SCATTERING IN THE ENERGY SPACE AND BELOW
FOR 3D NLS

By
J. BOURGAIN
0 Introduction

The purpose of this note is to clarify a uniform boundedness issue arising in
the context of scattering in the energy space H!(R®) for defocusing 3D NLS

iug + Au—ufulP~2 =0, p<8,
u(0) =y € H'.

More precisely, it is shown that the solution satisfies

0.1) lullzzrz < Clleliar)

for all admissible pairs (p, ¢), an issue left open in the paper [G-V]. If moreover
¢ € H*(R3),s > 1, then the corresponding solution u* satisfies a uniform estimate

(0.2) lu®)llas < Cllielas)
and
(0.3) l[u(t) — €2 (2, (@) || == 0

(only (0.2) is significantly new).
The main ingredient is essentially a refinement of the method used in [L-S} and
[G-V] to get some initial decay property, based on Morawetz’ inequality.

Next we develop the argument from [B;] to the 3D-situation, considering the
equation

0.4) iy + Au — uluf> =0

*We restrict ourselves to the case p = 4 because of smoothness of nonlinearity.
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268 J. BOURGAIN

as an example, establishing global wellposedness results and scattering for ¢ €
H*,s < 1. Without further restriction, it is shown that (0.4) is globally wellposed

for general data ¢ € H®, s > 11 and u(t) — e®*A¢ € H' for all time. If ¢ is radially

symmetric, then the result holds for s > 2 and there is moreover scattering in

H?-space.

1 3DNLS

We consider

fuy — Au +ufulP72 =0 10
L (—— <p<6).
u(0)=¢€ H

2 Morawetz inequality

We repeat the proof of the Morawetz inequality for NLS, following {L-S].

0=Re [(iu ~Au+ |u|P-2u)(m + ;ﬂ)] = %—f YVY 47,

X = —w(v + %v)

Y = ;vtw - VU(’UT + ;) - (Vuw) (wr + %) + —%IVU[Z + I%Iul” - %Mz,
P

z:%qvmz-m4%+(1-§)%L,

u=v+iw, =]z,

T
ozﬂm@—ﬁw@+%lh@@ws

e 2 A+ LuPrde
+ [0 [ 2 = fur P+ ot

Hence

T T 2 _ .2
/ |u(0,t)|2dt+/ /,—Mdzdt
0 0 r

2.1 T »
|uf 2
+ ——dzdt < C sup |lu(t)|l}/2
o r 0<t<T

and, in particular,

22) /0 T [ @O g < Qo + H )

||



SCATTERING IN THE ENERGY SPACE AND BELOW 269

By translation, also

2.3) //“(“ dedt < C  foralla € RS

|z - al

3 Dispersion of L*-norm

G.1) / lu(ta)|2dz > / lu(t)2dz — ¢ 228 for ¢y < 1.
lz—a|<2R R

lz—a|<R

Proof. Consider the localizing function v

~

a R 2R
where
v(z) =1 for |z —a| <R,
v(z) =0 for |z —a| > 2R,
<+
Y R
Define
16) = [ Pr(a)ds.
Then
I(t) = 2Re /m'ry(x)dx
from eéuation oIm / T Au'y
= 2Im /ﬁVUAV'y.
Hence

| < CR™ / ] [Vul < CR (18I + [ H(@)%)



270 J. BOURGAIN

and

uf*(t2) > I(t2) > I(tr) — (t2 — t1) sup |1(2)|
|z—al<2R fr<t<ta

C
> [ ) - G- )
|t—a|<R

as claimed.
More generally, the same argument yields that for any set $ C R?

(3.2) / lu(ts)[2dz > / |u(t1)|2da:—Ct2;ztl.

dist (z,5)<2R dist (z,5)<R

4 Decay estimates
The key lemma is the following
Lemma 1. Fix 0 < ¢, A. Then for
4.1) T>T(e, A |ll2: 1¢llar)

there is an interval [Ty, T3] C [0, T such that

(42) T, -T1 > A
and
(4.3) lullLery,m) <e

The main novelty here compared with [L-S] is that the estimate is uniform
without a decay assumption on ¢.

Proof. Assume the statement false. We then perform an iterative construction
leading to a contradictory statement [lu(7)||z > ||¢||2 for some 7 € [0, 7.

Recall the inequality

“Ip”P S/ ”¢|[;—3(1/2-—1/P)”d)”?}:l(]ll/z_l/p)

(p < 6) and which may be localized to unit cubes.
If {Q,} is a partition of R? in unit cubes, we have

2A
[ e tipdsdr s A sup S I el
(4.4) 0<t<A
SA sup nu<t)||‘°,:zf’4i

a
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(R <p<6).
Assuming 24 < T, fjA |ulPdzdt > P by assumption and thus
P 1/(3-p/2)
(4.5) Nu(r)llL2(jz-a<1) > <-Z> =

for some 7; € [A,2A4] and a; € R3.
Denote by M a constant, which we choose sufficiently large with respect to the
data ¢, ¢, A. It follows from (2.3) that

