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By 
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1 In troduct ion  

The Painlev6 differential equations have attracted mathematical research since 

the celebrated Stockholm lectures by P. Painlev6 in 1895; el. [10]. Originally, 

the interest came from the role these six equations play as prototypes of second 

order differential equations which lack so-called movable singularities. Later on, 

the Painlev6 equations, together with certain related partial differential equations, 

found important applications in physics; see [13], pp. 427-429 and the original 

references cited therein. A widely accepted property of the first, second and fourth 

Painlev6 differential equations 

(1.1) w" = z + 6w 2, 

(1.2) w" = a + zw + 2w 3, a ~ C, 

(1.3) w w " =  1" t',2 3W4 ~Lw) + + 4 z w 3 + 2 ( Z 2 - - a ) w 2 + ~ ,  Or, /3EC, 

is that all of  their solutions are meromorphic in the sense that all local solutions 

are meromorphic and have meromorphie continuations into the whole complex 

plane. In fact, a number of  attempts at proof may be found in the mathematical 

literature, including some standard references. However, a careful look at these 

proofs reveals heuristic argumentation and incomplete reasoning. 

To put this part of  the theory of  complex differential equations on a solid basis, 

we offer below what we believe to be a rigorous proof for the meromorphic nature 

of  the solutions of  (1.1) and (1.2). As the reader will observe, a lot of technical 
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reasoning is needed to complete the ideas found in the existing literature. Our 

main contribution, w is a new method of  estimating the coefficients of  the power 

series of  a locally-defined inverse function of  a solution to a differential equation 

(in our case, a Painlev6 equation), resulting in upper bounds for the moduli of  the 

coefficients that satisfy a novel periodicity condition with respect to the index n. 

This article has been organized as follows. In w we recall, in rough chrono- 

logical order, the existing proofs for the meromorphic nature of  solutions of  (1.1), 

pointing out their essential gaps. In w167 we provide our version of  proof, based 

on the reasoning found in the book [7] by E. Hille. Actually, this reasoning orig- 

inates with P. Painleve [11] (cf. [12]) and is essentially repeated in the books by 

E. Ince [8], W. Golubew [4], and E. Hille [7]. In the final w we describe the 

difficulties which must be overcome in order to apply our reasoning to (1.2). Thus, 

our paper is devoted to proving the following two theorems. 

Theorem 1. All local solutions to Painlevd 's first equation can be analytically 
continued to single-valued meromorphic solutions in the complex plane. 

T h e o r e m  2. All local solutions to Painlev~'s second equation can be 
analytically continued to single-valued meromorphic solutions in the complex 

plane. 

For the convenience of the reader, we offer in the proof of  Theorem 1 below 

a complete reasoning, although this requires repeating a few passages from the 

existing literature. The proof contains certain complicated calculations; these have 

been carried out using Mathematica, Version 2.2.1. 
It seems likely to us that the reasoning presented here for Painlev~'s first and 

second equation can be adapted to prove that the solutions of  Painlevt's fourth 
equation and, after a suitable change of  variables involving the logarithm, those of  

Painlev~'s third equation are also single-valued and meromorphic in the plane. 

2 Historical  background 

As mentioned above, the recognition of  Theorem 1 as an established mathe- 

matical fact originates from the proof offered by P. Painlev6 in [11], pp. 227-238. 

We briefly describe the essentials of  this proof for the following reasons: (1) to 

make it easier for the reader to follow the complete proof in w167 (2) to point out 

the gaps in the original proof in [11]; and (3) to make it easier to explain how these 
gaps propagate in the subsequent literature, with various attempts to fill them. 

So, let w(z) be a local solution to (1.1) around z0 6 C, and let B(zo, R) be 

the largest disc around z0 such that w(z) has a meromorphic continuation over the 
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whole B(zo,  R) .  If  R < oc, there must be at least one non-algebraic singularity, 

say a, of  w(z)  on the boundary S(zo, R)  of  B(zo,  R) .  This leads to a contradiction 

as follows. If  [w(z)[ remains bounded on the line segment [z0, a] as z --+ a, then 

[w'(z)[ also stays bounded on [Zo, a]. The Cauchy majorant principle now implies 

that w(z)  has to be analytic around a. Therefore, one may assume that [w(z)[ is 

unbounded on [zo, a] as z -4 a. Painlev6 now introduces the transformation 

W = V - 2 ~  

W t = - - 2 v  - 3  _ l z v  _ l v 2  + UV 3, 

and the auxiliary functions 

(2.1) 

and 

-1) �89 u = w ~ ( w ' +  2 + 2w3 + 

W ! 
V = (w') 2 - 4w a - 2zw + - -  + z. 

w 
Assuming that tV(z) l  remains bounded on [z0, a], Painlev6 derives a contradiction 

from the observation that one of  the two branches of  u(z)  also remains bounded 

on [z0, a]. However, we do not see any immediate reason why the possible case of  

an unbounded branch of  u(z)  could be left out of  consideration. As we shall see 

in w a short separate reasoning is, in fact, needed. The next case, in which IV(z)l 

is unbounded on [zo, a] while [w(z)[ _> e > 0 on [z0,a], was treated by Painlev6 

in a heuristic way only. However, a rigorous completion may easily be found, as 

shown by E. Hille [7], p. 702. The final case, in which IV(z)[ is unbounded on 

[Zo, a] while lim inf[zo,,~l~z~a [w(z)[ = 0, needs a path modification of  [Zo, a] t o / ' ,  

starting at zo and ending at a, such that l i m i n f ~ _ ~ ,  [w(z)[ > e > 0, that there 

are no zeros or poles of  w(z) on P and that P is o f  finite length. To achieve this, 

Painlev6 considers the inverse function z (w)  and its differential equation 

z,,(w) = - ( 6 w  2 + z(w)) (z'(w)) 3 

As appears below, it is necessary to work out a lower bound for the radius of  

convergence of  the power series expansion of  z (w)  around w0 close to the origin 

of  the w-plane. Such a consideration was left out in the original memoir [1 l] of  

Painlev6. 
The gaps in the proof offered by Painlev6, pointed out above, are well-known. 

In fact, several subsequent presentations o f  Theorem 1 contain various attempts to 

fill them. We briefly recall some of these presentations. 

The classical proof  in the book [8], pp. 347-35 l, by E. Ince essentially repeats 

the proof offered by Painlev6, apart from a slightly different path modification. 
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However, the estimate for the radius of  convergence of  the power series expansion 

ofz(w) is omitted here also. 

The book [4] by W. Golubew offers another attempt to overcome the difficulties 

related to this path modification. Unfortunately, the attempt is unsuccessful. In 

fact, it is enough to remark that the application of  the usual mean value theorem 

in the complex plane on p. 165 remains unjustified. On the other hand, Golubew 
seems be the first to have tried to treat the difficulty of  the two possible branches 

o fu  in (2.1). Unfortunately, there is an error of sign on [4], p. 162; see the extreme 

right term of  the second equation in the formula (7). We offer a less ambiguous 

treatment which also corrects the error. 
The book [7] by E. Hille repeats, essentially, the presentation offered by 

E. Ince. The proof given by N. Erugin in the survey article [3], pp. 267-275, 

leaves aside the branch problem of  u. Concerning the path modification, Erugin 

refers to a Poincare-Lyapunov theorem; see [3], p. 277. We have been unable to 

see how this reasoning could be used to settle the radius-of-convergence problem. 

The paper o f  Joshi and Kruskal [9] contains the interesting idea of  trying to 

establish the possibility of the analytic continuation of a local solution by defining 

a suitable operator on a function space and showing that it has a fixed point in 

a small neighbourhood of  a singularity (which singularity would then be shown 
to be a pole). The fixed point is an analytic function which, one hopes, will 

be related to the analytic continuation of  the initially given local solution. Joshi 

and Kruskal identify as an essential problem the proof that such a connection 

between the two functions actually exists. To prove it, they define each of  the two 
functions by means of two parameters (which, in the case of  the given solution, 

are the values of  the function and its derivative at a given point). They wish to 

show that there is a one-to-one correspondence between certain pairs of  complex 

numbers (parameters) so obtained. However, since the functions must necessarily 

be considered as defined in a large set, not only in a small neighbourhood of a single 

point, and since the only justification for invertibility that they offer [9, p. 206] is 
the suggestion that the Jacobian determinant of  an implicitly defined function is 

non-zero, it seems that this proof also fails to be logically complete. 
A number of  further presentations may be found in the literature, for example, 

[1], [2], [5], [13]. We omit details, since these references either repeat the defective 

arguments described above or offer reasoning that is clearly heuristic. 
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3 Proof  of  T h e o r e m  1: Pairs  of  differential  equat ions  
and Cauchy' s  est imates  

W r i t e B ( z , r ) = { ( E C  : I ( - z l < r I a n d S ( z , r ) = { f E C  : [ ( -  z I = r }. 

Consider an arbitrary local solution w(z) to Painlevr's first equation (1.1) with 

W(Zo) = Wo, defined in a small disk centred at the point z0 E C. We may assume 

that w0 # oo, for if this is initially not the case, we may move the point z0 slightly 

to achieve this. Let R be the radius of  the largest disk centred at z0 to which 

w(z) can be continued as a single-valued meromorphic function. Of  course, this 

extended function then satisfies (1.1) in B(zo, R). We seek to prove that R = oo, 

which means that w(z) extends to a single-valued meromorphic function in the 

whole plane. To do this, we assume that R is finite and derive a contradiction. 

So suppose that R is finite and write D = B(zo, R). If, for each zl E S(zo, R), 
there exists 5 > 0 such that w(z) can be continued as a single-valued meromorphic 

function to the domain D U B(Zl,  ~), then we may cover S(z0, R) by finitely many 

such disks (by reducing some of the radii, if  necessary) so that any disk overlaps 

exactly two others. The union of D with these disks covers a disk D1 = B(zo, R1) 
for some R1 > R. If  two disks B and B' of  the form B(zx, r overlap, then the 

extensions of  w to D U B and D O B' agree in D N B n B' # 0 so that they agree in 

B M B'. We conclude that w may be analytically (more precisely, meromorphically) 

continued without restriction in Dx. Since D1 is simply connected, it follows from 

the monodromy theorem that we have defined w as a single-valued meromorphic 

function in D1. This contradicts the definition of  R. 

