we obtain (4.4) and the relation 

F V f 2  : J F V f l .  

This implies the orthogonality (4.5) in view of  the obvious equality (J~, ~) = 0, 

for all ( E I~ z . It also yields the equality IFV/ l l  2 = IFVAI  =. The equality (4.7) is 

a direct consequence of  (4.5) and (4.6). 
To prove (4.6), compute the Jacobian, using (4.4): 

f i r ( x ) -  COil Of 2 (9fl Of  2 _ ( V f l , J V f 2 )  
C~Xl C~X2 COX2 C~Xl 

= - (V f l ,  G J G V / 2 )  = (Vf~, G U l l )  

= IFVAI 2 = IFVA[ 2 [] 

R e m a r k  4.4. By (4.6), the norm [~f[ can be estimated as follows: [~f[2 < 

K Jr, where the positive constant K depends on the matrix G. Recall that this 

inequality serves as a definition of K-quasiconformal maps (see [12], Section 

12.1). 

Similarly, I (~f ) - l l  ~ = ( l ~ f l j i l )  ~ _< K J i  1. 

4.2 U n i t a r y  t r a n s f o r m a t i o n .  Notice that the mapping f = fR~ con- 

structed in Theorem 4.1 transforms the lattice r = (27rZ)2 into the lattice generated 

by the vectors hi ,  h2. It is slightly more convenient to reduce this lattice back to r 

by applying the non-degenerate linear transformation R = RR: : I~ 2 -~ I~ 2 defined 

by the relations 

Rhl = 27r01, Rh2 = 27re2. 
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By Theorem 4. l(v), the composite mapping g = R o f satisfies 

(4.8) g(x + 27rn) = g(x) + 27rnlel + 27rn2e2, x E I~ 2, n E Z 2. 

Note that in view of  (4.7), we have 

(4.9) A := j~ - l~g  G ~ g T  ---- (det R ) - I R R  T. 

Similarly, in Theorem 4.2, the one-dimensional lattice 3'1 is transformed into 

the lattice 3"h = {27rnhel} ,n  6 Z. We rescale 3"h back to 3"1 by applying the 

transformation R = R e  : S -~ S defined by 

Re2 -- e2, a e l  -- h - l e l ,  

Then, clearly, the mapping g = R o f satisfies the relation 

(4.10) g(x + 27rnel) = g(x) + 27rnel, x 6 f~, n 6 Z. 

Note also that the matrix A in (4.9) is diagonal in this case. Depending on the 

context, below we write either g, A or gA, AA where A is either ]R 2 or fL 

Denote 

/~= / A ,  if  A = I R  ~ or C, 

t S, if  A = fL 

In the case A = f~, under the conditions of  Theorem 4.2, one can easily show that 

the set ~ = g (~)  is again a system of  curves. More precisely, if  g j , j  = 1 , 2 , . . . ,  N, 

are the El-arcs from Definition 2.2 (see also the end of Section 2), then each g(gj) 

is again a El-arc satisfying all the required properties. In the case of curves gj 

ending or starting at the points of  Z, this is done by a suitable re-parametrisation, 

using (4.3). Recall that g (~)  contains the boundary of  the strip S. 

Introduce also the sets ~', - ,  -~ defined similarly to (2.4) and (2.6) with/~ and 1~ 

instead of  A and ~ .  Note that according to Theorem 4.2, the following is fulfilled 

for the mappings g, g-1 in the case A = f~: 

(4.11) g E  w l ' r  (~-~t), g--1E w l ' r  (~-~tt), ~g--11~ e /r/2( '~ ) 

for any bounded domains f~' C f~, f~" C S and some r > 2. 

Using Theorem 4.1(iii), (iv) and Theorem 4.2 (iv), it is easy to show that the 

operator 

(Su)(x) = u ( g - l ( x ) ) ,  u 6 L2(A), 

is unitary from L2(A) onto the space k2(p,/i) with the weight 

( )))-1 
~(x) = \j (g-l(x = 
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Let 
f i ( x )  = ( ( ( ~ g T ) - ' a )  o g - t ) ( x ) ,  

I)(x) = ( ( J ~ ' V ) o g - ' ) ( x ) ,  

and, in the case A = f~, write 

x � 9  

6. = (#l, #a,. �9 #N), 

~j(x)  = 1(:gg-1)(x)t j(x)l(a3 o g - ' ) ( x ) ,  x �9 ~23, j = 1 , 2 , . . . , N ,  

where t j  (x)  is the unit tangent vector to E) at the point x �9 Ej. 

In the next theorem, among other properties of  the map S we show that the 

coefficients I5",/~, fi and 6. satisfy the conditions of  Theorems 2.6 or 2.9. 

T h e o r e m  4.5. Let S be as defined above. 

(i) Under the conditions o f  Theorems 2.6 or 2.9, one has s E I-~/2('i'), 

pr 
f '  �9 L~(~r), ~ = 

2(p  - 1) + 
8"/" �9 0 ( ' ? ) ,  a = 

s - 2 + r '  
F T  �9 § - 

2(r-1)+7-' 
where r > 2 is as in Theorem 4.1(iii) or (4.1 1). The exponents ~ and g satisfy 

the inequalities ~ > 1, g > 2, F > 1. 