T p
/ : [ / Iu(t)l”d:c] dt < 2M / / ®  ome
41y t—7 |z—a1|<2M(t—71) |.’L‘ - all

Hence, letting 7 = 47yeM * we have 74 € [411, 471 €M 2] such that

T+A AMC 4
2 |g—a1|<2M (t—71) logeM® ~ M
Assume 4neM2 < T; then f;2’+A [ |u* > ¢, and (4.6) implies
T +A CA
4.7 / / ()P > e? — ==
3 [z—a1|>2M|t—71| M

Repeating (4.4) then gives some 7, € |15, 75 + A] and ay € R® such that

(48) ]a1 - a2| > 2M|T2 — 7'1[,

1
(4.9) lu(r2)llz2l12-az1<1) > ¥ = C57-
Also, from (3.1), (4.5),

|1U(7'2)||L2[|z—a1|<M(r2-n)] > ”u(Tl)”L2[|z-a1|<%M(7—2—‘rl)] - 1/M1/2

(4.10)
>y —1/MY2,
Thus, by (4.8), (4.9), (4.10),
4.11) llw(T2)|l L2[dist (2, {ar a2 }) <M(ra—ma)] > V27 — C/ M2,

Next, repeat the construction. By (2.3)

/ 1 [/ |u(x,t)|”dx]dt
ar, L— T2 dist (z,{a1,02})<2M(t—72)

1
< 2M//|u|” + L < 4CM,
|z —a1| |z - aq
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and hence there is 7, € [47,, 47, eM 2] for which

T3 +A
(4.12) / / lulP < A/M.
4 dist (z1{a1,02}}<2M(t—72)

For 4m,eM” < T, the hypothesis implies

T4+ A C
/ / |ul? dedt > P — —,
7 dist (z,{a1,a2})>2M(t—72) M

and we get 3 € [7§, 74 + A], a3 € R? satisfying

(4.13) las — a1| > 2M (73 — 13) las — az| > 2M (75 — T2),
C
(4.14) lw(ms) |22 je—asi<1) > ¥ = 37-

Also, by (3.2), (4.11),
(4.15)

l1(Ts)l| p2(dist (2, (arsaa ) < M(rs—r2)] > H(T2) || L2 dist 2, a0} < 2 M (ra—ra)) — L/ L2

> llu(72) || 2idist (s,{a1,02} )< M (ra—r)) — 1/ M2
> V2y - C/M'?

and (4.13), (4.14), (4.15) imply
(4.16) l[w(T3) || L2 (dist (2. {a1.a2,a5 1)< M(ra—r2)] > V37 — C/M'2,

The continuation of the process is now clear.
After ¢ steps, one gets 7, satisfying

4.17) ¢ < 5letM”
and, in particular,

(4.18) Iz = llu(me)ll2 > Vey — C/MY?,

EP 3__1?77
(57

In order to get a contradiction, take

(4.19) 0> (é> T

(4.20) MZ 2,

where
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and, by (4.17), (4.19), (4.20), the condition
21, < T

becomes
C(p)
(4.21) T > exp (;) .

Thus (4.21) gives the dependence on ¢, A in (4.1).
Recall that, since p < 6 is H'-subcritical, the IVP
vy — Au+ufulP2 =0
u(0) = ¢ € H!
is locally wellposed and
u € L (R) N Lig[T]

with bounds depending only on ||¢||g: and the size |I| of the time interval I. It
follows in particular from Lemma 1 and interpolation that (4.3) in Lemma 1 may
be replaced by

“4.22) ”U”Liq my,m) <€ forallfixed2 <g<10
and also
(4.23) fullzs, (mymy <€ forallfixed2<r <6, g¢<oo.

At this stage, we shall mainly repeat the analysis from [G-V].
Fix r > 6,r ~ 6 and define

(4.24) k(t) = [lu@®)ll,
(4.25) ko(t) = [le®2¢|lr, ¢ = u(0).

Lemma 2 (¢cf. Lemma 5.8 in [G-V]).
(4.26) k < ko + p * [min(k**2, k19,
where

p(t) = Cmin([t| %, [¢]7%), t>0
=0, t<0

and0<§ <1<6,-1<F <0<
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Choose then ¢ < oo large enough and (r,q) sub-admissible. Hence from the
preceding

(4.27) %ol 2oy < C,
(4.28) sup ||k L) < C,

[I]=1

and, moreover, as a consequence of (4.26),

(429)  swp bl < swp kolluey +C - sup Ikl e, +CAT
=1

[1]=1 [I|=1
IC{TI,TII] IC[TI‘TH] IC[T’—A,T”]

and

&l Lagzr 7y < llkoll Lagre, ) + C”k”Lq[T'—A,T”]( sup ||k”§q[1])

ICIT'—A,T"]
(4.30) + CA™"| k|| Lajo, 7
(4.31) S C + C {A—’Y + sup ”klliq[l]} “k”Lq[O’T//]
IC[T' AT

for some v > 0 (the constant C depends only on the parameters and ||@|| g1).

In the next construction, we estimate inductively ||k||q;0 7)) along a finite
sequence of times 0 = T < T() < ... < TU'), where again j' will be uniformly
bounded.

The method will be based on Lemma 1, (4.27), (4.28), (4.29), (4.31).