Therefore, there exists a point a E S(zo, R) for which there is no 5 > 0 such 

that w(z) can be continued as a single-valued meromorphic function from D to 

D U B(a, 5). 
We now introduce a number of  auxiliary functions related to w(z),  following 

Painlev~. We start with the pair u(z), v(z) defined by 

W ~ ~3-2 

(3.1) ( w' = - 2 v  -a - �89 - �89 2 + uv 3. 

These functions satisfy a system of first-order differential equations 

S u , =  kz2v + + _ zu 3 - + (3.2) 
v' = 1+  �88 4 + �88 s- �89 6. 

Since the functions on the right hand side of(3.2) are holomorphic functions (in fact, 

polynomials) of  z, u, v for all finite values of  the variables z, u, v, the equations (3.2) 
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have unique solutions which at a given point z = z0 assume pre-assigned values uo 

and v0. In particular, this is the case i f  v0 = 0. 

The second equation (3.1) gives ( 1) 
1 -1 �89 = w' + ~ T '  (3.3) u = w 3 / 2 ( w ' + S w  ) + 2w a +  vw 2 + 2w 3+ 

so that u(z) is not a single-valued function around points where w = 0 or w = o~. 

I f z  = zl is a double pole o f  w(z) and i f  we choose the square root so that 

[w(z)]  3/~ = (z - zx) -~  + . . ,  

then u(z) is holomorphic at z = zl. As is well known (see [7], p. 700), the function 
ZO I 

(3.4) V = (w') 2 - 4w 3 - 2zw + ~ + z 
w 

is also holomorphic at a pole o f  w(z). We also use the function 

V' 4w 3 - (w') 2 + w 2 + zw 
( 3 . 5 )  W =-- ~ "  = W [ W ( W , ) 2  _ 4W 4 + W' -- 2ZW 2 -b ZW] 

below. 

We now continue with the p roof  o f  the absence o f  singularities other than poles. 

Let  z0, R, and a be as before. We join z0 and a by  an arc F o f  finite length 

contained in B(zo, R), such that F avoids the zeros and poles o fw(z) .  This implies 

that w(z),  u(z),  v(z) and V(z)  are holomorphic along F except at z = a. A number  

o f  situations may arise as we approach a along F; it is our object to show that 

the unfavourable ones are excluded and that z = a is either a regular point or a 

pole o f  w(z). We initially join z0 and a by  a line segment. The assumption that F 

avoids the zeros and poles o f  w(z)  can be satisfied by  modifying F by  arbitrarily 

small amounts  close to the zeros and poles o f  w(z) on the line segment. Since 

these changes can be made as small as we please, we shall ignore them in what  

follows and assume that F is a line segment. Later on, this segment will have to 

be modified for other reasons. 

Following the reasoning in [7], we divide the p roo f  below into five subcases, 

the first three o f  which are included in this section, w consisting o f  the remaining 

tWO. 

C a s e  I.  We first show that i f  at least one of  Iw(z)l or Iw'(z)l is bounded along F,  

then w(z)  is analytic at z = a, so that the point a cannot be a singularity. In fact, 

the relations 

/; w(z)  = w(zo) + w'(t) dr, 
o 

// w'Cz) = ~'(zo) + 6 [w(t)] ~ dt + � 8 9  - zg), 
o 
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where the integrals are taken along F,  show that boundedness on F o f  one o f  

the functions w(z) and wt(z) implies that o f  the other. Now, i f  [w(z)[ < A and 

[w'(z)[ < A on F,  for some A < oo, then at every point zl ~ F there is a disk 

{z  : [z - zl[ < p} in which w(z) is holomorphic;  and since Izl[ < R + ]z0[, the 

number  p has a positive lower bound r. Now i f  [z~ - a[ < r,  it follows that w(z) 
is holomorphic at z = a as asserted. This follows by the well-known Cauchy 

estimates, applied to the system w' = 9, g' = 6wZ + z with unknown functions w(z) 
and g(z); see, e.g., [6], p. 17. 

For later reference,  we point out that this argument shows that w(z) is holomor- 

phic at z = a provided that there exists a sequence zn E F with z,~ -+ a, such that 

Iw(zn)l < A and [w'(zn)[ < A for all n and for some A < oo. 

Case  I I .  Next  we prove that i f  Iw(z)l is unbounded on F while [u(z)[ stays 

bounded, then z = a is a pole o f  w(z). For this assumption means that for some 

fixed A < oo and for any pre-assigned s > 0, there are points Zl on F in any 

neighbourhood o f  z = a where lu(zl)l < A and Iv(zl)l < e. At such a point 

zl ,  the system (3.2) has a solution u(z), v(z) which takes on pre-assigned values 

u(zl), V(Zl) at z = Zx such that the functions u(z), v(z) are holomorphic in a 

disk [z - Zl[ < r ,  where r has a positive lower bound, which we can take to be 

a fixed constant independent o f  Z 1 (under the conditions Zl 6 F,  lu(zl)l < A, 

[V(Zl)] < e). This follows from [6], Hilfssatz 2.2. If[z1 - a[ < r,  then u(z) and v(z) 
are holomorphic at z = a. Hence w = 1/v 2 is well-defined in a neighbourhood 

o f  a. Since lirninf [v(z)l = 0 as z ~ a along F and l imz .a  v(z) exists, it follows 

that v(a) = 0. Thus w(z) has a pole at z = a (and hence a double pole, by the 

standard local power series analysis; see [7], p. 698). 

R e m a r k .  The assumptions in Case II will not be used as a logical subcase 

as such (for example,  the possibility that w and u are both unbounded on F will 

not be considered later). The only reason for including Case II here is that various 

other cases can be reduced to it. Cases I, III, IV and V provide a list that logically 

exhausts all the possibilities. 

Case  I I I .  We now assume that there is a sequence o f  points {zn} on F such that 

z~ ~ a, Iw(z.)l -~ oo, and IV(zn)l < A for some finite A. Note that Iv(zn)l ~ 0. 
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F r o m  (3.4) and the second equat ion  in (3.2) we  obtain  

V - z = (w') 2 - 4w 3 - 2 z w  + w ' / w  = 4[(v')2 - 1] - 2 z v  4 - 2 v ' v  5 
V6 

_ v 4 1 (8zv 4 + 1 6 _ ( 2 u v  6 - 4 - z v 4 )  2) 
4 4v 6 

_ v 4 1 (_z2vS + 2 u v 6 ( 2 z v  4 + 8 -  2uv6)) 
4 4v 6 

V 4 Z2l) 2 
= - q -  + - - T -  - l u ( 2 z v '  + 8 - 2 , ,v  6) 

1 z 2 u 2 z u  
(3.6) = -4---~ + ~ + ~ - 4u - w--- 7. 

Since v(z,~) ~ O, we  see f rom the second  line o f  (3.6) that  2 u v  6 - 4 ~ 4-4, so that  

uv 6 tends to 0 or  4 on z,, as z,, ~ a. In  the case o f  u v  6 --+ O, we  consider  the last 

express ion  in (3.6) to obtain 

(3.7) u 2 - u w 3 ( z w  - 2  + 4) + ~w 3 = O, 

where  
z 2 1 

qo = 4w (V - z) 4w 2 

is b o u n d e d  on  the sequence zn. So lv ing  (3.7) for  u, w e  obtain  

u =  w3 ( z w - 2 + 4 + ( z w - 2 + 4 ) ~ / l _ 4 q v w - 3 / ( z w - 2 + 4 ) 2 )  -K 

Since ~ is b o u n d e d  on z,~, we  see that 

Therefore ,  

~ / 1  - 4qvw-3  / ( z w  - 2  + 4) 2 

= 1 - ~ - ~  l(~w-2 + 4)~ + o (  (~,o -~ I(~,o-~ + 4) ~) ~) 
= 1 - ~ w  3 + O ( w - 5 ) .  

u=W-~-~(zw -2 (1 - ~ + 4 ) ( 1 4 -  + O(w-5))) 
Clearly,  u v  6 --+ 0 cor responds  to the minus  sign here;  and  w e  obtain  

u = ~ ( ~ - ~  + a)(~ + o (w- : ) )  = v /4  + o(~o-2), 

which  remains  bounde d  on z , .  H e n c e  the a rgument  used  in Case  II  shows  that  

z = a is a po le  o f w ( z ) .  

We  n o w  proceed  to cons ider  the case u v  6 --+ 4. B y  the second  last express ion  

o f  (3.6), u ( 2 z v  4 + 8 - 2uv 6) also remains  bounded;  and so 

4 z 
u = ~-6 + ~ + O(1). 
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We now define a new auxiliary function g by  

4 z 
g = U V6 V2 

which remains bounded on z,~. Also now 

4 z 

u = g + -~ + v~ 
and 

24v ~ 1 2zv' gl = u t + _ _  + 
V7 V 2 V 3 �9 

Using the second equation in (3.2), we now express v' in terms o f  g and v 

(simply writing u in terms o f g  and v) and obtain 

z v  4 v 5 g v  6 

(3.8) v' = - 1 -  T + 4 2 

We note that v'(z,~) -+ - 1 .  Using this expression for v', we obtain a formula for g' 

in terms o f  g and v, by  using the first equation in (3.2) for u' and then writing u in 

terms o f  v and g. The result is 

(3.9) g! = 1 2 l V3  3 _ 2 . 5  ~Z  V -- "~ZV 2 + + ZgV 3 -  5 gV4 + ~ y  v . 