(ii) The map S ( resp., S -1) is bounded as an operator from H 1 (A) to H I (A) ( re sp., 

Hi(A) to HI(A))and  from Hi(fl ) to HI(S ) (resp., HI(S ) to Hi(12)). 

(iii) Let A be as defined in (4.9). Then one has the unitary equivalence 

SHs (G ,  a, V, 1, a ;  A)S* = H~(A, fi, IY, t2, 6";/~). 

P r o o f .  (i) The inequalities ~ > 1, ~ > 2 and ~ > 1 are immediate from the 

conditions p > 1, s > 2, r > 1, r > 2. 

It follows from Theorem 4.1(iii) and (v) or (4.11) that/2 E k~/2(T). Let us 

prove that 17" E L~(~'). By H61der's inequality, for any bounded domain f~l c R 2 
we have 

f~h IJgIV o g- l (x) lPdx 

{ \(;~-~)(I-~) -~ I I-~ 
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with/7 = l~p- 1. Noticing that (# - /7)  (1 - / 7 ) -  1 = 7-/2, and using Theorem 4.1 (iii), 

(iv), or (4.11), we conclude that the r.h.s, of  the last inequality does not exceed 

T/2 ] t - ~  

To prove that fi E I-~(~i'), note that in view of  Remark 4.4, 

Now, repeating the argument used in the first part of  the proof, we arrive at the 

required property. 

A similar calculation can be done for the function o'. Precisely, for any C 1-arc 

g C ~j ,  we have 

f t  [ l (~g-1)(x) t j (x)]  I(ajog-1)(x)l]~dS 

[S, (,<~ ~ 

, - ,  

with G' = •r -1 �9 Noticing that (~ - "),)(1 - .7)-1 = r / l ,  we conclude that the r.h.s, of  

the last inequality does not exceed 

C [ frl(t) iaj(x)ir dS] "r [St i~g-l (x)lr/2 d'] '-,r 

and is therefore bounded in view of  (4.11). 

(ii) Let u E Hi(A) and v = Su. Let us first prove that Vv E L2(/7i). Since the 

matrix A defined in (4.9) is positive-definite, changing variables we have 

cllVvll  2 ___ L (AVv, Vv)dx = L (GVu, Vu) og-l Jg-,dx 

= f(fDVu, V-u)dx < cIIVull ~. 
I 

,#A 

In the last inequality, we have used (2.12); to secure the change of  variables in the 

case A = 11~ 2 , we refer to Theorem 4.1(iv). 

Since D = Jg-1 E L~/2('i ") with r > 2, in order to prove the boundedness o f  the 

operator S : H  1 (A) --r H 1 (/~), it remains to use the unitarity of  S : L~(A) -~ L~(/~,/~) 

and Proposition 2.4. Similarly for S - l .  
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To show that S maps Hot(Q) into H~(S), it suffices to notice that for any u �9 

C~(fl), we have u o g-1 E fi~(S). 

(iii) This result follows by a straightforward calculation. [] 

P r o o f  o f  T h e o r e m  2.6. As was explained in Remark 2.7, Theorem 2,6 was 

established in [7] for constant matrices G and w = # = 1. In view of the unitary 

equivalence established in Theorem 4.5(iii) and by Corollary 3.2, Theorem 2.6 for 

general G and w, # follows immediately from [7]. [] 

As far as Theorem 2.9 is concerned, by Theorem 4.5(iii) and Corollary 3.2, it 

follows from 

T h e o r e m  4.6. Suppose  that  f~ = $1, w = # = 1. Le t  the condi t ions  (2.10), 

(2.11) be satisfied, and  let G = B be a cons tant  d iagona l  matrix.  Then the spec tra  

o f  the opera tors  H D ( B ,  a, 17, tr; f~), H N ( B ,  a, V, tr; f~) are  absolu te ly  cont inuous.  

5 P r o o f  of  T h e o r e m s  4.6 and  2.9 

From now on, we assume that the conditions of  Theorem 4.6 are fulfilled. 

5.1 Extens ion  operators .  The proof is based on a reduction of HD and 

HN to a periodic operator. To construct the appropriate operator, we reflect the 

strip St in the line x2 = 0 and extend the functions a, V and a into the lower half 

of the domain obtained. More precisely, denote 

s u = s l ,  

So = $ ,uSt u {x : z2 =0} ,  

and define subspaces 

L~:(C) = {u E L2(C): u (x l , x=)  = -{-?~(z1,-x2), a.a. x E So} 

of all even (L~_) and odd (L2_) functions from L2(C). One easily concludes by 

inspection that the projections onto these subspaces are given by the formula 

1 
(5.1) P + u  -~ -~ (U(Xl, x2) -t- zt(Xl, -x2)) .  

