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I n t r o d u c t i o n  

The present paper was written in 1945 and completed by 1947 (see the 

abstract [3]) but for no good reason has so far not been published. It  appears 

now in a somewhat revised and improved form. 

The paper is divided into two parts. The spline functions for equidistantly 

spaced knots were introduced in [9]. In Part  I we discuss such functions, of  
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degree n - 1, for arbitrarily spaced knots. The possibility of such an ex- 

tension was already implied by Curry in his review [2] of Schoenberg's paper 

[9]. 
The so-called fundamental spline functions are introduced and shown 

to be bell-shaped (Theorem 1). They are also shown to be the projections 

onto the x-axis of the volumes of appropriate n-dimensional simplices (Theo- 

rem 2). This geometric interpretation allows us to conclude, by means of 

Brunn's theorem, that the fundamental spline functions are logarithmically 

concave (Theorem 3). They are also shown to form a basis for all spline 

functions of degree n - 1  and given knots (Theorem 4). 

The present interest in spline functions is one of the reasons for the pub- 

lication of this paper at the present time; in fact Theorem 4 is quoted and 

used in the paper [14] which is about to appear. An extension of the theory 

to the case of multiple knots (Section 3 and 4) has recently been added. This 

extension (Theorem 5), in particular Corollary 1 of  Section 4, allows us to 

generalize to the case of multiple nodes the fundamental results of spline 

interpolation. This generalization of spline interpolation was stated in [14] 

and was applied to the construction of best quadrature formulae in the recent 

paper [15]. 

The fundamental spline functions M,(x) are frequency functions, which 

means that they are non-negative and their integral over the reals is unity. 

In Part II it is shown that the P61ya distribution functions are the only possible 

limits of a convergent sequence of distribution functions of the form 

X 

f M.(t)dt, as n--* co, 
- - 3 0  

and conversely (Theorem 6). This was actually the way in which tile Pdlya 

frequency functions were originally discovered, although this approach is 

not mentioned in any of the previous papers of this series ([10], [11], [12]). 

Theorem 6 adds a fourth to the three previously known characterizations of 

Pdlya frequency functions (See Section 5). Finally, it is shown that the fun- 

damental spline functions themselves converge to the Pdlya frequency func- 
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tion of  the limit distribution (Theorem 7). The proof  of  Theorem 7 is shown 

to depend on a limit theorem (Theorem 8) concerning the class ~a2, of  lo- 

garithmically concave frequency functions. A proof  of  Theorem 8, together 

with further extremum properties of  the class ~ z ,  will be published elsewhere. 

I. ON SPLINE FUNCTIONS 

1. The  f u n d a m e n t a l  sp l ine  f u n c t i o n s  M.(x). Let 

(1.1) �9 . .  ~ X _ 2  ~ X _ I  ~ . X o ~ X  1 ~ . . .  ~ X v ~  . . .  

be a sequence of reals, such that xv--+ + oo as v--+ _+ oo, and let n be a na- 

tural number. By a spline function S,,(x), of order n, or of  degree n - 1, 

having the knots (1.1), we mean a function of the class C"-2( - oo, oo), such 

that in each interval (xv,xv+l) it reduces to a polynomial of  degree not ex- 

ceeding n - 1 .  S,(x) will also be referred to as an n-spline. 

A remarkable example of  an n-spline appears in connection with the integral 

representation of divided differences. We write 

(1.2) x+- 1 

and define 

x " - I  if x > 0, 

0 if x < 0 ,  

(1 3 )  M.(x;y) = n ( y  - x)'~_- 

Finally, we consider the divided difference of order n of  the function (1.3) 

with respect to the variable y and based on the values y = Xo, X x, . . . ,x , .  Using 

Steffensen's notation, we denote this divided difference by M,(x; Xo, x l , . . . ,  x,,), 

which we will often abbreviate to M,,(x) or even to M(x).  In terms of 

~o(x) = ( x -  x o ) " ' ( x -  x,) ,  its explicit expression is 

n ( x v  x)+  -1  
(1.4) M,,(X;Xo,'",x,,) = 2L 

v:o ~o'(xv) 

Let us look at this function more closely. By (1.2) and (1.4) it is clear that 

M,(x) is an n-spline having the knots X o , ' " , x , .  Moreover, it evidently van- 
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ishes if x > x, .  However,  it vanishes also if x < x 0, for then we may remove 

in (1.4) the subscript " + "  and the sum then vanishes as a divided difference 

o f  order n o f  a polynomial  o f  degree n - 1 .  

By a fundamental  theorem of  Peano (see [4, Chap. I I I ,  Sec. 3.7]) applied 

to divided differences the following holds:  

l f  f ( x )  ~ C" then 

3r n 

1 f M , ( X ; X o , ' "  , x . ) f (" ) (x )dx  (1.5) f ( xo ,  x l ,  ... , x ,)  = -~. 

XO 

In particular, if f ( x ) =  x" we obtain 

(1.6) 

oo  

f 
- - 0 0  

M,, (X;Xo, . . . , x , )dx  = 1. 

Further  properties o f  M ( x ) =  M , ( x ; x o , . . . , x , )  are as follows.(1) 

T h e o r e m  1. The  v th derivative M(V)(x) ( v = 0 , . . . , n - 2 )  has exact ly  v 

dist inct  s imple  zeros in the interval (Xo,X,) .  In part icular  M ( x ) > 0  in 

(Xo,X.). 

Proof. By (1.4) 

M(x)  = n(x,  -- x )" -  1 /~ ' ( x , )  if x ,_ 1 < x < x,, , 

(1) F r o m  L e m m a  6 (Section 6 below) we easily find (by expanding  in powers of  s - t i )  

for the m e a n  and  the  s t anda rd  deviat ion of  the  f requency funct ion  M ( x )  = Mn(x;  x0, �9 xn) 

the values 

cO 

~, f xM(x)dx 1 
n + l  o 

--GO 

0O 

f 1 a z = (x - 1~OZM(x)dx = ( n ~  1)2(n + 2) i>j 
- c9  

( x  i - -  x j )  2 . 
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hence M(x) > 0 in this interval. We can therefore find three increasing values 

of  x ,  the first and last being x o and x , ,  such that the corresponding values 

of  M(x) have the signs 0, + , 0 .  By the mean-value theorem we can find four 

increasing values of  x ,  again Xo,X, being the extreme ones, such that the 

corresponding values of  M'(x) have the signs 0, + ,  - ,  0 (one change of 

sign). Continuing in like manner we finally obtain n + 1 increasing values 

of  x ,  such that the corresponding values of M~ have the signs 0, + ,  

- ,  + ,  - ,  .-., 0 (n - 2 changes of  sign). On the other hand, differentiation 

of (1.4) gives 

M("-2)(x) = ( -1)  "-2 n! s (x~- x)+ 
o ~o'(xv) 

showing that the graph of this function is an ordinary (continuous) polygonal 

line having vertices at x = Xo, . . . ,x ,  and vanishing at the extreme points. 