Now (3.8) and (3.9) form a pair o f  differential equations for v(z) and g(z). Since 

g and v remain bounded on {z,~}, the same reasoning as in Case II shows that v 

extends to an analytic function in a neighbourhood o f  a with v(a) = 0, so that 

w(z) = 1/v(z) 2 has a pole at z = a. This completes  the p roof  in Case III. 

4 P r o o f  o f  T h e o r e m  1: E s t i m a t e s  for the  p o w e r  ser ies  
o f  an  i n v e r s e  func t ion  

C a s e  IV. Since Case III completes the p roof  in the situation where Iw(z)l is 

unbounded on F while IV(z)l is bounded on F,  the only remaining possibility 

is that both Iw(z)l and IY(z)l are unbounded on F.  We split this case into two 

sub-cases. We first assume that Iw(z)l _> E > 0 on F; under this assumption, we 

show the existence o f  a sequence {zn} on F such that zn ~ a, Iw(z,01 ~ ~ and 

]V(z,~)] --+ 0. Hence this sub-case reduces to Case III. 

Now i f  IY(z)l is unbounded on F,  the function W(z) o f  (3.5) must also be 

unbounded,  since 

V ( z ) =  V(zo)exp[f~[ W(t)dt]. 

Hence there is a sequence {z,~} on F with zn ~ a and IW(zn)[ --+ c~. Let  us 

now examine the two sequences {w(z,~)} and {w'(z,~)}. They  cannot  both be 
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bounded because then the argument o f  Case I would apply, and then w(z )  would be 

holomorphic at z = a, which contradicts the assumption that w(z )  is unbounded on 

F. I f  now {w(zn)} is bounded, {w'(zn)} must be unbounded and we may assume 

that limn--roo Iw'(z.)l = oo. Then (3.5) gives 

limsup IW(z,~)[ < [l~m_~f Iw(zn ) l ] -2  
n---+oo 

and this is finite by the assumption that tw(z)l >_ ~ > 0 on r .  This contradicts the 

assumption that IW(z~)l ~ oo. 

It follows that {Iw(zn)i} is an unbounded sequence. Again, we may assume, 

after passing to a suitable subsequence and renumbering its elements, that we have 

a sequence {z,~} such that 

Iw(z,~)l ~ oo, IW(z~)l ~ ~ .  

We can now eliminate w r between (3.4) and (3.5) and obtain the expression 

where 

V W  ---- gl  + g z V  4- (g2 "}-g4V) 1/2, 

g x = l + z ( 1 - w ) w  -2  1 -4 - -  ~ W  , g 3  = - - w - 2 ,  

1 -8 w-6. g2 = 4w -3 + 2zw -5 - zw  -6 + ~ w  , g4 -- 

It follows that V is a root of  the quadratic equation 

( W  - g3)2V 2 - [ 2 g l ( W  - g3) + g4]Y "{- g 2 - g2 = O. 

As zn ~ a, we have 

.ql "+ 1, g2 ""> 0, g3 --t" 0, g4 -'+ 0, W "-+ r 

and it follows that both roots o f  the quadratic equation tend to 0, that is, 

lim V(zn)  = O, 
n---+oo 

which reduces this situation to Case III. 

C a s e  V. (1) In the second sub-case, V ( z )  and w(z )  are unbounded on F but 

l iminf [w(z)l -- 0. 
z--'+a, ZE I" 

The only properties of  F that matter in Case IV are that F is o f  finite length and 

avoids the zeros and poles of  w(z). We call such an arc F from z0 to a admissible. 
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We are free to modify  F to another arc/~ as long as these properties are preserved. 

Thus we can reduce this second sub-case to the first, i f  it is possible to find an 

admissible arc P on which lira infz.~, z~/~ Iw(z)l > 0. This is indeed possible, but 

the proof is far from elementary. 

Let e > 0 be a fixed small positive number. There is then by assumption a 

sequence of  points {zn} o n / '  such that Iw(z)t < ~ for z E Fk, where / 'k  is the arc 

o f  F joining z2k-t to z2k, for k > 1, while Iw(z)l _> ~ on the remaining subarcs o f  

F.  Consider now the sequence {Iw'(z,~)l }. None of  its infinite subsequences can 

be bounded, for, i f  there were a bounded subsequence, then the method of  Case I 

would apply (since also ]w(z,~)l < ~ for all n) and w(z) would be holomorphic at 

z = a, which contradicts the assumption that lw(z)l is unbounded on F. Hence, 

given any small t~ > 0, we may assume that 

Iw'(zn)l > 1/m for all n > N. 

We set w(z,~) = wn, w'(zn) = 1/(,~ and consider the differential equation for 

z = f(w),  

(4.1) 

at w = wzk-~ with 

--f"(w) = (6w 2 + f (w) ) ( f (w) )  3 

f (w2k-1 )  = z2k_~, f ' (w2k-~)  = ( :k-1.  

In fact, the inverse function f(w) of  w(z) exists in a small neighbourhood of  w,~, 

since w' ( z,~ ) # O. 

(2) We now interrupt the actual proof  of  Theorem 1 for a lengthy reasoning 

about this inverse function. To this end, consider a point b with w(b) = wl and 
w'(b) # O. The inverse function f(w) exists in a small neighbourhood of  wl, taking 

Wl to b. There is a power series expansion 

oo 

(4.2) f(w) = Z a,~(w - wl)'* 
n = 0  

valid in some disk B(wl,  r) = { w : Iw - wl] < r } centred at wl. From now on we 

write ~ = w - wl. Let Rt  be the radius o f  convergence o f  the series (4.2). It then 

follows that the function f(w) given by the series (4.2) satisfies (4.1) in the whole 

disk B(wl,  Rx). Of  course, i f  R1 = oo, then B(wx, R1) is the whole complex plane, 

but this naturally cannot occur when f is the inverse function of  w and w satisfies 

(1.1). 
Observe that i f f f  has a zero o f  order m > 1 at some point w E B(wl ,  R1), then 

.f" has a zero of  order m - 1 at w. Hence the left hand side of  (4.1) has a zero o f  
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order m - 1 at w, while the right hand side of  (4.1) has a zero of  order at least 3m 

at w. Since 3m > m - 1, this is impossible, and we conclude that f '  has no zeros 

in B(Wl, R1). 

We shall prove the following auxiliary result. 

L e m m a  1. Suppose that the function w(z ) satisfies (1.1) in a neighbourhood 

o f  the point b and that w(b) = wl and w'(b) ~ O. Let f (w)  be the inverse function o f  
w, given by (4.2) in a small neighbourhood o f  wl and taMng wl onto b. There exists 

an absolute constant C > 1 such that the following holds. Suppose that M > 1, 

s E (0, 1), andthat lb  I = la01 _< M, Iwll _< E, [a l l  = If '(wl)l < Me~S, andM3e < 1, 
Then the coefficients ak in (4.2) satisfy (4.5) below for  all k > 1, and the radius o f  

convergence R1 o f  the series (4.2) satisfies R1 > 1/(C(Me)2/3). 

Let , /E  (0, 1) and M > 1. Then there exists e0 E (0, 1) such that ifO < E < So 

and all the above assumptions are satisfied, then for  all z, w E B(wl,  2s) (and 

hence, in particular, for  all z ,w  E B(O, lWl[)), we have I ( Y ' ( z ) / Y ' ( w ) )  - 11 < n. 

To prove Lemma 1, we first examine the power series expansions in ( = w - wl 

o f  the two sides of(4.1).  The left hand side is 

--f l l(W) = --  Z n ( n  --  1 ) a n ~  n - 2  = 

n = 0  

For the right hand side, note first that 

- Z ( n +  1) (n+2)an+2~ n. 
n=O 

W 2 ---- (Wl -t- ~)2 = W12 h- 2W1~ + ~2. 

We have 
oo oo 

St(W)= Z'n, anr n - l=  Z(,rl,-}-. 1)an+l(~ n, 
n = 0  n----0 

so that 

oo 

(f '(w)) a = E r ~ (k + 1) ( /+  1 ) (p+  1)aa+lat+lap+l, 
n = 0  kq-lq-p----n 

where k, l, p take non-negative integer values (as do all indices to be considered). 

Hence  also 

oo 

f (w)  ( f ' (w))  3 -- ~ ~'~ ~ (k + 1)(l + 1)(p + 1)ak+lat+la,+taq. 
n----O kq-l-bp-l-q=n 
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Next, we have 

3 = 6(w  + 2w1r + 3 
o~ 

=6w~ E C n  E (k + 1)(/+ 1)(p+ 1)ak+lal+lap+l 
n=O kWl+p=n 

oo 

+ 12wl E ~''~ E (k + 1)(/+ 1)(p+ 1)ak+lat+lap+l 
n = O  k+l+p=n--1 

+ 6 E  ~n E (k+l)(l+l)(pW1)ak+lal+lap+l. 
n = O  k + l + p = n - 2  

We conclude that 

oo 

- E ( n  + 1)(n + 2)an+2~ n 
n----0 

OO 

= E r E (k + 1)(/+ 1)(p + 1)ak+lal+lap+la q 
n----0 k+l+p+q=n 

oo 

+6w12 E f i n  E (k+ 1)(/+ 1)(p+ 1)ak+lal+lap+l 
n = 0  k+l+p=n  

+ 12Wl E Cn E (k + 1)(/+ 1)(p+ 1)ak+lat+lap+l 
n = 0  k-Flq-p=n- 1 

oo 

(4.3) + 6 E ~-n E (k + 1)(/+ 1)(p + I)ak+lat+lap+l. 
n = 0  k + l + p = n - 2  

Of course, ifn = O, then the sum involving k + l +p = n - 1 is (vacuous and hence) 
zero, and if n = 0 or n = 1, then the sum involving k + l + p = n - 2 is zero. 