We also need the extension operators W~ : L2(S~) --+ L~:(C). For x E So, they are 

defined by 

/ , . , ( x , , x~ ) /~ ,  x �9 S~, 

(w,,.,)(,~,,x~) = [ + ~ ( z , , - x ~ ) / v ' i ,  x �9 &,  
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and extended to •2 as "72-Periodic functions. Using the formula 

(5.2) (W~lu)(x) = v/2u(x), x E Su, u E L2. (C), 

one readily proves that W• is unitary on L2(S~,). To find out how the functions from 

the Sobolev spaces H 1 (S~,), H01 (Su) transform under the extensions W• denote 

H1, (C) = "p• (C). 

Given the explicit form (5.1) of the operator P• it is easy to see that 

(5.3) HI, (C) = HI(c) 71L~:(C). 

Now, observing that 

(5.4) u (x l , - r c )  = u(x l ,0 )  = u(x l ,  Tr) = 0, a.a. zl E R, 

for all u E Hi_ (C), one sees that 

(5.5) W+HI(Su) = H~_(C), W-H~(Su) = H~(C). 

5.2 R e d u c t i o n .  Now we can describe the periodic operator associated with 

the operators H o  and HN. Assume that the conditions of Theorem 4.6 are satisfied. 

We begin with the definition of the corresponding system of curves. Define 

S,, = (El,u, E2,u,. . . ,  EN,,,), where Ej,u = Ej, j = 1 ,2 , . . . ,  N, and 

]~l = ()"~'1,/, ~ 2 , / ,  . - . ,  '~N,I), 

= {x ( = , , - = 2 )  e 

T0 = (Eu, Et). 

By Definition 2.2, E0 is a system of curves in C. We emphasise that this system 

contains two copies of the upper and lower boundaries of the strip $1. 

Define the "72-periodic functions b, Q by applying the extension operators W• 

to a, V in the following way: 

Q = ~ W+V~ bl = v ~  W+al, b2 = V~ W_a2. 

It is clear that the functions Q, bl are even, and b2 is odd. Clearly, the new 

coefficients b, Q satisfy (2.10) with T = '/r 2. In a similar way, we extend the 

function a to So. Specifically, let p be the function on So defined by 

o ( x )  = x e r, ,  
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and extended-r2-periodically. Clearly, p satisfies (2.11) with ~ = ~0/'71. 

Now define the reference periodic operator H = Hp(1, B, b, Q, 1, p; C). Using 

the symmetry properties of b, Q, p, we decompose the operator H in the orthogonal 

sum associated with the subspaces L 2, = L~:(C). 

L e m m a  5.1. The subspaces L~ are invariant subspaces o f  the operator Hp. 

Proof .  We need to check that 

(5.6) P+ D[h] = L~ N D[h], 

and that for any u, v E D[h] 

(5.7) v] = P+,,] + hi'P_,,, P_o]. 

The equality (5.6) follows from (5.3). To prove (5.7), it suffices to verify that 

(5.8) h[P+u,7~_v] = O, Vu, v E HI(C). 

Write out the I.h.s. using the notation w• = 79• 

2 

y~ (bu(D, - bt)u+, (Dr - bt)v_) + (Qu+,v_) +/r, pu+~__dS. 
/=1 o 

The last two terms vanish since Q and p are even functions. In particular, the 

integrals over OS equal zero in view of (5.4). To handle the first term, make the 

following table using the properties of the coefficients: 

(Dr - bl)u+ even, (D1 - bl)v- odd, 

(D2 - b2)u+ odd, (D2 - b2)v- even. 

Now it is easy to see that the first term also vanishes, which implies (5.8). [] 

Denote the parts of the operator H in this orthogonal decomposition by H_~ and 

H_. It can be shown that H• are unique self-adjoint operators associated with the 

closed quadratic forms h• ] obtained from h[. ] by restricting the domain D[h] to 

D{h+] = H~(C). The final step of the reduction of liD and HN to H is implemented 
in the following lemma. 

L e m m a  5.2. Let the conditions of  Theorem 4.6 be satisfied. Then 

(5.9) W_HoW*_ = H_, W+HNW~ = H+. 
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Proof .  By (5.5), W+DN = D[h+] and W_Do = D[h_]; hence it suffices to 

show that the bilinear forms of the operators in (5.9) coincide on the domains 

D[h_] = HI_(C) and D[h+] = H~_(C), respectively. Let u+,v+ E HX. (C). Using 

(5.2) and referring again to the symmetry properties of the coefficients, one can 

write 

(B(D - a)W*~u+, (D - a ) W ~ _ v + )  

o'W; lt4- W~_u4-cl~" 

2 

u " l =  1 

2 

= f~o[~bn(Dl-bl)u+(Dt-bl)v+ +Ou• dS. 

This form coincides with the bilinear form of the operator H+. [] 

P r o o f  o f  T h e o r e m  4.6. The coefficients b, Q satisfy the conditions of 

Proposition 3.3. Therefore, the periodic operator H is absolutely continuous; and 

so are the orthogonal parts H+ and H_. By virtue of Lemma 5.2, the operators 

HN and H~9 are unitarily equivalent to H+, H_; and thus they are also absolutely 

continuous, as required. [] 

Theorem 4.6 combined with Corollary 3.2 and Theorem 4.5 leads to Theorem 

2.9. 