As seen above, this graph must exhibit at least n - 2  changes of  sign. From 

this we easily conclude that the elements of  the sequence M~"-2)(xv), 

(v = 1, .-.,n - 1) must be all different from zero and alternate in sign. There- 

fore M~"-Z)(x) has exactly n - 2  simple zeros in (Xo, X,). The theorem now 

follows easily: We have seen above that M Cv) has at least v distinct zeros in 

(x o, x,) .  I f  it had more, or if some of them were not simple, then Rolle's theorem 

would imply that M ~"- 2)(x) has more than n - 2  zeros, which we have shown 

not to be the case. 

2. A g e o m e t r i c  i n t e r p r e t a t i o n  of  M,,(x). According to Hermite and 

Gennochi (see [8, p.16]) we can write 

(2.1) f (xo, . . . ,x , )  = f ... f f(")(Xoto + ... + x,t.)dt x . . .dt,  
rn 

where to = 1 - t x . . . . .  t, and the integration is performed over the simplex 

z ,: t l>=O,. . . , t ,>=O, 1 -  ~tv>=O. 

This leads to the following interpretation of M.(x) which is hard to forget: 
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T h e o r e m  2. The  f u n d a m e n t a l  spline funct ion M , ( x ; x o , . . . , x , )  is the 

linear densi ty  funct ion obtained by projecting orthogonally onto the x-axis  

the volume o f  an n-dimensional  s implex  a , ,  o f  volume unity ,  so located 

that its n + 1 vertices project orthogonally  into the points Xo,Xl , . . . , x , ,  o f  

the x-axis ,  respectively. 

P r o o f :  Let R" be the space of points X = ( x , x ' , . . . , x  (~-1)) which is 

Cartesian and referred to orthogonal axes obtained by adjoining to the x-axis 

n - 1  additional axes for the variables x ' , . . . , x  ~"-~). Denoting by ~(x) 

(x o < x < x,) the linear density described in the theorem we obtain, by Ca- 

valieri's principle, the relation 

Xn 

t~n xo 

Let X o , X a , . . . , X , ,  be the vertices of  a ,  having coordinates given by 

x v  = ( x v , x ' ~ , ' " , x ~ " - ~ ,  (v = O , . . . , n ) .  

In the n-fold integral (2.2) we change to the new variables of  integration 

t l , . . . , t ,  defined by the relations 

x = xo(l - ]~t~) + x l t  1 + . . .  + xnt n 
(2.3) 

. . ( n -  1 ), X f"-l)  = X~o"-l)(l -- E t~) + x]"- ' ) t l  + "" + •n "n" 

The absolute value of the Jacobian is found to be 

] O(x,. . . ,x 0'-1~ I = abs. val. 
~3( t ~ , . . ., tn) J 

XI  - -  X o ~ X 2  --  X o ~ ' " , X n - -  Xo [ 

I 
x ;  - Xo, " ' ,  x', - X'o I 

I 
I x~U " -  x~; -'~, ...,x~, " - ' -  X~o"-'l 

~- nIvola, ,  = n I. , 
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In view of the first relation (2.3), our integral (2.2) is transformed into the 

integral on the right side of (2.1) multiplied by n!.  Thus (2.2) yields the re- 

lation 

xn  

f ~(x)f(")(x)  dx 

XO 

= f ( x o , x l ,  . . . , x . ) "  n! 

which is valid for all f ~  C". Using the relation (1.5) and the continuity of 

�9 (x), we conclude that q~(x)= M,(x ) ,  which proves our theorem. 

The above discussion implies that M,,(x)= M,,(X;Xo,. . . ,x ,)  is equal to 

the ( n -  1)-dimensional volume of the intersection of the simplex a, with the 

hyperplane orthogonal to the x-axis at the point x (Xo < x < x,). Since a,  

is a convex body we may now use the famous theorem of H. Brunn (see 

[1, p. 71]) according to which 

( M.(x))  t/("- 1)is a concave function of  x in x o <= x < x . .  

Writing 

(2.4) 

we conclude that 

(2.5) 

For the function 

g(x) = (M.(x)) ~ / ("-"  

g ( x ) > O ,  g" (x )<O i f x  o < x < x , , .  

1 
------~log M,(x) (2.6) h(x) = logg(x) = n -  

we now obtain 

(2.7) h'(x) = g ' (x ) /g(x) ,  h"(x) = (g"(x)g(x) - (g'(x))2)/(g(x)) 2 < O, 

where the last inequality follows from (2.5). In view of (2.6) we have just 

established the following 
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Theorem 3. The function 

(2.8) log Mn(X ; x0, "" , Xn) 

is concave in the open interval (XO,Xn). 

It is, of  course, desirable to give an analytic proof  of  Theorem 3 which 

does not use the geometry of convex domains and Brunn's  theorem. This 

can be done by means of the variation diminishing properties of  the class ~'2 

of  Section 8 and will be done in a future paper which will also contain a proof  

of  Theorem 8 below. 

3. S p l i n e  functions with multiple knots.  I t  is easy and important  

to extend the above theory to the case when some of the knots (1.1), which 

so far were assumed distinct, become coalescent. The meaning of multiple 

knots, a priori devoid of sense, must be defined as follows. 

Def ini t ion  1. In (1.1) we assume that 

(3.1) X - -  1 < X 0 : X t ~ . . .  : X r _  l < X r ,  

while the spline function S,(x), of Section 1, satisfies the condition 

n - l - r  (3.2) S,(x) ~ C (x_ x, Xr). 

We then say that x = Xo is an r-fold knot of  S,(x) ,  or a knot of  multiplicity r. 

In particular, the case when r = n means that there are no continuity 

requirements whatever, at x = Xo, between the two polynomials defining 

S,(x) in the adjacent intervals (x_l,Xo) and (Xo, X,). The multiplicity r of  

a knot is therefore restricted by the inequality 

(3.3) I" < n, 

which we assume throughout this paper. 

We now generalize our class of  spline functions S.(x) by allowing in (1.1) 

any number of  equality signs subject to the condition 

(3.4) xv < Xv+n for all v. 
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Most of  our previous discussion remains valid: The formulae (1.4) and 

(1.6) still hold, but the right side of  (1.4) must be replaced by the expression 

for divided differences for multiple arguments. As an illustration, we mention 

the extreme case when Xo = xl . . . . .  x,_ 1 < x, = 3. From Newton 's  gen- 

eral interpolation formula we obtain 

(~ - Xo)"- I t~.- l~(Xo) + (4 - Xo)"f(xo,'", Xo, 3). f ( ~ ) = f ( x ~ 1 7 6 1 7 6  ( n -  1)! 

Equating its remainder with its familiar integral form we obtain 

(4 - X o ) " f ( x o , ' " ,  Xo, 3) - (n - 1)! (3 - x ) " -  xf~ d x .  

XO 

Comparing with (1.5) we obtain 

(3.5) 

(n(~ - x)"- l 
M , ( x ; x o , " ' , X o , ~ )  = (3 -- xo)" in (Xo,4) 

0 outside (Xo,~). 

M ( x )  is discontinuous at x = Xo and Theorem 2, which remains valid, shows 

that the entire base of  the simplex tr, projects into Xo and the opposite vertex 

into ~. Theorem 1 needs modification; it can be shown that its conclusions 

concerning the zeros of  M~V)(x) remain valid as long as these derivatives are 

continuous. 

