
S C A T T E R I N G  I N  T H E  E N E R G Y  S P A C E  A N D  B E L O W  

F O R  3 D  N L S  

J. BOURGA1N 

0 I n t r o d u c t i o n  

The purpose of  this note is to clarify a uniform boundedness issue arising in 

the context of  scattering in the energy space H 1(1~ 3) for defocusing 3D NLS 

i u t  + A u  - ulu[ p-2 = 0, < 6, P 

u(0) = ~ E H 1. 

More precisely, it is shown that the solution satisfies 

(o.1) IMIL:L-: < C(II~II~,) 

for all admissible pairs (p, q), an issue left open in the paper [G-V]. If  moreover 

E HS(l~a), s > 1, then the corresponding solution u* satisfies a uniform estimate 

(0 .2)  

and 

(0.3) 

I I~,(t) l lH. _< C ( l t ~ l l ~ . )  

I lu(t )  - e " A  (~+ (~o))IIH" ~ - ~  0 

(only (0.2) is significantly new). 
The main ingredient is essentially a refinement of  the method used in [L-S] and 

[G-V] to get some initial decay property, based on Morawetz' inequality. 

Next we develop the argument from [B2] to the 3D-situation, considering the 

equation 

(0.4) iut + A u  - ulul 2 = 0 

* W e  res t r ic t  o u r s e l v e s  to the case  p = 4 b e c a u s e  o f  s m o o t h n e s s  o f  nonl inear i ty .  
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268 J. BOURGAIN 

as an example, establishing global wellposedness results and scattering for r E 

H 8, s < 1. Without further restriction, it is shown that (0.4) is globally wellposed 

11 and u ( t )  - eaLXr E H 1 for all time. I f r  is radially for general data r E H 8, s > T5 

symmetric, then the result holds for s > ~ and there is moreover scattering in 

H ~-space. 

1 3 D  N L S  

We consider 

i u t  - A u  + ulul '~-~ = o 
u(O) = r E H 1 

(~ ~ < p <  

2 Morawetz  inequality 

We repeat the proof of the Morawetz inequality for NLS, following [L-S]. 

0 = R e  ( i z i -Au+lu lV-2u)  ~.+ ~ = - - ~ - + V . Y + Z ,  

x = - w ( . .  + ! v ) ,  

x ( ~ )  ( ~ )  ~r Y = -vtw- V v  v. + - (vw) w. + + Ivul ~ ~ r 7 7 + I~IP- 77J lul ' 

z = -1 (IV~l" - lu' l ') + ( 1 -  ~) I~ ' '  r 

u = v T i w ,  r = lx[, 

I /( 0 -- [X(T) - X(0)]dx + 2~r Lu(0, t)12dt 

+ L r  f l {[IW,12 -1u.12] + �89 

Hence 

(2.1) 
So ioi  ' 

T T IVul 2 -  u ,  d x d t  lu(0, t )  12dt + 
r 

io'i "+" + d x d t  < C sup IMt)ll~,/. 
O < t < T  

and, in particular, 

(2.2) f0~176 < C(ltr + H(r lu( x, t ) l_____~V dxdt 
Ixl 
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By translation, also 

(2.3) V~- ~ dxdt < C f o r  all a E ]~3. 

3 D i s p e r s i o n  o f  L L n o r m  

(3.]) 

Proof. 

f~x-al<2R lu(t2)12dx >- JF~-~I<R [u(tl)ledx - C - -  
r 

Consider  the localizing function 7 

7 

/ 

t2 - tl 
fo r  t l  < t2. 

a R 2 R  

where 

Define 

Then 

Hence 

"y(x) = 1 for I x -  a] < R, 

3'(x) = 0 for I x -  a[ > 2R, 
1 

I'~1 < 5 

I(t) = /]ut27(x)dx. 

](t) = 2Re f   (x)dx 
from eq=uation 2Im / ~Au~, 

= 2Im /~Vu.V' , / .  

Ill < O R - i f  I~1 IWl < CR-'(llr + IIH(r 
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and 

f lu12(t2) > z(t=) > I ( t ~ ) -  (t2 - t l)  sup I](t)l 
tl <t<t2 

Ix-al<2R 

as claimed. 

> / ['/Z(tl)]2-- ~ -(t2-tl)' 
Ix--al<R 

More generally, the same argument yields that for any set S C IR 3 

- -  t l  
(3.2) f lu(t2)12dx >_ f lu(t~)l~dx-Ct2 R 

dist (x,S)<2R dist (x,S)<R 

4 Decay est imates 

The key lemma is the following 

L e m m a  1. Fix 0 < e, A. Then for 

(4.1) T > T(E,A,I]r IIr 

there is an interval [7"i, T~] C [0, T] such that 

(4.2) T2 - T1 > A 

and 

(4.3) IIulIL, t~I,T~] < ~. 

The main novelty here compared with [L-S] is that the estimate is uniform 

without a decay assumption on 4). 

P roo f .  Assume the statement false, We then perform an iterative construction 

leading to a contradictory statement I}u(r)ll2 > 11~112 for some ~- E [0, T]. 

Recall the inequality 

llr < IIr -3(I/2-I/p) I I r  

(p < 6) and which may be localized to unit cubes. 

I f  {Q~ } is a partition of/R 3 in unit cubes, we have 

f a  a ~ 3-p/2 3v/2-3 lu(x , t )Fdxdt  < A sup Ilu(t)llL2(Qo) Ilu(t)llH,(Qo) 
0 < t < A  

(4.4) 
3-p/2 

< A sup Ilu(t)llL~(Qo) 
0 < t < A  
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__p<6). 
Assuming 2A < T, f2A lulPdxdt > ep by  assumption and thus 

(~)l/(Z-p/~) 
(4.5) 1 1 ~ ( 7 - : ) l l z ~ [ , ~ - ~ l , < : ]  > - -  - ' ~  

for some 7-1 E [A, 2A] and al E 1R 3 . 