6 Quasiconformai  maps  

In this section, we prove Theorems 4.1 and 4.2. We are using the standard 

approach to second-order elliptic equations in dimension two, which consists in 

passing to the complex variable and using the theory of quasi-analytic functions 

(see, e.g., [3], [35]). Let us define z = xl + ix2, f = fl + if2. 
To begin with, notice that the equation (4.2) for f l ,  f2 is equivalent to the 

Beltrami equation (see [35]) 

(6.1) 

where 

with the complex-valued function 

(6.2) q = 

O~ef = qazf, 

1 (a~ + iOx2) 

-g12 + i(1 - 922) 
g:2 -- i(g22 + 1) " 
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Note that I]qllLo~ is strictly less than 1 and that the Jacobian of  f satisfies the relation 

J f  = 1~9~/I 2 - 1 0 j I  2 : (1 -lql2)lc0~fl 2. 

We say that a continuous function / is q-quasiconformal (or quasiconformal) if 

O~f E I-~oc and / satisfies the equation (6.1) for a.a.z.  

6.1 M a p p i n g s  o f  •2. The following theorem is a one-to-one "translation" 

of  Theorem 4.1 into the language of quasiconformal mappings, except for the 
additional item (v). 

T h e o r e m  6.1. Let q E L~176 be a function such that IlqllL~176 < 1. Suppose that 

q is periodic, that is, 

q(z) = q(z + 27r) = q(z + 27ri), a.a. z E C. 

Then there exists a unique q-quasiconformal homeomorphism / o f  the complex 

plane onto itself such that f(0)  = 0, f(27r) = 21r, and f(oo) = oo. 

Moreover, 

(i) Ozf ~ 0 almost everywhere; 

/ - i T  o (ii) there exists a number r > 2 such that f,  f - t  E Wlo~ (C), 

(iii) for  any u E H~or the derivatives Oz(u o / )  and O~(u o f )  are found by the 

standard chain rule. Also, for  any h E I-lo~ (C), the function h o f belongs to 

I-lo~ (Jr, C) and 

f / ( ~ l ) h ( x ) d x = f ~ l ( h ~  

for  any open bounded fit C ~" 

(iv) the mapping / has the periodicity property 

(6.3) f ( z  + 21rn + 2iTrm) = / ( z )  + 27rn + ~'m, z E C, m, n, E Z, 

with some x which has a non-zero imaginary part; 

(v) i f  q(-~) = q(z) almost everywhere, then x in (6.3) is purely imaginary: x = 

2i Imf(Iri); 

(vi) i f  q E C~(C), 0 < a < 1, then/~ Ct+~(C) and laJI > O for  aU z E C~ 
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P r o o f .  By Proposition 7.1, the mapping with the fixed three points 0, 27r, oc 

exists, is unique, and satisfies properties (i), (ii), (iii) and (vi). We need only prove 

(6.3) and (v). Let  ( be either 27r or 27ri. Along with f ,  the function 

, f ( z  + ~ )  - f ( ~ )  
] ( z )  = Lrr f ( 2 r  r + ~) _ f ( ~ )  

is also a solution of  the equation (6.1), due to the periodicity of  q. Note that 

the denominator here is not zero as the function f is a homeomorphism,  and for 

the same reason f(~) # 0 as well. Notice also that ](0)  = 0, ](2rr) = 2rr and 

] (co)  = oc. By the uniqueness of  such a solution, ] = f ,  or, what is the same, 

with 

f ( z  + ~) = e l f ( z )  + e2 

f(27r + ~) - f ( ( )  
Cl = 27r , c2 = f ( ( ) .  

Let us consider separately four possibilities: ICl[ < 1, Icll > 1, Cl = e '~ 0 ~ (0, 2~) 

and Cl = 1. We shall eliminate the first three of  them, thus proving that cl = 1. 

C a s e  1: [cl[ < 1. For any integer n > 1, we have 

n--1  __l-cr 
f ( n ( )  = c2 Ckl = c2 1 - e l '  

k=0 

hence f ( n ~ )  ~ c~(1 - cx) -1 as n ~ oo. This contradicts the fact that f ( ~ )  = co. 

C a s e  2: Ic~l > 1. The sought contradiction follows from Case 1 by rewriting 

f ( z  - ~) = l f ( z )  clc-2' 

and noting that lci-ll < 1. 

C a s e  3: cx = e i~ 0 E (0,2rr). Again, as in Case 1, we have 

1 - c~' 
f ( n ( )  = c2 1 - cl 

The r.h.s, remains bounded as n ~ co, which contradicts the requirement that 

f (oo)  : oo. 

Consequently, the only possible option is el = 1. 

Note that f(2~r) = 21r by definition of  f ,  so that (6.3) with m = 0 is proved. 

Let  us now prove that the imaginary part of  x = f (2 r i )  is non-zero. Suppose, on 

the contrary, that Im ~ = 0. Then, for any integer m, one can find another integer 

n = n ( m )  such that 12~rn + ~anl ___ 2rr, so that the r.h.s, o f  the equality 

f(2~'n + 2 ~ m i )  = 2 z n  + x m  
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remains bounded as m ~ oo. On the other hand, [2zrn + 27rmi[ ~ o0 as m --} to. 