Comparing the coefficients of ~'~ on both sides of (4.3), we conclude that for 

each n > O, we have 

-(n+l)(n+2)an+2= 

(4.4) 

E (k + 1)(l + 1)(p q- 1)ak+lat+lap+laq 
k+l-}-pWq=n 

+6w2 E (k + 1)(l + 1)(p+ 1)ak+lat+lap+l 
k-Fl+p=n 

+ 12wl ~ (k + 1)(t + 1)(p + 1)ak+laz+lap+z 
k + l + p = n -  1 

+ 6 E (k + 1)(l + 1)09 + 1)ak+lal+lap+l. 
k T l + p = n - 2  

Note that al = f'(wx) r 0. Let M and e be as in the statement of Lemma 1. 



358 A. HINKKANEN AND I. LAINE 

Recall that laol ~ M, and suppose that C is a number with C > 1 such that 

(4.5) lak/all < 8DkCk-1(Me)(2k/3)-~/(k + 1) 3 

for 1 < k < n + 1, for some n > 0, where we define for each k > 1, 

Dk = (M~) 2 

Dk = (ME) 1/3 

Dk = M(Me) 5/3 

if  k is divisible by 3, 

i fk  is of  the form k =- 3j + 1, 

if k is of  the form k = 3j + 2. 

We shall prove that, if C is a sufficiently large absolute constant, (4.5) holds also 

for k = n + 2. Since (4.5) holds trivially for k = 1, it follows that (4.5) holds for 

allk > 1. 

We mention in passing that our induction proof could easily be modified to 

show that 

lakl _< D~Ck-l(M~)2k/3/(k + 1) 3 

for all k >_ 1. In the present situation this conclusion follows from (4.5), since we 

are assuming that lall <_ Me~8. However, when applying this general method to 

some other differential equation, it might be more convenient to obtain an upper 

bound directly for la~l rather than for a quotient such as [ak/all, so we mention 

that our method can be used for that also. Our mason for estimating lak/alI is that 

this will be needed to prove (4.8) below, which is the purpose for considering the 

inverse function f of  w in the first place. 

We proceed to prove (4.5) for k = n + 2. Considering in the first sum those 

terms where q = 0 and q >_ I separately (because of  the different upper bounds for 

la01 and for I%/a11, q >_ 1, given by (4.5)) and using (4.4), we obtain 

(n + 1)(n + 2)lan+21 < E (k + 1)( /+ 1)(io + 1)[ak+lal+lap+laql 
k+l+p+q=n 

+ = (k + 1)(z + 1)(p + 
k+l +p=n 

+ 12[wl I ~ (k + 1) ( /+  1)(p+ 1)lak+la,+lal,+ll 
k+l+p=n-1 

+ 6 (k + 1)(z + 1)(p + 
k+l+p=n-2 
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(4.6) 

< lalt 4 (k + 1)(/+ 1)(p+ 1)}aa+lal+lar~+laql/lall 4 
k+l+p+q=n 

q~l 

+ (M + 6lwxl2)lall 3 ~ (k + 1)(/+ 1)(p+ 1)[ak+lal+lap+l[/lal[ 3 
k.4-1+p=n 

+ 12[wll[alla E (k + 1)( /+ 1)(p + 1)tak+lat+lap+ll/lal] a 
k-Fl +p=n- 1 

+ 61axl a ~ (k + 1)(l + 1)(p + 1)lak+lat+lap+xl/lall 3 
k+l+p=n-2 

Dk +1 Dr+ 1Dp+ 1 Dq 
< 841alIaC"-1(Me)2('~-3)/3E ((k + 2)( /+ 2)(p + 2))2(q + 1) 3 

k+lTp+q=n 
q>_l 

Dk+I DI+ I Dp+I 
+ Salaxla(M + 6lwll2)Cn(Me)(2"-3)/a Z ((k + 2)( /+  2)(p + 2)) 2 

k+l+p=n 

Dk+l Dt+l Dp+l 
+ 12lwllSalallaC'~-l(Me)(2'~-~)/a E ((k + 2)( /+ 2)(p + 2)) 2 

k+l+p=n-1 

Dk+lDt+lDp+l 
+ 6Cn-283[a113(Ms)(2'~-7)/3 ~ ((k + 2)( /+ 2)(p + 2)) 2. 

k+lq-p=n-2 

We define, for n > 0, the expressions 

A(n) = E ((k + 2)(/+ 2)(p + 2))-2(q + 1)_ 3 
k+l+p-Fq=n 

q>l 

and 

c ( . )  = ((k + 2)(1 + 2)(p + 2)) 
k+l+p=n 

Thus A(0) = 0, corresponding to an empty sum. We define A(n) = C(n) = 0 if n 

is a negative integer. 
Suppose now that n is divisible by 3 and write X(k) for the residue class of  k 

modulo 3, so that X(k) E {0, 1, 2}. 
In the first sum on the extreme right of (4.6), k + I + p + q = n, so that 

(k+l)+(l+l)+(p+l)+q = n+3,  andhenceX(k+l)+X(l+l)+X(p+l)+X(q) = 0 
modulo 3. Since Me < 1 < M and M3t  < 1, the largest possible value of  
Dk+lDl+lDp+lDq is (Me) 3, obtained when one o f X ( k  + 1), X(l + 1), X(p + 1), 
X(q) is equal to 0 and all others are equal to 1. (Note that each of  k + 1, l + 1, 
p + 1, q is > 1.) More precisely, apart from permutations, there are 5 possibilities 
for (X(k + 1), X(l + 1), X(p + 1), X(q)); they are (0, 0, 0, 0), (0, 0, 1, 2), (0, 1, 1,1), 
(0, 2, 2, 2) and (1, 1,2, 2). In these cases, the value of Dk+lDl+lDp+lDq is (Me) s, 
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M(Me)  6, (Me) a, M3(Me) 7, M2(Me)  4, respectively. Since M s  < 1 and M3e < 1, 

one can verify that the largest value among these is (Me) 3. 

In the second sum, we have X(k + 1) + X(l + 1) + X(p + 1) = 0 modulo  3; the 
largest value o f  Dk+IDI+IDv+I is Ms,  obtained when all of  X(k + 1), X(l + 1), 
X(p + 1) are equal to 1. More precisely, apart from permutat ions,  there are 4 
possibilities for (X(k+ 1), X(l + 1), X(p+ 1)), namely (0, 0, 0), (1, 1, 1), (2, 2, 2) and 
(0, 1,2). In these cases, the value of  Dk+IDt+IDp+I is (Mz) 6, M~, Ma(Me)  5 = 
MSe 5 and M(Me) 4 = MSe 4, respectively. 

In the third sum, we have X(k + 1) + X(l + 1) + X(p + 1) = 2 modulo  3; 
the largest value of  Dk+IDI+IDv+I is (Me) s/a, obtained when  one of  X(k + 1), 
X(l + 1), X(p + 1) is equal to 0 while the others are equal to 1. More precisely, 
apart from permutations,  there are 3 possibilities for (X (k + 1 ), X (l + 1), X (p + 1 ) ); 
they are (0, 0, 2), (0, 1, 1) and (1, 2, 2). In these cases, the value o f  Dk+IDI+IDv+I 
is M(Me) 17/a, (Me) s/a and M2(Me) 11/a, respectively. 

In the fourth sum, we have X(k + 1) + X(l + 1) + X(p + 1) = 1 modulo  3; 
the largest value of  Dk+tDt+lDv+l is M(Me) 7/a, obtained when  one of  X(k + 1), 
X(l + 1), X(p + 1) is equal to 2, while the others are equal to 1. More precisely, 
apart from permutations,  there are 3 possibilities for (X(k + 1), X(l + 1), X(p  + 1)); 
they are (0, 0, 1), (0, 2, 2), (1, 1, 2). In these cases, the value o f  Dk+lDt+lDp+l is 
M(Me) la/3, M2(Me) 16/a and M(Me) 7/a, respectively. 

Hence,  when  3 divides n, we have 

(n + 1)(n + 2)lan+2 I 

_< 841a~ 14C '~-1 (Me) (2('~-a)/a)+a y ~  ((k + 2 ) ( / +  2)(p + 2))-2(q -I- 1) -3 

((k + 2)(l + 2)(p + 2)) -2 
k+l+p=n 

+ 121wx[831al13C'~-l(Me)((2n-5)/3)+(s/a) Z ((k + 2 ) ( /+  2)(p + 2)) -2 
k+l+p=n-1 

+ 6Cn-28alal [3(Me)((zn-r)/a)+(7/a)M ~ ((k + 2 ) ( / +  2)(p + 2)) -2 
k+l+p=n-2 

< 84 lal I4C n-1 (Me) 2(n-a)/a (Me)aA( r t )  

+ 8ala~ la(M + 6[wll2)C'~(Me)(2n-3)/zMeC(n) 

+ 121w~i8ala~laC"-~(Me)(~'~-5)/a(Me)s/aC(n - 1) 

+ 6C'~-2831a, I z (Ms) (2n-r ) /aM(Me)r /3C(n  - 2). 

Suppose next that n is of  the form n = 3j + 1 for some non-negative integer j ,  
and consider the right hand side o f  (4.6). In the first sum, k + l + p + q = n, so that 

k.4-l+p.q-q=n 
q>l 

+ 8alal la(M + 6]wll2)C'~(Me) ((2'~-a)/3)+l 
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(k+l)+(l+l)+(p+l)+q = n+3,  andhenceX(k+l)+X(l+l)+X(p+l)+X(q) = 1 
modulo 3. The largest possible value o f  Dk+ID~+IDp+IDq is (Me) 4/a, obtained 

when X(k + 1), X(l + 1), X(p + 1), X(q) are all equal to 1. More precisely, apart 

from permutations, there are 5 possibilities for (X(k + 1), X(! + 1), X(p+ 1), X(q)); 

they are (0, 0, 0, 1), (0, 0, 2, 2), (0, 1, 1, 2), (1, 1, 1, 1) and (1, 2, 2, 2). In these cases, 
the value Of Dk+lDz+lDp+lDq is (Me) 19/3, M2(Me) 22/3, M(Me) 19/a, (Me) 4/3 and 

M 3 (Me) 16/3, respectively. 

