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Abstract. This paper, motivated by a conjecture raised by Choksi in 1984
about homogeneous spaces, investigates the topological connexions between trans-
formation groups and product spaces; our approach, based on the Furstenberg
structure theorem, provides a unified treatment for (Baire) measures on any
minimal distal flow and for measures on a product of compact metric spaces
of the same topological weight.

0. Introduction

The problem of ‘point realizations of o-homomorphisms’ goes back to the well
known publication [26] of von Neumann about measure algebras on Polish spaces.
His investigations were continued by Maharam [21] and completed in the work
[4] of Choksi, who considered arbitrary Baire measures on any product of Polish
spaces. In subsequence papers, Maharam [22], Choksi and Fremlin [8], Graf [15],
and particularly Fremlin {13] discussed various aspects of the problem; for further
information see [7].

‘We shall here study especially the problem for measures on a minimal distal flow
[1], [10]; motivations for this kind of topological measure theory are numerous:
most of them have their roots in Choksi [5], Choksi and Simha [9], as well as
Choksi [6], three references of particular interest.

The first important theorem on the structure of distal flows is the Furstenberg
structure theorem [14]. Developments on the same topic will be found in Veech
[27], Ellis, Glasner and Shapiro [12], McMahon and Wu [24], McMahon [23] and
later on Ellis [11]. A detailed account of topological dynamics is given in [28];
see also [29].

The present paper deals with the structure of topological transformation groups
and emphasizes the topological connexions between minimal distal flows and
product spaces. By combining the Furstenberg theorem and ideas in [9] with some
classical facts about compact transformation groups, it is shown, in Theorem 3.7,
that (the phase space of ) any minimal distal flow is Baire isomorphic to a product of
compact metric spaces; the isomorphism takes some invariant, completion regular
probability measure to a direct product measure. This simple fact, which is one of
the main results, combined with arguments due to Maharam [20], Choksi [4] and
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Choksi and Fremlin [8], allows the rapid resolution of several measure-theoretic
problems; in particular, it provides a rather simple approach to the ‘point realization
of homorphisms’, in the setting of transformation groups, only using topology, and
extends previous studies in the field (cf. [9], [16], [17]).

The paper is organized in three parts. Section 1 deals with topological tools
about compact transformation groups. These tools are used in Section 2 to study
measure-theoretic problems, while Section 3 investigates the situation for minimal
distal flows.

1. Some facts about compact transformation groups

Theorem 2.3 in [17] states that the (normalized) Haar measure on any compact
group is Baire isomorphic to a direct product measure on some product of compact
metric spaces. The natural question, based on a problem posed by Choksi [6, p.
89] about measures on homogeneous spaces, arises from that result: is there a
corresponding fact for homogeneous spaces?

In Sections 1 and 2 it is shown that this is exactly the case. In passing, we also
prove some auxiliary results, which may be of independent interest. We start by
introducing some notation and terminology.

Definitions Let X be a compact (Hausdorff) topological space and G a locally
compact group. The pair (G,X) is a (left) transformation group (t.g.), or flow,
if there is a continuous action ([3], [25]) G x X — X : (g,x) — gxof Gon X
(one defines a right t.g. in the obvious way). In this case X is called the phase
space of the t.g. and the symbol X /G denotes the quotient, or orbit space, i.e. the
space of G-orbits with the quotient topology (note that the canonical projection
X — X/G is an open mapping). For a couple (C,D) of closed subgroups of G,
with C C D, pc¢, p denotes the (canonical) projection of X/C to X/D.

Say that (G, X) is compact (resp free, or G acts freely) if G is compact (resp
g # idg, then gx # x, x € X).

By a compact homogeneous space, we mean a topological space of the form
G/H, where G is a compact group and H is a closed subgroup of G, under the
action of G.

Next, let K, L be compact spaces. A map f : K — L is called Baire measurable
iff f~1B is Baire in K, for all Baire sets B in L. A Baire measurable bijection f is
said to be a Baire isomorphism iff f~! is also Baire measurable.