Denote by  M a constant, which we choose sufficiently large with respect to the 

data r e, A. It follows from (2.3) that 

fT- 1 [ ~  lu(t)[,dxldt < 2 M f f  ,ul______~P < 2MC" 
7-1 t -- 7-1 -all<2M(t-7-1) IX -- all 

Hence, letting 7- = 471e M2, we have 7-~ E [47-1,47-:e M2] such that 

fr~+a f 
(4.6) lu? ~< AMC < A 

jT-~ dlz_all<2M(t_7-1) loge M2 "~ M" 

Assume 47" 1 e M~ /,7-~ +A < T; then jT-~ flu] p > eP, and (4.6) implies 

F +Af  ( 4 . 7 )  lu(t) l  ~ > :p _ C A  
J7-9 t --al 1>2Mlt-7-11 M 

Repeating (4.4) then gives some 7-~ E [7-~, T~ + A] and az E R 3 such that 

(4.8) ]a: --  a21 > 2M17-2 - 7-:[, 

(4.9) 

Also, f rom(3.1) ,  (4.5), 

1 
Ilu(7-e)llL2[ix-==l<l] > "r - C ~ .  

( 4 . 1 o )  
11~(7-2)llL2EIx-~,,<M(r~-7-,)] > Ilu(7-1)llz~Ll~-~ll<�89 - 1/MU2 

> -y - 1/M:/z. 

Thus, by (4.8), (4.9), (4.10), 

(4.11) [lu(r2)llL~[di~t (~,{a~,,~})<M(7-~--,-,)] > V"2'y -- CIM 112. 

Next, repeat the construction. By  (2.3) 

~'2 t--T2 ist(x,{a:,a2})<2M(t-r2) lu(x't)lP dx dt 

a: I ix < 4CM, 
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4r2e ] for which and hence there is r' E [47-2, MS 

f.~+A f 
(4.12) Jd/ist J'r~ ( x l { a l , a s  })<2M(t- - r2)  

For 47-2e M2 < T, the hypothesis implies 

/ 'r~ + A ~ ]u' p dxdt > e p -  __ 
ist (x,{al  ,a2})>2M(t-'rs) 

' ' A], E R a satisfying and we get 7-3 E [7-3, 7-a + a3 

(4.13) 

I~1 p < A/M. 

(4.17) 

and, in particular, 

(4.18) 

where 

C 
M '  

la3 - a~l > 2M(T3 -- r2) [a3 -- a21 > 2M(ra -- r2), 

C 
Ilu(r3) IIL~tl~-o~t<a] > "~ M" 

1 

In order to get a contradiction, take 

2 

(4.19) e > ~ , 

(4.20) M ~> ~2, 

I1r = 11~(7.e)ll~ > v ~  - CelM 1/~, 

(4.14) 

Also, by  (3.2), (4.11), 

(4.15) 

11~(7.3)llL:td~st <~,(,~,,~,~})<M(,3-~-.)J > Ilu(7.2)llL~Idist (x,.[,~,,a~})<�89 - 1/M1/2 

> 11~(7.:)llL~t,~ist ( : , < . , , . s } ) < ~ ( - ~ - . ) l  - 11MII: 

> v@'/-  C / M  112 

and (4.13), (4.14), (4.15) imply 

(4.16) HU(T3)HL~tdist (x,(a,,a2,aa))<M(ra-r2)] > V/'3"[ -- C~ Mtl2. 

The continuation o f  the process is now clear. 

After g steps, one gets Vt satisfying 

Y~ < 5re ~M2 
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and, by (4.17), (4.19), (4.20), the condition 

2~-e < T 

becomes 

(4.21) T > exp . 

Thus (4.21) gives the dependence on e, A in (4.1). 

Recall that, since p < 6 is H 1-subcritical, the IVP 

iu t  - A u  + u[ul p-2  = 0 

u(O) = r �9 H 1 

is locally wellposed and 

u �9 Z~, (m) n L~o ~ 

with bounds depending only on I1r and the size Ill of  the time interval I. It 

follows in particular from Lemma 1 and interpolation that (4.3) in Lemma 1 may 

be replaced by 

IlulIL~ [~,,T2] < ~ for all fixed 2 < q < 10 (4.22) 

and also 

(4.23) ItUlIL~[T1,T21 < e  f o r a l l f i x e d 2 < r < 6 ,  q < o ~ .  

At this stage, we shall mainly repeat the analysis from [G-V]. 

Fix r > 6, r ~ 6 and define 

(4.24) k ( t )  = [tu(t)[[~, 

(4.25) ko(t) = IJe~t~r 

L e m m a  2 (cf. L e m m a  5.8 in [G-V]). 

(4.26) 

w h e r e  

r = ~(o). 

k < ko + # * [min(k 1+', kl+~')], 

u(t) = Cmin(It1-6, Itl-6'), 

O, 

t > 0  

t < 0  

a n d  O < 6' < l < 6, - 1 <  j3' < O < ~3. 
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Choose then q < ~ large enough and (r, q) sub-admissible. Hence from the 

preceding 

(4.27) IlkollL~(~) < C, 
(4.28) sup IlkllL~tI] < C, 

IZl=l 

and, moreover, as a consequence of  (4.26), 

(4.29) sup IlkllL~[ii _< sup IIk011L~[i] + C sup IlkllL~iZ] + CA-"" 
I~rl=l II1=1 II1=1 

IC [T',T"] IC [T',T"] IC [T'-A,T"] 

and 

IIkIIL"tT',T"] <--IIkoIILqtT',T'q + CIIkI[Lq[T'- A,T'] ( sup Ilkll~[ii~ 
\ I c [T ' -A ,T"]  / 

(4.30) + CA-'rllkllLqlO,'r,q 
(4.31) < C + C { a -v+  ,c[T'-A,T"]sup Ilkll~[i] } IIklIL~'tO,T"J 

for some "), > 0 (the constant C depends only on the parameters and IIr 
In the next construction, we estimate inductively IIklIL,I0,T(~)] along a finite 

sequence o f  times 0 = T (~ < TO) < . . .  < T(J'), where again jt  will be uniformly 

bounded. 