Fix ¢ > 0 sufficiently small and A sufficiently large (depending on | @||g1).
Choose T(!) maximal such that

(4.32) Ikollapy <& forall I C[0,7M], |I]=1

(thus 71 > 1 and lkoll Lajrcy —1,70] = €)-
By Lemma 1, there is an interval [T}, T3] such that

(4.33) Ty —T: > A,

(434) ”k”LQ[I] S ”k”Lq[Tl,Tg] <e forI C [Tl, Tz], |I| =1
and T is bounded by (4.1), i.e.,
(4.35) T < C(4A,¢ |9l a)-

(One deduces (4.34) by interpolation between (4.22), (4.23).)
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If T, + A > TW (4.28) and (4.35) imply of course that
[kl ajo,rr) < C(A €, [|8][a1).
Assume T(1) > T, + A. Applying (4.29) with T' = T, T" < TV yields

sup ||kllzey e+ C  sup ||k||ij5]+CA—7
|I|=1 IC[TI’TII]

IC|T2,T")
<e+CeP+CATT+C sup [lk|LE
I1C[T,T"]
and consequently
(4.36) sup  |lkllza;y < Cle +A77).
IC(T, Ty

Substituting (4.36) in (4.31), we next get

&l Lajo, ) < Bl Lajo, 1o+ 4] + 1kl Laizuta,ro)
Wkl ezt arw) £ C+Clle + AT+ AR pojo,ronys

so that for ¢ sufficiently small and A sufficiently large, one finds
(4.37) kIl ajo, ) < 2llkliLafo,mp 4] + C < C(4, &, [|@]| 1)
The inductive step is now clear. Assume T/ obtained such that
(4.38) “k”Lq[O,T(i)] < C(e, A |8l a1)-

By construction,

(4.39) ||k0”Lq[T<a'>,T(J‘)—1] =&

Choose TU+1D > TG + 1 maximal such that

(4.40) (kollzayy <& forallI C [T@, TUD] I =1.

By Lemma 1 applied on [T¥), o], there are TU) < T} < T such that

(4.41) T, — T, > A,
(4.42) T, < TY + C(4,¢, |6l a),
(4.43) klizeiy <& foralll C[Th, T3]

If TG+ < T, + A, there is the obvious estimate

1]l Lago,ri+0) < Wkl Lago, 70 + 1l Lapzn, 1 4.4) < Cle, A, 18] 1)
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from (4.38), (4.28), (4.42).
Assume TU+1) > T, + A. Apply first (4.29) with T/ = T, T” < TU*Y to get
again by (4.40), (4.43)

sup |kl Se+CeP+CATTHC sup k|,
I|=1 IC[T2,T")
IC{Tg,T”]

and hence

(4.44) sup  ||kllzeiy < Cle+ A77).
IC[Te, TG+D)]

Hence, by (4.38), (4.31), (4.44)

&l Lajo, ri+n) < C(Ase, ll@ll) + 1kl popmyta,76+1)
<C(A, & |pllm) +C((e+ A7) + A7) &l ago, 2 +1))

which implies an estimate (4.38) with T) replaced by 7U+1).
Since, by construction, for each j one has (4.39)

kol Larer—1,06)) = &
(4.27) implies a uniform bound
(4.45) j' < Ce™a

on the maximal number of possible “stopping times™.
Consequently, we have proved a uniform bound

(4.46) lullzg, @) < CCI6ll)

for some ¢ < oc.

5 Completion of the argument

Once (4.46) has been obtained for some r, ¢ < oo, Lemma (5.12) of [G-V]
permits us to get

é.D ”U”L;{; ® < C(llélla)

for all admissible pairs (r, g).

This statement thus answers the uniformity question in the context of Prop. 5.2
of [G-V] affirmatively. Recalling (4.21), observe however that the bound obtained
in (5.1) depends exponentially on ||¢|| 1.
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From the integral equation, one has for ¢ > to

1
u(t) = et By (te) + 1./ e A (y|u|P~2)(7)dr;
to

hence
1
, 1
| Dou(t)l| 108 < |22 [Dzulto)]l| jors + / F—TP/—SH |Deul [uP~2| 107 da,
to It N

and from Strichartz’ and Young’s inequalities

Dzl 105 < Cliu(to)la + Cll1Doul [ul? | prorrigg 1,)

(5.2) o1l
< Cllgllas + ClLDaullpross sy 125 1

Since (5(p — 2)/2, 5(p — 2)/2) is admissible,

(5.3) llull jsz-272 < C(l1llar1)-

Assume that the interval [tg, ;] is such that

(5.4) ||u||L5(p—2)/2[tO’t1] < ¢y

for a sufficiently small constant ¢; (depending only on the parameters).
Substituting (5.4) in (5.2) implies that

(5.5 1Dzullpross(sg,1,) < Cllellan-

Now, from (5.3), [0, co[ may be broken up into at most K < C(||¢||#:) consecutive
intervals Iy,... ,Ix suchthat foreachk =1,... ,K

(5.6) ”u”Ls(p—z)n[Ik] <
and hence, from the preceding,

(.7 |1 Daull prorsr,) < Clilla

Adding up these contributions then gives a uniform estimate

(5.8) 1Dl 10ss < Cllgllzn)

6 Scattering

Recall the construction of the wave maps. From the integral equation

6.1) u(t) = eitA(Q+Lp) —i/oo ei(t_r)A(u|u|p”2)(7)d7’,
t



278 J. BOURGAIN

where

(6.2) Qo=p+1 /000 e A (ulu|P72)(1)dT.