For a product A; x A;, we denote by p; (i = 1,2) the i-projection of A} x A;
to A;.

In the sequel we shall identify a cardinal with its initial ordinal.

The main result of this section is somewhat technical, but nevertheless, has
consequences which are useful in the following sections.
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Theorem 1.1 Let (G,X) be a free, compact t.g. and F a closed subgroup of G.

There are an ordinal o, a product of compact metric spaces Y =Tlg oY, each Y
with at least two points, and a Baire isomorphism q from X /G x Y onto X /F such
that pp G 0 q = pi.
[Note. The conclusion of 1.1 holds for X = G. It follows that every compact
homogeneous space is Baire isomorphic to a product of compact metric spaces.
Thus, in view of Choksi’s work [4] on products of Polish spaces, 1.1 just stated
provides an alternative and totally different proof of Theorem 1 in [9], in the
compact case.]

Before embarking on the proof of 1.1, we need a generalization of Lemma 2.1
in [17].

Lemma 1.2 Let (H,Y) be a (left) free compact t.g. and N a closed subgroup
of H. If H is Lie, then there exists a Baire isomorphism q from Y /H x H/N onto
Y /N such that p o g = p) (with p = pn, 1, the projection).

Proof By a theorem of Gleason (see e.g. Theorem 1 in Sec. 5.4 of [25], also
[3, Ch. II, §4, Remarks p. 86]), for each y € Y there exist a compact neighborhood
Q1 = Q1(y) of y (in Y¥) and a compact F; = Fi(y) C Q; such that (i) 01 = F. H,
(i) p,'{[x]u} N Fy is a single point, say ry([x]y), for [x]y € pnQi (where, for
D C H, pp is the projection of Y to Y/D and [x]p = Dx the D-orbitof x € Y).

Then for every y € Y the mapping

0 =0(y) : pyF1 x HIN = p~' (puQ1) (=p~ ' (puF1))
: (w, [glv) — [g.ry(Xu)lv, x€F1, ge€eH,

is a homeomorphism such that p’ 0 8 = p| (where p’ and p| are the restrictions
P/p-1(pwrF) @0A P1/p F\ xH /N TESD).

Let Q = Q(y) € p~'(py Q1) be an open Baire neighborhood of [y]y in Y/N.
Then, clearly, the restriction 8 = 8’(y) of 8 to pQ x H/N is a homeomorphism onto
p'0.

If now {P1 = pQ(y1), P2 = pQ(y2),...,Pr. = pQ(y.)} is any finite cover of
Y /N, then we can easily construct (see the proof of Lemma 2.1 in [17]) a cover
{8',82,...,5M} of Baire, pairwise disjoint subsets of Y /H such that

each S” (1 £m £ M)isasubsetof some P, (1 £k <L)

Set i, = min{k : ™ C P,}. Then for every m = 1,2,..., M the restriction 6,, of
0'(yi,) to S x H/N is a homeomorphism onto some Baire subset of Y /N. (Note
that 6,, has the form 6,,([x]y, [g]n) = [g8.7m([X]#)]n, With r, = 1, . Note also that
for different values of m, the images of the maps 6, are disjoint and partition Y /N.)
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To complete the proof of the lemma, we define

qg:Y/HxH/N —-Y/N
1qg(w) =6,(w), weS"xH/N.

Then, by the definition, it follows that g satisfies the required conditions (see also
proof of Lemma 2.1 in [17]). a

Discussion 1.3 Let X,G,F be as in the statement of 1.1, ¢ = idg; and let
R denote the set of closed normal subgroups of G, directed under the relations:
H  <H,ifH, CH,.

If (P})jes is any decreasing directed family of groups in R¢, with the G/P; Lie,
suchthat (), P; = {e}, then X can be identified, in a natural way, with proj; lim X /P;.
Similarly, {X/FP;, pep,rp,,i < j} is a projective system of compact spaces and
X/F = proj; lim X /FP;. Note that

1. If m; : X/FP; — X/G is the canonical projection, then the fibres (inverse
images of points) are homeomorphic to G/FP;.