Again we get the same contradiction, which proves that Im x r 0. 

It is left to prove (v). Let  ~(z) := f(2) .  Then ~(0) = 0, ~a(2~r) = 27r and 

~(oo) = oo. Further, it is easy to see (see, e.g., [1], Ch. I, Section C, (1)) that 

az(f(-~)) = ( ~ / ) ( ~ )  = (qOzf)(-~) = q(-e)(aj)(-~) = q(~)Oe~(f(~)). 

Taking the complex conjugates o f  both sides and using the equality q(~) = q(z), 

we obtain 0 ~ ( z )  = q(z)O~qo(z). By uniqueness, we then conclude that qo = f ,  i.e., 

f(~) = f ( z ) ,  for all z E C; in particular, f ( - zr i )  = f(Tri). On the other hand, (6.3) 

implies 

f(Tri) = f ( - r i  + 2zri) = f(-Tri)  + x = f(zri) + x.  

Hence x = 2i Imf(rri). [] 

Theorem 4.1 follows immediately. 

We emphasise again that the crucial periodicity property (6.3) of  the quasi- 

conformal  map f is a direct consequence of  the uniqueness in Proposition 7.1. 

Besides, we have included in Theorem 6.1 statement (v), which also follows from 

the uniqueness. Using (6.2), one easily sees that the condition q(~) = q(z) in part 

(v) is equivalent to the following symmetry conditions on the matrix G: 

gjj(Xl,X2) = gj j (Xl , -X2) ,  j = 1,2, 

gjt(xl ,x~)  = - g j t ( x l , - x 2 ) ,  j # I. 

Then Re x = 0 means that the isothermal change of  variables transforms the initial 

square lattice (2rZ)  2 into another orthogonal lattice. Although this observation is 

not needed in this paper, we consider it worth mentioning. 

6 .2  Mapping  of  the d o m a i n  ft. The next theorem restates Theorem 4.2 

in the language of  quasiconformal mappings. 

T h e o r e m  6.2.  Let f~ be a domain as in Theorem 4.2; in particular, Condition 

2.8 isfulfilledandO E 2_. Let q E C a (-0) be aperiodic function (i.e., q(z) = q(z+27r) 

for  all z E f~) such that Ilqllt** < 1. Then there exists a unique q-quasiconformal 

homeomorphism f o f  the domain f~ onto the strip $1 such that f(O) = O, f ( - o o )  = 

- o o  a nd  f ( +oo )  = +oo. The map f has the following properties. 

(i) For all z E f~, 

(6.4) f ( z  + 27rn) = f ( z )  + ;on, for  all n E Z, 

with some x > O. 
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(ii) f E C l+a (~  \ g) ,  f - 1  E C l+~ (5 \ / (Z ) ) ,  and IOz/I > 0 everywhere in fL 

Moreover, for  each z0 E Z, there exist a number v E (0, 2] and four  Hi~lder- 

continuous functions M , T  and ~, ~, separated from zero, such that in the 

vicinity o f  zo and Co = f(zo) E f ( Z )  one has the representations 

Oaf(z) : Iz - zol l /V-l~(axg(z - Zo))M(z),  

0r = I~ - C0lV- '~(a rg(C - C0))T(C). 

P r o o f .  Pick the following accessible boundary points (see, e.g., [ 14], Ch. II, w 

for definition) of  0f~: - oo ,  +c~, 0. Then by Theorem 7.2(i) combined with Remark 

7.3, there exists a uniquely defined quasiconformal homeomorphism f : f~ -~ $1 

which preserves these boundary points. Moreover, the smoothness properties 

required in (ii) follow from Theorem 7.2(ii) and (iii). It remains to prove (6.4). 

In view of  the periodicity of  the domain f~, the mapping j~(z) = f ( z  + 27r) is 

also a quasiconformal homeomorphism of  f~ onto the straight strip S1. Note that / 

sends - o o  and oo into themselves and the point 0 into z0 = f(27r). Also, z0 is real, 

since it lies on the lower portion of  the boundary of  $1, i.e., on the horizontal line 

Im z = 0. Consequently, the composition function 

h(:) = 

defined on $1 is a conformal homeomorphism of  $1 onto itself (see [3], Part II, 

Section 6.2), acting in such a way that -oo ,  +oo are preserved and h(0) = z0. It 

is easy to see that the function h(z) = z + Zo satisfies the same conditions. On 

the other hand, such a conformal mapping is unique (see, e.g., [14], Ch. II, w 

Theorem 6). Therefore,  h(z) = h(z); and hence 

j ~ ( z ) = f ( z ) - I - x ,  x = ~ = z 0 .  

It is clear that x ~ 0, for otherwise the function f would remain bounded as 

Izl --r oo, which contradicts the assumption that f preserves +oo. For the same 

reason, x > 0 since otherwise +oo and - o o  would exchange places under the 

mapping f .  [] 

For conformal mappings, the above argument can be found in [14], Ch. V, w 1. 

