EXISTENCE AND NONEXISTENCE OF SOLUTIONS
FOR SOME NONLINEAR ELLIPTIC EQUATIONS
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1 Introduction and statement of results

In this paper we consider nonlinear boundary value problems whose simplest
model is the following:

(1.1)

—Au+ulVul?=p inQ,
u=20 on 99,

where 2 is a bounded open set in RN, N > 2, and p is a Radon measure on Q.

We are interested in existence and nonexistence of solutions for (1.1). More
precisely, we prove the existence of a solution u in H}(Q) for problem (1.1) if
and only if the measure y does not charge the sets of capacity zero in 2. The
main tool of our proof will be a characterization result, proved by the authors in
[6], which states that every measure which is zero on sets of zero capacity is an
element of L1(Q) + H~1(Q) (see also Theorem 2.3, below). We also prove that if
we consider a sequence {u,} of solutions of (1.1) with L>°(£2) data u,, converging
to a nonzero measure which is singular with respect to the capacity (for example,
a Dirac mass), then u, converges to zero as n tends to infinity. For semilinear
problems, an analogous result can be found in [10].

Our result is closely related to the work of H. Brezis and L. Nirenberg (see
[11)), where (as a particular case of more general results) it is proved that if  is
a bounded L>(2) function and u is a smooth solution of (1.1) in 2\ K, with K a
closed set of zero capacity, then u is smooth in the whole of Q; that is to say, u
cannot be singular on sets of zero capacity.

The link between the two results is due to the fact that, as a consequence of a
theorem of [17] (see Proposition 3.1 below), every bounded Radon measure u on
{2 can be decomposed in a unique way as the sum of a measure uo which is zero
on the sets of zero capacity and a measure A which is concentrated on a set E of
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zero capacity. Hence, problem (1.1) implies that
~Au+ u|Vu|? = y in Q\E.

The result of [11] states that if p, is an L°°(Q) function, then w is a solution of the
problem with datum g in the whole Q; that is to say, the term A does not play any
role. Our result states that if we look for solutions in the whole of €2, then we have
to take into account only the term pg, without the L (Q) restriction on pyg.

Problem (1.1), and some variants of'it, have been widely studied in the literature.
For example, if the nonlinear lower order term is independent of Vu, and behaves
like |u|?~! u, with ¢ > 1, there are existence and nonexistence results depending on
the measure y; see, e.g., [10], [12], [13], [1], [18], [20]. If the nonlinear term is as
in (1.1), there are existence results if u belongs to H () (see [2], [7] and [16])
or to L1(Q) (see [4], [5], and [21)).

Since we are going to consider more general nonlinear boundary value prob-
lems, we now state the assumptions that will hold throughout the paper.

Let €2 be a bounded, open subset of RY, N > 2. Let p be a real number such
that 1 < p < N, and let p’ be its Holder conjugate exponent (i.e., 1/p+ 1/p" = 1).

Leta: Q x RY — R" be a Carathéodory function (i.e., a(z, -) is continuous on
RY for almost every  in €2, and a(-, £) is measurable on Q for every £ in RY) such
that

(1.2) a(z,£) - € > al¢?,
for almost every z € Q and every £ € R, where « is a positive constant;
(1.3) la(z, )] < &(z) + BIEP,

for almost every z € Q and every £ € RY, where 3 is a positive constant and ¢
belongs to L¥' (Q); and

(14) [a(xaf)‘a(l?ﬂl)]'(f—n) >0,

for almost every = € © and every ¢ and 7 in R" with ¢ # 7.
Let
A(u) = —div (a(z, Vu)).

By (1.2), (1.3) and (1.4), A is a monotone and coercive differential operator acting
between W, P(Q) and its dual W1 (Q); hence, it is surjective on W17 (Q) (see
[19D).

Letg : Ox Rx RN — Rbe a Carathéodory function (i.e., g(-, s, £) is measurable
in Q for any (s,£) in R x RY, and g(x,-,) is continuous in R x RY for almost



NONLINEAR ELLIPTIC EQUATIONS 205

every z € ) such that

(1.5) lg(z, 5,6 < b(|s]) (I + d(=)],

with b a real valued, positive, increasing, continuous function, and d a nonnegative
function in L1(Q);

(1.6) g(z,s,€)sgn(s) > pllP,

for almost every x in £, every £ in RY, and every s in R such that |s| > o, where
o and p are two positive real numbers.