4. The fundamental  n - s p l i n e s  f o r m  a bas i s .  We return for the 

moment  to the knots (1.1) and the n-splines which they define. The funda- 

mental n-splines having consecutive knots x~ ,x~+i , . . . , x~+, ,  will now be de- 

noted by 

(4.1) M v ( x  ) = M , ( x  ; x v, x v + 1 , ' " ,  x~ +,) .  

Their interest is due to the following 
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T h e o r e m  4. 1. I f  O < N < n and if S(x) is an n-spline having the 

knots 0.1)  and such that 

(4.2) S(x) = 0 everywhere outside ttle interval (Xo,XN), 

then 

(4.3) S(x) = 0 for all x.  

2. I f  N ~= n and (4.2) holds, then S(x) can be uniquely represented in the 

form 

N - n  

(4.4) S(x)--  ~, cvM~(x). 
o 

3. An n-spline S(x) vanishing if x < Xo can be uniquely represented in 

the form 

(4.5) S(x) = ~ cvM~(x). 
o 

4. Every n-spline S(x) can be uniquely represented in the form 

(4.6) S(x) = ~ c,M~(x), 
V = - - O 0  

where the c~ are constants, and conversely, any such series represents an 

n-spline. 

We shall not establish this theorem as it stands, but rather its generaliza- 

tion, Theorem 5 below, to the case of multiple knots. For this purpose we 

must now allow also equality relations between consecutive knots in (1.1), 

subject to the restriction (3.4). 

We shall assume that the knots (1.1) are located at the distinct points 

(4.7) . . . < y _ l < y o < y t < y 2 < . . .  (y,~++_~ as n--, + ~ ) ,  

where 

(4.8) y~ is a knot of multiplicity u~, (~i < n). 
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Our discussion requires a kind of "double book-keeping" where multiple 

knots (4.7) are also represented by the non-decreasing sequence {x~} with 

the correct multiplicities. To fix the ideas, we assume this representation 

such that 

�9 " , X  0 = Y o , X 1  = X  2 = " "  = X a t  = y l , X e ~ + l  = Y 2 , " ' '  

Thus in terms of the original sequence (1.t) the knots are 

( 4 . 9 )  " " < X _ ~ o + l = " ' = X o < X l = ' " = X a l < X a l + l = ' " = X ~ t l + ~ t 2 <  .., . 

Again, as in (4.1), we associate with the knots (4.9) the sequence of funda- 

mental n-splines 

(4.10) Mj(x) = M . ( x ; x j , x j + I , . . . , x j + , ) ,  ( -  oo < j  < oo). 

The generalization of Theorem 4 is as follows. 

T h e o r e m  5. Let S(x) be an n-spline having the knots (4.7), of multi- 

plicities as described by (4.8). 

1. I f  

N 

(4.11) s = ~ ~v< n 
1 

and 

(4.12) 

then 

(4.13) 

2. I f  

(4.14) 

S(x) = 0 everywhere outside the interval (Yl,YN), 

S(x) = 0 for all x .  

N 

s =  ]~ ~ v > n + l  
1 

and (4.12) holds, then S(x) can be uniquely represented in the form 



82 

(4.15) 

. 

in the form 

(4.16) 

. 

(4.17) 

P r o o f :  
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s - n  

S(x) = ~.~ c.imj(x ). 
I 

I f  S (x)= 0 whenever x < Yt ,  then S(x) can be uniquely represented 

S(x) = ~ c~Mj(x). 
1 

Every S(x) can be uniquely represented in the form 

S(x) = ~ r 
--(TO 

The four parts of the theorem are logically related in the order 

in which they are stated. 

1. Let us construct an S(x) such that (4.12) holds. By the continuity re- 

quirement (3.2), which defines the meaning of the multiplicity ~ of the knot 

y l ,  we conclude that 

S(x) = al(x - y, ) , -x  + a~(x - yl)  "-2 + ... + a2,(x - vl) "-~' in Yl < x < Y2. 

Proceeding in like fashion from each (Yi,Y~+ a) to the next, new terms are 

added, until we arrive at the expression 

�9 1 ~ N  

S(x) = • a ] ( x -  yl)"- '  + ... + ~, a ~ ( x -  yu)"-' if x > y N .  
i = 1  i = 1  

By (4.12) S(x) is supposed to vanish in this range, whence the identity 

�9 1 ~ N  

(4.18) ~, a~(x - y~)"-~ + ... + ]~ a~(x - ys) "-i = 0 for all x .  
i = 1  i = 1  

Conversely, an identity (4.18) implies an S(x) satisfying all conditions and 

defined by 

�9 1 ~N  

(4.19/ S(x)= ]~ a l ( x -  y,)"+-' + + ~, a~(x v ~"-' 
. . . .  . N . +  , 

i = 1  i = 1  

( - ~ < x < ~ ) .  
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Let us assume for the moment  a little more than (4.11), namely 

N 

(4.20) s = ~ ~v = n 
1 

and let us show that the identity (4.18) implies the vanishing of all coefficients 

a~. In other words, we have to show that (4.20) implies the linear indepen- 

dence of the n polynomials 

(4.21) 

(x - y~)"-~ (x - y l )  "-2 (x - y 0  "- '1 

( n - l ) !  ' ( n - 2 ) !  ' ' ( n - ~ l ) !  ' 

(x  - y=),,-1 (x  - -  y N )  n -  2 ( X  - -  y N )  n-ot~r 

( n - l ) !  ' ( n - 2 ) !  ' ' ( n - ~ u ) !  

To decide this point we expand them in increasing powers of  x and find that 

the n • n determinant of  their coefficients is (up to a positive numerical factor) 

equal to the determinant ~ having N groups of ~i rows each, the ith group 

being described by the formula 

(4.22) ~ = 

y7 -1 y7 -2 

(n -  1)!' (n-2)! '  
y7-2 y~-3 

(n-2)! ,  (n-3) ! '  

YT-" Y7 -~ ' -1 
(n -- ~xi)! ' (n - -~ i - -1) ! '  

0 

,0 

i = 1,2, . . . ,N .  

This is a generalization of  the Vandermonde determinant, to which it reduces 

if all the ~i are equal to unity. That ~ # 0 will now follow from the unicity 

of  the solution 

x n -  1 xn - 2 

(4.23) P ( x )  = A o (n  - 1)-------Y + Ax (--~_ 2)---'-~ + "'" + An-~ 

of  Hermite 's  interpolation problem ([5, p. 432]) 
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P(y~) = f(y~), P'(y,) = f ' (y~), . . . ,p~'-~)(y,)  = f~,-~)(y~) 

(i = 1 ,2 , . . - ,N;  % + ... + c~N = n). 

Indeed, the relation 9 - -  0 would imply the existence of a polynomial (4.23), 

P(x) 5 0 ,  having an cq-fold zero at x - - y i  (i = 1, . . - ,N),  hence a total of 

cq-- n zeros whose number exceeds its degree. Our assertion is therefore 

established if (4.20) holds. 

We now drop the assumption (4.20) and assume instead that (4.11) holds 

with the inequality sign. Given S(x) satisfying (4.12), we then add beyond 

YN additional fictitious simple knots Y,',+I,Y~,+2,"" in sufficient number to 

produce the previous case of the equality (4.20). By the previous case we 

now know that S(x) must vanish identically. 