The method will be based on Lemma 1., (4.27), (4.28), (4.29), (4.31). 

Fix e > 0 sufficiently small and A sufficiently large (depending on IIr 
Choose T (1) maximal such that 

(4.32) flk0llLqtZl < e for all I c [0,T(1)], 111 = 1 

(thus T (1) _> 1 and ][kOIILq[T(D_I,T(,)  ] = ~). 
By Lemma 1, there is an interval [T1, T2] such that 

(4.33) 7"2 - T1 > A, 

(4:34) tlkllL, tlJ ~ Ilklfi~'tTx,T,J < ~ for I c [T1, T2], 

and T~ is bounded by (4.1), i.e., 

(4.35) T2 < C(A,--c, Irr 

(One deduces (4.34) by interpolation between (4.22), (4.23).) 

III = 1 
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I f  T2 + A >_ T (1), (4.28) and (4.35) imply of  course that 

IIkllLqt0,Tr < C(A,e ,  IIr 

Assume TO) > T2 + A. Applying (4.29) with T'  = T2,T" < T (1) yields 

I+B 
sup IlkllL~[Z] -< ~ + C  sup IlkllL,trl +CA- '~  
I/'1=1 Ic[Tx,T"] 

Ic[T2,T"] 
1+~ 

< e + Ce 1+/~ + C A  -'`/+ C sup IlkllL~tZ] 
IC[T2,T"] 

and consequently 

(4.36) sup IlkllLq[I] < C(e + A-'e). 
rc[T23"(1)t 

Substituting (4.36) in (4.31), we next get 

IlkllLqtO,T(i)] < IlkllLqtO,T=+Zl + IIklILqT=+A,T(1)I, 

IIkIILqtT•..I_A,T(1)] ~ C + C[(s  --t- A-'Y) ~ + A -v] IIkl[Lq[O,T(1)], 

SO that for e sufficiently small and A sufficiently large, one finds 

(4.37) IIklIL~L0,T(1) l ----- 211klIL~IO,T=+A] + C < C(A,e, IIr 

The inductive step is now clear. Assume T (j) obtained such that 

(4.38) IlkllL, to,T<~)J < C(~, A, IIr 

B y  construction, 

(4.39) IIkOIIL'tT<~>,T(J)--ll = ~" 

Choose T ( j+l )  > T (j) q- 1 maximal such that 

(4.40) IlkollLql] < e for all I C [T(J),T(J+J)], lIl = 1. 

B y  Lemma 1 applied on [T (j), c~[, there are T(3) < T1 < T2 such that 

(4.41) 7'2 - 7'1 > A, 

(4.42) 7"2 < T (j) + C(A,e ,  I1r 

(4.43) ]lk]lL,[i] < e for all I C [T1, T2]. 

I f T  (j+l) < T2 + A, there is the obvious estimate 

IlkllL~tO,Tr IlkllL, t0,r('] + IIklILqtT(J),T=+AI < C(e ,A ,  I1r 

275 
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from (4.38), (4.28), (4.42). 
Assume T (j+l) > T2 + A. Apply first (4.29) with T' = T2, T" < T (j+l) to get 

again by (4.40), (4.43) 

1+/3 [IkllLq[II ~ "C "1"- C• lq-[3 -l- C A  - 7  + C sup ][kl[L~[r ] sup 
II1=1 IC[T2,T"] 

I t, C[T2,T ] 

and hence 

(4.44) sup IlkllL, tij < C(e + A-V). 
1C[T2,T(J+I)] 

Hence, by (4.38), (4.31), (4.44) 

IlkllLq[O,T(~+l)J < C(A,e, II~llgl) + ]Ik[ILq[T2+A,T(.i+I)] 
<_ C(A, c, IIr + C((~ + A-")~ + A-'~) INIL~tO,T(~+I)J, 

which implies an estimate (4.38) with T(J) replaced by T (j+x). 
Since, by construction, for each j one has (4.39) 

IIkOIIL~tT('--I,T(~)] = S, 

(4.27) implies a uniform bound 

(4.45) j' < Ce -q 

on the maximal number of possible "stopping times". 

Consequently, we have proved a uniform bound 

(4.46) IlullL~: <~) < C(llr 

for some q < cx~. 

5 Comple t ion  of  the argument  

Once (4.46) has been obtained for some r, q < c~, Lemma (5.12) of  [G-V] 

permits us to get 

(5.1) IlUlIL~=(R) < C(IIr 

for all admissible pairs (r, q). 
This statement thus answers the uniformity question in the context of  Prop. 5.2 

of [G-V] affirmatively. Recalling (4.21), observe however that the bound obtained 

in (5.1) depends exponentially on IIr 
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From the integral equation, one has for t > to 

f2 u(t) = ei(t-t~ + i ei(t-')A(ululp-2)(r)dr; 

hence 

IIO~u(t)i[L~=~ < Ilei(t-t~176176 + It --1] 377[I [D~ul lutp-21[L~o, dx, 

and from Strichartz' and Young's inequalities 

(5.2) IID~ulIL~~176 < Cllu(to)liH, + eli ID~ul I~F-=llL,O.tto,,,] 
p-2 _< CIlr + CIID=~IIL,o-E,o,~,I II~IIL~(--:.:C<o,<,1. 

Since (5(p - 2)/2, 5(p - 2)/2 ) is admissible, 

(5.3) II~IIL~=<r-2)/2 < c(IIr 

Assume that the interval [to, tl] is such that 

(5.4) IlullL~(._2.2[~o,tll < cl 

for a sufficiently small constant cl (depending only on the parameters). 
Substituting (5.4) in (5.2) implies that 

(5.5) tlO~ullL,o.t,o,tl ] <_ Cll~O/Ia'- 

Now, from (5.3), [0, oc[ may be broken up into at most K < C(llr consecutive 

intervals I ~ , . . . ,  IK such that for each k = 1 , . . . ,  K 

(5.6) Ilullc0(._2.:tz~] < c, 

and hence, from the preceding, 

(5.7) IIO~ullL~o.[i~l < CIl~llm. 