In the second sum, we have X(k + 1) + X(l + 1) + X(p + 1) = 1 modulo 3; 

the largest value o f  Dk+ID~+IDp+I is M(Me) 7/3, obtained when one o f  X(k + 1), 

X(l + 1), X(p + 1) is equal to 2 while the others are equal to 1. 

In the third sum, we have X(k + 1) + X(l + 1) + X(p + 1) = 0 modulo 3; and the 

largest value of Dk+lD~+lDp+l is Me, obtained when X(k + 1), X(l + 1), X(p + 1) 

are all equal to 1. 

In the fourth sum, we have X(k + 1) + X(1 + 1) + X(p + 1) = 2 modulo 3; and 

the largest value o f  Dk+lDz+lDp+l is (Me) s/3, obtained when one o f  X(k + 1), 

X(l + 1), X(p + 1) is equal to 0 while the others are equal to 1. 

Hence, when n is o f  the form n = 3j + 1, (4.6) yields 

(n + 1)(n + 2)1a,~+2 ] <_ 84tal14C'~-l(Me)2('~-3)/a(Me)a/aA(n) 

+ 831al la(M + 6[wl 12)Cn(ie)(2'~-3)/ai(ie)r/aC(n) 

+ 12[wl183]a~[aCn-1 (ie)(2n-5)/aMeC(n - 1) 

§ 6cn-283 [al [3 (Me)(2n--7)/3 (Mz)s/ac(n - 2). 

Suppose then that n is of  the form n = 3j + 2 for some non-negative integer j ,  

and consider the right hand side of  (4.6). In the first sum, k + l + p + q = n, so that 
(k + 1) + (l + 1) + (p + 1) + q = n + 3; hence X(k + 1) + X(l + 1) + X(p+ 1) + 

X(q) = 2 modulo 3. The largest possible value ofDk+lDl+lDv+lD q is M(Me) s/3, 
obtained when one of  X(k + 1), X(l + 1), X(p + 1), X(q) is equal to 2, while all 

the others are equal to 1. More precisely, apart from permutations, there are 5 

possibilities for (X(k + 1), X(l + 1), X(p + 1), X(q)), namely (0, 0, 0, 2), (0, 0, 1, 1), 

(0, 1, 2, 2), (1, 1, 1, 2) and (2, 2, 2, 2). In these cases, the value Of Dk+yDl+lDp+lDq 
is M(Me) 23/3, (Me) 14/3, M2(Me) 17/3, M(Me) s/3 and M4(Me) 2~ respectively. 

In the second sum, we have X(k + 1) + X(I + 1) + X(p + 1) = 2 modulo 3; 

the largest value o f  Dk+lDl+lDp+l is (Me) 8/3, obtained when one o f  X(k + 1), 

X(l + 1), X(p + 1) is equal to 0 while the others are equal to 1. 

In the third sum, we have X(k + 1) + X(I + 1) + X(p + 1) = 1 modulo 3; the 

largest value o f  Dk+IDt+IDp+I is M(Me) 7/3, obtained when one o f  X(k + 1), 

X(I + 1), X(p + 1) is equal to 2 while the others are equal to 1. 
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In the fourth sum, we have X(k  + 1) + X(l  + 1) + X(p  + 1) = 0 modulo 3; the 

largest value o f  Dk+lDl.+l Dp+l is Ms, obtained when X(k  + 1), X (1 + 1), X(p + 1) 

are all equal to 1. 

Hence, when n is of  the form n = 3j + 2, (4.6) yields 

(n + 1)(n + 2)1a.+21 < 84[al14C'~-l(Me)2('~-3)/3M(Ms)S/3A(n) 

+ 831al13(M + 6[WlI2)Cn(Ms)(2n-3)/3(M~)s/3C(n) 

+ 121w 11831a113C n- i  (Ms)(2'~-5)/3M(Ms)7/3C(n - 1) 

+ 6Cn-283]a113(M~)(2n-7)/3M~C(n - 2). 

We next estimate A(n) and C(n). We have A(0) = 0 and C(0) = 1/64. 

Suppose that n > 1. Consider first A(n). For given k, l, p, q > 0 with 

k + l + p + q = n, write s = max( k, l,p, q }. Then s > n/4. Thus we have (since 

2(q + 1) 3 > (q + 2) 2 for all q > 1) 

A(n) = E ( ( k+2) ( l+2) (p+2) ) -2 (q+l ) -3  
k+l+p+q=n 

q>l 
O 0  OC O 0  

<2 E 
n/4<s<n k = 0  l-----O p : 0  

_< 2(7r2/6 - 1)3n/(n/4 + 2) 2 < 9n/(n + 8) 2. 

Consider n o w C ( n ) .  For g i v e n k ,  l , p  > 0 w i t h  k + l + p  = n, write s = 

max{ k, l, p }. Then s > n/3. Thus 

c (n)  : ~ ((k + 2)(I + 2)(p + 2)) -2 
k+l+p:n 

OC O 0  

<_ ~ (s + 2) -2 ~ ( k  + 2) -2 ~_,(l + 2) -2 
n/3<_s<_n k = O  I--'--0 

<_ (71"2/6 -- 1)2n/(n/3 + 2) 2 < 4n/(n + 6) 2. 

Let us now return to the case when 3 divides n, so n > 3. Using the above 

estimates for A(n) and C(n), we obtain 

(n + 1)(n + 2)]an+2] < 84]al]4cn-l(Ms)2(n-3)/3(M~)39n/(n q- 8) 2 

-I- 831al[3(M + 61Wll2)Cn(Me)(2n-3)/aMr + 6) 2 

+ 12[Wll83[a113C n-~ (Me) (2'~-5)/3 (Ms)S/34(n - 1)/(n + 5) 2 

+ 6Cn-283]al]a(Ms)(2"~-7)/3M(Ms)7/34(n - 2)/(n  + 4) 2. 
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Here D=+2 = M(Me) 5/3 and hence, since la~l ~ (Me)/8,  

lan+2/al tl(8Cn+lD,~+2(Me)(2n+~)131(n + 3) 3) 
< 831a113C-2(n + 3)3(Me)-lgn/(M(n + 8)2(n + 1)(n + 2)) 

(8[a1[ .~2 {(M + 61wl12)C-l(n + 3)34n/(M(n + 6)2(n + 1)(n + 2)) 
+ \ M e ]  

+ 121wllsC-~(n + 3)34(n - 1)/((n + 5)2(n + 1)(n + 2)) 
+ 6C-3(n + 3)34(n - 2)/((n + 4)2(n + 1)(n + 2))} < 1, 

provided that C is at least as large as a certain positive absolute constant. 

Suppose then that n is o f  the form n = 3j + 1 > 4. In the same way  as above, 

we  deduce that 

(n + 1)(n + 2)13.+21 ~ 841a114Cn-X(Me)2('~-a)/3(Me)4/Z9n/( n + 8) 2 

+ 83 ]al 13 (M + 6tWl [2)C,~ (Me)(2,~-3)/3M(Me)7/34n/(n + 6) 2 

+ 12lw l1831al[3Cn-l(Ms)(2n-5)/3Ms4(n - 1)/(n + 5) 2 

+ 6C'~-283 lal I 3 (Me)(2'~-7)/3 (Ms)S /Z4(n  _ 2)/(n + 4) 2. 

Now D,~+2 = (Me)2; and so 

la,~+21a11/(8C"+'D..+2(Ms)C2n+l)/a/(n + 3) 3) 
< 8313113(Me)-3C-2(n + 3)39n/((n + 8)2(n + 1)(n + 2)) 

(81311 ~2 ! (M + 61wxl2)C-X(n + 3)3M(Me)4n 
+ \ M e /  . ( n + 6 ) 2 ( n + l ) ( n + 2 )  

+ 12lwllC-2(Me)-X(n + 3)34(n - 1)/((n + 5)2(n + 1)(n + 2)) 

+ 6C-3(n + 3)34(n - 2)/((n + 4)2(n + 1)(n + 2))} < 1, 

provided that C is at least as large as a certain absolute constant, since [Wl[ ~ e and 

Mae < 1. 

The above leaves out the case n = 1. In this case, we have 

(n + 1)(n + 2)[an+2] < S4]at Jacn-1 (Me)2(n-3)/3(Me)4/39n/(n -1-8) 2 

+ 83]al 13(M + 6[w112)Vn(Me)(2n-a)/3M(Me)7/34n/(n + 6) 2 

+ 12]wl ]C n-183 ]el ]3 (Me)(2n-5)/3Me(1/64) 
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so that (with n = 1) 

I~,,+~/a~ ]/(SCn+lD.+2(Me)C2"+l)/a/(n + 3) 3) 

< 83[al 13(Me)-364C-2(1/54) 
2 

+ ( ~ )  {(MT6[wi' 2)C-l'64M(Me)(2/3)(1/49) 
+ 121wllC-l(Me)-l/6} < 1 

if C is at least as large as a certain absolute constant. 

Suppose then that n is o f  the form n = 3j + 2 > 5. In the same way  as above, 

we deduce that 

(n + 1)(n + 2)lan+2t < 841al 14C n-1 (Me)2(n-a)/aM(Me)S/39n/(n + 8) 2 

(Slai l )  3 
+ l v M e  ] {(M + 6}Wl12)Cn(Me)2(n+a)/a(Mg)S/34n/(n + 6) 2 

+ 12[wl [C n-x (Me)2('~+2)/aM(Me)7/34(n - 1)/(n + 5) 2 

+ 6Cn-2(Me)2(n+I)/3Me4(n - 2) / (n  + 4)2}. 

Now Dn+2 = (Me) I/a, and so 

la,~+2/al I/(8Cn+lDn+2(M~)(2'~+l)/a/(n + 3) 3) 

< 8alaltaC-2M9n(n + 3)3/((n + 8)2(n + 1)(n + 2)) 

(81311 ~ 2 { (M + 61wi12)C-l(ME)a4n(n + 3) 3 
+ \ M e /  . ( n + 6 ) 2 ( n + l ) ( n + 2 )  

+ 12[WllC-2M(Me)24(n - 1)(n + 3)3/((n + 5)2(n + 1)(n + 2)) 

+ 6C-a(Me)i/a4(n - 2)(n + 3)a/((n + 4)2(n + 1)(n + 2))} < 1 

under similar conditions as above. 