2. In some cases the projection map X /FP; — X /FP; may be the identity.
<t

It follows that there are w(G/F) many (distinct) G/FP;, so
(1.4) X/F %= proj,c, imX/FP; with [Jo| = w(G/F).

Let P =g, Pj- Itis easily seen that X /G = (X/P)/(G/P), X/F = (X/P)/(F/P),
that is X /P is a free group extension of X /F. Thus, replacing (G, X) and (F,X) by
(G/P,X/P) and (F /P ,X/P) respectively (i.e. replacing G by G/P), we may, if we
wish, regard G as a compact group of topological weight w(G/F), i.e.

(1.5) we may assume without loss of generality(w.l.o.g.) that w(G) = w(G/F).

We turn now to the proof of 1.1. Basically, it is a rehash of the proof of Theorem
2.3 in [17] with modifications due to the fact that F is now assumed to be any
closed (not necessarily normal) subgroup of G.

Proof of Theorem 1.1. By (1.5), we may suppose that w(G) = w(G/F). There
is a directed set I = {F;, j € J} of groups in R, with the G/F; Lie, of cardinal
a = w(G), such that [;.; F; = {e} [25]. Enumerating I" as " = {F¢, £ < o} and
taking Ho = G, weset Hy = HsNF, ify =6+ 1forsome§ < cand H,, = ﬂéqH@
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otherwise. Then (see Lemma 2.2 in [17]), (Hy)y<« is a family of groups in Rg,
with (., ., H, = {e}, such that

(i) Hy CHsforé6 < v L«

(i2) each H,/H 4, is Lie,

(i3)Hy = 3, Hp if v is a limit ordinal.

Then clearly,

(1.6) X = proj,, ., limX/H,, X/F =proj, _,limX/FH.,.

Case 1 First we consider the case a < w (we assume: @ = w, the case a < w
being trivial).

Set HY = FH,/H., .\, Y" = X/H\\, N = FH,,/H,.,, v < w. Evidently
N7~ is (isomorphic to) a compact subgroup of H?. On the other hand, since
H" acts freely on Y7, by Lemma 1.2, there is a Baire isomorphism ¢7 between
X/(FH, x FH,/FH)and X/FH, ;| such that

(1.7) pyoq’ =py,

where p, : X/FH,., — X/FH, is the canonical projection and p] the projection
of (Y"/H") x (HY/N")to Y /H".

If we set My = FH3/FHpyy (2 HP/NP), 3 < a and Y = Tz ,M;, then, by
(1.6), there exists a mapping g of X/G x Y to X/F. A standard argument involving
projective limits of compact spaces shows that Y and g, as defined, are as required.

Case 2 The second step is, essentially, the reduction to Case 1. In detail:
suppose that « = w(G) is an arbitrary cardinal.

Let G7 = FH7/H7+|, F7 = FH7+1/H-H_1 and 2" = X/H‘y-Ha vy < «. First
notice that each G acts freely on Z” and

(1.8) Z'/G" = X/FH,,  Z'/F"=X/FH.,.|.

Since FH.,/FH.,+, = H,/(Hy N FH,,) is compact and metrizable, by (1.5), we
can take in (1.8) the G” to be metrizable (with a denumerable base).