Then

(6.3) 12, ¢lm < Hip) and  Ju(t) - e*2(Q, ¢)|m = 0.

The key point is the fact that

(6.4) ‘/z e‘”A(u|u|p—2)(T)d'r[|H; tzoe ),

To get this last estimate, take ¢ € L2, ||[¢]2 = 1 and consider
(o.0.] [ et )
t

/ /[e—iTAz/JI | Dou| [u|P~2dzdr
t

and hence, from Hélder’s inequality, Strichartz’ inequality and (5.8),

bounded by

< C|le"ifA¢HL1o/3 ”Dzu”Ll?ﬁ “u“i;/i“’”)[t,oo]’
(”¢”H1) [lu”Lo/Z(p -2)[t, 00| — 0 for t — 0.

The preceding is well-known and was recalled here for later reference in the context
of H*-data.

7 Smooth solutions

We next consider data ¢ € H®, s > 1.
For simplicity, let p = 4 and consider the IVP

(7.1) {iut + Au — ufuf? =0,

u(0) =¢ € H*.
This problem is globally wellposed; we are interested in the H*-behaviour of u(t)
for t — oo.

Remark. Ifone considers other nonlinearities u|u|P~2, p < 6, some restrictions
on s need to be made depending on the smoothness of the nonlinearity.
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Proposition 3. Considering the IVP (7.1) with s > 1, one has

(7.2) 1 Dzullpiors < C(llolla-)
and
7.3) lu@)llas < C(|pllg=) for all time.

Proof. The main difference with the case s = 1 is the fact that (7.3) is not
implied by a conserved quantity.
Let again
R=LU---Ulg

be a partition of R in a bounded number of intervals I satisfying (5.6), i.e.,
(7.4) “u”Li,e[Ik] <¢ fork=1,...,K.

We proceed by induction. Assume (7.2), (7.3) valid for ¢ restricted to I, U - - - U I.
Let Ix+1 = [to, t1]- Repeating estimate (5.2) gives

(7.5) 1Dl p10/3(20,04) < Cliwlto)lime + ClIIDZull prorseg e ullZ5 1o t1)
(7.6) < C(l18llm=) + C N D3ull prosspeg 1,

by (7.4) and the assumption. Hence
(7.7 | Dzull prossir,, 3 < C(lll A=),

and (7.2) thus holdson I; U -+ - U Ijy;.
Fort e I, U--- U Iy, the integral equation again gives

o [ i (uhu?)r)ar|

and the second term of (7.8) is bounded by

(7.8) @)z < llella +

b

2

t
/ / €78y) [D2u [uffdzdr (]2 < 1)
0
< €l pross | D2l ross(zysty 12
< C(léllz)

using (7.7) and (5.3).
Thus (7.3) also holds for t € I; U - - - U 41, which proves Proposition 3.
Returning to the wave maps, we get

(7.9)
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Propesition 4. Foru(0) =p € H*, s> 1

(7.10) 1, el < C(|4ll &)
and
(7.11) [[u(t) - e*2(Q, o) |lae =F 0.

Proof. Recalling Section 6, we need to bound
R .
“/ e~ A (uful?)(7)dr
-
<[ [lemplDzul lPdsdr  (olle <1
t

SCIIe”Ad)HL;?{s ID2ull poys lllZs 00}

<C(llgll ) lullZs ,it,00

He

(7.12)

by Strichartz’ inequality and (7.2). From (5.3), (7.12) is bounded by
C(l|¢|la+)C(l|p|| 1) and tends to O for ¢t — oc.

8 Remark

The main purpose of the preceding was to obtain estimates independent of a
decay assumption on the data u(0) = ¢ and which are uniform in ||¢||g-, s > 1. The
main ingredient is Lemma 1, which is a slightly refined version of the Morawetz—
Strauss apriori inequality. The space dimension is d = 3 here. If we assume
moreover decay on the data, more precisely

@.1) |zl € L2(R?),

then it is well-known that the pseudo-conformal conservation law (applicable in
any dimension) yields a more powerful tool for deriving apriori bounds. Thus
considering the equation

(8.2) iug + Au—ulufP~2 =0,
one has for smooth solutions the apriori inequality (cf. [C])

(8.3)
(e + 20V )(0)] + %fznuu)nz = llewll2 + 411;‘?@ / . [ iuts, ) aads.
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Hence for
8.4) p>2+ 2

d
(8.3) implies the apriori estimate

2

T
(8.5) (o < 1221
Assume in addition to (8.1) that

4
8.6 H*(R? ithp -2 < ——m—

(8.6) p € H*(R*) withp 2_(d—2s)+

(the case of equality p — 2 = 4/(d — 2s) corresponds to the H*-critical case).
Then there is always a local solution on a nontrivial time-interval [0,T*],
T* > 0and

(8.7) " > (||l ae)

in the subcritical case p — 2 < 4/(d — 2s). For T < T™, this local solution satisfies

(8.8) ||DSUHL§(’:!+2)/¢[O,T] < oo
and
(8.9) ”U”Lz,t[O,T] <oo for2<q<2(d+2)/(d—2s).