Adding up these contributions then gives a uniform estimate 

(5.8) IIO~ullL,o[~ < C(IIr 

6 S c a t t e r i n g  

Recall the construction of the wave maps. From the integral equation 

(6.1) u( t )  = e " ~ ( f l + ~ )  - i e ~ ( t - ' ) A ( u l u t P - 2 ) ( r ) d r ,  
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where 

(6.2) 

Then 

fO (X~ 
~+~ = ~ -4- i e-~A(@zJP-2)(r)dr .  

(6.3) IIK2§ < H(qo) 

The key point is the fact that 

(6.4) e_~-A(ululP_2)(r)dr[lu~ t__~__~ O. 

To get this last estimate, take f �9 L 2, I1 11= = i and consider 

< r  [ f t  ~ e-i'~(ululP-2)(r)dr]> 

bounded by  

and I lu ( t ) -e"a ( fLW)HH1 t ~  0. 

Zo~ f le-iTA~'l IDxul JulP-2dxdT 

and hence, from HSlder's inequality, Strichartz' inequality and (5.8), 

p--2 < Cl[e-i~h@'[lLXO/z IID~UllLXO/j IlUllL~/=(,-~l[t,~], 

C(IIr p-2 [lullL~/:(p:::)[t,o~] ~ 0 for t --~ ~ .  

The preceding is well-known and was recalled here for later reference in the context 

o f  H s-data. 

7 S m o o t h  s o l u t i o n s  

We next consider data q~ C H 8, s > 1. 

For simplicity, let p = 4 and consider the IVP 

l iut + Au - ulul 2 = 0, 
(7.1) [ u ( 0 )  = • �9 H 8. 

This problem is globally wellposed; we are interested in the H*-behaviour of  u(t) 
for t --, oo. 

R e m a r k .  I f  one considers other nonlinearities u]ul p-2, p < 6, some restrictions 

on s need to be made depending on the smoothness of  the nonlinearity. 
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Proposition 3. 

(7.2) 

and 

Considering the IVP (7.1) with s >_ 1, one has 

IlDgullL,o/~ <_ C(IIr 

(7.3) II~(t)llH. _< C(II~IIH~) for all time. 

Proof .  The main difference with the case s = 1 is the fact that (7.3) is not 

implied by a conserved quantity. 

Let again 

= 11 U .. �9 U IK 

be a partition of ]~ in a bounded number of  intervals lk satisfying (5.6), i.e., 

(7.4) IlulIL~,~EZk] < cx for k = 1,...  ,K. 

We proceed by induction. Assume (7.2), (7.3) valid for t restricted to Ix u . - .  u Ik. 

Let Ik+l = [to, tx]. Repeating estimate (5.2) gives 

(7.5) IIDgullz,o/3[~o,,, 1 <_ CII~(to)IIH" + CIIOg~llL'o/3Ito,~l]llull~[to,tl ] 

+ Ccx I IDx~,l lL,o/~[to,, l l  (7.6) -< C( l l~ , l l , , . )  2 , 

by (7.4) and the assumption. Hence 

(7.7) IlO;:ullL~o/3t~k+~] _< C(II,~tI-.),  

and (7.2) thus holds o n  I1 U . . .  U Ik+x. 
For t E Ix U-. .  U Ik+l, the integral equation again gives 

(7.8) HU(t)IIH" <-- II~IIH" + D~[ fote-e~A(ulu'2)(r)dr] 2' 

and the second term of  (7.8) is bounded by 

. i t / ' e ' ~ A r  IDgul [ul2dxdT (llr _< 1) 

i r A  s 
(7.9) < lie r 

_< c(IIr 

using (7.7) and (5.3). 

Thus (7.3) also holds for t E 1~ u - - .  u I~+1, which proves Proposition 3. 

Returning to the wave maps, we get 
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Proposition 4. For u(O) = ~ C H ~, s >_ 1 

(7.10) 

and 

(7.11) 

l la+~llm < C(IIr 

Ilu(t) - e"z~(a+~)llH, ~ - ~  0. 

Proof .  Recalling Section 6, we need to bound 

~ e-i'A(u[ul2)(rldr H. 

(7.12) -< f t  ~ f [ei'nr [D:ul lul2dxdT 

--Cllei~%llL;O? llPg~'ll L'o?? IIulI~,, E~,oo] 
<C(IIr )llull~z ,[~,o< 

by Strichartz' inequality and (7.2). From (5.3), 
C(llr  and tends to 0 for t ~ oo. 

(IIr _< 1) 

(7.12) is bounded by 

8 R e m a r k  

The main purpose of the preceding was to obtain estimates independent of  a 
decay assumption on the data u(0) = r and which are uniform in IIr s _> 1. The 
main ingredient is Lemma 1, which is a slightly refined version of the Morawetz-  
Strauss apriori inequality. The space dimension is d = 3 here. I f  we assume 
moreover decay on the data, more precisely 

(8.1) Ixl~ e LZ(Rd), 

then it is well-known that the pseudo-conformal conservation law (applicable in 
any dimension) yields a more powerful tool for deriving apriori bounds. Thus 
considering the equation 

(8.2) Jut + n u  - ulu[ p-2 = 0, 

one has for smooth solutions the apriori inequality (cf. [C]) 

(8.3) 

8t 2 p 4 4 - d ( P  - 2 )  fo t / II(z + 2itv)~(t)l]~ + 71]~(t ) ] l~  = ]1~]1~ + ~ I~(~,~)l ~d~d~. 
P 
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Hence for 

4 
(8.4) p > 2 + 

(8.3) implies the apriori estimate 

(8.5) Ilu(t)llg _< - -  

Assume in addition to (8.1) that 

t2 

4 
(8.6) ~ �9 H~(~  d) w i t h p -  2 < 

( d -  2s)+ 

(the case of  equality p - 2 = 4/(d  - 2s) corresponds to the HS-critical case). 