This leaves out the case n = 2. When n = 2, we have 

(n + 1)(n + 2)Jan+21 _< 84131[aC"-l(Me)2(n-3)/aM(Me)a/a9n/(n + 8) 2 

( s lo i l~  a 
+ \ Me / {(M + 6]wi]2)C'~(Me)2('~+a)/3(ue)s/a4n/(n + 6)2 

+ 12[wi ]C '~-I (Me)2(n+2)/aM(Me)r/a4(n - 1)/(n + 5) 2 

+ 6Cn-:(Me)2(n+l)/aMe(1/64)}, 
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so that (with n = 2) 

lan+2/al[/(8C'~+lD,~+2(Me)(2n+l)/3/(n + 3) 3) 

<_ 831allaC-2M9n(n + 3)3/((n + 8)2(n + 1)(n + 2)) 

( ~ )  2 { (M + 6[w112)C-l(Me)34n(n + 3)3 
+ (n + 6)2(n + 1)(n + 2) 

+ 121wlIC-2M(ME)Z4(n - 1)(n + 3)a/((n + 5)2(n + 1)(n + 2)) 

+ 6C-3(Me)l/3(1/64)(n + 3)3/((n + 1)(n + 2))} < 1 

under similar conditions as above. This completes the proof  of (4 .5)  for k = n + 2, 

and it follows that (4.5) holds for all k > 1. 

It follows from (4.5) that the radius of  convergence t{1 o f  the series (4.2) satisfies 

so that 

1/RI = limsup [an[ 1/n < C(M~) 2/3, 
n ---+ oo 

(4.7) R1 2 C-1/ (Me)  2/3. 

We mention in passing that since C can be taken to be an absolute constant, we can 

get as large a value for R1 as we like by considering situations where M is fixed 

while e is taken to be small enough. 

N o w  suppose that '7 E (0, 1) and M > 1 are given, and let the assumptions o f  

the first paragraph o f  Lemma 1 be satisfied. Let C > 1 be an absolute constant for 

which the conclusions o f  the first paragraph o f L e m m a  1 are satisfied. There exists 

e0 E (0, 1) such that for any e E (0, e0], we  have C(Me) 2/3 < 1, 3eC(Me) 2/3 < 1, 

and 

(Ms)2/3C(2e)/(1 - 2eC(Me) 2/3) < r]/3. 

Fix e0 by  this condition and consider any ~ E (0, Co] in what follows. N o w  

al = f ' (wl) ,  and i f w  E B(wl,R1),  we have 

oo 
f t ( z o )  = ft(Wl) + Z n O ' n C n - l "  

n--2 

Thus 
f ' (w) oo 

1 = 
/ '(wl) ,~=2 
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Hence by  (4.5), if 141 = t w - wll < 2e, then 

f'(w) 
f ' ( w l )  1 < ~-'~nlar,/ali ICI n-1  

r~=2 

o~ (M~)2/3CI~I 
(Me)l/3 E C"-ll(In-l( Me)2"/3 = 1 - CI4t(Me)2/3 -< Ms  

n = 2  

77 
3 

(4.8) 

This completes the proof  of  Lemma 1. 

f'(z) 1 = 
f'(w) 

< 

_ f'(~) 

= r / +  l + r /  1[ f,(w) ) 
3 g 1 +  Ls ,_~ ,  _ 1 

7//3 2r//3 

I f'(z) f'(wl) 1 
f/(wl) f'(w) 
f'(z) i) (f'(wl) I)+ ( f'(z) i)+ (f'(wl) 1) 
/'(Wl) \ f'(w) \f'(wl) \ f'(w) 

r; (l + f'(wl) 1 "~ + f'(wl) 1 
-g \ f,(w) / f,(,.) 

<r/.  

(3) We now return to the p roof  of  Theorem 1. Note that if b is chosen to 

be a point in the disk B(zo, R), then Ib - z01 < R,  so that we  may use the fixed 

value M = max{2, Iz0l + R}, independent o f  the particular choice of  b, to satisfy 

Ibl < M .  W e  f ix  a number 77 e (0, 1) satisfying (7r/2)(1 + r;)/(1 - 77) < 1.6. Then 
we choose e e (0, 1) so that all the conditions in Lemma 1 are satisfied, including 

those required to apply the last paragraph of  Lemma 1 with this ~ (note that, by  

construction, we then have 3eC(Me) 2/a < 1). 

We now continue the discussion o f  Case V using this choice ore .  Assume that 

the points z,~, which we have defined in Case V, have been chosen using this e. We 

apply Lemma 1 to b = z2k-1. Since w'(zn) ~ oo, it is clear that, for all sufficiently 

large values o f  k, the assumptions o f  Lemma 1 will be satisfied. 

The estimate (4.8) allows one to follow the argument as given in [7], pp. 7 0 3 -  

704, for the path modification o f  F to F.  Thus, for each sufficiently large value 

o f  k, we  replace the subarc Fk o f  F by  the arc fk(Qk), where fk is the branch 

o f  the inverse function o f  w(z) mapping a neighbourhood o f  w(z2k-1) onto a 

neighbourhood of  Z2k-- 1 and Qk is the shorter arc o f  the circle S(0, e) joining 

w(z~k-x) to w(z~k), the latter point being the first point on w(F) after w(z2k-x) 

Then for all z, w E B(wl, 2s) and hence, in particular, for all z, w E B(0, Iwl 1), we  

have 
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with modulus e. Note that, as a branch of  an inverse function, fk is necessarily 

one-to-one in its domain of  definition. Applying Lemma 1 to f = fk, we see that 

the radius of  convergence of  the power series of  fk with base point w(z2k-1) is at 

least 1/(C(Me) 2/a) > 3e, so that w(Fk) C B(O, e) C B(w(z2k-1), 3e). It follows that 

the paths fk(w(Fk)) and fk(Qk) have the same end points, namely, z2k-1 and z2k. 

Hence this modification leads to a continuous path. We may continue w analytically 

as f -1  in the simply connected domain Dk = fk(B(w(z2k-1), 3e)), which contains 

fk(Qk). Since fk(w(z)) = z close to z2k-1, and since w(Fk) C B(w(z2k-1), 3e), we 

further have Fk = fk(W(Fk)) C Dk. Hence the analytic continuation of  the function 

w along the original arc Fk leads to the same result (namely, to the point w(z2k)) 
as the continuation of  w along the new arc fk(Qk). Performing this operation for 

all large k, we obtain a new path/~. 

Next, it follows from the estimate for I f ' l  = IfLI given by Lemma 1 that the 

length of  the new part of  the modified path P between the points Wl = w(z2k-1) 

and w2 = w(z2k), where [Wl[ = IW2I = ~, is at most 

(~r/2)lw2 - wxllf'(wx)l(1 + ~?). 

On the other hand, the length of  the corresponding original part Fk of  the path F 

was at least 

If(w~) - f(wx)l _> If'(wl)llw2 - wx[(1 --'r/). 

Hence the new length divided by the old length is at most (7r/2) (1 + ~7) / (1 - r/) < 1.6. 

We now construct a Riemann surface S by following the modified path _f" and 

by surrounding it with a sufficiently small neighbourhood in which the function 

w remains single-valued. This seems necessary since, a priori, branches of  the 

modified path might intersect outside B(zo, R), so that following the path might 

give rise to different definitions of  w at the points of  intersection. On S, we will 

be on different leaves (layers) above such points of  self-intersection, so that the 

function w(z) will be well-defined on S. 

Applying the argument in Case IV to S, we now conclude, considering a point 

of  the modified path P close enough to a, that w extends meromorphically to a 

neighbourhood of  a. This contradicts our assumption and so completes the proof 

of  Theorem 1. 

5 P r o o f  o f  T h e o r e m  2 

The proof of  Theorem 2 follows closely that of  Theorem 1. Therefore we 

indicate only the major differences, leaving a number of  details to the reader. 
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To derive a counterpart to the equations (3.2), we first consider the equation 

(1.2) w"(z) = 2w(z) 3 + zw + a, 

where a is a complex parameter, close to a pole zl of  w. Hence, we are looking 

for a pair of  analytic functions u, v defined in a neighbourhood of  zl and satisfying 

equations analogous to (3.2). A familiar analysis shows that the pole ofw is simple 

and that the residue, which we denote by #, is 4-1. In particular, #2 = 1, which will 

be a useful relation. Furthermore, with ~ = z - q ,  we have 

~- ~ -~- 30~ *-4 (5.1) w ( z ) =  /z ~ZZl~. ~ /z ~2 _4_ VC3 .4_ ~ Z l  ~ q_O(~5), 

where D is an arbitrary complex parameter. 

We now set v = 1/w. If we want to express 

(5.2)  z,6 +2 + 

in terms of  v, starting with a term involving 1/v ~, it seems inevitable that the 

number #, which can vary from one pole to another, must be introduced into 

the equations, unlike the case of  Painlev6's first equation (1.1), where no such 

parameters are involved. Otherwise, we proceed similarly to w167 By a simple 

computation, 

#Zlca " ~  +\-'3-6 - - - D )  + 7---~- (5.3) 7 = ~r + - 6 - ~  + r (#z~ r as  + 5#zlC6 + o(cr).  

We invert the series (5.3) by the usual formulas for formal power series and obtain 

( z~ 2-a+----~va+0(74)). l + a# v 4 + 0(v5 ) = #v 1 -  -~v 4 
4 

/AZ1 V3 
r  - 6 -  

Thus 

(5.4) 

and 

(5.5) 

! - ~ (  1+zl ~ ~+#3 ) r - v g v  + - q - - v  + 0 (7  4) 

1 1( zl-2 a+#3 ) C-- ~=~-~ l + ~ - v  + - - - ~ v  +O(v 4) . 