In particular, for T < T*,

(8.10) lull 2 10,77 < 003
and (8.5) implies therefore that

(8.11) ”u”LZ’,[O,T*[ < o0

with a uniform bound in the subcritical case by C(||¢| s, ||z¢]| £2)-
For d = 1,2, in the subcritical and critical case, one may then show that the
local solution extends to a global one, i.e., T* = oo,

(8.12) ”D;U”L:(j+2)/d(k) < 00,

(8.13) sup || Dzu(t)]| < oo,
teR
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and scattering in H*-space
(8.14) lu(t) - €4, (9)l|n- = 0.

The same statement holds for d = 3 when p < 6.
To derive these facts from the integral equation, one mainly needs an apriori
bound on

(8.15) ”u”L:(zdj»2)(p—2)/2 <C.

We sketch the argument, distinguishing d = 1,2, 3.
Hd=1.
From the integral equation, we get
(316 o < Il + [ o )
. [o o R 00 0 It—TII/z p_l ¥
(8.17) e el < ClE2llelly < CIHY2(1 + |2])pll2-

The second term in (8.16) is bounded by

%/\1 tAl t /2 t 1 1
-1
(8.18) /0 +/£A1 "”/1 <Ct +/£M [t 712 72-3)/(p-2) dr.

2 2

Hence
lu(®)lloo < CIE|712 + C(1 A [t])~CP10)/2(—2)

and, in particular, bounded for ¢t away from zero.

By interpolating (8.10), (8.18), it follows that (8.15) holds for t away from 0.
By (8.9), this establishes (8.15).

(iyd=2.

We proceed similarly, but replace the L°-norm by the LZ-norm for large gq.

(ii))d=3,2 <p<6.

Choose r < 6,r ~ 6. From the integral equation, it follows that

4
. 1 _
€19 Jull < Il + [ s Uy
where 3(1/2 — 1/r) < 1; and since r’ > ¢
(820) [, < CIY=20/ 21D gl < Ol 32=10) (1 + fal)ell

Since p < 6, one may choose r < 6 with r'(p — 1) < p. The second term in (8.19)
then admits a bound

%/\1 tAL t (W/2-1/m) t
—-3(1/2-1/r 1 1 .
/ +/; +/ < Clt| +/t R—7]S072=177) T2p=572/7) (p—2)dT’
0 5/\1 1 5/\1
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hence
(8.21) lu()ll- < CJt|~30/2=1") 4 C(1 At)=(P=3+2/m)/(p=2)

and u € L ; for t away from 0.
If we assume

then (8.15) may again be deduced for ¢ away from 0 by interpolating (8.21), (8.5).
Thus, by (8.9), this establishes (8.15) in the case p < £.

To proceed when p > %2 is a bit more complicated. Fix ¢ > 0 such that on
[0, to] wellposedness holds and, in particular,

(8.23) Du e L/*[0, to)
and
(8.29) lu(®)jge < C  for t < tp.
Let
. 1 2

From the integral equation

{
u(t) = €008y (tg) 4+ i / eit=7)A (ufulP=2)(r)dr

to

we get from Holder’s inequality
(826)  [DJu()ll- <D u(to)]ll-
t
1 -2
(8.27) +/to }'{WIID;“(T)HT HU(T)“?p-z)r/(rq)dT'

Since 2 < (p ~ 2)r/(r — 2) < p, interpolation yields

i
1 1
(828) (827) <C ~/to |t _ 7.|3(1/2—1/r) 72(p—4/7")/(p—2) ”D;U(T)”Td’l'

Since 3(1/2 — 1/r) < 1, one may restrict ¢ to a nontrivial interval [to, ¢;] such that

(8.29) [1(8-28) | so-2372(10,81) < 0(1)||D;’u||LF(:—2]>/2Lr-
tg.ty z
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Then, from (8.26), (8.27), the definition of vy (8.25) and (8.24), it follows that
”Dlu”Li‘:’;f])/?L; < CllDl[ei(t_t")Au(to)]HLf(p—z)/zL;
(8:30) < CID; [~ 2ulto)]ll 2os2
< Cllufto)|las < C.

From (8.25), (8.30)

(8.31) IIullL:(_f_2)/2[to,t1] < C,
(8.32) “u”Liff‘z)ﬂ[O,tl] < C.

Applying the integral equation, one may then extend (8.23), (8.24) to [0,¢;]. By
iterating the procedure any finite interval may be covered.

To establish (8.15) for ¢t € R, replace ¢, in the preceding by a sufficiently large
time such that the kernel

1
(8.33) [t — 7[3072=1/0) |7 |2(p=4/r)/(>—2) Irit>t0

in (8.28) has a small norm acting on L3P~2)/2[ty . [. One then gets
(8.34) ||Dgu”L[5(p—2)/2L,. <C
tg,oo[ z

and (8.15) on [to, oo, completing the argument.
In the subcritical case, bounds are uniform.