Then there is always a local solution on a nontrivial time-interval [0, T*[, 

T* > 0 and 

(8.7) T* > c(II~IIH") 

in the subcritical case p - 2 < 4/(d  - 2@ For T < T*, this local solution satisfies 

(8.8) 

and 

(8.9) 

IIDSulIL~If+2)/~[O,T] < c~ 

IlulIL~,,IO,Ti < ~ for 2 < q _< 2(d + 2)/(d - 2s). 

In particular, for T < T*, 

(8.10) IlUIIL~,dO,TI < oo; 

and (8.5) implies therefore that 

(8.11) I[?.tllL~,t[0,T.[ < OO 

with a uniform bound in the subcritical case by C(IIr IIX~IIL2). 

For d = 1, 2, in the subcritical and critical case, one may then show that the 

local solution extends to a global one, i.e., T* = oo, 

(8.12) IIDgullL~!f+2)/,(~) < ~ ,  

(8.13) sup IlOgu(t)ll < oo, 
tER 
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(8.18) 

Hence 

and scattering in H'-space 

(8.14) Ilu(t) - e"~a+(~) l ln ,  ~-'~ 0. 

The same statement holds for d = 3 when p < 6. 

To derive these facts from the integral equation, one mainly needs an apriori 

bound on 

(8.15) IlullL(:,?~(-~-~ < c. 

We sketch the argument, distinguishing d = 1, 2, 3. 

(i) d = 1. 

From the integral equation, we get 

s t 1 p-1 (8.16) Ilu(t)llo~ < I l e " "~ l l ~  + it _ ~_1~/2 Ilu(~-)llp_xdT, 

(8.17) I l e " "~ l l~  < Cltl-~/~ll~ll~ <- CIt1-~/211(1 + Izl)~'l12. 

The second term in (8.16) is bounded by 

/; 1 1 
+ + <- Ct-1/~ + Jt - -  7"[ 1/2 T 2 ( p - ~ / ( p - 2 )  dr. 

JO A1 AI 

Ilu(t)llo~ < Clt1-1/2 + C(1 A Itl) -(ap-l~ 

and, in particular, bounded for t away from zero. 

By interpolating (8.10), (8.18), it follows that (8.15) holds for t away from 0. 

By (8.9), this establishes (8.15). 

(ii) d = 2. 

We proceed similarly, but replace the s  by the s  for large q. 

(iii) d = 3, ~ < p < 6. 

Choose r < 6, r ~ 6. From the integral equation, it follows that 

f0 t 1 Ilu(~)ll~(~_l)d- (8.19) Ilu(t)lt~ <_ tle"A~ll~ + It - "r130/2-1/~) 

where 3(1/2 - l / r )  < 1; and since r '  > 

(8.20) Ile"A~oIl~ < Cltl-3('/2-1/~)lholl~ ' < Cltl-3(~/2-1/~)1l(1 + Izl)~ll2. 

Since p < 6, one may choose r < 6 with r'(p - 1) < p. The second term in (8.19) 

then admits a bound 

r0 s 1 + [ + < Cl t l -m/2-1 l~)  + lt_,l~(~/:-,/,) ,-~c,-,+:/,)/(,-,)dr; 
J0 J t A 1  A1 
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hence 

(8.21) Ilu(t)ll. < Girl -30/2-1/~)  + c(1 A t) -(p-3+2/~)/(p-2) 

(8.22) ~(p 2 ) < 6 ,  

then (8.15) may again be deduced for t away from 0 by interpolating (8.21), (8.5). 
Thus, by (8.9), this establishes (8.15) in the case p < ~ .  

To proceed when p > ~ is a bit more complicated. Fix to > 0 such that on 

[0, to] wellposedness holds and, in particular, 

(8.23) 

and 

(8.24) 

Let 

(8.25) 

From the integral equation 

L:x~ 

Ilu(t)llH, < C for t <_ to. 

3 ' = 3  5 ( p - 2 )  >0 .  

u(t) - ei(t-t~ + i d(t-~)A(ululP-2)(7-)dr 

we get from H61der's inequality 

(8.26) IID~u(t)ll,- <_llD~[d(t-t~ 

f t l  1 p-2 (8.27) + it - ~-I 3(:/z-:/T) IlD1u(~-)ll~ Ilu(r)tl(p_2)~/(~_~) a~-. 

Since 2 < (p - 2 ) r / ( r  - 2) < p, interpolation yields 

~j 1 I ilOZu(~_)ll.d~_ (8.28) (8.27) < C I t -  "rl3(t/z-:/") 7-2(P-41"')I(v-2) 

Since 3(1/2 - 1/r )  < 1, one may restrict t to a nontrivial interval [to, tt] such that 

(8.29) 1{(8.2S)llLs(,-~)/=tto,t,l <_ o(1)llD1ullz~(o.T~)/~L:. 

and u E L~, t for t away from 0. 

I f  we assume 
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Then, from (8.26), (8.27), the definition of~/(8.25) and (8.24), it follows that 

(8.30) <_ CIIOg[ei(t-t~ Do/~ 

<_ Cllu(to)llH~ < c .  

From (8.25), (8.30) 

(8.31) 

(8.32) 

IlullL~<,~-=>/=E,o,,lj < c ,  

Applying the integral equation, one may then extend (8.23), (8.24) to [0, tl]. By 
iterating the procedure any finite interval may be covered. 

To establish (8.15) for t E ~,, replace to in the preceding by a sufficiently large 

time such that the keme! 

1 
(8.33) tt - ~-I 3<x/'-1/~)1~12<p-'/~'~/c'-~> Ir,,>,o 

in (8.28) has a small norm acting on L 5(p-2)/2 [to,~ [. One then gets 

(8.34) IlOlutlL~o, Tg?/=L= < c 

and (8.15) on [to, oo[, completing the argument. 
In the subcritical case, bounds are uniform. 