For every compact subset K of 2, the p-capacity of K with respect to Q is
defined as

cap,(K,Q) = inf{/ [VulPdz : uwe C5°(R), u> XK} )
Q

where X  1s the characteristic function of K'; we use the convention that inf §§ = +oc.
The p-capacity of any open subset U of  is then defined by

cap,(U, Q) = sup {capp(K,Q), K compact, K C U} ,
and the p-capacity of any subset B C 2 by
cap,(B, Q) = inf {capp(U, Q), U open, B C U} .

We denote by M, (Q) the space of all signed measures on €, i.e., the space of
all o-additive set functions g with values in R defined on the Borel o-algebra. Note
that if u belongs to My((2), then || (the total variation of ) is a bounded positive
measure on ). We denote by M5(Q) the space of all measures p in My (£2) such
that u(E) = 0 for every set such that cap,(E, ) = 0. Examples of measures in
ME(9Q) are L'(Q) function and measures in W17 (Q).

Define, for s and k in R, with k > 0, Tx(s) = max({—k, min(k, s)) and G(s) =
s~ Tr(s).

Our result is the following.

Theorem 1.1. Let p be a measure in My(Y). Then there exists a solution u

of

(1.7) { A(u) + glz,u, Vu) = p inQ,

u=0 on 9%},
in the sense that u belongs to W, *(Q), g(z,u, Vu) belongs to L'(Q), and
(1.8) /a(w,Vu)-Vvda:+/g(:v,u,Vu)vd:c:/vdp,
Q o Q

Jor every v in C§°(R2), if and only if u belongs to ME(R).
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Remark 1.2. Note that the solution of (1.7) given by the previous theorem
belongs to W, '?(Q) even if u belongs to L!(): this is in sharp contrast with the
results in the case g = 0, since the solutions of

Aluy=p inQ,
u=0 ondf,

are known to belong only to W,'4(Q) for every ¢ < N(p — 1)/(N — 1) (see [3]).
The better regularity of the solution of (1.7) is due to assumption (1.6). Indeed,
even if the nonlinear lower order term has a growth of order p with respect to the
gradient, but does not satisfy (1.6), we may not have solutions in Wol’p(Q). To show
this, let us consider the following example. Letp = 2, @ = {z € RY : |z] < 1},
and a(z,£) = £, so that A(u) = —Au, the Laplacian. Let m = {N — 1 and let
u(p) = p~™ — 1, where p = |z|. Then u is solution of

Vul? _
1+u

—Au + f(p) )

where N9y
160) = oy

It is easily seen that u does not belong to H}(Q), while f belongs to L*(£), for

every s in [1 2N )
Y "N+2/°

Remark 1.3. The result of Theorem 1.1 explains the restriction p < N.
Indeed, if p > N, then there are no nonempty sets of zero p-capacity; in other
words, every measure in My(Q2) is in ME(Q). Moreover, due to the Sobolev
embeddings, every measure in My, () is in W17 (Q),

2 Proof of Theorem 1.1

In the following, we denote by ¢ any constant which depends on the various
quantities of the problem but not on n. The value of ¢ may vary from line to line.

We begin with an existence result for problem (1.7) in the case in which the
datum g is regular.

Theorem 2.1. Let f be an L>®°(Q) function, and let F be an element of
(L)Y, with s > N/(p — 1). Then there exists a solution u in Wy?(Q) N L®(Q)

of

2.1)

A(u) + g(z,u, Vu) = f —div(F) inf,
u=0 on 99,
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in the sense that

/na(z,Vu)-Vv+/ﬂg(x,u,Vu)v=/ﬂfv+/nF-Vv,

for every v in Wy P(Q) 0 L=(Q).

Remark 2.2. We remark that the result of the preceding theorem does not
exist in the literature. Indeed, existence results in W, ?(Q) N L(Q) have been
given, under the same assumptions on f and F as in Theorem 2.1, for the problem

A(u) + g(z,u, Vu) + oo [ufP~?u = f — div(F),

with ag > 0 (see, for example, [9] and the references contained therein), or under

a sign assumption on g: namely,
g9(z,s,£)s 20,

for almost every z in €, for every s in R, for every ¢ in R (see [2]). In our case,
(1.6) gives a sign condition on g only for large values of s.