2. We need the following 

L e m m a  1. I f  

(4.25) ~ +~2 + . . .  +0eN = n + l  

then the fundamental spline function 

(4.26) Ml(x  ) = M , ( x ; y l , . . . , y l , . . . , y m . . . , y N )  

is precisely of the continuity class C "-='-t in the neighborhood of the point 

X = Y i  ( i  = 1,---,N). "'Precisely" means that it belongs to no higher class. 

P r o o f :  The construction of M~(x) is a special case of our problem when 

we have equality in (4.14), hence (4.25). By (4.19) it appears that Ml(x)  must 

be of the form 

(4.27) M l ( x )  = a l ( x  - y 3 +  -1  + ... + a ~ , ( x  - y l ) +  - ~  

N a~(x yN) 771 + + a,N(x v ~"-'" . . . . .  .N.+ , ( -  oo < x  < oo), 

which expression should vanish identically on removing everywhere the sub- 

script " + " .  The resulting identity (4.18) now expresses the linear dependence 
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of the functions (4.21), and we wish to show that (up to a constant factor) 

only one such relation exists. This much is clear: In (4.27), or (4.18) we must 

have 

(4.28) a~, # 0 for v = 1, . . . ,N ,  

for if one were to vanish, a~, = 0 say, then we could diminish the multi- 

plicity cq (of the knot y~) by one unit and thereby fall back on the case (4.20) 

when we know that only trivial identities (4.18) are possible. Using (4.28) 

the same kind of reasoning shows that, up to factors, only one relation (4.18) 

exists. 
Finally (4.27) and (4.28) show that 

M ~ " - ~ ) ( y  v + O) - M~"-~v~(y v - O) = (n - a v ) ! a ~  # 0 (v = 1 , . . . ,  N )  

which proves our lemma. 

A proof of (4.15) under the assumptions (4.12) and (4.14), is now straight- 

forward. Indeed, observe that by (4.12) and (4.8) 

S ( x )  = ( x -  y l ) " - " ' c ~ ( x ) ,  (dp is a polynomial), 

in a right-neighborhood of y~. By Lemma 1 also 

M s ( x )  = c ( x  - y ~ ) , - , l  + higher powers of x - Yl, (c :~ 0), 

in a right-neighborhood of y~. We can therefore determine c~ uniquely so 
that 

S I ( x )  = S ( x )  - c l M l ( x  ) = ( x  -- yl)"-'~+lq51(x), (Yl < x < Y2)" 

However, again by Lemma 1, 

M2(X ) = c'(x-yl) n-~j+l  + . . .  (Yl < x < y 2 )  

and a unique c2 will produce 

S 2 ( x )  = S ( x )  - c l M l ( x  ) -- c 2 M : ( x  ) = ( x  - y l )  " - ~ +  2dp2(x), (Yl < x < Y2), 

and so on. 
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Two cases are possible: 

I. a2 + a3 + --. + aN < n .  The const ruct ion  may cont inue  unti l  we obta in  

(4.29) S , ( x )  = S ( x )  - c l  M 1  (x )  . . . . .  c , M , ( x )  =- (x  - y x) " -  ~ + tq6,(x), (Yl < x < YE), 

where t = a x + a2 + "'" + aN - n < cq. However,  S t ( x )  is a spline funct ion 

which may be thought  of, by (4.29), as having at x = Yl a kno t  of multiplicity 

at - t. But then the sum of all multiplicities of knots  of S t (x )  is 

( a t - t ) + a z + ' " + a N  = n 

and  by Case 1 of Theorem 5 we conclude that St(x) = 0 for all x ,  while t = s -  n. 

2. a 2 + a 3 + ... + a N > n .  In  this case we may surely proceed unti l  we 

reach 

s~,_ l (x )  = S ( x )  - q M ~ ( x )  . . . . .  % _  1M~ 1_ ~(x) = (x  - Y l ) " -  t4)(x),  

in Yt < Y < Y2, where ~b(x) is necessarily a constant .  But then, with an 

appropriate  unique % 

S , , ( x )  = S , , _ l ( x )  - c , ~ M , , ( x )  = 0 if x < Y2. 

F r o m  this point  we cont inue  with 

~2 
t . . . .  �9 

M . ,  + l ( x )  = M . ( x ;  Y 2 , " ' ,  Y2, Y3,'") 

using r ight-neighborhoods of Y2- We can surely con t inue  this successive 

subtract ion process unt i l  we reach the spline funct ion  

$ - - n  

ss_, ,(x)  = s ( ~ ) -  Z c j m j ( x )  
1 

and  we wish to show that it vanishes for all values of x .  

In  order to describe and justify the te rminat ion  of this process, let the in- 

tegers r ,  a and  fl be defined by the relations 
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~ , + l + ' " + a N < n + l < ~ + ~ , + 1 + ' " + c ~ N ,  

a + a , +  1 + . . . + a u  = n + l ,  

87 

(2 _-< r < N ) ,  

(0 < a < n) .  

The funct ions  S(x) ,  S , ( x ) , . . . ,  S , ,_  x(x) are near  the po in t  x = Yx o f  the con-  

t inui ty classes C "-~1-1, C"-=I,...,C "-2, respect ively .  Likewise S~i(x),-.., 

S~,+~2_1(x ) vanish for  x < Yz and  are near  x = Y2 o f  the cont inu i ty  classes 

C,-=2-1, C,-~2, "", C,-Z respectively.  F ina l ly  

G,+.. .+ . . . .  (x), &,+...+ . . . .  + , (x) , . . . ,&,+ . . .+  . . . .  +~+,(x) 

vanish for  x < y,  and  are  near  x = y,  o f  the con t inu i ty  classes 

C " - ~ ' -  ' ,  C " - ' ;  -.. , C " - ' ,  respectively.  

Observe now that  by our  defini t ion o f  r ,  ~ and/3  we have 

~ a + . . . + ~ , _ l + f l + l  = s - n .  

Also tha t  S~_,(x) is a spline funct ion which may  be thought  o f  as having at  

x = Yr a kno t  o f  mul t ip l ic i ty  ~ - 1. Thus  the  to ta l  sum o f  the mult ipl ic i t ies  

o f  its knots  is (~ - 1) + ~ ,+j  + ... + aN = n.  As  S~_,(x) vanishes outs ide  

(Y,,YN), we may  app ly  the  result  o f  Case 1 and  conc lude  tha t  &_n(X)= 0 
for  all  real x .  This settles the Case 2 o f  Theorem 5. 

3. The previous cons t ruc t ion  appl ies  with the difference tha t  it  cont inues  

indefinitely resul t ing in (4.16). Clear ly  Case 2 is a special case o f  this when 

the cj vanish for  sufficiently large j .  

4. To deal  with this last  case we need 

L e m m a  2. The fundamental functions 

(4.30) M _ , +  a(X), M_, ,+2(x) ,  ..-, Mo(x) 

are linearly independent in the interval ( X o , X l ) = ( Y o , Y 0  and therefore 

form in this interval a basis for n,,_~ .(2) 

(2) zt n_ 1 denotes the class of polynomials of degree not exceeding n - 1. 
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Proof :  

(4.31) 
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Let us assume that 

s(x) 
0 

~., c jMj(x)= 0 in (Yo,Yl) 
- - n + l  

and let us show that this implies that 

(4.32) c i = 0  ( j = - n + l , . . . , 0 ) .  

