
M E A S U R E - T H E O R E T I C  P R O B L E M S  

I N  T O P O L O G I C A L  D Y N A M I C S  

By 

S. GREKAS 

In memory of my sister 

Abstract. This paper, motivated by a conjecture raised by Choksi in 1984 
about homogeneous spaces, investigates the topological connexions between trans- 
formation groups and product spaces; our approach, based on the Furstenberg 
structure theorem, provides a unified treatment for (Baire) measures on any 
minimal distal flow and for measures on a product of compact metric spaces 
of the same topological weight. 

O. Introduct ion  

The problem of  'point  realizations of  cr-homomorphisms'  goes back to the well 

known publication [26] of  von Neumann about measure algebras on Polish spaces. 

His investigations were continued by Maharam [21] and completed in the work 

[4] of  Choksi, who considered arbitrary Baire measures on any product of  Polish 

spaces. In subsequence papers, Maharam [22], Choksi and Fremlin [8], Graf  1151, 

and particularly Fremlin [ 13] discussed various aspects of  the problem; for further 

information see [7]. 

We shall here study especially the problem for measures on a minimal distal flow 

[1], [10]; motivations for this kind of  topological measure theory are numerous: 

most of  them have their roots in Choksi [51, Choksi and Simha [91, as well as 

Choksi [6], three references of  particular interest. 

The first important theorem on the structure of  distal flows is the Furstenberg 

structure theorem [14]. Developments on the same topic will be found in Veech 

[27], Ellis, Glasner and Shapiro [12], McMahon and Wu [24], McMahon [23] and 

later on Ellis [11]. A detailed account o f  topological dynamics is given in [28]; 

see also [29]. 

The present paper deals with the structure of  topological transformation groups 

and emphasizes the topological connexions between minimal distal flows and 

product spaces. By combining the Furstenberg theorem and ideas in [9] with some 

classical facts about compact  transformation groups, it is shown, in Theorem 3.7, 

that (the phase space o f )  any minimal distal flow is Baire isomorphic to a product of  

compact  metric spaces; the isomorphism takes some invariant, complet ion regular 

probability measure to a direct product measure. This simple fact, which is one of  

the main results, combined with arguments due to Maharam [20], Choksi [41 and 
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Choksi and Fremlin [8], allows the rapid resolution of  several measure-theoretic 

problems; in particular, it provides a rather simple approach to the 'point realization 

of homorphisms' ,  in the setting of  transforrhation groups, only using topology, and 

extends previous studies in the field (cf. [9], [16], [ 17]). 

The paper is organized in three parts. Section 1 deals with topological tools 

about compact transformation groups. These tools are used in Section 2 to study 

measure-theoretic problems, while Section 3 investigates the situation for minimal 

distal flows. 

1. S o m e  facts about  compact  transformation groups  

Theorem 2.3 in [17] states that the (normalized) Haar measure on any compact 

group is Baire isomorphic to a direct product measure on some product of  compact 

metric spaces. The natural question, based on a problem posed by Choksi [6, p. 

89] about measures on homogeneous spaces, arises from that result: is there a 

corresponding fact for homogeneous spaces? 

In Sections 1 and 2 it is shown that this is exactly the case. In passing, we also 

prove some auxiliary results, which may be of independent interest. We start by 

introducing some notation and terminology. 

Definit ions Let X be a compact (Hausdorff) topological space and G a locally 

compact group. The pair (G,X) is a (left) transformation group (t.g.), or flow, 

if there is a continuous action ([3], [25]) G • X ~ X : (g,x) ~ gx of G on X 

(one defines a right t.g. in the obvious way). In this case X is called the phase 

space of  the t.g. and the symbol X / G  denotes the quotient, or orbit space, i.e. the 

space of G-orbits with the quotient topology (note that the canonical projection 

X ~ X / G  is an open mapping). For a couple (C, D) of  closed subgroups of  G, 

with C c D, Pc, D denotes the (canonical) projection of X / C  to X/D. 

Say that (G,X) is compact (resp free, or G acts freely) if G is compact (resp 

g r idG, then gx r x, x E X). 
By a compact homogeneous space, we mean a topological space of the form 

G/H, where G is a compact group and H is a closed subgroup of G, under the 

action of G. 

Next, let K,L  be compact spaces. A m a p f  : K ---, L is called Baire measurable 

i f f f - l B  is Baire in K, for all Baire sets B in L. A Baire measurable b i jec t ionf  is 

said to be a Baire isomorphism i f f f  -1 is also Baire measurable. 

For a product AI x A2, we denote by pi (i = 1,2) the/-projection ofA~ x A2 

to Ai. 
In the sequel we shall identify a cardinal with its initial ordinal. 