Now the proof proceeds as that in [17, Theorem 2.3]. Set Yy = G/H, and
Y, = FH,/FH, | for v > 0. By (1.6) and Case I, for every v < a we find a
Baire isomorphism g, from K, = Ils<,Ys onto X/FH., such thatg. or¢ . = p¢ . for
e < { < «, where p¢ . (resp r¢..) is the projection of X /FH¢ to X /FH. (resp K¢ to
K.). [If v is a successorordinal, say y = §+ 1, then (1.8) yields a Baire isomorphism
q" : X/(FHs x Ys) — X/FH,. We take g, = q” o (g5 x Iy,) : Ky, — X /FH,,, where
gs xly, : Ks xYs — (X/FHg) x Y5 : (x,y) = (gs(x), ). If v is a limit ordinal, then
we take ¢., to be the (unique) mapping satisfying: gsor,y s = pys0qy, § <7 < a.]
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From the family {g,}, in view of (1.6), we obtain, in a natural way, a Baire
isomorphism q : X /G x (Ilg<oY3) — X/F satisfying the required conditions. This
completes the proof of the theorem. 0o

The last theorem gives the following

Corollary 1.9 If (G,X) is a free compact t.g., then there exists a product of
compact metric spaces Y =11, .,)Y~, each Y., with at least two points, such that
X and X/G x Y are Baire isomorphic; in particular, the phase space of any free
compact 1.g., with metrizable orbit space, is Baire isomorphic to some product of
compact metric spaces.

Remark 1.10 [In the language of 1.1] If w(X/F) is uncountable, then we
can assume: o + w(X/G) = w(X/F). [If w(X/G) < w(X/F), then we may take
a=w(X/F). If w(X/G) = w(X/F), then we can choose « to be < w(X/F).]

2. Measure-theoretic facts

This section makes use of the topological techniques we developed to study
measure-theoretic problems.

All measures are assumed to be (positive) Radon measures on compact (Haus-
dorff) topological spaces. For a compact space Z, BY denotes its Baire o-algebra.
If (L,Z,u) is any measure space and g : L — Z a mapping with g7!C € T
for every C € BY, then g[u] will denote the (Baire) measure on Z defined by:
g[u](D) = u(g~'D), D € BY (in the sequel, when no ambiguity arises, we shall
identify a Radon measure with its Baire contraction, i.e. its restriction to the Baire
o-algebra).

Next, let K, L be compact spaces and y, v Baire measures on K, resp L. A map
f : K — L is called completion Baire measurable iff f~!B is y-measurable for
all v-measurable sets B. A completion Baire measurable bijection f is said to be
a completion Baire isomorphism iff ! is also completion Baire measurable. If
such a bijection exists, then the measure spaces (K, 1), (L, v) (or just y,v) are said
to be completion Baire isomorphic.

For any family {1} of Radon probability measures, ), ; will denote the Radon
product of the w;; in this case, x;u; will be its Baire contraction.

Consider now some compact t.g. (G,X). If g¢ is the (normalized) Haar measure
on G and ¢ a Radon probability measure on ¥ = X /G, then the G-Haar (or simply,
the Haar) lift A = Alu, G, X] of ¢ is defined as follows ([2], {19], [30, pp. 42-45]):

@) 35 = [ ([ fendsen)dut, 1 eceo.

Remark 2.2 If F is a closed subgroup of G and pr : X — X/F the canon-
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ical projection, then A[u, G,X] = A pr[)], F,X]; in particular, if E is a compact
homogeneous space acted upon by a compact group G, then the G-Haar lift of the
quasi-invariant measure on £ is (equivalent to) G ([2], [30]).

The following result will be used in proving the main Theorem 2.5 of this section.

Lemma 2.3 Let H,Y,N,p,q be as in Lemma 1.2 and let p be a Radon
probability measure on Y /H. If X is the H-Haar lift of pand py : Y — Y/H,
pn Y = Y/N the projections, then there is a Radon measure a on H /N such that

qlp % o] = pn{Al-
Proof Put ¢ = |8y and v = py[\] (where v : H — H/N is the canonical
projection). It suffices to show that given A C Y /H Baire and W C H/N open,

(2.4) v(q(A x W) = u(A) - o(W).