Consider the restriction of S(x) to the interval (Yo, + ~ ) .  By (4.31) this re- 

striction is a spline function vanishing everywhere outside the interval (x~, x,) 

provided that we define it as = 0 if x < Y0. It may therefore be thought of 

as an n-spline having at most n knots, namely xx ,x2, . . . ,x, ;  it must therefore 

vanish everywhere by Case 1 of Theorem 5. Thus (4.31) implies that S(x) = 0 

in ( y o , ~ ) .  Similarly it is shown that S ( x ) = 0  in the interval ( - ~ , Y 0 .  

Thus S(x)= 0 for all x and now (4.32) follows from the unicity in Case 2 

of our theorem. This completes a proof of Lemma 2. 

Let us finally consider an arbitrary n-spline S(x). Let 

S(x) = P ( x )  if Yo < x < Yl ,  (Pen, , -1) .  

By Lemma 2 we can write 

which implies that 

0 

P(x) = E cjMj(x) 
- n + l  

0 

(4.33) S*(x) = S(x) - Z cjMj(x) 
- n + l  

is an n-spline vanishing in the interval (Yo, Yl )=  (Xo,Xl)- We may therefore 

write 

(4.34) S*(x) = Sl(x) + So(x), 

where S 1 and So are n-splines vanishing in the intervals ( - ~ , x l )  and 

(Xo, + ~ )  respectively. By Case 3 of our theorem we may therefore write uniquely 
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- - n  

Sl(x) = cjMj(x),  S o ( x )=  ~ cjMi(x ). 
1 - - o 0  

Now (4.33) and (4.34) imply the desired representation (4.17). This completes 

a proof  of  Theorem 5. 

In view of its relevance to spline interpolation we restate here the Case 2 

of  Theorem 5 as follows. 

C o r o l l a r y  1. Let x l ,x2, . . . ,x~,  ( s > n ) ,  be non-decreasing reals such 

that 

xv<x~+ . ( l < v < v + n < s ) .  

This implies that at most n of the xv may coalesce at a point. Then the.tim- 

damental spline functions 

(4.35) Mj(x) = M , ( x ; x i , x j + l , . . . , x j + , ) ,  (j = 1 ,2 , . . . , s - -n ) ,  

are linearly independent. Every spline fimction S(x), of degree n - 1 ,  having 

the points xi , ...,x~ as knots, with multiplicities as they occur in this sequence, 

and such that 

(4.36) S(x) = 0 everywhere outside (xl,x~) , 

may be uniquely represented in the form 

~ - - n  

(4.37) S(x) = ~ c j M j ( x ) .  
1 

By means of Corollary 1 the proofs of  the main results concerning spline 

interpolation as given in [-14], extend easily to the case of interpolation with 

multiple nodes. By a node of an interpolation problem we mean a point 

where a functional value is given; a node is multiple if an appropriate number 

of  consecutive derivatives of  a function are also to be interpolated at that 

point. 

Fig. 1 shows a sketch of the five fundamental quadratic spline functions 

for the case when n = 3, s = 9 and 
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X1 = X 2 = 0 ,  x 3 = l ,  X 4 = 2 ,  X s = X 6 = 3  , X 7 = X s - ' ~ - X 9 = 4 .  

M6 

M5 

0 1 2 3 

Figure 1 

In terms of the expression (4.10) we may write 

M I ( x  ) = M3(x;O,O ,1 ,2 )  

M2(x  ) = M3(x ;O  , 1 , 2 , 3 )  

M3(x) = Ma(x; 1, 2, 3, 3) 

M4(x) = Ma(x;2 ,3 ,3 ,4  ) 

Ms(x) = Ma(X ; 3, 3, 4, 4) 

M6(x ) = M3(x;  3, 4, 4, 4). 

All arcs between consecutive integral values of x are parabolic and are 

easily found explicitly. Fig. 1 illustrates nicely Lemma 1. By Theorem 5 we 

know that 

6 
S(x) = ~, cjMj(x) 

1 

represents the most general quadratic spline function in the interval [0,4] 

satisfying the following conditions 

1. It has the knots 1, 2, 3. 

2. It belongs to the classes C1,C1, C~ near the points x = 1,2,3, res- 

pectively. 

3. S(0) = 0. 
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As illustrations of Cases 3 and 4 of Theorem 5 we mention the following 

identities. The knots being integral (x~ = i) and writing 

we find that 

Mj(x) = M,,(x; j , j  + 1,. . . , j  + m) 

x+ -1 = k ( j + l ) ( j + 2 ) . . . ( j + m - 1 ) M j ( x ) ,  
j=O 

x ' - i  = ~ ( j + l ) ( j + 2 ) . . . ( j + m - l ) M i ( x ) .  

I I .  THE LIMITS OF FUNDAMENTAL SPLlNE FUNCTIONS 

5. The p r o b l e m  and main  resu l t s .  Interesting results in Analysis are 

sometimes of the following nature: We are given a certain class {F} of func- 

tions F and we are able to describe independently, in terms of structural pro- 

perties, the closure of the class {F} in terms of a suitable topology. A classical 

result of this nature is the following theorem: 

Let 

(5.1) {P.(s) = v=, ~ ( l+~. ,~s)}  

be the class of real polynomials having only real zeros, so normalized that 

P,(0) = 1. The closure of this class with respect to uniform convergence in 

every finite domain of the complex s-plane is identical with the Laguerre- 

P61ya class of entire functions described by 

(5.2) ~(s) = e -~.2+6. 1~ (1 + 6vs)e -6v~ 
1 

(y > 0 ,  6, 6v real, ] ~ 6 2 < o o ) ,  

(see [6, Chap. III, Section 3] where also original references are given). 

By a distribution function we mean a monotone function F(x) such that 

F ( - o o )  = 0, F ( +  oo)= 1. F,,(x) and F(x) being distribution functions, we 
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say that F,(x) converges to F(x) and write F,(x )~  F(x), provided that the 

relation holds for all x at which F(x) is continuous. Our problem, closely 

related with the class of functions (5.2), is as follows. We consider the class 

of spline distribution functions (see (1.6)) 

(5.3) F.(x) = ; M.(x;xo,.,xl,.,...,x.,.)dx, 
- o o  

the integrand being a fundamental n-spline (Sections 1 and 4). Concerning 

its knots we make the widest possible assumption, namely 

(5.4) Xo,.< x l , . < . . .  < x ..... Xo,.<x.,, , .  

We ask: Assuming 

(5.5) lim F.(x) = F(x), 
n - - *  cA3 

what is the nature of the limit distribution functions F(x)? 

An answer to this question requires the class of P61ya distribution func- 

tions F(x). These are distribution functions having a bilateral Laplace trans- 

form of the form 

(5.6) 

oo  

f e-~XdF(x)- ~?(s)' 
- - o 0  

where ~F(s) is described by (5.2). If  W(s) = e ~ then dF(x) has its entire unit 

mass located at x = 6. If 

(5.7) q'(s) # e ~ 

then 

c o  

f (5.8) e-S~A(x)dx-  W(s)' 

- - 9 0  
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where A(x) is a P61ya frequency function. The P61ya frequency functions 

may also be characterized by the structural property of being totally positive 

(see [10], [63). 