Inserting these formulas (5.4) and (5.5) into the formula (5.2) for w', we obtain 

w, = - #  ( zl 2 a + # a ) #zl a+ l + ~ v  + ~ v  +O(v a) 6 2#Izv+O(v 2) 
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or, after writing Zl  = Z - -  ( and expressing ~ in terms of  v again in the constant 

term, 

w' - -~v~ ~z2 +~v _ (1 + ~ ) v  + o ( ~ ) .  

The above has been presented to motivate the fact that we now define the 

function u by 

(5.6) w t = - #  #z 
v 2 2 (�89 + c ~ ) v  + uv  2. 

Thus 

(5.7) 

Now by (1.2), 

By (5.6), 

v' = -v~w' = ~ + -~-~ + (�89 + ~ ) ~ 3  _ u~'. 

2 z 
w "  = 2w 3 + z w  + a = -'x + -  + a.  

v o v 

2#v '  # (�89 + a # ) v '  + u 'v  2 + 2uvv ' .  
w "  = (w ' ) '  - v3 2 

Combining these equations and substituting the right hand side of  (5.7) for v' in 

the result, we see, after some calculations, that 

(5.8) u' ~zrx- = 2 , 2  + al~) - l z zuv  + (�89 + a~)2v - 3(�89 + a p ) u v  2 + 2u2v 3. 

Now, (5.7) and (5.8) form the system corresponding to (3.2) in w Solving for u 

in (5.6) and replacing v by I / w ,  we get 

u = .~ + +1~ w 4 zw2 

Multiplying both sides of  (1.2) by 2w' and rearranging terms, we see that 

( (w ' )  2 - w 4 - 2 a w  - zw2)  ' = - w  2. 

By (5.1), 
w 2 _  1 Z 1 + o ( r  

if2 3 

so that the integral o f  - w  2 is equal to 1/ff + (zl/3)~ + O(ff2), apart from a possible 

additive constant. On the other hand, - w t / w  = 1/~ + r where r is holomorphic, 

close to Zl. We see that the function 

W t 
(5.9) V ( z )  = (w') 2 - w 4 - 2aw - z w  2 + - -  

w 

is holomorphic in a neighbourhood ofzl .  This definition now corresponds to (3.4). 

Note that V is analytic in any domain where w is defined (as a single-valued 
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function) and where w does not take the values 0 and o~. Observe also that # is not 

needed in the definition o f  V. 

Now (compare (3.5)), using also (1.2), we obtain 

V' w2(2~/w '' - 4 w ' w  3 - 2 a w '  - w 2 - 2 z w w ' )  + w " w  - (w') 2 
W = - - =  

v w 2 ( ( w ' ) 2  - w ~ - 2 a w  - z w ~  + ( ~ ' / w ) )  
(5.10) 

w 4 - ( w ' )  2 + z w  2 + a w  

w ( w ( w ' )  2 - w 5 + w '  - 2oLw 2 - z w  3) 

We are now ready to proceed as in w167 So let w ( z )  be an arbitrary local 

solution to (1.2) with W(Zo) = w0 ~ oo, and let R be the radius o f  the largest 

disk centred at z0 to which w ( z )  can be continued as a single-valued meromorphic  

function. Assuming R is finite, let a E S ( zo ,  R )  be a point for which there is no 

> 0 such that w ( z )  can be continued as a single-valued meromorphic  function f rom 

B ( z o ,  R )  to B(z0, R) t_J B ( a ,  ~). We sketch below how this leads to a contradiction, 

which shows that we actually have R = oo. 

To argue in a way analogous to that used in w replace (3.1) by  w = v -1 and 

(5.6), (3.2) by  (5.7) and (5.8), (3.4) by  (5.9) and (3.5) by (5.10). We do not have 

a pole o f w  available to determine #, but we may choose # to be 1 or - 1  in (5.6), 

as long as we then use the same value o f #  in all subsequent calculations. We m ay  

now start exactly as in w repeating Case I and Case II with obvious modifications 

only. Thus we omit further details concerning Cases I and II. 

In Case III, we have a sequence {zn} on F such that zn --+ a, Iw(zn)l -~ ~ ,  

IY(zn)l < A for some finite A, and Iv(zn)l -~ 0. By (5.7) and (5.9), making use o f  

w = v-1 we obtain 

V = (v')2 - 1 - 2 a v  a - z v  2 - v ' v  3 

v 4 

z 2 
--  4 2 # u  + a z v  - # z u v  2 - 2 a # u v  3 + (a 2 - �88 2 + u2v 4 

Z 2  "l'tV4 " 4 
= --s + , ~ z v  + ( 0 ?  - � 88  2 + - - ~ - ( u v  - 2 #  - # z v  2 - 2 ~ v  3) 

z 2 
+ a z v  + (a 2 - �88 2 + u ( u v  4 - 2# - # z v  2 - 2a#v 3) 

4 
z 2 

(5.11) = -~- + a z v  + ( a  2 - �88 2 + u ( - 2 #  - # z v  2 - 2 a # v  3) + u2v  4. 

Solving the quadratic equation for u obtained from the last expression o f  (5.11), 

we get 

where 

2uv 4 = 2l~ + # z v  2 + 2c~#v 3 4- v ~ ,  

r ----- (2# + # z v  2 + 20q~v3) 2 'b [4V - z 2 - 4 a z v  - 4 (~  2 - 1)v2]v4. 
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Therefore, uv 4 remains bounded on {Zn} as n --+ o~. Since Iv(z,,)[ --+ 0, the third 

last expression o f  (5.11) implies that either uv 4 --+ 0 or uv 4 --+ 2# r 0 on {zn} as 

n --+ (x). 

I fuv  4 --+ 0, then u2v 4 = o([u[) and (5.11) gives u ( - 2 p  + o(1)) = O(1). Hence u 

is bounded on z,~. Thus this situation reduces to Case II. 

Assuming now that uv 4 --+ 2#, we conclude from the next to last expression 

o f  (5.11) that 
u(uv  4 - 21-* - # z v  2 - 2a#v 3) 

remains bounded on {zn}, and so 

h = v - 4 ( u v  4 - 2 ~  - ~ z v  2 - 2ot#v 3) 

remains bounded as well. Writing 

(5.12) h = u 

we find 

2# #z 2a# 
V 4 U 2 V 

2a#  2#z 8 # )  v'. 
(5.13) h ' = u ' -  ~ +  \ - - ~ -  + - 7  + ~ 

Expressing u in terms o f  h and v from (5.13), we  rewrite (5.7) in the form 

(5.14) v '  = - l i t  - ~ p z v  + - a p  - h v  4.  

Substituting (5.14) into (5.13), and (5.8) for u', expressing u in terms of  h and v 

from (5.12), and noting that #2 = 1, we obtain finally 

(5.15) h ' =  ( a  # )  a2 7 - - 4  z + ( � 8 8  + h # z ) v + ( 3 a h # - 3 h ) v  2 + 2 h 2 v  a. 

Now, (5.14) and (5.15) is a pair of  differential equations for v (z) and h(z).  Since 

h and v remain bounded on {zn}, the same reasoning as in Case II in w shows that 

w(z )  = 1 /v ( z )  has a simple pole at z = a. 
Case IV now proceeds in a way  similar to that in w We assume that there is 

a sequence {zn} on F such that zn ~ a, [w(zn)[ --+ 0% and [W(z,~)[ ~ c~. From 

(5.9) and (5.10), we obtain 

w 2 V W  = w 4 - (wt) 2 Jr z w  2 + o~w = - ( V  - w t  /~lA) - a w  

= ( w ' / w )  - V - a w ,  

so that w t = w S V W  + w V  + a w  2 and w ' / w  = w 2 V W  + V + aw.  Substituting these 

into (5.9), we obtain 

(w6W 2 + 2 w  4 W  + w2)V 2 + ( 2 a w h W  + 2 a W  3 + w 2 W )  V + ( a  2 - 1)w 4 - z w  2 - a w  = O, 
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which may be written as a formal quadratic equation 

hl V 2 --b h2V + h3 = O. 

Note that hi = w2(w2W + 1) 2. A calculation now shows that h3/hl and h2/hl 
tend to zero on the sequence z,~ as n ~ oo, so that also V(zn) --+ 0; hence this case 

reduces to Case III. 

The counterpart  o f  Case V remains to be verified. To this end, consider (1.2) 

at a point b with w(b) = Wl and w'(b) # O. Then in a small neighbourhood o f  wl,  

w(z) has an inverse function taking Wl to b. We denote this inverse function not by  

z(w) but by  f (w).  There is a power series expansion 

oo 

(5.16) f (w)  = y ~  an('W - wl) n 
n = 0  

valid in some disk B(wl,  r) = { w : [w - Wll < r } centred at wl. We write f rom 

now on ~ = w - wx. 

We can write (1.2) in the form 

(5.17) - f " (w)  = (2w 3 + wf(~)  + ~)(f'(w)) 3 

in B(wt,  r). Let now R2 be the radius o f  convergence o f  the series (5.16). Note  

that the series (5.16) is completely determined by the function w(z) in a small 

neighbourhood o f  the point b. It then follows that the function f (w)  given by  the 

series (5.16) satisfies (5.17) in the whole disk B(Wl, R2). Since f arises f rom (1.2), 

we have R2 < e~. 

I f f '  has a zero o f  order m > 1 at some point w 6 B(wl,  Rz), then f "  has a zero 

o f  order m - 1 at w. Hence the left hand side o f  (5.17) has a zero o f  order m - 1 

at w, while the right hand side o f  (5.17) has a zero o f  order at least 3m at w. Since 

3m > m - 1, this is impossible; so we conclude that f '  has no zeros in B(Wx, R2). 

The following statement is the counterpart  o f  Lemma 1. 