The main result of this section is somewhat technical, but nevertheless, has 

consequences which are useful in the following sections. 
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T h e o r e m  1.1 Let (G, X)  be a free, compact t.g. and F a closed subgroup o f  G. 

There are an ordinal cx, a product of  compact metric" spaces Y = H~<,Y~, each Y;~ 

with at least two points, and a Baire isomorphism q from X / G  • Y onto X / F  such 

that pF,G o q = Pl. 

[Note. The conclusion of  1.1 holds for X = G. It follows that every compact 

homogeneous space is Baire isomorphic to a product of  compact  metric spaces. 

Thus, in view of  Choksi 's  work [4] on products of  Polish spaces, 1.1 just stated 

provides an alternative and totally different proof  of  Theorem 1 in [9], in the 

compact  case.] 

Before embarking on the proof  of  1.1, we need a generalization of  Lemma 2.1 

in [17]. 

L e m m a  1.2 Let (H, Y) be a (left)free compact t.g. and N a closed subgroup 

o f  H. I f  H is Lie, then there exists a Baire isomorphism q from Y / H  • H / N  onto 

Y / N  such that p o q = Pl (with p = PN, , , the projection). 

P r o o f  By a theorem of  Gleason (see e.g. Theorem 1 in Sec. 5.4 of  [25], also 

[3, Ch. II, w Remarks p. 861), for each y E Y there exist a compact  neighborhood 

Q1 = Ql(y) o f y  (in Y) and a compact F1 = FI(y) c Q1 such that (i) Q1 = F1. H, 

(ii) p~l{[x] ,}  n Fi is a single point, say rv([x],), for [x]H E pnQl  (where, for 

D c_ H, po is the projection of  Y to Y / D  and [x]o = Dx the D-orbit  o f x  E Y). 

Then for every y E Y the mapping 

0 = O(y) :pHFI • H / N  ---~p-l(pHQ1) ( = p - l ( p l t F l ) )  

: ([X]H, [g]N) ---* [g.rv([X]ll)]N, X E FI,  g E H, 

is a homeomorphism such that p' o 0 = P'I (where p' and P'l are the restrictions 

p/p-i(pnF I ) and Pl/piFi xH/N resp). 
Let Q = Q(y) C p- l (pHQ1)  be an open Baire neighborhood of  [Y]N in Y / N .  

Then, clearly, the restriction O' = O'(y) of  0 t o p Q  • H / N  is a homeomorphism onto 
p - l Q .  

If now {P1 = pQ(yl ) ,  P2 = pQ(y2) . . . .  ,Pt. = pQ(yL)} is any finite cover of  

Y / N ,  then we can easily construct (see the proof  of  Lemma 2.1 in [17]) a cover 

{S I , $2 , . . . ,  S M } of  Baire, pairwise disjoint subsets of  Y / H  such that 

e achS  m (1 <= m < M) is a subset of  some Pk (1 < k _ < L ) .  

Set im= min{k : S m C Pk}. Then for every m = 1 ,2 , . . .  ,M the restriction 0m of  

Ot(yi,,) to S m • H / N  is a homeomorphism onto some Baire subset of  Y / N .  (Note 

that Om has the form Om([X]n, [g]u) = [g.rm([X],)]N, with rm = r,.i,. Note also that 

for different values of  m, the images of  the maps Om a r e  disjoint and partition Y/N. )  
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To complete the proof  of  the lemma, we define 

q : Y/H • H/N ~ Y/N 

:q(w)----Om(w), w E S  mx t t /N .  

Then, by the definition, it follows that q satisfies the required conditions (see also 

proof  of  Lemma 2.1 in [171). Q 

D i s c u s s i o n  1.3 Let X, G, F be as in the statement of  1.1, e = idG and let 

7~G denote the set of closed normal subgroups of  G, directed under the relations: 

HI < H 2 i f H 2 c H ~ .  
If (Pj)jeJ is any decreasing directed family of  groups in 7~G, with the G/Pj Lie, 

such that (']j Pj = {e}, then X can be identified, in a natural way, with projj limX/Pj. 
Similarly, {X/FPj, PFPj,FP,, i < j} is a projective system of  Compact spaces and 

X/F ~- proJi lim X/FPj. Note that 

1. If  7rj : X/FPj --, X/G is the canonical projection, then the fibres (inverse 

images of  points) are homeomorphic  to G/FPj. 

2. In some cases the projection map X/FPi j-~i X/FPj may be the identity. 

It follows that there are w(G/F) many (distinct) G/FPj, so 

(1.4) X/F ~ projjej ~ iimX/FPj with I101 = w(G/F). 