9 Estimates below energy norm
We next consider the IVP

9.1) {im — Autuful? =0

u(0)=¢c H®, s<1

where ¢ is general (not necessarily small) data. We will first carry out the analysis
from [B-] related to the 2D NLS

9.2) iug - Au+ulul? =0

to the 3D setting of (9.1). Results of this type may be expected in any H'-subcritical
situation (p < 6). As in [B.], the cubic nonlinearity permits us to rely on a fairly
straightforward quartic Strichartz-type inequality, however.
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Improved Strichartz inequality

Lemma 5 Assume

9.3) supp ¥ C B(0,2M;)\B(0,M;), supp¥a C B(0,2M;)\B(0, M3)

and
M, < M,.
Then
94 itA itA <C Ml
9.4) [[(e* 1) (e 2|2 < W”%”z llv2]|2-
2

Proof. Since, from Strichartz’ inequality,

I S1) (€2 9)lla < €14 1€ blls < Cllnllgosa-Iball e
< COM M) i 2 (2 le,

we may assume M; < M,.
Write then

(e"%4h)(e"ep2) = / Pl p(E)e eIl IEM g, dg,.

From Parseval’s identity and Cauchy-Schwarz, it follows that

2

(A1) (e A 4p) 13 = / dfd/\‘ / P1(€0)P2(€ — E)o([E1]? + |€ — &7 — N)d&
< Nl 2 l1all2 / So(lEr]? + 1€ — &al? — N
M2
S 3z W Blval,

which proves (9.4).
Recall the definition of the spaces X, = X, 3[I] (I = time interval):

1/2
©5)  lullx, . = ( [1ae NP +1eP + 1A - £2|2")d§dz\>
provided

9.6) w(w,t) = / a(e, = M gedn for te I
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(in fact, in (9.5) we take the infinum over representations (9.6)).
From (9.4) one easily deduces

Corollary 6 For
©.7) 0<p<t,
(5.8 ID3(urus)ll2 < Clluallxy ,, o Mluallx, g -

Assume 1 < p <o+ 3,0 < 1. Then
9.9) 1D2(usua)lle < Cluslx, , Juellx, ., .-

10 Decomposition of the data

Let ¢ € H® and decompose

(10.1) b=do+vo Where gy = / Bol€)e™=de.
[€]<No

Hence

(10.2)

ol SNS* and (s>3) Higo)=; / Véol? + 5 / Idal* S NS,

Consider the IVP
(10.3) {ido = Aug + uoluel* =0
u0(0) = ¢o
fort € I =[0,6).
Estimate
1D3/19(E%2 o)l g 2073, < (T2 sup 1D (2 60) [ o

(10.4) S M3 | oll oo
SIPANG .

Take

(10.5) 1= 6= N, 47957,

so that by (10.4)

(10.6) 1D3/1° (2 $o)ll 1013 ) = 0(1)-
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Write the integral equation for uo,
t
(10.7) wo(t) = €8y + i / €= (yolugl?) (r)dr.
0
Hence, from the decay and Young’s inequality

(10.8) 1D uoll g p1oray

¢
; 1
< ”Di/w(e tA¢0)”L§LiO/3[I} + ”/0 —lt Rl ”Dz/lo(uo|u0|2(7))”L;on L8

1 3/10 2
<o+ | [ T IDY Pua(rl g huo(rs e,
<o(1) + ”Dg/louo”L?L;o/s”’U,o”%:t[[].
Also
(10.9) lluollzs i1 S 1DZ/*uoll 15 pors -

Substituting (10.9) in (10.8), we obtain

(10.10) ”.DZ/IOU()”L?L;O/S[I] = o(1)
and
(10.11) lluoll s ,ry = o(1)-

From ||¢ollz < C, lIdollzr < Na~*, (10.7) and (10.11), one may further deduce that

(10.12) luollx, ;. in < 2lloll < C
and
(10.13) llwollx, ;11 < 2lgoll s S No™

(we assume |I| < 1).

11 Estimates related to the difference equation

Writing u = ug + v, consider next the difference equation for v

(11.1)

i — Av + 2|uo|?v + 2udT + 26ov? + 2ug|v|? + |v|?v =0
v(0) = %o
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and write

(11.2) v = ey + w.

Recall that

(11.3) lollzs < C,  l#ollze < Ng°.

By (10.11), (11.3) and the integral equation form of (11.1), we get

W14 ollx, ,,in S N5+ lollx, 5. oD+ ollvlxy ., + i, ,

R
lollx, ;11 <C + llellx, 4, [o(1) +o(Dllvllxy 4, + ||v||§<%+&+]
(11.5) + HUOHX,,,:W[O(l)”U”X%,§+ + ”v||§(§+.§+]’

while from interpolation (we assume s > %) and (10.12), (10.13)

1-
loollx, g+ < ol uoll, 30 S N5,
1-& o
(11.6) ”vllx,é,i_*. S “v||Xo’.%+”v”Xs.1‘1;+'

Thus (11.4)«11.6) imply that (for s > 1/v/2)
(11.7) ollx, 4,10 < No ™
(11.8) Iolix, ;i S C-

Next, estimate
| Dewl| oo L2

< sup / |(ei"A¢, Dz[2|u0|2v + 2ug'17 + 2Tgv? + +2uo|'v|2 + v[v|2])|d7'
[{ll2<1

(11.9)
/I (W, Dz [2]uo|?v + 2u2T + 2Tov? + 2uo|v|® + v|v]?])|dt.
NWonl <1

Fix p = 1/2—. Then by (9.8), (9.9), (11.7) and (11.8) we have
/ (W, D (Juol0))] < / / W] ol [v] | Deto] + / D2 (Wuo)| | DX (v.10)],