Theorem 4.2 now follows from Theorem 6.2. 

6.3 Bilipschitz mappings  of  the domain  fL In this subsection, we 

address a question which has no direct effect on the results o f  the paper but is 

nevertheless natural and important. If  the domain fl has no comers  or peaks, then 
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according to Theorem 6.2, the homeomorphism f : ft --4 $1 is Cl+a-smooth. This 

is guaranteed by the initially assumed Cl+~-smoothness of  the boundary af t  (see 

Condition 2.8) and the Ca-smoothness of  the matrix G (see (2.19)). In the presence 

of  comers  or peaks, one or both of  the derivatives 0z f ,  ~ z f  -1 are unbounded. In 

particular, the homeomorphism f may fail to be Lipschitz even if the boundary Oft 

is Lipschitz. Therefore, one may ask whether a domain ft with Lipschitz boundary 

aft  admits a periodic bilipschitz map 12 ~ S1. 

To state the question in a precise form, recall that a mapping F from a metric 

space (Xl ,dl)  into a metric space (X2,d2) is called bilipschitz if  there exists a 

constant M > 0 such that 

dl(X,y)/M < d2(F(x),F(y)) < Mdx(x,y), x ,y  E X1. 

We say that a curve ~ E C is Lipschitz if it is a bilipschitz image of ~L Note in 

passing that it is easy to give an intrinsic characterisation o f a  Lipschitz curve. First 

of  all, it is clear that a Lipschitz curve is Jordan and locally rectifiable. Conversely, 

let e : ]R -~ C be a Jordan locally rectifiable curve such that le(t)l ~ oo as t ~ =t:c~. 

Using the arclength parametrisation, one can easily show that ~ is a Lipschitz curve 

if  and only if it is an chord-arc curve, i.e., if  there exists a constant K _> 1 such 

that the length of the subarc of  e joining any two points is bounded by K times the 

distance between them. 

Assume that the boundary of  a periodic domain ft consists of  two disjoint 

Lipschitz curves 4 ,  e_. Our objective is to find a bilipschitz mapping F of  $1 onto 

f~ such that 

(6.5) F(z + 27r) = F(z) + 27r, z E Sa. 

It is evident that the bilipschitz regularity of  the curves e+ is necessary for the 

existence of  such a mapping. This condition is also sufficient. 

T h e o r e m  6.3. Let ft be a simply connected periodic domain with a boundary 

consisting of  two disjoint Lipschitz curves g+ and e_. Then there exists a bilipschitz 

mapping F of  $1 onto ft satisfying (6.5). 

P r o o f ,  Let ~ : Sx -+ ft be a conformal homeomorphism, mapping +oo to 

4-oo, 0 to a given point of  e_ and such that ~(ff + x) = ~(r + 2~r, for all ~ E $1 

where g > 0. The existence of  such a map follows from [14], Ch. V, w Since 

e+ are locally rectifiable Jordan curves, it follows that qo can be extended to a 

homeomorphism of  the closure of  $1 onto the closure of  ft (see [14], Ch. II, w 

Theorem 4); that, for almost all x0 E ~ the finite limits 

lim ~'(Zo + i7-) # O, lim ~'(xo + iTr - iv) ~ 0 
r--40+ r--r0+ 
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exist; and that ~p is conformal at x0 and x0 + iTr (see [14], Ch. X, w Theorems 1 

and 3). This latter implies that the curves t+ meet the arcs to = ~([Xo, x0 + ilr]) 

and t l  = ~([Xo + x,  Xo + x + iTr]) at the right angle. Now let us define a closed 

"fundamental domain" of the strip $1: 

A := {x + iy :  Xo < X <_xo + x ,  0_<y<_Tr}. 

The boundary of  A consists of  four segments 

7 -  = [xo, Xo + x], 7+ = [Xo + iTr, x0 + x + iTr], 

70 = [x0, xo + iTr], "/1 = [Xo + x, Zo + x + iTr]. 

The next step is to define a bilipschitz map F0 from 0A onto ~(0A) = 0~(A). 

Let [• := ~(-~+) C t•  Since t•  are Lipschitz curves, there exists a bilipschitz 

homeomorphism Fo : 7• -+ L .  Further, set Fo(z) = ~(z) if z �9 "~o or 71. In view 

of  the periodicity of  ~o, we have 

(6.6) Fo(z + x)  = Fo(z) + 27r, z �9 70. 

Since the arcs ~+, ~_ and t0, t l  meet at the right angle, it is easy to see that F0 

is a bilipschitz mapping of  0A onto 0~(A) = ~(0A). Then it follows from [34] 

(see also [26], Theorem 7.10 and [22]) that Fo can be extended to a bilipschitz 

homeomorphism of  C onto itself. This defines a bilipschitz homeomorphism 

F0 : A --+ ~(A). By virtue of (6.6), it is now straightforward to see that the 

extension F] of  F0, defined by 

F x ( f f + n x ) : = F 0 ( f f ) + 2 7 r n ,  ~ � 9  n � 9  

is a bilipschitz mapping of  $1 onto [1 such that F1 (ff + x) = F1 (r + 27r, ff �9 $1. It 

remains to define F by 

F(x  + iy) := F1 ~-~ x + iy . [] 

7 General properties of quasiconformal mappings 

We begin with describing a quasiconformal homeomorphism of  the complex 

plane onto itself. The following general result can be found in [1], [2], [3] Part II, 

Ch. 6, or [35], Ch. 2. 