Let P = ["]jeJ,, PJ" It is easily seen that X/G '~ (X/P)/(G/P), X/F ~- (X/P)/(F/P), 
that is X/P is a free group extension of X/F. Thus, replacing (G,X) and (F,X) by 

(G/P, X/P) and (F/P, X/P) respectively (i.e. replacing G by G/P), we may, if  we 

wish, regard G as a compact group of  topological weight w(G/F), i.e. 

(1.5) we may assume without loss of  generality(w.l.o.g.) that w(G) = w(G/F). 

We turn now to the proof of  1.1. Basically, it is a rehash of  the proof  of  Theorem 

2.3 in [17] with modifications due to the fact that F is now assumed to be any 

closed (not necessarily normal) subgroup of  G. 

P r o o f  o f  T h e o r e m  1.1. By (1.5), we may suppose that w(G) = w(G/F). There 

is a directed set F = {Fj, j C J} of  groups in 7ZG, with the G/Fj Lie, of  cardinal 

a = w(G), such that NjEJ Fj = {e} [25]. Enumerating F as 1-" = {F~, ~ < c~} and 

taking H0 = G, we set H.~ = H6 NF-r i f 7  = 6 + 1 for some 6 < a and H.~ = ("1~<-~ H~ 
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o therwise .  Then  (see L e m m a  2.2 in [17]),  (H-~)-~<,~ is a fami ly  o f  groups  in RG, 

with A t < .  H-~ = {e}, such that 

(i~)H- r C H~ for  6 < ~, < (~, 

(i2) each  H.~/H-r+~ is Lie,  

(i3)H.~ = ~;~<_~ H/~ if3 '  is a limit ordinal .  

Then  clearly,  

( I .6 )  X ~ proj~<~, l imX/H-~,  X / F  ~ proj . ,< ,  l i m X / F H ~ .  

C a s e  1 First we  cons ider  the case a _< w (we assume:  r = w, the case a < 

be ing  trivial). 

Set H "~ = FH.~/HT~ ~, Y'~ = X/H~+~, N ~ = FH.~+~/H.~_~, -y < w. Evident ly  

N "~ is ( i somorph ic  to) a c o m p a c t  subg roup  o f  H r.  On the other  hand,  s ince 

H "~ acts f reely on Y'~, by  L e m m a  1.2, there is a Baire  i somorph i sm q~ be tween  

X / ( F H .  r • FH.r/FHT+t ) and X/FH.~+I such that 

(1.7) P-r o q-r = p'~, 

where  P-r : X/FH-r+I ~ X/FH-~ is the canonica l  project ion and ply the project ion 

o f  (Y'~ I H  "~) x (H'~ I N  "~) to Y'~ IH'L 

I f  we set M~ = FHI~/FHI~+I (~  H/~/N~),  I~ < a and Y = H~<~M~, then, by  

(1.6),  there exists  a m a p p i n g  q o f X / G  x Y to X / F .  A standard a rgument  involving 

projec t ive  limits o f  c o m p a c t  spaces  shows that Y and q, as defined,  are as required.  

C a s e  2 The  second  step is, essential ly,  the reduct ion to Case 1. In detail:  

suppose  that a = w(G)  is an arbi t rary cardinal .  

Let  G "r = FH.~/H-~+~, F "r = FH~+~/H-~+I and Z "~ = X/H.~+~, ~/ < a. First 

not ice  that each  G "r acts  f reely  on Z "~ and 

(1.8) Z'~ / G "~ ~ X / F H.y , Z'r / F "~ ~ X / F H.~_ t . 

Since FH~/FH-y+I ~- H.r/(H-r n FH-y+I) is c o m p a c t  and metr izable ,  by (1.5), we 

can take in (1.8) the G "~ to be met r izab le  (with a denumerab le  base). 

N o w  the p r o o f  p roceeds  as that in [17, T h e o r e m  2.3]. Set Y0 = G/HI  and 

Y.y = FH.y/FH~_I  for  ~ > 0. By (1.6) and Case  I, for  every -~ < ~ we find a 

Bai re  i s o m o r p h i s m  q'r f rom K.~ = 1-I~<-r Y~ onto  X/FH.y  such that q~ o r~.~ = pr for  

e < ( < c~, where  pr162 ( resp rr is the pro jec t ion  o f  X / F H r  to X /FH~  (resp Kr to 