J W1l ol Dol < [Wihosa lolho Iohhoraliatohors

(11.10) S lluollk, ,, Illx, 4,

(10.13:(11.7) N



SCATTERING IN THE ENERGY SPACE AND BELOW 289

and
[ 102 w0 D5 wuo)] < D2} [ D3 o)
(11.11) Slhuollx, , 4, ollx, 4, Tuollx, .,
§N02_38+'
Hence
(11.12) [ 1w, D2(uofo)] < NG5+
and, similarly,
(11.13) / (W, D, (u25))| < NZ~3+,

For the v-quadratic contribution we have, applying (9.8) and (9.9),

(11.14)
/ (W, D(@ow?))| < / W] Duol [of? + || D (W) 2| D' (22))
<Clhulx, ,, ol ,  +lulixy,, ;. ol ;. Iolx .,
< N02—38+

by (10.13), (11.7) and (11.8).
Similarly,

(11.15) J 14w, Dualuf2) < N2+

For the v-cubic contribution

(11.16)

/ (W, D(w}vl*))] < / (W, (Dv)vT)| + |(W, vD([v[*))]
< | D~ Wo)ll; D)2 + |D*~ E(WD)|l2 [IDF(lvf2)l2
<lollx, , Iollx, ;. olx,, 5.
< N3_3’,

applying (9.9) and (9.10). Recall that we have assumed that s satisfies

(11.17) s>

A%
C»D.l [

Si-
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Thus, from (11.9), (11.12), (11.13), (11.14), (11.15) and (11.16) we have
(11.18) sup |lw(t)|| g < NZ73+.

tel

At time ¢, = §, we then write

U(tl) = UO(tl) + (CitlA’L/)O) + w(tl)

=¢1+ %1

with

(11 19) ¢1 =u0(t1)+w(t1),
P = e'1Bq.

Thus the pair (¢q, ¥o) is replaced by (¢1,v1).
11 is similar to .
The Hamiltonian increment when replacing ¢g by ¢ is bounded by

|H(é1) — H(éo)| =|H(#1) — H(uo(t1))| (from Hamiltonian conservation)
<(Jlwo(t )z + [lw(E) [ Ylw(ta)l| ar
+ (luo(t)lle + llw(t)lle)*w(ta)ll2
< NI N2-3st 4 N3 -o)=s

(by (10.13), (11.2), (11:7) and (11.18))
(11.20) < N34,
By (10.5), iteration of the procedure leads to the condition (cf. [B2])

T.N/20-0) N3-st o y20-9),

11-~13s
TN, * <L
Hence, we require
11
11.21 —
( ) s> 13
and take
(]. 1.22) NO = No(T) = TlSaz—ll'+.

Our conclusion is thus
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Proposition 7 The IVP

. _ A 2 —
(11.23) e = Au +uful” = 0
u(0) =¢ € H*®

is globally wellposed for s > 13 and the solution u has the form
(11.24)  w(t)=e"g+0(t),  o@llm < L+ )BT,
12 Scattering below energy norm

Recall first the Morawetz inequality
12.1)

291

T T 2_,2 T 4
Vul? —
/ ]u(O,t)|2dt+/ /-I—u,—-—uldzdt—k/ /t—u-,—da:dt<C sup ||u(t)||3/z-
0 0 T 0 r 0<t<T

In this section, we restrict ourselves to the radially symmetric case.
Lemma 8 If ¢ is radially symmetric
(12.2) sup7|¢(r)| < |l g2

Proof. Setv = r¢. Then

1/2
Ivlz,, = ( [1Prar) " ~lole
and

123) [l < I sy + [z ~ 1920 + |5

To estimate ||¢/|z||l2, write
¢ |2 2 2
il 2, (o)

By Fourier decomposition, denoting
6= [ deetas
lgl~L

we may write

f P < /
i~ K 1 a1

> e,

L<X

2
+ / ¢,
Sl

L>K

K 3
<% (g ) Kolela+ 3 194,15

L<K L>K
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Thus
K\°L K\?2
k[ jetars Y (log —) Livsrz+ ¥ (—) VoLl
jx|~K =1 L<K L) K L>K L

and summing over dyadic K values (K = 2% k € Z) yieldsthebound Y, dyadic VoL [I2.
Hence

¢l <
(12.4) Il < ol
From (5.3),
(12.5) V'l L2ary S 18l
Estimate

| [vl*(r1) = [o*(r2)| £ /1‘2 ol [v] S vz [0ll2 < ll6ll2 18]l

T

Hence

lo(r)I* S 118113 + lI8ll2 gl
and the lemma follows from interpolation.

Theorem 9 Consider the IVP in 3D

(12.6) {i“t — Autufu? =0

u0)=¢ € H®, s>32
where ¢ is a radial function. Then there is global wellposedness and for all time
(12.7) lu(t) — e*2 el < C(lIg]lae)-
Proof. Denote
(12.8) Bi(t)= sup lu(t))—e*2¢|m.
0<t'<t
Hence, from (12.1) and (12.2),
T
(12.9) / / [l dedt < sup [u(®)]%s/e < C(BL(T)Y/?* +1).
0 t<T

We now recall the proof of Proposition 7.
Fix a cutoff Ny and define

— Y ixt — 7 iw.€ ¢
b0 /|£ L Fgeta and gy /| 3(6) it

£|>No
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Now consider a sequence of times
(12.10) O=to<ti<ta<---<t;=T,

where for each time t;

(12.11) u(ty) = @5 +¥;

with

(12.12) H(¢;) < H(gj-1) + Ng~*,
(12.13) losla <€, H(g;) S NGO,
(12.14) 1y = e'iBepy.