Proof of Theorem 2.1.  For the sake of simplicity, we give a proof of this
result in the case f = 0; the case of f different from zero can be dealt with by
means of minor technical modifications.

Let n be in IV and let

g(z,s,€)

gn(ﬂh&ﬁ) = 1+ % Ig(.’z,s—_’g)l .

Then g, (z, s, ) is bounded, satisfies (1.5) and, thanks to (1.6), is such that

2.2) gn(z,s,€)sgn(s) >0,

for almost every z in Q, for every £ in R™, and for every s in R with |s| > o.
Since g, is bounded, by classical results (see for example [19]) there exists a
solution u,, in W, "P(Q) of

A(un) + gn(Z, un, V) = —div(F) inQ,
u, =0 on 89,

in the sense that

(2.3) /a(m,Vun)-V'uda:+/gn(x,un,Vun)vdwz/F-Vvdz,
Q Q Q

for every v in Wy '?(Q).



208 L. BOCCARDO, T. GALLOUET AND L. ORSINA

As proved in [8], [9], if the sequence {u,} is bounded in L*°({), then it
is possible to extract a subsequence which converges strongly in W, *(2) to a
solution of (2.1). Thus, the proof of the theorem will be achieved if we prove an
L>(Q) a priori estimate on the sequence {u,,}.

To do this, we choose v = Gi{u,) as test function in (2.3), with k > 0. We
obtain

/a(z,Vu,l)-VGk(un)d:C+/gn(w,un,Vun)Gk(un)dr:/F~VGk(un)dCE.
Q Q Q

Since Gy(s) has the same sign as s, and since G (s) is different from zero only
where |s| > k > o, (2.2) then implies

/ (T, Un, Vuy,) G (un) dz > 0.
0

On the other hand, setting
Ak,n = {luni > k}a

we have, by the Young inequality,
/ F - VGi(up)dz < c / \FIP do + = / VG (un)|P dz .
Q Aem 2 Ja

Thus, using (1.2) we have

2 / VG (up)P dz < ¢ / \FIP da.

2 Jo Akon
From now on we will follow the method introduced by G. Stampacchia in order to
prove L>(Q) a priori estimates for solutions of elliptic equations (see [22]). Since
|F| belongs to L*(2), and s > p’, we have, by the Holder inequality,

» 1-p'/s
/ I e S g s ()

On the other hand, by the Sobolev embedding, we have

. »/p"
/ IVGr(un)|Pdz > ¢ (/ |Gr(un)? dx) )
Q Q

where p* = Np/(N — p) if p < N, and is any real number greater than
Ns(N —-1)}/(Ns - N — s)if p= N. Thus, we have

. p/p" ,
(/ |Gk (un)lP d"’) < cmeas (An)' 7770,
Q



NONLINEAR ELLIPTIC EQUATIONS 209

Choosing h > k, and using the fact that |Gr(u, )| > h — k on 4;, ,,, we have
(h — k)P meas (Ah’n)p/p* < cmeas (Ak‘n)l'pl/s , Va>k>o,

that is,

s [%

— meas (Ag ) <1_%i) , YVh>k>o.

meas (Apn) < (T:CW

Since, by our choice of p* and s, we have

* /!
g’--(1—Ii)>1,
P s

a well-known result by G. Stampacchia (see [22], Lemme 4.1) implies that there
exists a constant M (independent on n), such that

meas (Axn) =0, YVk>o0+ M,
that is to say,
il gy < 7+ M
This fact concludes the proof of the theorem. o

The next result is a decomposition theorem for measures in My(£2), proved in
[6], Theorem 2.1.

Theorem 2.3. Let 1 < p < +oo and let p € My(Q). Then p € L'(Q) +
W=12(Q) if and only if u € ME(Q).
Finally, we state a technical lemma, whose proof is straightforward.

Lemma 2.4. Let a and b be two nonnegative real numbers, and let

052

w(s) =se"%
with 8 = b /4a®. Then
2.4) a'(s) — blp(s)] > a/2, seR.