K~). [ I f " / i s  a successor  ordinal ,  say ~ = 6 +  1, then ( I .8 )  yields  a Baire i somorph i sm 

q'~ : X / ( F H 6  • Y6) ~ X/FH-r .  We take q~ = q-r o (q~ • Iv~) : Kv ~ X / F H ~ ,  where  

q6 x Iy~ : K~ • Y6 ~ (X /FH~)  • Y6 : (x ,y)  ~ (q6(x),y).  I f ~  is a limit ordinal,  then 

we  take q-r to be the (unique)  m a p p i n g  sat is fying:  q~ o r.r, ~ = p~.6 o q~, 6 < "~ < c~.] 
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From the family {q-r}, in view of  (1.6), we obtain, in a natural way, a Baire 

isomorphism q : X/G x (rl;~<,~Ya) ---, X / F  satisfying the required conditions. This 

completes the proof  of  the theorem. [] 

The last theorem gives the following 

C o r o l l a r y  1.9 I f  (G,X) is a free compact t.g., then there exists a product of  
compact metric spaces Y = I-l-~<w((;) Y-~, each Y'r with at least two points, such that 
X and X /G x Y are Baire isomorphic; in particular, the phase space of  any free 
compact t.g., with metrizable orbit space, is Baire isomorphic to some product of  
compact metric spaces. 

R e m a r k  1 .10 lln the language of  1.11 If  w(X/F) is uncountable, then we 

can assume: ~ + w(X/G) = w(X/F), l l f  w(X/G) < w(X/F),  then we may take 

(~ = w(X/F). If  w(X/G) = w(X/F), then we can choose a to be < w(X/F).] 

2. M e a s u r e - t h e o r e t i c  f a c t s  

This section makes use of  the topological techniques we developed to study 

measure-theoretic problems. 

All measures are assumed to be (positive) Radon measures on compact (Haus- 

dorff) topological spaces. For a compact  space Z,/3~ z denotes its Baire a-algebra. 

If (L,Z,/~) is any measure space and g : L ~ Z a mapping with g- lC  E 
for every C C ~zz, then g[p] will denote the (Baire) measure on Z defined by: 

g[p](D) = #(g-lD), D E I3 o (in the sequel, when no ambiguity arises, we shall 

identify a Radon measure with its Baire contraction, i.e. its restriction to the Baire 

a-algebra). 

Next, let K,L be compact spaces and t~, u Baire measures on K, resp L. A map 

f : K ~ L is called completion Baire measurable i f f f - l B  is #-measurable for 

all u-measurable sets B. A completion Baire measurable b i j ec t i on f  is said to be 

a completion Baire isomorphism i f f f - I  is also completion Baire measurable. If  

such a bijection exists, then the measure spaces (K, #), (L, u) (or just #, u) are said 

to be completion Baire isomorphic. 

For any family {#i} of  Radon probability measures, ~)i #i will denote the Radon 

product o f  the ~i; in this case, xi[.z i will be its Baire contraction. 

Consider now some compact t.g. (G,X). I f~c  is the (normalized) Haar measure 

on G and ~z a Radon probability measure on Y = X/G, then the G-Haar (or simply, 

the Haar) lift A = )~[#,G,X] of  # is defined as follows ([2], [19], [30, pp. 42-45]):  

(2.1) A(f)  = fy ( Lf(tx)d/3(;(t))dl~(y), f c C(X). 

R e m a r k  2.2 If F is a closed subgroup of  G and pF : X ~ X /F  the canon- 
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ical projection, then )q#,G,X] = A[ pF[A],F,X]; in particular, if E is a compact 

homogeneous space acted upon by a compact  group G, then the G-Haar lift of  the 

quasi-invariant measure on E is (equivalent to)/36 ([2], [30]). 

The following result will be used in proving the main Theorem 2.5 of  this section. 

L e m m a  2.3 Let H , Y , N , p , q  be as in Lemma 1.2 and let # be a Radon 

probability measure on Y / H .  I f  A is the H-Haar  lift o f  # and P14 : Y ~ Y / H ,  

PN : Y ~ Y / N  the projections, then there is a Radon measure cr on H / N  such that 

q[~ x ~1 = PN[~]- 

P r o o f  Put r = ~b[Nt ] and u = pN[A] (where ~ : H ~ H / N  is the canonical 

projection). It suffices to show that given A C Y / H  Baire and W C H / N  open, 

(2.4) u(q(A x W)) = # (A) .  ~r(W). 