T h e o r e m  6. The limit F(x) of a convergent sequence of spline distrib- 

ution functions Fn(x ) is a P6lya distribution function. Conversely, every 

P61ya distribution function F(x) is the limit of an appropriate sequence of 

spline distribution functions F,(x), of the form (5.3), as n-~ co. 

The question arises as to when the limit relation (5.5) may be differentiated, 

so that we may infer that the fundamental spline functions M, themselves 

converge. The answer will depend on the continuity of A(x). Writing 

2(x) = 
e -x if x > 0  

0 if x < 0  

we know (see [10]) that the only discontinuous A(x) is the one-sided expo- 

nential 

1 ( 6+6x) (6Lr (5.9) Ao(x ) = [ - ~  2 X -  61 

having the transform 

(5.1o) 

o o  

f e-~XAo(x)dx 
- - ( 2 0  

= 1/{e~(1 + 61s)e -<~} 

Theorem 7. Let (5.5) and (5.7) hold, hence dF(x)= A(x)dx, where 

A(x) is a Pdlya frequency function. Then 

(5. l 1) lim M,,(x; Xo,,,, "", x,,,,,) = A(x), 
n -.+ OO 

uniformly for all x,  provided that A(x) is not of the form (5.9). For A(x)=  

Ao(x), again (5.11) holds uniformly for x outside an arbitrarily small neigh- 

borhood of the point x = 6 -  61, where Ao(x ) is discontinuous. 

I f  ~(s) = e a~ then 
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(5.12) lim M.(x; Xo,.,..., x.,.) = 0 
n--* O0 

uniformly in x outside an arbitrarily small neighborhood of the point x = 6. 

Theorem 7 describes a new characterization of the P61ya frequency func- 

tions. It adds a fourth to the three previously known characterizations: 1. The 

specia! nature (5.8), (5.2), of their Laplace transforms. 2. Their totally positive 

character ([10]). 3. Their variation diminishing property ([11]). 

6. A few auxiliary propositions.(3) Since Paul Levy's work of  the 

1920's, the characteristic functions are usually the most convenient tools in 

dealing with convergence problems for distribution functions. Here we also 

use some related but different integrals. Their use will be justified by two 

propositions. Below, F,(x) and F(x) are arbitrary distribution functions. 

Lemma 3. / f  

(6.1) F . ( x ) ~ F ( x )  

then the functions 

(6.2) g.(t) = 

have the property 

oo 

(6.3) lim,_,~ g,(t)= f 
- - o 0  

Of) 

f(1 + ~- ) -ndF. (x )  

e-ttXdF(x) locally uniformly. 

L e m m a  4. Let {F,(x)} be a sequence of distribution functions which 

are equi-continuous at infinity. By this we mean that for every positive e 

there corresponds an A = A(e) such that 

(6.4) f dF.(x) < e for n. all 

Ixl>A 

(3) In connection with Lemma 4 we acknowledge helpful conversations with Professor 
Joshua Chover. 
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Then the pointwise convergence of the sequence of functions (6.2), for all 
real t, implies the convergence relation (6.1) and therefore the relation 
(6.3) holds by Lemma 3. 

P r o o f  o f  L e m m a  3: The assumption (6.1) implies that 

OO 

(6.5) f.(t) = f e-"XdF.(x) 
- -O0  

On the other hand 

A 

(6.6) If,,(t)- g.(')l f e-"x -(1 
- - A  

o o  

f e-itXdF(x) locally uniformly. 

--OO 

itx -n 
+ ---if-) dF.(xl+2(1-F.(A)I+2F.(-A). 

Let e and T be positive and let us choose A such that A and - A  are con- 

tinuity points of F(x) and such that 

(6.7) 2(1 - F(A)) < ~, 2F(--A) < e. 

Furthermore, let N = N(,, TA) be such that 

( (6.8) e - Z -  1 +  < ,  for I zl <--TA, i f n > N .  

By (6.6), (6.7), (6.8) and F . (+  A) ~ F ( +  A) we conclude that 

If.(t)-g.(t)l = 3 .  i f  - T <  t <  T ,  

provided that n is sufficiently large. Now (6.5) implies (6.3) and Lemma 3 

is established. 

P r o o f  o f  L e m m a  4. The result will follow from the fact that a distrib- 

ution function is uniquely defined by its characteristic function. Indeed, ap- 

plying Helly's selection principle, we obtain an infinite sequence N of  increas- 

ing natural numbers such that F,(x) converges pointwise for all real x ,  as 

n ~ ,  n~N.  Thus 

(6.9) l imF,(x) = F(x), for all real x ,  as n ~ ~ ,  n ~ N.  
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F(x) is not yet a distribution function as we may well have F ( o v ) -  F ( -  ~ )  < 1. 

However, (6.9) and the equi-continuity assumption (6.4) easily imply that 

F ( - ~ )  = 0, F ( ~ ) =  1, by an argument which we may omit. Thus F(x) is 

a distribution function and (6.1) holds if we restrict n to the sequence N.  

However, Lemma 3 is applicable and shows that 

o o  

(6.10) lim g,(t)= f e-i'XdF(x) as n ~ co, i1 e N.  

- o o  

Since the entire sequence {g,(t)} converges pointwise, by assumption, it is 

clear that (6.10) holds for every t as n ~ ~ through all integers. The limit 

distribution F(x) being uniquely defined by its characteristic function (6.10) 

we may have essentially only one such function, hence (6.1) holds. Finally, 

the relation (6.3) is implied by Lemma 3. 

L e m m a  5. Let 

P.(s) = ~ (1 + ~.,vs) 
V = I  

be a sequence of real polynomials having only real zeros, P,(0) -- 1, which 

converges uniformly on a segment 

- p < t < p  ( p > 0 ;  s=i t )  

of the imaginary axis. Then the sequence {P,(s)} converges locally uniformly 

throughout the s-plane to an entire function q~(s) of the class described by 

(5.2). 

This result was apparently novel in 1947 but is no longer so now (see [6, 

Theorem 3.4 on page 47]). For related recent results see [7]. 

In this section we simplify our notation for the knots (5.4) by dropping 

the second subscript and denoting them by Xo,Xl, '" ,x , .  

L e m m a  6. The relation 
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oo 

x~ t i ) =  f ~ 1 +  xt-~i-~-"-lM,,(X;Xo,...,x,,)dx ,61,, 1/.0o 0 + , ,+  , ,  

holds for all t which are not purely imaginary. 

P r o o f :  Let f ( x )=  1 / ( 1 -  ax), where a is a constant. By induction we 

verify that 

while 

f(n)(x) = n[a"(1 - ax)-"- 1 . 

The relation (1.5) now implies 

oo 

97 

1/oIJ(1 f - axv) = (1 - ax) -"- IM,( x ; Xo, ..., x,)dx . 

(7.1) lim 1 1 + n + i  t i  
n --+oo v 

locally uniformly for all real t. 

oo 

= f e- "xdF(x), 
- - 0 0  

- o o  

Setting a = -  it/(n + 1) we obtain (6.11). 