9 E s t i m a t e s  b e l o w  e n e r g y  n o r m  

We next consider the IVP 

~ iu t  - ~ u  + ulul 2 = 0 

(9.1) (u(0)  = r e g ' ,  s < l  

where r is general (not necessarily small) data. We will first carry out the analysis 
from [132] related to the 2D NLS 

(9.2) Ju t  - , x u  + ulul 2 = 0 

to the 3D setting of(9. I). Results of this type may be expected in any H 1-subcritical 
situation (p < 6). As in [B2], the cubic nonlinearity permits us to rely on a fairly 
straightforward quartic Strichartz-type inequality, however. 
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I m p r o v e d  S t r i c h a r t z  i n e q u a l i t y  

(9.3) 

and 

L e m m a  5 Assume 

suppr C B(O, 2M1)\B(O, M1), supp~2 C B(O, 2M2)\B(O, M2) 

Then 

(9.4) 

Proof.  

MI < M2. 

c M 1  
II(eit~r162 ~ -A-~i-~11r 11r 

xva 2 

Since, from Strichartz' inequality, 

II(e"Ar162 _< I1~"Ar Ile"Ar ___ CIIr162 
< C(M1M2) 1/4 11r 11r 

we may assume M~ << M:. 

Write then 

From Parseval's identity and Cauchy-Schwarz, it follows that 

11(eitA~)l)(gitA~32)1122 = I'.] d~dA t'.] ~ 1 ( ~ 1 ) ~ 2 ( ~ - ~ l ) ~ 0 ( l ~ l l  2 - ~ - I ~ - ~ 1 1  2 - )~)d~ 1 2 

11r162 / ~0(l~112 + I~ - ~al 2 - )~)d~l 

< Mx 2 2 2 
~ M2 11r162 

which proves (9.4). 

Recall the definition of  the spaces X,,b = Xs,b[1] (I = time interval): 

( f  ,1/2 II~,llx..,tz] = I~(r A)12(x + 1r 1 + I~ - r (9.5) 

provided 

(9.6) u(x, t) = f (~(~, A)ei(~'~+~t)d~dA for t �9 I 
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(in fact, in (9.5) we take the infinum over representations (9.6)). 

From (9.4) one easily deduces 

C o r o l l a r y  6 For 

(9.7) 0 _< p < �89 

(9.8) l ID~(u l  ?-z2)[12 ~_~ ClI'U'l [/X�89189 1/?-s �89 

1 < <0...{_1 Assume ~ _ p $, 0. _< 1. Then 

(9.9) 

10  

Let r 6 H ~ and decompose 

IID~(u~2)l12 ~ CIl~xlls �89 Ilu211g +�89 

D e c o m p o s i t i o n  o f  the data 

r = r + r 

and 

(10.1) 

Hence 

(10.2) 

Consider the IVP 

(10.3) 

for t ~ I = [0, 6]. 

Estimate 

(10.4) 

where r = s r162 

( s > ~ )  n ( r  IVr ~ + ~  1r 4<~,o  �9 

{ i72o - Auo + uoluol 2 : 0 

~o(O) = r 

3/lo . ~  III ~/~ sup IID~/l~ 

< 1II1/511r II ,.~ 0 Ho/lo 

Take 

(10.5) 

so that by (10.4) 

(10.6) 

III = 6 = No (1-8/~-, 

3/10 ei tA ]ID~ ( r = o(1). 
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Write the integral equation for uo, 

// (10.7) uo(t) = eitar + i ei(t-')a(uoluo[2)(r)dr. 

Hence, from the decay and Young's inequality 

(10.8) 3/lo iID~ UOIIL~L'd'[ZI 

287 

_ 3/lO irA I f 0 '  It--T] 3/51 llD3/l~176176176 L~[I] <IID~ (e r 

1 
< o(1) + f It - rl z/5 IID3/l~176176 Ilu~ L~tzl 

3/10 2 < o(1) + IIO~ uollL~Ls177 

Also 

D3/lO (10.9) IluollLLtz] < II �9 UOlIL~L:~ �9 

Substituting (10.9) in (10.8), we obtain 

3/10 I[D~ uOllL~L~O/~[ii = o(1) (10.10) 

and 

(10.11)  IluollLL[I] = o(1). 

From I1r < c ,  I1r < No ~-8, (10.7) and (10.11), one may further deduce that 

IINolllxo,�89 < 211r < c (10.12) 

and 

(10.13) 

(we assume III _< 1). 

Illuolllx,,~+ii] ~ 211r ~ N~-" 

11 E s t i m a t e s  r e la t ed  to the  d i f f erence  e q u a t i o n  

Writing u = uo + v, consider next the difference equation for v 

(11.1) { i6-~v+21u~176176176 = r 
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and write 

(11.2) v = eitZXr + w.  

Recall that 

(11.3) llr - c, l{r < No 8 

By (i 0. I I ), (I 1.3) and the integral equation form of (I I. i), we {get 

(11.4) Ilvllxo,�89 < N o  s + ll~{Ixo,�89 + o(1)ll~llx�89189 + ll,ll~�89189 

Ilvllx �89 < c  + ll.llx.,�89 [o(1)-I-o(1)llvllx�89189 + llvll~�89189 
V 2 (11.5) + II~ollx ,�89189189 + II IIx�89189 

while from interpolation (we assume s > 1) and (10.12), (10.13) 2 

U 1- - s  s A T ( l - - s )  8 Iluollx.,�89 -< II ollxo �89 Iluollx,,�89 5- 'o  , 

1 1 1 

(11.6) II,llx�89 �89 -< II,llxo�89 IIx �89 

Thus (11.4)-(11.6) imply that (for s > l /v/2) 

(11.7) 

(11.8) 

Next, estimate 

II"llXo, �89 < No s, 

II~llx,,�89 < c.  

IIDxwlIL~~ 

_< sup f I<eirAr D~[2luol% + 2u2o~ + 2~oV 2 + +2uolvl 2 + v}vl2]>ldT 
I{r ,1I 

(11.9) 
f I<W, Dx[21~,ol~v + 2~,gv + 2~o, 2 + 2uolvl 2 + ,L,12]>ldt. _< s u p  

llWtlxo,�89 d 

Fix p = 1 /2 - .  Then by (9.8), (9.9), (1.1.7) and (11.8) we have 

J JJ JJ 

(11.10) 

f lWl I~oI i~l ID~uol ~ llWll~o/~ II~olI~o ll~lho/~llD~oll~o/~ 
5 II~olI~-~,�89247 II~II~o,�89247 
(10 .13) , (11 .7 )  

< N 2 - 3 s  



SCATTERING IN THE ENERGY SPACE AND BELOW 289 

and 

(11.11) 

IOf(Wuo)l IDX-p(Vuo)l 5 IIDg(Wuo)ll2 IlD~-P(vuo)ll2 

5 [luollx�89189189189 Iluollx, �89 
s No 2-3~+ . 