Let Om,S m and rm be as in the proof  of  Lemma 1.2. If 4~ denotes a characteristic 

function, Dm = rm(A n S m) �9 ~ - l  (W) . N and j~ = Hy (the H-orbi t  o f y  E Y), then 

" M 

u(q(A x W)) = u(PuU(rra(A ASm) "~-'(W)) = ~ ,  ~(rm(A ~Sm)) ' 9-'(W) " N) 

= ~ f y / H { f H d ) o ~ ( y t ) d f l i 4 ( t ) } d l ~ ( ~ )  by (2.1) 

= Z fAAns d#(Y) L ~Ig~(yt)d~H(t) 
m 

/AA Z 
= u ( a  n S  

m 

= u(A)" a(W) ,  

which proves (2.4). [] 

[Note. The measure a, as defined, is the quasi-invariant measure on the homoge- 

neous space H/N.]  

Now let G , X , F ,  Y = II;~<~Y~,q be as in Theorem 1.1, # a Radon probability 

measure on X / G  and ,~ = A[#, G,X]. The main result of  this section is 

T h e o r e m  2.5 There exists a family  (#;~)~<,~ of  Radon probability measures, 

each ~z~ on Y;~, such that q[,u x (x~<~;~)]  = pF[/~]. 

P r o o f  [As in the proof  of  1.1, we may assume w.l.o.g, that a = w(G) = 

w(G/F) .]  The proof  is almost identical with that of  Theorem 2.3 in [17]. One 



214 s. GREKAS 

sets up the projective system of  compact spaces {X/FH7, -~ < a} of  (1.6), one 

needs Lemma 2.3 to define, in an obvious way, inductively the family (tz-r)-r<o and 
concludes the proof of the theorem. [] 

R e m a r k  2.6 (i) For the case of  compact groups (i.e. for X = G and F = {e}), 
Theorem 2.5 is Theorem 2.3 in [17]. 

(ii) Evidently, by taking supp/z = X/G,  we may also take the #-r to have full 
support. 

Recall that a measure algebra (ft, #)----or simply #---of finite magnitude is called 

homogeneous if every non-zero principal ideal has a minimal a-basis of  the same 

cardinal; this cardinal is called the Maharam type of  the measure algebra ([20], 

[81, [131). 

C o r o l l a r y  2.7 Let (G,X) be a free compact t.g. I f  X / G  is metrizable, then 
(1) X is Baire isomorphic with some product of  w( G) many compact metric spaces; 

the isomorphism takes any G-invariant probability measure on X to a direct product 

measure; (2) i f  w( G) is uncountable, then every G-invariant probability measure on 

X is homogeneous, of  Maharam type w(G); (3) every automorphism of  any measure 

algebra on X is induced by an invertible completion Baire point transformation of  

X; (4) i f#, u are probability measures on X, with (measure-preserving) isomorphic 
measure algebras, then #, u are completion Baire ~somorphic. 

Proof  Combine the following: (i) Theorems 1.1 and 2.5 just proved; (ii) [26]; 
(iii) [20], [4] and [81. [] 

The next result generalizes Theorem 2.3 in [ 17]. 

Theorem 2.8 Every compact homogeneous space is Baire isomorphic to some 

product of  compact metric spaces of  the same topological weight; the isomorphism 
takes the (normalized) quasi-invariant measure to a direct product measure. 

Proof  Immediate from Theorem 2.5 (with X = G). 

C o r o l l a r y  2.9 The quasi-invariant measure on any compact homogeneous 

space of  uncountable topological weight is homogeneous of  Maharam type equal 
to its weight. 

As will appear from the arguments below, the last theorem is the first step in a 
more general structure theorem for minimal distal flows. 

3. Consequences  o f  Furstenberg's  structure theorem 

We are now ready to begin the main work of this paper. 

Let Z be a compact space. Recall that a (Baire) measure # on Z is called 

completion regular if every Borel set in Z is #-measurable. The following result, 
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which is inspired by ideas of  Choksi and Fremlin [8, Theorem 3], will be the initial 

point for the discussion of  distal flows. 

P r o p o s i t i o n  3.1 Let  (G,X)  be a f ree  compact  tg .  and # a Radon probabili ty 

measure on X /G.  The fo l lowing assertions are equivalent. 

(1) # is completion regular (as a measure on Y = X / G ) ,  

(2) the Haar  lift A = )~[#, G,X] o f  /l is complet ion regular (as a measure on X). 

Proof  
(2) ~ (1): Immediate  from [18, Lemma  1.6, p. 275]. 

(1) ~ (2): It suffices to prove that every open set in X has a Baire cover of  the 

same measure. 

(a) First let G be a compact  Lie group. By [25] (see also proof  of  Lemma 1.2), 

for  each x E X there are a compact  neighborhood Q~l of  x and a compact  F~ c Q~l, 

with Q~I = G .  F'[, such that 

(3.2) 
each q E Q~I has a unique representation 

of  the form q = g.d, (g, d) E G x F]'. 