7. A p r o o f  o f  T h e o r e m  6. Let F,(x) denote the spline distribution 

function (5.3), our assumption being that 

F,(x) ~ F(x), 

where F(x) is a distribution function. By Lemma 3 we conclude that 

oo oo 

f ( itx ]-"-lM,(x)dx = f e_,XdF(x), lim 1 + n + 1 ] 
11"}O0 

--O0 --OO 

locally uniformly for all real t and by Lemma 6 we may rewrite this as 
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Let us select a positive p such that 

o ~  

f 
- -  o O  

e- i;x dF(x) r 0 if - p < t < p .  

In this range we may form the reciprocals of both sides of (7.1) and conclude 

that 

oo 

" .... ' If (7.2) n-.~olim v=o 1 + ff-~-~-tt) = 1 e-~tXdF(x), 
- -O0  

uniformly in the interval - p  < t < p .  Now Lemma 5 becomes applicable 

and implies the relation 

( x.,. s] = v(s), (7.3) lim 1 + n + 1 ] 
n - ~ C O  v = O  

locally uniformly in the complex s-plane, where W(s) is an entire function of 

the form (5.2). The zeros of W(s) being all real, we now realize that the limit 

(7.1) is different from zero for all real t and therefore that (7.2) holds for all 

real t. By (7.2) and (7.3) we obtain 

O(3 

f e-itXdF(x) - W(it) 
- -  O Q  

( - - Q O < t < ~ )  

and a comparison with (5.6) shows that F(x) is a P61ya distribution function. 

This concludes a proof  of the direct part of Theorem 6. 

Conversely, let F(x) be a P61ya distribution function having a transform 

defined by (5.6) and (5.2). The easy converse part of the Laguerre-P61ya theo- 

rem asserts the existence of reals Xo,, ,x~,. , '" ,  x, , ,  satisfying (5.4), defined for 

a sequence N of values of  n, and such that (7.3) holds locally uniformly in 

the s-plane. With these reals xv,. as knots, we construct the spline distribution 

function F,(x), defined by (5.3), and wish to show that 
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(7.4) F.(x) ~ F(x), (n e N). 

Let us choose a positive number a such that 

t P ( s ) # 0  if - a < R e s < a .  

From (5.6), (7.3) and Lemma 6 we conclude that 

OO GO ;( x)nl  f (7.5) lim 1 + -ff--+--i s M,(x)dx = e-SXdF(x), 
n- -+  OO 

- - G O  b O O  

99 

OO 

f e-SXdF(x) = 2~ ( - 1 )  ~ /lVs, 
o v [  

- - O O  

CO 

f(1 
- - O 0  

XS ]-n-1 +-~--~] Mn(x)dx = ~ (--1) ~(n+l)(n+2)' ' '(n+v)#~") 
o (n + 1)~ v! 

v 
S , 

where pv and /z~ ") are the moments of  F(x) and F,(x), respectively. These 

expansions and the uniform convergence relation (7.5) show that 

lim /~") = Pv for all v ,  n e N .  
n- . - ,  oo  

In particular for v = 2 we conclude that 

oO cO 

(7.6) lim f x2M,(x)dx = f x2dF(x), (neN). 
n - - *  o o  

- o o  - o o  

A proof  of (7.4) now follows readily. Indeed, on the one hand (7.5) shows 

that 

where M,,(x)= M,,(X;Xo,,,,...,x,,,,,), holds locally uniformly in the same strip 

- a  < Res < a .  In particular, (7.5) holds uniformly in a certain circular 

neighborhood of s = 0. The expansions in powers of  s of  these integrals are 

readily obtained in terms of the moments of  the distributions and we find 
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o o  o 9  

f( itx)n, f (7.7) lim 1 + n'-~ 1 dF,,(x) = e-"XdF(x) locally uniformly. 
n - ~ o o  

n ~ N  - o 9  - - o 9  

On the other hand (7.6) implies that the left side of the inequality 

c o  

A2 f f x2Mn x  x 
Ixl>_a -o9 

remains below a constant K for all n and all positive A. Thus 

f dF.(x) < KA -2 for all A 0, > 

Ixl>A 

which evidently implies the equi-continuity condition (6.4) required by Lem- 

ma 4. In view of this and (7.7), Lemma 4 implies our conclusion (7.4), com- 

pleting our proof of Theorem 6. 

8. On f r e q u e n c y  f u n c t i o n s  w h i c h  are  l o g a r i t h m i c a l l y  c o n c a v e  

and p r o o f  o f  T h e o r e m  7. It was pointed out that P61ya frequency 
functions are totally positive. A wider class of functions is formed by the 

so-called multiply positive functions of a certain order (see [-13]). Here we 

are concerned with the widest such class, namely the class of functions which 

are twice-positive. The precise definition is as follows. 

D e f i n i t i o n  2. We say that a frequency function f ( x ) ,  i.e. a non- 

negative finite-valued function whose integral over the reals is unity, belongs 

to the class ~2 of twice-positive functions, provided that 

(8.1) I f (x1  - tl) f ( x l  - t2) I >-- 0 if x 1 < x2, tx < t2. 

f (x2  tl) f (x2  t2) I 
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It was shown in [10, p. 337] that  an equivalent definition (4) is as follows: 

A frequency funct ion f ( x )  is an element of  the class ~ 2  if and only if it is of  

the fo rm 

(8.2) f ( x )  = e -*(x) ( -  oo < x < oo), 

the function r  having the following propert ies  

1. - ~ < r  _-'5-.- + 

2. There is an interval (a, fl) ( - ~ < ~ < f l <  + ~ )  such. that  

(8.3) 
a cont inuous convex funct ion in a < x < fl 

r  = t +  oo outside [c~,fi] 

while 

(8.4) r  + 0) < r  =< + ~ ,  4,(/~ - 0) __< r __< + ~ ,  

in case that  ~, respectively fl, are finite. 
Examples  of  elements of  the class ~i~ 2 a r e  all P61ya frequency functions,  

e.g. e -x2, e-IXland the one-sided exponential  (5.9). F rom the propert ies  (8.2), 

(8.3) and (8.4), it is clear that  if  f (x) e ~ 2 ,  then f ( x )  is everywhere cont inuous 

with the possible exception o f  at most  two points,  ~ and (or) fl, where f ( x )  

may have discontinuities o f  the first kind. 

We denote by .~2 the class ~'2 enlarged by including also the Dirac  func- 

tions f ( x ) =  6r These are the frequency functions corresponding to the 

distribution functions 

(8 .5 )  F ( x )  = ( x  - 4 )  ~ . 

T h e o r e m  8. Let  {f.(x)} be a sequence o f  f r e q u e n c y  func t ions ,  

(4) This definition describes functions f (x) which are appropriately called "logarithmically 
concave". However, this (descriptive) definition of the class ~2  is not as searching, in some 
ways, as the first (structural) definition (8.1). For instance, the important fact that the class 
~2  is closed with respect to the operation of convolution is not at all apparent from the 
descriptive definition, while it is easily derived from the property (8.1) (see [10, the proof of 
Lemma 5, 341-342]). 
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(8.6) f . ( x )  e ~2  (n = 1, 2 , . . . ) .  