Proposition 7.1. Let q E I-~176 2) be a function such that IlqllL~ < 1. Then 

there exists a unique q-quasiconformal homeomorphism f o f  the complex plane 

such that f(0) = 0, f(2~r) = 2rr and f ( ~ )  = cx~. Moreover, 
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(i) the conclusions (i), (ii), (iii) of  Theorem 6.1 hold; 

(ii) i f  q E C a, 0 < ~ < 1, in a neighbourhood of  some point zo, then f E C l+c' 

and IOzf[ > 0 in this neighbourhood. 

The  next  theorem is a " q u a s i c o n f o r m a r '  version o f  R iemann ' s  mapping theorem 

and the results on the boundary  behaviour  o f  con fo rma l  mappings.  T he  results 

co l lec ted  in this theorem probab ly  are not new, but we have not been able to find 

them stated in the form conven ien t  for  us. 

T h e o r e m  7.2 .  Let  f~ C C be a simply connected open domain with more than 

one boundary point such that all points of  Of 1 are accessible. Suppose q E k ~176 (f~) 

and IlqllL~ < 1. 

(i) There exists a unique q-quasiconformal map w o f  f~ onto the unit disk 

z~ := {r ~ c Ir < a} which maps three given points zl,z2,z3 E Of~ 

indexed in order of  their occurrence as one proceeds in the positive direc- 

tion along Of~ (see [14], Ch. 11, w onto three given points ~1, ~2,43 E 0l)  

similarly indexed. This map and its inverse f -~  belong to W~g~ T (f2) f o r  some 

~- > 2. The map f defines a homeomorphism of  the compactification ~ of  f~ 

by the prime ends onto the closed unit disk. 

(ii) Let  m E 1~1 U {0}, 0 < a < 1, Zo E ~, and let q be cm+a-smooth in a 

neighbourhood of  zo. Suppose also that if zo ~_ f~, then the intersection of  

Of~ with a neighbourhood of  zo is a cm+l+a-smooth Jordan curve. Then f is 

cm+l+O-smooth in a neighbourhood o f  zo and IOJ(zo)l  > o. 

(iii) Let  Zo E 0f t  and suppose that the intersection o f  Ofl with a neighbourhood 

o f  zo is a piecewise Cl+a-smooth Jordan curve, 0 < ~ < 1, with the only 

angular point at zo, which is not an outward cusp, i.e., the interior angle 

at zo with respect to f~ is nonzero. Let 7 : [tx,t2] -+ C, 7(to) = Zo be a 

parametrisation of  this curve in the positive direction. Suppose also that q 

is C a-H6lder continuous in a neighbourhood of  Zo. Then f and its inverse 

g :=  f - 1  satisfy 

(7.1) ~zY(~ )  = ( ( z  - zo) + q(zo) (~  - ~o)) ~/~-~ V ( z ) ,  

(7.2)  0r = (~ - ~0)"- lG(~) ,  0~9(~) = -q(9(~))0r 

where Co = f(zo), 

1 { 7 ' ( t o - O ) + q ( z o ) 7 ' ( t o - O ) }  
(7.3)  v = - arg 

7r ")"(to --+ O) + q(zo)7'(to + O) E (0, 2], 
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and F, G are H61der continuous and nowhere zero in neighbourhoods o f  zo 

and (o, respectively. 

R e m a r k  7.3. The theorem above uses the disk 79 as the target domain. This 

choice was made only for definiteness and convenience in the proof. One can 

easily restate Theorem 7.2 choosing other simply connected domains as targets. 

In particular, making obvious modifications, D can be replaced by the strip S~. 

This can be done by mapping 79 onto Sa using a standard conformal map and 

noticing that composition of a conformal and a q-quasiconformal mappings is 

again q-quasiconformal (see [3], Part II, w 

P r o o f  o f  T h e o r e m  7.2. Step I. Take an arbitrary extension q0 E L~(C) 
of  q such that IIq01k~ < 1. There exists a q0-quasiconformal homeomorphism 

1,7" w : C ~ C which belongs, together with its inverse, to Wto c (C) with r > 2 (see 

Proposition 7.1). Let fi0 := w(12), z~ -= w(zk), k = 1,2,3. It is clear that 120 is a 

simply connected domain and all points of 0fl0 are accessible. Hence there exists 

a unique conformal map ~/, of  120 onto D which maps z], z~, z~ onto (1, (2, (3 (see, 

e.g., [ 14], Ch. II, w Theorem 6). It is not difficult to see that f := ~ o w : 12 -~ D is 

a q-quasiconformal map (see [3], Part II, w having all the properties announced 

in (i). 