Let  Qa22 c Q~l be an open Baire set in X. Since the projection p : X ~ Y = X / G  is 

surjective and open, P~2 is a Baire subset of  Y (see e.g. [ 18, Lemma 1.6, p. 275]). 

Thus, the open set Q~ = p -  lpQ~2 = G .  Q~2 must be Bake  in X. 

Set F x = {z E F~ : p(z)  E PQ~2}. Then, clearly, F x is Baire in X and QX = G .  F x. 

Now let {R1 = Q~I, R2 = Q~2, . . . ,RN = Q~N} be a cover o f X ,  B a countable 

base for the topology of  G and Bk a base for the topology of  (the space) Pk = FXk 

(1 < k < N). Since the mapping G x Pk ~ Rk : (g, z) ~ g.  z is a homeomorphism,  

the sets Wk of  the form Wk = V �9 Bk, V E B, Bk E /3k form a base for the topology 

of  Rk. On the other hand, in view of  (3.2), Wk = G-  Bk r V �9 Pk (note that G .  Bk is 

open and G-invariant, V- Pk is Baire and p(G . Bk f~ V . Pk) = p(G . Bk) = p(Rk)). 

Also, the family B1 = {V �9 Pk, V E B, 1 <_ k < N} is countable. It follows that 

every open set W in X is expressible in the form 

N 

W = ~J Uk, where each Uk is a countable union of  the form : 
k=l 

U (An Cl D n) with the A n open G - invariant and D n E BI. 
nEN 

In conclusion, it suffices to show that every open G-invariant set in X has a Baire 

cover  of  the same A-measure. In other words,  every open set in X / G  has a Baire 

cover of  the same #-measure,  which is true because of  the complet ion regularity 

of  #. 
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Let c~ = w(G). By the proof  of  Theorem 1.1 (with F = {e}), there exist two 

families (Fj)jcj, (H-r)-y<~ of  groups in ~ c ,  as in the proof  of  Theorem 1.1. 

(b) Suppose that c~ < ~ (we assume: c~ = ~). Since X - proj.~limX/H- r, 
every open set U is of  the form U = U-r<,~ u'r, where each U~ is open and H-r- 

invariant. By (a), there is a Baire, H-r-invariant set C.~ containing U.y, such that 

~(C-r) = ~(U-r). Now the set C = U.~<~ c-r is a Baire cover o f  U with ~(C) = A(U). 

(c) The general case (a = w(G) is an arbitrary cardinal). The final step is to see 

that given W C X open, there exists a Baire set Wl such that 

(3.3) W C W~, )~(W) = ~(W~). 

Let W0 be any open Baire subset of  W with A(W) = A(W0). Since 

X ~ projj U l imX/Fj,  we can take the set A = X \ W0 to be R-invariant, where 

R = (']i Fi, for some countable subfamily {Fi} of  {Fj, j E J}. 
Now, i fpR : X ~ X/R : x ~ 5c is the projection, u = pn[A] and A~ the measure 

on X defined by: A~(h) = fn h(tx)d~n(t), h E C(X) (5c E X/R),  then (see e.g. 

[2]), A = fx/n A~du(k), i.e. A(B) = fx/n A~(B)du(k) for every Borel set B in X. 

(Note that the R-Haar lift o f  u is A.) Because W is open, A~(W) > 0 is equivalent to 

WnRx • 0 and this is equivalent to p~ lptr (W) nRx r 0, i.e. A~(p~ lpRW) > 0. Since 

A is R-invariant, using the formula: A(A n W) = fx/R A~(A n W)du(k), one gets: 

A(A np~lpRW) = 0 iff A(A n W) = 0. On the other hand, since G/R is metrizable, 

(b) yields a Baire set W2 i nX /R  such that pR(W) c W2 andpR[A](W) = pR[A](W2). 

It follows that the set W~ = p~lW2 satisfies (3.3), completing the proof  of  the 

proposition. [] 

We now turn to a discussion of  certain concepts which are of  interest in the 

context of  topological dynamics. More terminology is needed. 

D e f i n i t i o n s  (1) Let (G,X) be a compact  t.g. and T a locally compact  group. 

The triple (G,X,T)  is a bitransformation group (bt.g.) if (i) (G,X) and (X,T) are 
(left and right resp) t.gs; (ii) (gx)t = g(xt) (g E G, x E X, t E T). 

(2) Let (X,T) be a (right) t.g. Say that (X,T) is a distal (resp. minimal) 

flow if whenever  x,y are distinct points of  X, there is no net {to} C T such that 

lim0 xt o = lim, 7 yto (resp for each x E X the orbit xT is dense in X). 