L e m m a  2. Suppose that the function w(z) satisfies (1..2) in a neighbourhood 
o f  the point b and that w(b) = wl and w'(b) # O. Let f (w)  be the inverse function o f  
w, given by (5.16) in a small neighbourhood o f  wl and taking wl to b. There exists 

an absolute constant C > 1 such that the following holds. Suppose that M > 1, 

6 (0, 1), andthatlb[ = la01 ___ M, [al <_ M, 12w~+wlao+al <_ M, 16w~+a0l < M, 

Iwxl _< ,~, lall = ]f'(wx)[ < M~/8, and M36 < 1. Then the coefficients ak in (5.16) 
satisfy (5.19) below for  all k > 1, and the radius o f  convergence R2 o f  the series 

(5.16) satisfies R2 > 1/(C(M~)1/2). 
Let r / e  (0, 1) and M > 1 be preassigned numbers. Then there exists a number 

60 6 (0,1) such that i f  O < 6 < 6o and i f  all o f  the above assumptions are satisfied, 
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then for all z, w E B(wl,  26) (and hence, in particular, for all z, w e B(O, {wl I)), we 

have I ( f ' ( z ) / f ' ( w ) )  - 11 < ~7. 

To prove Lemma 2, we examine the power series expansions in ~ - w - wl of 

the two sides of  (5.17). The left hand side is 

- f " ( w )  = - ~ n(n - 1)an~ n-2 
n = 0  

- - . ~ - -  a n Z ( n + l ) ( n + 2 )  n+zr �9 
n = 0  

For the right hand side, note first that 

W 3 ----- (Wl + ()3 : Wl 3 q_ 3W2( -t- 3Wlff 2 q'- ~3 

We have 

o o  o o  

f ' (w) = E r~anCn-1 = E (n -1- 1)an+l~n' 
n = 0  n = 0  

so that 

o o  

(f '(w)) 3 = Z ff~ Z (k + 1)(/+ 1)(p+ 1)ak+lal+lap+l , 
n=O k+lWp=n 

where k, l, p take non-negative integer values (as do all indices to be considered). 

Hence also 

f(w)(f,(w))a = ~ r Z (k + 1)(/-I- 1)(p+ 1)ak+la,+la,+laq 
n = 0  k-Fld-p't-q----n 

and 

wf(w)(f'(w)) 3 = (Wl +~)f(w)(f'(w)) 3 
oo 

= wl E ~n E (k + 1)(l + 1)(p + 1)ak+la,+lap+laq 
n = 0  k+lWpWq=n 

o o  

+ ~ r ~ (k + 1)(/+ 1)(p+ 1)ak+la t+xap+laq .  
n = l  kTITp+q----n-1 
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Next, we have 

(2w ~ + ,~)(y'(~))~ = (2(w~ + 3wfr + 3,~,r ~ + <~) + ,~)(f ' (w))  ~ 

=(2w13+0 0 ~ r  E (k+l)(/+l)(p+l)ak+lat+lap+l 
n = 0  

+ ;n 

+ 6Wl ~ (n 
n~.2 

+ 2 ~ r  n 
n = 3  

k+l+p=n 

E (k + 1)(/+ 1)(p + 1)ak+lat+lap+l 
k+l+p=-n-1 

E (k + 1)(/+ 1)(p + 1)ak+lal+lap+l 
k+l+p=n-2 

E (k + 1)(l + 1)(p + 1)aa+lal+lap+l. 
k+l+p=n-3 

We conclude that 

- ~ ( r ,  + 1)(n + 2)a,,+~r 
n = O  

= wt E ~'" E (k + 1)(l + 1)(p + 1)ak+lal+lap+laq 
n = O  kq-l+pq-q=n 

o o  

+ E r E (k + 1)(/+ 1)(p + 1)ak+lat+lap+laq 
n = l  k+l-t-p+q=n- 1 

+ (2wx 3 + a) E ~-n E (k + 1)(/+ 1)(p + 1)aa+lat+lap+l 
n = 0  k+l+p=n 

+ 6Wl 
n = l  

o~ 

+ 6Wl ~ ~'~ 
n-----2 

(5.18) +2y~'~C 
n = 3  

E (k + 1)(l + 1)(p + 1)ak+lat+lav+l 
kWl+p=n- 1 

2 (k + 1)(/+ 1)(p + 1)ak+lat+lap+l 
k+lTp=n-2  

E (k + 1)(l q- 1)(p -{- 1)ak+lal+lap+l. 
k+l+p=n-3 

Comparing the coefficients of (n on both sides of (5.18), and taking separately 
the terms with q = 0 in the first two terms on the right hand side of (5.18), we 
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conclude that for each n _> 0, we have 

-- (n -t- 1)(n q- 2)an+2 = WX E (k + 1)(/+ 1)(p + 1)ak+lal+lap+laq 
k +l-l-pWq=n 

q>l 

+ E (k + 1)(/+ 1)(p + 1)ak+lat+lap+laq 
k+l+p+q=n- 1 

q>l 

"~ (2W 3 "~- Wxa 0 -~- Ol) E (k + 1)(/+ 1)(p + 1)ak+lat+lap+l 
k+l+p=n 

+ (6w 2 + a0) E (k + 1)(/+ 1)(p + 1)ak+lat+lap+l 
k-t-l q-p=n-- 1 

+ 6Wl E (k + 1)(/+ 1)(p + 1)ak+lat+lap+l 
k+IWp=n-2 

+ 2 E (k + 1)(/+ 1)(p + 1)ak+lat+lap+t. 
k+lq-p=n-3 

Here and later, an empty sum is considered to be equal to zero. 

Note that al = f ' (wl)  ~ O. Let M and 5 be as in the statement of  Lemma 2. 

Suppose that the inequalities involving M, 5, a, a0, and Wl, given in the assumption 

of Lemma 2, are satisfied, and suppose that C is a number with C > 1 such that 

(5.19) laa/al I <- 8Ek Ck-1 (MS)(k-2)12/( k + 1) 3 

for 1 < k < n + 1, for some n _> O, where we define for each k > 1, 

Ek = (MS) 2 

Ek = (MS) 1/2 

Ek = M(MS) ~ 

Ek = M(MS) 3/2 

if k is divisible by 4, 

if k is of  the form k = 4j + 1, 

if k is of the form k = 4j + 2, 

if k is of the form k = 4j + 3. 

We claim that then, if  C is a sufficiently large absolute constant, (5.19) holds also 

for k = n + 2. Since (5.19) holds trivially for k = 1, it follows that (5.19) holds for 

all k > 1. 

That (5.19) is valid for all k > 1 can be proved by an induction similar to that 

used in the proof of  Lemma 1. Hence we omit the details. We only mention that 

the counterparts of  the conditions C(Me) ~/a < 1, 3eC(Ms) 2/3 < 1, and 

(M6)2/3C(2~)/(1 - 2~C(M~) 2/3) < ~?/3 

needed for the proof of  the second paragraph of Lemma 1 are C(MS) 1/2 < 1, 
35C(M5) 1/2 < 1, and 

(M5)1/2C(25)/(1 - 25C(M5) 1/2) < 7/3. 
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We shall now take the view that Lemma 2 has been proved. 

Note that in Lemma 2, the upper bound for lakl has period 4, while in Lemma 1, 

that upper bound had period 3. This is connected to the difference in the exponents 

2/3 of  Me and 1/2 of  M6 in the lower bound for the radius of  convergence of  the 

power series for f .  

We may now finish the proof of  Theorem 2 in the same way as we dealt with 

Case V of  Theorem 1 in w part (3). Briefly, we note that we only consider points 

b E B(zo, R) so that if M = 6 + Iz0l + R + I~1 > 1, then the assumptions of  Lemma 2 

will be satisfied provided that Iwll _< 6 and 0 < 6 < 1. We fix a number 77 E (0, 1) 

satisfying (7r/2)(1 + 0)/(1 - ~7) < 1.6. After that, we choose 6 E (0, 1) so that 

all the conditions in Lemma 2 are satisfied, including those required to apply the 

last paragraph of  Lemma 2 with this r} (note that, by construction, we then have 

36C(M~) 1/2 < 1). 

We are assuming that V(z) and w(z) are unbounded on F but 

liminf Iw(z)l = O. 
z-+a,  zE  l" 

We have fixed 6 E (0,1) above. Thus there exists a sequence of  points {z~} on F 

such that [w (z)[ < 6 for z E Fk, where Fk is the arc of F from z2k-1 to z2k, for k > 1, 

while Iw(z)l ___ ~ on the remaining subarcs o f F .  As in the proof of  Theorem 1, we 

see that Iw'(zn)l ~ ~ .  
We apply Lemma 2 to b = z2k-1. Since w'(z,~) ~ c~, it is clear that for all 

sufficiently large values of  k, the assumptions of  Lemma 2 will be satisfied. 

For each sufficiently large value of  k, we replace the subarc Fk of  F by the 

arc fk(Qk), where fk is the branch o f  the inverse function of  w(z) mapping a 
neighbourhood of  w(z2k-1) onto a neighbourhood of  z2k-1 and Qk is the shorter 

arc of  the circle S(0, 6) joining w(z2k-1) to w(z2k), the latter point being the first 

point on w(F) after w(z2k_ 1) with modulus 6. Applying Lemma 2 to f = fk, we see 

that the radius of  convergence of  the power series of  fk with base point w (z2k-1) is 

at least 1/(C(M6) 1/2) > 36, so that w(.l-'k) C B(0,6) C B(w(z2k-1),36).  It follows 

that the paths fk(W(Fk)) and fk(Qk) have the same end points, namely, z2k-x and 
z2~. Hence this modification leads to a continuous path. Performing this operation 

for all large k, we obtain a new path/='. 

Next, it follows in the same way as in the proof of  Theorem 1 that for 

each modified part of  F, the new length divided by the old length is at most 

(7r/2)(1 + r/)/(1 - 77) < 1.6. 

We now construct a Riemann surface S which amounts to a small neighbourhood 

of  the modified path. The proof is completed in the same way as for Theorem 1. 

This completes our sketch of  the proof of  Theorem 2. 
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