Let  F. (x)  denote the corresponding distribution funct ions  and let us assume 

that 

(8.7) F.(x)  -~ F (x ) ,  

where F(x)  is a distribution funct ion.  

Then  d E ( x ) = f ( x ) d x ,  where 

(8.8) f ( x )  e ~ 2 .  

Moreover the relation (8.7) may  be differentiated giving 

(8.9) lim f , ( x )  = f ( x ) ,  
n--*  oo  

which holds un i formly  f o r  all x ,  provided that we remove arbi trar i ly  small  

neighborhoods o f  the one or two possible discontinuity points o f f ( x ) .  

A proof of this theorem will be given in a future paper devoted to a study 

of the class ~z- Here we only observe that Theorem 8 implies Theorem 7 

immediately. Indeed, the alternative definition (8.2), (8.3), (8.4) and Theo- 

rem 3 shows that 

M ,, ( x ; X o , x l , " " , x ,,) e ~i~ 2 . 

9. Examples  and Applieat ions.  By Theorems 6 and 7 we know that 

the relation 

(7.3) lim f i ( 1  

implies either the relation 

(5.11) 

o r  

(5.12) 

\ 
+ - x " "  s / = V(s) 

n + l  / 

lim M.(x; Xo,., '",x.,.) = A(x) 
n "e" O0 

lim M.(x;xo,.,...,x.,.) = 0,  ( } x -  41 > r/), 
n--* oo  
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depending on whether the limit frequency A(x) is a P61ya frequency function 

or the Dirac function 6r Here we wish to illustrate this result by a few 

concrete examples. 

1. Let {x~} be an increasing sequence, x, ~ 4, and let us choose the knots 

xv,, = xv (v = 0,1, ..., n) . 

As it is easy to show that (7.3) holds, with qJ(s) = e ~ ,  we conclude by Theo- 

rem 7 that 

2. Let 

lim M,(x;xo,xl,...,x,) = 6 r  
n - - ~  

X o ,  n = X 1 ,  n : " ' "  -~- X n _ l ,  n -~- O ,  X n , n  -~- T I .  

Now (7.3) holds, with W(s)= 1 + s, the corresponding P61ya frequency 

function being 

e -x if x > 0 ,  
A ( x )  = ,~(x)  = 

0 if x < O .  

By Theorem 7 we conclude that 

n 

lim M,,(x;O,...,O, n) = 2(x) 
n--Coo 

uniformly in x if we remove a neighborhood of x = 0, a result which is also 

easily verified directly from the explicit expression of the fundamental spline 

function (3.5). 

3. The easiest way to obtain in (7.3) the limit 

q'(s) - e -s2/4, 

which corresponds to 

e 
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is to set n + 1 = 2k and to write 

~=o x~,. 2~ ) s )k= (I--S2] k fi (i+ n+--~s )= (I-- s k(1+ 2X/TO 4-k] ' 

Indeed, Theorem 7 shows that 

(9.1) 

k k 
r-- ~ --~ t '  a~ �9 

M2k_l (X;  __bl/2, . . . ,  ,~ ,~ ,~ ,~ : 1 _ e x2 , lira 

uniformly for all real x.  

4. The normal frequency function appears as the limit of spline functions 

also under different circumstances. Let n -  2k and let us consider the fre- 

quency function with equidistant knots 

M2k(X ) = M 2 k ( X ;  - -  k ,  - k + 1,... ,  k -  1, k). 

Setting f (x )  = e it" in (1.5) we easily obtain its well-known characteristics 

function which turns out to be 

O0 

f {s in  t / 2 ] 2 k ( t 2  )2k 
M2k(x)e'tXdx = 1~~-[2 ] = 1 - ~ + ... . 

Appropriate changes of variables now produce the relation 

oo 

4.2k " 
- -00 

Notice that the integrand in (9.2) is a spline function of degree 2k - 1 having 

2k + 1 knots at the points x obtained from 

x ~ = v ,  ( v =  - k , . . . , k ) .  

Since its total area is unity, we must have 
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On the other hand, the right hand side of  (9.2) converges to e x p ( - t 2 / 4 ) .  

From the fundamental limit theorem for characteristic functions and Theo- 

rem 7 (which assures us that we can work with the frequency functions) we 

conclude that 

(9.3) lira M2k( x;_k(3/k)l/2,(_ k + l)(3/k)~/2 , . . . ,k(3/k) l /2)  = 1 e-X2 

We now apply our theory (in reverse order), to conclude that 

i (9.4) lim H 1 + = . 
k-.o~ v=-k x/k (2k + I f  

However, the relation (9.4) is easily shown to hold locally uniformly, and 

then we conclude again that (9.3) holds, this time without the appeal to 

characteristic functions. 

The relation (9.3) has been noticed before in different notations, e.g. by 

F. Tricomi [16]. 

5. Let us now consider the P61ya frequency function 

1 
A(x) - ncosh x 

7IS 
having the transform 1/q~(x), where q~(s)= cos~- .  From 

ns 1 (2v -~ 1) 2 COS -~- = 1 

we conclude that 

lira ]r I 1 + = cos ~ - .  
k--* oo v = ~ k + l  

Theorem 7 shows that if we set n = 2k - 1 and select the 2k knots 
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2k 
2 v -  1 (v = - k + l ,  

we obta in ,  uni formly  for all x ,  the re la t ion 

(9.5) 

�9 .., k) 

( 2k 2k 2k 2k ,2k] 1 
lim M2,_  1 x;  - ' -  3 - ' " " - 2 k  1 '  2k 1 '  2 k - 3 ' "  1 ] = ) z c o s h x "  
k ~ o o  - -  - -  

It  is instructive to compare  the formulae  (9.3) and  (9.5). The knots  in (9.3) 

are equidis tant .  In  (9.5), however ,  their  densi ty is higher  near  the origin in 

order  to p roduce  the funct ion (9.5) which decays so much more  slowly than  

the no rma l  funct ion.  

6. As a last  example ,  we consider  the P61ya frequency funct ion 

A(x) = e - x - e - x  

having the t ransform 1 / ~ ( s )  = sF(s) .  By G a u s s '  fo rmula  

l/(sF(s)) = lira (s + l )  (s + 2) . -. (s + k) k_ s 
k-,oo k! 

On compar ing  with (7.3) we see that  we have 2k knots ,  hence n = 2k - 1, 

and  that  

k 

lira M2k-l(  x''--21~176 k ' k -  , -2k) = e-X-e-x 

Notice  the k-fold  negative kno t  which ~ - oo very slowly in order  to p ro-  

duce a l imit  which tends to zero very fast as x ~ - ~ .  We also not ice  that  

in the ever increasing interval  

- 2 1 o g k  < x < 2 

the spline funct ion is a po lynomia l  o f  degree 2k - 2 ,  o f  the fo rm 
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(x + 21ogk)  k-1 �9 rc k_ l ( x ) ,  

c o n v e r g i n g  u n i f o r m l y  to e x p ( - x -  e-X). H e r e  lrk_l(X) deno te s  an  a p p r o p -  

r ia te  p o l y n o m i a l  o f  degree  k -  1. 
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