(3) Let  (X, T), (Y, T) be t.gs. Say (X, T) is an almost-periodic (a.p.) extension 

of  (Y,T) if  there is a bt.g. (G,Z,T)  and a closed subgroup H of  G such that 

(Z/G, T) ~- (Y, T) and (Z/H, T) ~ (X, T). 

Let now (X, T) be a minimal distal flow. The next classical theorem plays a 

fundamental role in topological dynamics. We have chosen its statement from 

[19], whose formulation seems more directly applicable to our purpose; see also 

[11], [14], [28]. 
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T h e o r e m  3 .F  [Furstenberg] There is an ordinal a and a family  o f  f lows 

{(X-~, T), 3' < a} such that: 01) Xo contains just  one point and (X~, T) = (X, T)," 

(i2) each (X.y+ I, T)  is an a.p. extension o f  (XT, T); 03) i f  ~ is a limit ordinal, then 

(X~, T) is an inverse limit o f  {(X6, T), 6 </3}. 

N o t a t i o n  3.4 Let  (X, T) be a minimal distal flow and let {X-r, T), -~ < a} be as in 

Theorem 3.F. For 3' < a let (G.r,Z.~,T) be a bt.g. and H-~ C G.~ a closed subgroup 

with: (i) (Z.y/G~,T) = (X-r,T); (ii) (Z.r/H.~,T) ~- (X-y+l,T). If 6 < /3 < a,  

there is a homomorphism (of flows) 7r~e : (X~, T) ~ (X6, T). Write 7r~ for the 

homomorphism taking (X, T) to (X.r, T) and ~ : (Z~, T) ~ (Z~/H~, T) ~- (X.~+I, T). 

I f  # is a Radon measure on X, let #.y = 7r- r [tz]. 

C o r o l l a r y  3.5 There is a T-invariant, completion regular, probability 

measure # = #[X,T] on X, such that: (i) 7r~6[#/~] = #6, 6 < /3 < a; 

(ii) #-r-I = rl-r[A[#-~, G-~,Z-~]], 3' < a. 

P r o o f  The construction of  the measure #, which is due to Johnson [ 19, Prop. 

3.6], is an easy application of  Theorem 3.F and transfinite induction. 

To see that # is completion regular, note first that/1o is completion regular and 

#,~ =/~. Fix some 0 < c~ and take any 0-invariant subset A of  X (for convenience, 

a subset S of  X is called 3"-invariant if 3' __< a and S -- 7r~- 17r.yS). 

C l a i m  1 If for every couple (3', W') with 3' < 0 and W' open in X, A(A n W') = 0 

implies A(A n 7r~-l 7r.~W ') = 0, then for every open set W in X, A(A n W) = 0 implies 

A(A A "/To 1 7roW ) = O. 

We may assume w.l.o.g, that 0 < a. 

1. If0 is a successor ordinal, say 0 = 6+ 1, then the claim is a simple application o f  

the arguments used in the proof  of  Proposition 3.1 (note that p0 = r/6 [A[#6, G6, Z6]]). 

2. If 0 is a limit ordinal, then every W as in the claim has the form W -- [,Jp<0 Wp, 

where Wp is open and p-invariant. Then 0 = p(A n W) = # ( A n  (Up<o Wp)) 

Vp < O, t z (anwp)  = 0 ~ Vp < O, #(AnrcolTroWo) = 0 ~ u(An(Uo<o % lrcoWp)) = 
Iz(A n 7to 17roW) = 0. This ends the proof  of  Claim I. 

Combining now Claim 1 with an induction argument, one easily gets 

(3.6) 
for every triple (0,A, W), where A c X, 0- invariant  and W C X open, 

#(A ~ W) = 0 implies #(A N 7rolTroW) = O. 

C l a i m  2 Let 0 < ~. If #-~ is completion regular, for all 3" < 0, then #0 is again 

completion regular. 

Observe that if  0 is a successor ordinal, then Claim 2 is immediate from 

Proposition 3. I. 
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Suppose that 0 is a limit ordinal. In this case, it suffices to prove that 

( , )  every open set U in Xo has a Baire cover Uj o f  the same/zo - measure. 

Let U0 (S U open, Baire in Xo, with tzo(Uo) =/zo(U). Since Xo = proj-r<0 limX.r, 

there is some countable I c {7 : 7 < 0} with/3 = sup/ ,  such that the set 7r'oTroUo is 

fl-invariant. 