Hence 

(11.12) 

and, similarly, 

(11.13) 

f l<W, Dx(Juol2v)>l < N~ -as§ 

/ [<W, Dx(u2o~))[ < No 2-3s+. 

For the v-quadratic contribution we have, applying (9.8) and (9.9), 

(11.14) 

I(W, D(~ov2))[ < /IWl Duo[ Ivl 2 + IID"(W~o)ll2.iIOl-"(v=)ll2 

< c11~ollx,,�89 ilvll~�89189 + lluollx�89189 Ilvllx �89 llvllx~._.,�89 
< N~ -3s+ 

by (10.13), (11.7) and (11.8). 
Similarly, 

f [(W, D(uolv[2))l < N 2-3~+. (1 1.15) 

For the v-cubic contribution 

(11.16) 

/I(W, D(vlvl2))] < /[(W, (Dv)v~)[ + I(W, vD(Iv]2))! 

< IlD~-�89 IID~-qv2)lt= + IID~-�89 JlD~-'(lvl=)ll= 
< IIvllx. �89 Ilvllx �89 Ilvllx=<,_.> �89 
< No 2-38, 

applying (9.9) and (9.10). Recall that we have assumed that s satisfies 

1 2 
(11.17) s > ~ > ~. 
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Thus, from (11.9), (11.12), (11.13), (11.14), (11.15) and (11.I6) we have 

(11.18) sup Ilw(t)llm < N 2-a~+. 
t i l l  

At time tl = 6, we then write 

U ( t l )  : u 0 ( t l )  + (ei'XA~bo) 4 - w ( t l )  

~- •1 -~-ff)l 

with 
g 
Jr = uo(ta) + w(t l ) ,  

(1 1.19) / ~-31 = e i t l A ~ ) 0 "  

Thus the pair (r r is replaced by (r r 
r is similar to Co- 
The Hamiltonian increment when replacing r by Cx is bounded by 

IH(r - H(r =IH(r - H(uo( t l ) ) l  (from Hamiltonian conservation) 

_<(lluo(tl)llu, + Ilw(h)llu,)llw(h)llw 
+ (l[uo(tx)l[6 + Ilw(tx)[16)3l[w(tl)[[2 

< r~rl--s ~r2--3s+ ~V'3(1--s)--s 
Iv 0 Iv 0 -i- �9 "0 

(by (10.13), (11.2), (11:7) and (11.18)) 

(11.20) < N 3-4s+ �9 

By (10.5), iteration of the procedure leads to the condition (cf. [B2]) 

T r~r9/2(1-s) Ar3-4s+ A/-2(1- s) 

11--138 
T N  o ~ <1.  

Hence, we require 

(11.21) 

and take 

(11.22) 

11 
8 > - -  

13 

No = N o ( T )  = T , 3 / - ~  +. 

Our conclusion is thus 
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Proposition 7 The IVP 

l iut -- Au + u l u l  ~ = o 
(11.23) [u(O) = r e H ~ 

11 and the solution u has the form is globally wellposed for s > 
, 2(t-~) 

(11.24) u ( t ) = e i t n r  IIv(t)llm < ( 1 +  t)l~.-~,+ 

12 S c a t t e r i n g  b e l o w  e n e r g y  n o r m  

Recall first the Morawetz inequality 

(12.1) 

/o /of ' 

T ~ IVul2- U'dzdt  + dzdt < C sup Ilu(t)ll~,/= lu(O,t)12dt + - 
r O<t<T 

In this section, we restrict ourselves to the radially symmetric case. 

L e m m a  8 Ire is radially symmetric 

(12.2) suprlr < IlCllm/2+. 

P roof .  Set v = re.  Then 

['VllL~a.) ( f 'dP]2r2dr) 1/2 = -I[r 

and 
r 

(12.3) IIv'llL=<d.) <-- IlrC'llL=(d./ + IIr ~ I1Vr + I-7-1 2" 

To estimate 11r write 

K dyadic 

By Fourier decomposition, denoting 

eL = f r eiZ~d~ 

we may write 

flxi~K-1 [~912 5 f~z,~K-1 ] L~<KCLt2 nt-L~>Kf~zt~K-1 '~)L'2 
< E log K-311r + y ~  -2 2 L IlVC~II2- L<K L>K 
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Thus 

K2 [r < Z log ~][VCL]]2 -I- Z ]]VCL]]2' 
I~K-1 L < K  L > K  

and summing over dyadic K values (K = 2 k, k c Z) yields the bound ~ n dyadic l] VCLI] ~. 
Hence 

r 
IXl 2 

(12.4) 

From (5.3), 

(12.5) 

Estimate 

Hence 

Ilv'llz~(d~) < I[r 

f 
~i, 2 

] Ivl2(rl) -IvF2(r2)[ ~ [vl [v'l ~ Ilvl12 IIv'll2 < 11r I1r 
1 

Jv(r)l 2 < 11r + I1r I1r 

and the lemma follows from interpolation. 