Let 6,,,5™ and r,, be as in the proof of Lemma 1.2. If ¢ denotes a characteristic
function, D,, = r,(ANS™) - ~1(W)-N and y = Hy (the H-orbit of y € Y), then

17 M

vig(a x W) = v(paJrm(A 0™ - w7 (W) = 37 Nrm(ANS™) 47 (W) -N)

=]

= E /y /H{ /H ¢Dm(yt)dﬁy(t)}du(y) by (2.1)

m

=3 /A . du(y) /H ép,, (y)dBu(t)

=3 Bu(w™ (W) -N) - u(AnS™)
— (A) - o(W),

which proves (2.4). )

[Note. The measure o, as defined, is the quasi-invariant measure on the homoge-
neous space H/N.]

Now let G,X,F,Y = Ilg<aYps,q be as in Theorem 1.1, u a Radon probability
measure on X/G and A = A[p, G, X]. The main result of this section is

Theorem 2.5 There exists a family (pg)s<a of Radon probability measures,
each pg on Yg, such that g(p x (xg<aug)l = prlAl

Proof [As in the proof of 1.1, we may assume w.l.o.g. that a = w(G) =
w(G/F).] The proof is almost identical with that of Theorem 2.3 in [17]. One
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sets up the projective system of compact spaces {X/FH,, v < o} of (1.6), one
needs Lemma 2.3 to define, in an obvious way, inductively the family (4, )< and
concludes the proof of the theorem. a

Remark 2.6 (i) For the case of compact groups (i.e. for X = G and F = {¢}),
Theorem 2.5 is Theorem 2.3 in [17].

(i) Evidently, by taking supp 4 = X/G, we may also take the . to have full
support.

Recall that a measure algebra (€2, u)—or simply p—of finite magnitude is called
homogeneous if every non-zero principal ideal has a minimal o-basis of the same
cardinal; this cardinal is called the Maharam type of the measure algebra ([20],
(81, [13]).

Corollary 2.7 Let (G,X) be a free compact t.g. If X/G is metrizable, then
(1) X is Baire isomorphic with some product of w(G) many compact metric spaces;
the isomorphism takes any G-invariant probability measure on X to a direct product
measure, (2) if w(G) is uncountable, then every G-invariant probability measure on
X is homogeneous, of Maharam type w(G); (3) every automorphism of any measure
algebra on X is induced by an invertible completion Baire point transformation of
X; (4) if p, v are probability measures on X, with (measure-preserving) isomorphic
measure algebras, then pi,v are completion Baire isomorphic.

Proof Combine the following: (i) Theorems 1.1 and 2.5 just proved; (ii) [26];
(iii) [20], [4] and [8]. =]
The next result generalizes Theorem 2.3 in [17).

Theorem 2.8 Every compact homogeneous space is Baire isomorphic to some
product of compact metric spaces of the same topological weight; the isomorphism
takes the (normalized) quasi-invariant measure to a direct product measure.

Proof Immediate from Theorem 2.5 (with X = G).

Corollary 2.9 The quasi-invariant measure on any compact homogeneous
space of uncountable topological weight is homogeneous of Maharam type equal
to its weight.

As will appear from the arguments below, the last theorem is the first step in a
more general structure theorem for minimal distal flows.

3. Consequences of Furstenberg’s structure theorem

We are now ready to begin the main work of this paper.
Let Z be a compact space. Recall that a (Baire) measure p on Z is called
completion regular if every Borel set in Z is u-measurable. The following result,
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which is inspired by ideas of Choksi and Fremlin [8, Theorem 3], will be the initial
point for the discussion of distal flows.

Proposition 3.1 Let (G,X) be a free compact t.g. and j1 a Radon probability
measure on X /G. The following assertions are equivalent.

(1) u is completion regular (as a measure onY = X/G),

(2) the Haar lift > = X, G, X] of n is completion regular (as a measure on X).

Proof

(2) = (1): Immediate from {18, Lemma 1.6, p. 2751

(1) = (2): It suffices to prove that every open set in X has a Baire cover of the
same measure.