(a)/3 < 0. L e t B  = Xo \ Uo, A = 7roI B, W = 7rol U. T h e n 0 =  tzo(B n U) = 
# ( A n  W) ~ (by (3.6)) #(A n 7rolTroW) = 0. On the other hand, because o f  the 

completion regularity of  #~, we can find a Baire set W0 in Xo, with Try(W) C W0, 

such that/z~(Tr~(W)) = #~(W0). Thus, the Baire set Ui = 7r0-~ (W0) satisfies ( .) .  

(b)/3 = 0. In this case 0 is the sup of  the countable set I, and thus the measure 

space (Xo,/zo) is completion regular, as an inverse limit o f  a sequence of  complet ion 

regular measure spaces. This ends the proof  of  Claim 2. 

Finally, by a transfinite induction argument (using Claim 2 repeatedly), we easily 

see that # is completion regular. [] 

T h e o r e m  3.7 Let (X, T) be a minimal distal flow. There exist a family  of  

Radon probability measures ( t,.y ).r<w(X), each v. r supported on some compact metric 

space Q-r with at least two points and a Baire isomorphism q(x,r) from Q(X,T) = 

I-l.~<w(x)Q. ~ onto X such that q(x,r)[~)-r<w(x) u'r] = #[X, T], hence q(x,r) carries, in 

a natural way, the T-action on X to a T-action on Q(x,r). 

P r o o f  By Theorem 3.F and Corollary 3.5, there are an ordinal ct, a family of  

flows {(X-r, T), 7 < ~} as in Theorem 3.F and a Radon measure # = #[X, T] on X 

as in Corollary 3.5. First note that Theorem 3.F shows that each (X.r, T) is either 

an a.p. extension of  (X.y_l, T), or an inverse limit of  {(X6, T), 6 < 7}. 

The rest of  the proof  is a natural application of  Theorem 2.5, Corollary 3.5 and 

transfinite induction. Summary steps are sketched as follows: 

An easy induction argument yields, for each 3' < c~, a family (lJi)iEl~ of  Radon 

probability measures, each ui on a compact  metric space Qi and a Baire isomor- 

phismf.y from l"IiEl~Qi onto X-~, taking ~i~t~ vi to/z- r, such that 16 c I~, 7r~ o f;~ = 

f~ opa l ,  where p~6 : niElaai --~ ]~jEI, Qj is the canonical projection (6 </3).  [Note 

that, according to Remark 1.10, we can assume: card(Ly) = w(X-r). ] The proof  

then follows, by taking q(x,r) = q~. [] 

C o r o l l a r y  3.8 I f  w(X) is uncountable, then #[X,T] is homogeneous, of  
Maharam type w(X). 

Take now a minimal distal flow (X, T) to be fixed throughout. Theorem 3.7, 

combined with classical results o f  Maharam [20], Choski [4] and Choksi and 

Fremlin [8], leads to several measure-theoretic consequences.  Most of  them have 
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been  d i s cus sed  in g rea t  de ta i l  in [I 6], [I 7], for  the  case  o f  c o m p a c t  g roups ;  there  

is no  need  to r e p r o d u c e  this d i scuss ion  here .  We  shal l  on ly  p resen t  three  resul ts  o f  

a speci f ic  nature .  

T h e o r e m  3 . 9  l f  u is any finite Baire measure on X, then every automorphism 

o f  the measure algebra o f  u is induced by an invertible completion Baire point  

transformation o f  X. 

P r o o f  I m m e d i a t e  f rom [41 and T h e o r e m  3,7. [] 

S imi la r ly ,  f rom [8, T h e o r e m  1 ] and T h e o r e m  3.7, one ge t s  

T h e o r e m  3 , 1 0  I f  A, u are Radon probability measures on X and if  there 

exists a measure-preserving isomorphism o f  their measure algebras, then A, u are 

completion Baire isomorphic. 

C o m b i n i n g  now M a h a r a m ' s  f a m o u s  t h e o r e m  [20] and T h e o r e m  3.10,  we  ob t a in  

T h e o r e m  3 .11  I f  w(X) is uncountable, then every homogeneous probability 

measure on X, o f  Maharam type w(X), is completion Baire isomorphic with some 

T-invariant, completion regular probability measure on X. 

Note added in proof, A f t e r  th is  p a p e r  was  a c c e p t e d  the au tho r  l ea rned  that  the  

first par t  o f  T h e o r e m  2.8 was  ob t a ined  by  L. B, Shap i ro ,  On Baire isomorphisms o f  

spaces o f  uncountable weight, Sov ie t  Math .  Dokl ,  3 2  (1985) ,  113-1 17. Russ i an  

o r ig ina l :  Dokl .  A k a d ,  Nauk  S S S R  2 8 3  (1985) ,  3 2 1 - 3 2 5 .  
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