T h e o r e m  9 Consider the IVP in 3D 

~ iu~ - / X u  + ulul 2 = o 
(12.6) 

u ( o ) = r  s, s > ~  

where r is a radial function. Then there is global wellposedness and for  all time 

nu(t) - eitAr < C(IIr 

Bl(t) = sup Ilu(t')- e"'Ar 
O<t '  < t  

Hence, from (12.1) and (12.2), 

(12.9) lulSdxdt < sup Ilu(t)llazl/~+ < C(BI(T) a/2+ + 1). 
t < T  

We now recall the proof of Proposition 7. 
Fix a cutoff No and define 

and 

(12.7) 

Proof .  Denote 

(12.8) 
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Now consider a sequence of times 

0 = t o  < t l  <t2 < ... < t j  =T,  (12.10) 

where for each time t 5 

(12.11) 

with 

(12.12) 

(12.13) 

(12.14) 

u(ts) = r + r 

H(r < H(r + No 3-48+, 

tlCjll~ < c,  H(r 5 N~ (1-8), 

Cj = e-~Ar 

In the proof of Proposition 7, we chose Ij = [t j, tj+l] with 

(12.15) Ibl = No 9/m-~)- 

(and, in particular, bounded by 1). 

Considering the solution uo of the IVP on Ij 

/ i~0 - Auo + uoluol 2 = 0 
(12.16) 

uo(ts) = r 

the choice (12.15) implies, by condition (12.13), that 

(12.17) I]u011n~,,,[b] = N~ 

Assume I 5 such that (12.17) holds. Assume also 1151 <_ 1. We get from the integral 

formula 

that 

(12.18) 

hence 

(12.19) 

Also 

(12.20) 

uo(t) = e " % j  + i e~(~-')A(@,12)(T)d~- 

2 IID~uollz?/~[i~l 5 I[r § IID~ollz~O'ri,.,. ..111uollLg,,[~l, 

N O  �9 IID~ol15,o{~[i~] 5 CtlCjlIH' 5 ~-~ 

3/5 1 - s  
L J J  N ;  �9 IluollL'2,[zjl 5 IID~ uollL:OL:O/~ri~l < 
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Furthermore (since we assume IIyl ~ 1), 

(12.21) IluollXo.�89 < c, 

N~ . (12.22) Iluollx,,�89 < x-s 

Writing u = uo + v, where v satisfies the difference equation on I t with initial value 

(12.23) v( t j )  = Cj, 

the bounds (11.7), (11.8) hold again. Thus 

Ilvllxo,�89 j < No -~, 

Ilvllx �89 I < c .  

(12.24) 

(12.25) 

Also, writing 

(12.26) 

one has (11.18) 

(12.27) 

Write 

(12.28) 

with 

(12.29) 

(12.30) 

v = ei( t - t~)ar  i + w, 

Ilwl[G,�89 < No 2-z~+. 

u(tj+l) = r162 + r 

r = uo(t j+l)  + w( t j+l ) ,  

r ---- eUj+~hr 

the same conclusion leading to (11.20) implies that 

(12.31) [g ( r  - g ( r  ~< No a-4~+. 

If  ]Ij[ > 1, one starts by rescaling to a time interval o f  unit length, considering 

(12.32) f i (x , t )  = u x ( x , t )  = Au(Ax,  A2t) (A = 11~-1-1/2). 

Letting I 5 = [0, tt] we then have the decomposit ion 

(12.33) ~2(0) = r + ~o 
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with 

(12.34) 

(12.35) 

(12.36) 

(12.37) 

11r = x-1/211r < x-t /2 ,  

I1r = xl/211r ~< ~/2N~ -~, 

This gives (condition (12.17) remains preserved) 

g(1) = '5o(1) + ~(1) + eiA(bo = ~51 + eiZX(bo (12.38) 

where 

(12.39) 

(12.40) 

IIz~(1)llH1 < N20-z'+ A a/2, 
H(r < H(r + AN 3-4"+. 

Hence, scaling back, we get again 

(12.41) 

with 

(12.42) 

u(tl) = r + eitlAr 

H(r < n(r  + N~ -4"+ 

Since d is the number of  steps (= number of intervals), one needs to fulfil the 

condition 

(12.43) CJN3o -4"+ < N 2(1-s), 

where the constant C depends on [[r 

One may then conclude that 

(12.44) sup Ilu(tj) - e " 'Ar  = sup IICjlIH' < N~ -s 
j<J  j<J 

and hence 

(12.45) BI(T) < N~-" + Hr ,-,N~I-'. 

It remains to derive an estimate on J from (12.9) and (12.17). 

Since on Ij 

U ~ U0 no- ~3, 
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we have 

(12.46) 
II',.,IIL;.,L_,-~j ~ II~oll~;.,t_,-jl- Ilvll~;,,t~-,j 

(12.17),(12.24), (12.25) I 
> N ~  ~  

Consequently, by (12.9) and (12.45), 

(12.47) 

J - 1  

JN~ < ~ll~ll~:,tz~l < CBz(T) 3/2 + C  < CNo (1-8), 
j = 0  

J < CNo (1-8)+, 

provided (12.43) holds. 
Substituting (12.47) in (12.43) gives the condition 

hr2 (1 - s )  (12.48) CNo (1-s)+3-48+ < "0  

satisfied for 

5 
(12.49) s > 

and a choice of No only depending on the data Ilu(0)lln,, not on T. 
This proves Theorem 9. 
From (12.9) and (12.7), we also get 

/:/  (12.50) lul5dxdt < c~. 

Since from the integral equation, for I = [to, tl], 

(12.51) 

s 2 IlDgUl[LlO?[zt < IIDg(e"Au(to))IILIo/~ -4- IID~ulIL??LZlIlUlIL~, ,~[~I 

llD~ull If 112 < C q- L,0/3[I] U L~ ~[I] 

by (12.7), partitioning time as ~ = I.J 1,~ into finitely many intervals 1~ satisfying 

(12.52) IlulILLII~1 = o(1) 

(which is possible by (12.50)) permits us to conclude that 

(12.53) 

By writing 

D~u ,0/3 C(IIr II :,, IIc~,, < 

fO (X~ 
f~+~ = qo + i e--irA(ulul2)(T)dT 
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it follows that 

I lu(t)- ~"A(n+~)IIH, <_ rl ~ e--~A (ulul2)(T)dT 
,It H 8 (]2.54) 

< IID':ullL'~ u , ,  o+] ~ 0. 

Consequently, we have 

T h e o r e m  10 In the context o f  Theorem 9, there is also scattering in H'-space. 
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