(a) First let G be a compact Lie group. By [25] (see also proof of Lemma 1.2),
for each x € X there are a compact neighborhood Q] of x and a compact F} C @,
with Qf = G - FY, such that

each g € Qf has a unique representation

(3.2)

of the form g = g.d, (g,d) € G x FY.
Let 05 C Q5 be an open Baire set in X. Since the projectionp : X — Y =X/G is
surjective and open, pQ is a Baire subset of Y (see e.g. [18, Lemma 1.6, p. 275]).
Thus, the open set Q* = p~'pQ% = G - % must be Baire in X.

Set F* = {z € F} : p(z) € p@5}. Then, clearly, F* is Baire in X and O* = G - F*.
Now let {R; = @1, Ry = 0*2,...,Ry = Q*N} be a cover of X, B a countable
base for the topology of G and B a base for the topology of (the space) Py = F*k
(1 £ k £N). Since the mapping G x Py — Ry : (g,z) — g - z is a homeomorphism,
the sets W, of the form W, =V - B,, V € B, By € B, form a base for the topology
of R;. On the other hand, in view of (3.2), W, = G- B, NV - P, (note that G - By is
open and G-invariant, V - P; is Baire and p(G - By NV - P;) = p(G - By} = p(R«)).
Also, the family B, = {V - P;, V € B, 1 £ k £ N} is countable. It follows that
every open set W in X is expressible in the form

N

W= U U, where each U is a countable union of the form :
k=1

|J (A" nD") with the A” open G — invariant and D" € By.

neN

In conclusion, it suffices to show that every open G-invariant set in X has a Baire
cover of the same A-measure. In other words, every open set in X/G has a Baire
cover of the same u-measure, which is true because of the completion regularity
of p.
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Let « = w(G). By the proof of Theorem 1.1 (with F = {e}), there exist two
families (F;)jcs, (Hy)y<a Of groups in R, as in the proof of Theorem 1.1.

(b) Suppose that o < w (we assume: o = w). Since X = proj, limX/H,,
every open set U is of the form U = |, _, Uy, where each U, is open and H,-
invariant. By (a), there is a Baire, H,-invariant set C, containing U.,, such that
A(C,) = MU,). Now the set C = |, ,, C is a Baire cover of U with A(C) = A(U).

(c) The general case (a = w(G) is an arbitrary cardinal). The final step is to see
that given W C X open, there exists a Baire set W; such that

(3.3) WCW, AW)=AW).

Let Wy be any open Baire subset of W with A(W) = A(Wp). Since
X = projie, limX/F;, we can take the set A = X \ Wy to be R-invariant, where
R =), Fi, for some countable subfamily {F;} of {F;, j€ J}.

Now, if pr : X — X/R x — X is the projection, v = pg[A] and A; the measure
on X defined by: Ai( fR t)dpr(t), h € C(X) (x € X/R), then (see e.g.
2D, A = fX/R Adv(x ) ie. A\(B fX/R)\ (B)dv(x) for every Borel set B in X.
(Note that the R-Haar lift of v is )\.) Because W is open, A\ (W) > 0 is equivalent to
WnNRx # 0 and this is equivalent to pg 'pr(W)NRx # 8, i.e. Ai(pg'prW) > 0. Since
A is R-invariant, using the formula: A(A N W) fX/R (A N W)dv(x), one gets:
AA ﬁp,;'pRW) = 0iff A(ANW) = 0. On the other hand, since G/R is metrizable,
(b) yields a Baire set W, in X/R such that pg(W) C W7 and pg[A\[(W) = pr[A](W2).
It follows that the set W, = p;lW2 satisfies (3.3), completing the proof of the
proposition. a

We now turn to a discussion of certain concepts which are of interest in the
context of topological dynamics. More terminology is needed.

Definitions (1) Let (G,X) be a compact t.g. and T a locally compact group.
The triple (G, X, T) is a bitransformation group (bt.g.) if (i) (G,X) and (X,T) are
(left and right resp) t.gs; (ii) (gx)t = g{xt) (g € G, x€ X, t € T).