Step II. Let f l  : 12 ~ D be an arbitrary q-quasiconformal homeomorphism 

mapping zl, z2, z3 onto (t ,  (2, (a. Then f t  o f -1  : 79 --~ 79 is an analytic (see [3], Part 

II, w homeomorphism and hence a conformal automorphism (see [14], Ch. II, 

w 1) with fixed points (1, (~, (3. By the uniqueness result for conformal maps, we 

have f l  o f - l ( z )  - z, i.e., f l  -- f .  This proves uniqueness and shows that the map 

f constructed above d o e s  n o t  d e p e n d  o n  t h e  c h o i c e  o f  a n  e x t e n s i o n  qo- 

Step III. Under the conditions of (ii), there exists an extension q0 which is C re+o- 

smooth in a neighbourhood of  z0. It then follows from [35], Theorem 2.9 and the 

proof of  Theorem 2.12 that w from Step I is Cm+~+'~-smooth in a neighbourhood 

of  zo and 

(7.4) IOzw(zo)l 2 -10~w(zo)l 2 > 0 

So (ii) follows if we can prove that the conformal map ~ from Step I is C m+l+'~- 

smooth in a neighbourhood of  w(zo) and ~P'(w(zo)) # O. We need to do this only if 

W(Zo) E 012o, i.e., z0 E 012. 
Step IV. It follows from Step III that, under the conditions of  Part (ii), the 

intersection of  0flo with a neighbourhood of  W(Zo) is a Cm+l+O-smooth Jordan 

curve. Let us take a simply connected subdomain 121 C 120 with a C'~+l+'~-smooth 

boundary such that F := 0121 A 0120 is a C'~+x+~-smooth subarc of  the above 
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Jordan curve such that W(Zo) belongs to F and is different from its endpoints. 

By the uniqueness result for conformal maps, we can choose conformal maps 

r : f~l ~ 79 and qo : 79 -+ r so that 

r 1 6 2  inf}l. 

The map r is cm+l+C'-smooth in the closure of  f~x, and r # 0 (see [26], 

Theorems 3.5, 3.6) 

The mapping ~ maps an open circular arc containing r (W(Zo)) onto a circular 

arc. Hence  ~ is holomorphic in a neighbourhood o f r  (W(Zo)), and ~' (r (w(z0))) # 

0 (see [14], Ch. II, w Theorem 5). Therefore, r is Cm+X+%smooth in a neigh- 

bourhood of  w(z0); and r # O. We note in passing that this is a variant of  

Kellogg's theorem (cf., e.g., [21], Section 29 or [20], Ch. II, w Theorem 1). 

The proof  of  (ii) is now completed. 

Step V. The proof  of  (iii) is similar to that of  (ii). Let  q0 be an extension of  q 

which is C~-HSlder continuous in a neighbourhood of  Zo. Then as in Step III, w 

from Step I is Cx+~-smooth in a neighbourhood of  z0 and satisfies (7.4). Therefore, 

the intersection of  0f~0 with a neighbourhood of  w(zo) is a piecewise Cl+~-smooth 

Jordan curve whose only singular point is at W(Zo). This curve is parameterized by 

[tl, t2] ~ t ~-~ w(7(t)) E C. The equality O~w(z) = q(z)Ozw(z) implies 

dw(7(to 4- 0)) 
dt 

= O w(zo)7'(to + o) + o w(zo)7'(to • o) 

= (7 ' ( t0  + o) + q(zo)7'(to + o))OzW(Zo). 

Therefore, the interior angle with respect to f~0 = w(f~) at W(Zo) equals Try, where 

v is given by (7.3). 

Step VI. Now we need to investigate the properties of  the conformal map 

r : f~0 ~ 79. Using the argument from Step IV, we can reduce this to the study 

of  a conformal map r : f~l -~ 79, where f~l is a simply connected domain with 

a piecewise cX+%smooth boundary whose only singular point is W(Zo), where the 

interior angle with respect to f~l equals r v  > 0. Applying Warschawski 's  theorem 

(see, e.g., [35], Theorem 1.9, and [16], Ch. 3, w we obtain that r and its inverse 

0 : =  r  satisfy the conditions 

r  = ( w -  W(Zo))l/~-l~(w), ~7'(~) = ( ~ -  (o)~-lE(ff),  ~0 = r 

where q and E are Hr lder  continuous and nowhere zero in neighbourhoods of  w (z0) 

and (0, respectively. Now (iii) follows from the formulae f = r o w, g = w -1 o ~7 
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and 

w ( z )  - ~ ( z o )  = ( o ~ w ( z o ) ( z  - zo) + O~w(zo) (e  - ~o)) ~,(z ,  zo) 

= ( ( z  - z0)  + q ( z 0 ) ( ~  - ~0))  O~(zo) ~(z, zo), 

where w(., z0) is H61der continuous in a neighbourhood of  z0 and w(z0, Zo) = 1. 
The second equality in (7.2) follows from [3], Part II, Ch. 6, Appendix, Theorem 

3(iv) (see also [ 1 ], Ch. I, Section C). [] 
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