In the proof of Proposition 7, we chose I; = [t;,t;41] with
(12.15) |I;| = Ny °/20~)~

(and, in particular, bounded by 1).
Considering the solution u, of the IVP on I;

o — A 2 =0
(12.16) {w“ to + to|uo|

uo(t;) = &;
the choice (12.15) implies, by condition (12.13), that
(12.17) ”UOHLg,t[IJ-] =Ny .

Assume I; such that (12.17) holds. Assume also |I;] < 1. We get from the integral
formula

t
up(t) = e“Aqu + z/ ei(t_T)A(u|u|2)(T)dT

2]
that
(12.18) 1Dzuoll progayyy < sl + I1Dzwoll progsyylollZe 1y
hence
(12.19) IDzuoll o3y S Clldsllan S No™*
Also

(12.20) lluoll Lo, (7,3 < ||D2/5u0||L;oL;°/3[1j] SNS
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Furthermore (since we assume |I;| < 1),

(12.21) l[uollx, , , 17,0 < €,

(12.22) lluollx, 4, 11,) SN~

Writing u = ug +v, where v satisfies the difference equation on I; with initial value
(12.23) v(t;) = 95,

the bounds (11.7), (11.8) hold again. Thus

(12.24) ollx, 5,11 S No
(12.25) Ivllx, , 11 <C.
3

Also, writing
(1226) v = eiu_t")Ad)]‘ + w,

one has (11.18)

(12.27) lwlix, , ) < N3t
Write

(12.28) u(tjv1) = dju1 + Y511
with

(12.29) dj+1 = uo(tj+1) + w(tjs1),
(12.30) Pip1 = e+,

the same conclusion leading to (11.20) implies that
(12.31) |H(¢j1) — H(¢;)| S NG~
If|I;| > 1, one starts by rescaling to a time interval of unit length, considering
(12.32) a(x,t) = ur(z,t) = du(iz, M) (A =|L|7Y?).
Letting I; = (0, ¢{] we then have the decomposition

(12.33) 4(0) = ¢o + Yo
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with

(12.34) Idollz = A"1/2||goll2 < A7H/2,
(12.35) liGollzrr = AY2{|doll g < AYENE™S,
(12.36) dollz = A3l < ATV2NG,
(12.37) l[dollzre = A~ Fllwoll e S AE.

This gives (condition (12.17) remains preserved)

(12.38) (1) = ip(1) + W(1) + €2 = ¢y + 1o
where

(12.39) [ B(1)|r < NET3eFA2,

(12.40) H() < H(o) + ANF*+.

Hence, scaling back, we get again

(12.41) u(ty) = ¢1 + e %4
with
(12.42) H(¢1) < H(do) + Ng~*7.

295

Since J is the number of steps (= number of intervals), one needs to fulfil the

condition
—48+ 2(1—s
(12.43) CJIN3~%% < N2U72),

where the constant C' depends on ||¢||z-.
One may then conclude that

(12.44) sup |ju(t;) — "%y g = sup || ¢;ll s S Nog~°
i<J i<J

and hence

(12.45) Bi(T) S Ny~ + ol ~ N5 ~°.

It remains to derive an estimate on J from (12.9) and (12.17).
Since on I

U = ug + v,
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we have

||U||Lg,,[1,-] > ||U0HL3),[1,»] - ||vf|L2,t[I,-]
(12.17),(12.24), (12.25)
>

(12.46) )
N~ —CNZ °=N§-.

Consequently, by (12.9) and (12.45),

J-1 3
2(1-s)

INO™ < N lull3s (. < CBy(T)%? +C < CN, ,
(12'47) 0 j:ZO La:,t[IJ] 0

J < CNFO=97,

provided (12.43) holds.
Substituting (12.47) in (12.43) gives the condition

(12.48) CNog(l—s)+3—4s+ < Ng(l—s)
satisfied for
(12.49) 5> g

and a choice of Ny only depending on the data ||u(0)||g-, noton T.
This proves Theorem 9.
From (12.9) and (12.7), we also get

(12.50) / /|u|5dzdt < oo.
0

Since from the integral equation, for I = [to, t1],

(12.51) D3 ul gz < ID3(e A uto))llross + IDgull oo llulZe
< C+ | D3ull s pllulle

by (12.7), partitioning time as R, = |J I, into finitely many intervals I,, satisfying
(12.52) lullzs 1) = o(1)

(which is possible by (12.50)) permits us to conclude that

(12.53) 1Dzl rogs < Cl8l).

By writing
Qo =gp+i / e (ulul?)(r)dr
0
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it follows that

fu(t) - ¢ (@4 0) | < H [ et rr
(12.54) ’ .

t
SAIDzull oy qllvllzs oo — 0

Consequently, we have

Theorem 10 In the context of Theorem 9, there is also scattering in H*-space.
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