(2) Let (X,T) be a (right) t.g. Say that (X,T) is a distal (resp. minimal)
flow if whenever x,y are distinct points of X, there is no net {#,} C T such that
lim,, xt,, = limy, yt, (resp for each x € X the orbit xT is dense in X).

(3) Let (X,T),(Y,T) be t.gs. Say (X,T) is an almost-periodic (a.p.) extension
of (Y,T) if there is a bt.g. (G,Z,T) and a closed subgroup H of G such that
(Z/G, TYy=(Y,T)and (Z/H,T) = (X,T).

Let now (X,T) be a minimal distal flow. The next classical theorem plays a
fundamental role in topological dynamics. We have chosen its statement from
[19], whose formulation seems more directly applicable to our purpose; see also
[11],[14], [28].
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Theorem 3.F [Furstenberg] There is an ordinal a and a family of flows
{(Xy,T), ¥ £ a} such thar: (i1) Xo contains just one point and (Xo,T) = (X,T);
(i2) each (Xy+1,T) is an a.p. extension of (X,,T); (i3) if 3 is a limit ordinal, then
(Xg,T) is an inverse limit of {(Xs,T), 6 < 3}.

Notation 3.4 Let (X, T) be aminimal distal flow and let {X,,, T}, v £ a} beasin
Theorem 3.F. For v £ a'let (G,,Z,,T) be abt.g. and H, C G, a closed subgroup
with: () (Z,/G,,T) = (X,,T); (i) (Z,/H,,T) = X,11,T). f 6 < 3 < q,
there is a homomorphism (of flows) ngs : (X3,T) — (Xs,T). Write 7, for the
homomorphism taking (X,T)to (X,,T)andn, : (Z,,T) — (Z,/H,,T) = (Xy4+1,T).
If 1 is a Radon measure on X, let u, = 7 [y].

Corollary 3.5 There is a T-invariant, completion regular, probability
measure p = p[X,T] on X, such that: (i) mgslug] = ps, 6 < B £ o
(1) pye1 =1y [Ay, G, Z4]] 7 S

Proof The construction of the measure y, which is due to Johnson [19, Prop.
3.6], is an easy application of Theorem 3.F and transfinite induction.

To see that ¢ is completion regular, note first that pg is completion regular and
ta = u. Fix some # £ a and take any @-invariant subset A of X (for convenience,
a subset S of X is called ~-invariant if y S a and § = 7r,7'7r7S).

Claim 1 If for every couple (v, W) withy < § and W’/ openin X, A\(ANW') =0
implies A(A N7 7, W’) = 0, then for every open set W in X, A(ANW) = 0 implies
MA N7y 'meW) = 0.

We may assume w.l.o.g. that § < a.

1. If is asuccessor ordinal, say 8 = 6+ 1, then the claim is a simple application of
the arguments used in the proof of Proposition 3.1 (note that g = ns[A{us, Gs, Zs]])-

2. If #is a limit ordinal, then every W as in the claim has the form W = Up<9 W,,
where W, is open and p-invariant. Then 0 = p(ANW) = p(AN (U, W,)) =
Vp < 8, u(ANW,) = 0 = Vp < 8, u(Anm,; '1eW,) = 0 = p(AN(U g T, ' meW,)) =
(A Ny ' mgW) = 0. This ends the proof of Claim 1.

Combining now Claim 1 with an induction argument, one easily gets

(3.6) for every triple (8,A,W), where A C X, f—invariant and W C X open,
7 w(ANW) =0 implies u(A N7, 'mgW) = 0.

Claim 2 Let 8 < o. If u., is completion regular, for all v < 6, then g is again
completion regular.

Observe that if 6 is a successor ordinal, then Claim 2 is immediate from
Proposition 3.1.
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Suppose that 8 is a limit ordinal. In this case, it suffices to prove that
{¥)  every open set U in X, has a Baire cover U; of the same ;4 — measure.

Let Ug C U open, Baire in Xg, with p(Up) = pe(U). Since Xg = proj, ,limX,,
there is some countable I C {v : v < 8} with 3 = sup/, such that the set mjmUy is
[B-invariant.

(@3 <86. Let B=Xg\Up, A=n,'B, W=m,'U. Then0 = pp(BNU) =
u(ANW) = (by (3.6)) p(AN 7r9'17r9W) = 0. On the other hand, because of the
completion regularity of ps, we can find a Baire set Wy in Xy, with m3(W) C Wy,
such that pg(mg(W)) = 1s(Wo). Thus, the Baire set U, = w,;[,' (Wo) satisfies ().

(b) 3 = 6. In this case 6 is the sup of the countable set /, and thus the measure
space (Xy, ug) is completion regular, as an inverse limit of a sequence of completion
regular measure spaces. This ends the proof of Claim 2.

Finally, by a transfinite induction argument (using Claim 2 repeatedly), we easily
see that p is completion regular. a

Theorem 3.7 Let (X,T) be a minimal distal flow. There exist a family of
Radon probability measures (v ), <w(x), each v, supported on some compact metric
space Q., with at least two points and a Baire isomorphism qx 1y from Qx 1) =
IL, <w(x)Q~ onto X such that qx 1)[@., c.ux) V+] = #IX, T), hence q(x 1y carries, in
a natural way, the T-action on X to a T-action on Q(x 7).

Proof By Theorem 3.F and Corollary 3.5, there are an ordinal «, a family of
flows {(X,,T), v £ o} as in Theorem 3.F and a Radon measure p = u[X,T] on X
as in Corollary 3.5. First note that Theorem 3.F shows that each (X, T) is either
an a.p. extension of (X,_;,T), or an inverse limit of {(X;s,T), § < ~v}.

The rest of the proof is a natural application of Theorem 2.5, Corollary 3.5 and
transfinite induction. Summary steps are sketched as follows:

An easy induction argument yields, for each v < «, a family (v;)ic;, of Radon
probability measures, each v; on a compact metric space Q; and a Baire isomor-
phism £, from Ilic;,Q; onto X, taking @), vito puy, such thatls C Ig, mgs o fp =
J5 o pgs, where pgs : lic;, Qi — Tl;es,Q; is the canonical projection (6 £ 5). [Note
that, according to Remark 1.10, we can assume: card(/,) = w(X,).] The proof
then follows, by taking g(x,1) = ¢qa. a

Corollary 3.8 If w(X) is uncountable, then u[X,T| is homogeneous, of
Maharam type w(X).

Take now a minimal distal flow (X,T) to be fixed throughout. Theorem 3.7,
combined with classical results of Maharam [20], Choski [4] and Choksi and
Fremlin [8], leads to several measure-theoretic consequences. Most of them have
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been discussed in great detail in [16], [17], for the case of compact groups; there
is no need to reproduce this discussion here. We shall only present three results of
a specific nature.

Theorem 3.9 [f v is any finite Baire measure on X, then every automorphism
of the measure algebra of v is induced by an invertible completion Baire point
transformation of X.

Proof Immediate from [4] and Theorem 3.7. a

Similarly, from [8, Theorem 1] and Theorem 3.7, one gets

Theorem 3.10 If X\, v are Radon probability measures on X and if there
exists a measure-preserving isomorphism of their measure algebras, then A, v are
completion Baire isomorphic.

Combining now Maharam’s famous theorem [20] and Theorem 3.10, we obtain

Theorem 3.11 /f w(X) is uncountable, then every homogeneous probability
measure on X, of Maharam type w(X), is completion Baire isomorphic with some
T-invariant, complerion regular probability measure on X.

Note added in proof. Afier this paper was accepted the aunthor learned that the
first part of Theorem 2.8 was obtained by L. B. Shapiro, On Baire isomorphisms of
spaces of uncountable weight, Soviet Math. Dokl. 32 (1985), 113—117. Russian
original: Dokl. Akad. Nauk SSSR 283 (1985), 321-325.
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