Using the previous results, we can prove Theorem 1.1.

Proof of Theorem 1.1. It is clear that if there exists a solution u« of
(1.7), with u in W, ?(Q) and g(z, u, Vu) in L}(R), then, since a(z, Vu) belongs to
(L¥' (2))N thanks to assumption (1.3), z belongs to L' () + W~1*'(Q2) and so is in
M5B (Q2) by Theorem 2.3.

On the other hand, suppose that i belongs to ME(Q). By Theorem 2.3, x can
be decomposed as f — div(F), with f € L'(Q) and F in (L*' (Q))V.
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Let {f.} be a sequence of L>°(Q) functions that converges to f strongly in
LY(€), and let {F,} be a sequence of (L>°(02))" functions that converges to F
strongly in (L*' (Q))V.

By Theorem 2.1, there exists a solution wu,, of

2.5) { A(un) + 9(x,un, Vun) = fo — div(F,) ng,

U, =0 on 91},

in the sense that u,, belongs to Wol”’(Q), g(z, un, Vu, ) belongs to L' (Q), and
(2.6) / a(z,Vu,) - Vodr +/ g(z,upn, Vu,)vde = / favdr+ / F, -Vvdz,
a Q Q Q

for every v € W, P(Q) N L®(Q).
Let us choose
v= SO(TU (Un)) L]

as test function in (2.6), where ¢ is given by 1.6, and ¢(s) is as in Lemma 2.4, with
a =a/2and b = b(o) (b(s) is given by (1.5)).

Using (1.2) and the Young inequality, and writing ¢! = »'(T,(u,)) and ¢, =
o(T,(un)) for simplicity, we obtain

/ VT, (un)l? @5 dw+/ o 9T, Un, Vi, ) dx
<o0) [Iflda o) [ IFP dot G [ VTP, do,
so that, since { f,} is bounded in L'(£2), and {|F,|} is bounded in L* (),
@D 5 [ VTP e dot [ g0 o(aun Vi) dz < e(plo) + ¢'(0)).
We now have

/%g(w,umVun)dw = / Vo 9(T, Un, Vun) dz
Q2 {lunl<o}

+ 0o 9{T, tin, Vu, ) dz .
{lun|ze}

Using (1.5), we have

/{lu,.|<a} Yo 9(T, tn, Vu, ) dz| < b(o) (/ [V, (un)[P po dz + (o) ||d”L1 ﬂ))

while, using (1.6), we get

/ @o 9(, Un, Vug ) dz > p (o) | Vug|Pdx.
{lunl>0} {JunlZ0}
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We thus obtain

/ VT () [S @) ~ b(o)leol] da +pi(o) VunPdz < c.
Q 2 {lun|>0}

so that, by (2.4),
/ VT, (4P da +/ VunlPde < c.
Q {lunl2o}

This proves that {u,} is bounded in W,"?(9); hence, there exist a function u €
W,?(£2) and a subsequence, still denoted by {u,}, such that u, converges to u
weakly in W, *(Q) and almost everywhere in 2.
The next step of the proof is the strong convergence of u,, to u in W, ().
We begin proving that we have

2.8) lim sup [Vu,|Pde=0.
k=400 neN Jjua|2k}

We choose v = v, _1(u, } as test function in (2.6), where
Yr-1(s) = T1(Gk-1(s)),

and k > o + 1. We get, again using (1.2) and the Young inequality,

a/ﬂIVwk_l(un)lpdx+/Q¢k_1(un)g(x,un,Vun)dx

</ aldo+ [ F do+ 3 [ 1V do.
{lun|2k—-1} {k—1<]un|<k} 2

Using (1.6) and the fact that ¢, _; (s) has the same sign as s if |s| > ¢ and is zero if
|s] < o, we have

g(Z,un,Vun)wk._l(un) 2 [g(xv un,vun)l X{lun|2k} ]

so that we obtain, dropping positive terms,

/ 10(, tn, Vi) de < / \fulde + / P dz.
{Iun‘zk} {Iun\Zk—l} {k-lslunlsk}

Since {u,} is bounded in L1(Q), we have

lim sup meas ({|u,| >k —1})=0.

k—+00 neN

Thus, since fr, is strongly compact in L!(2), and | F,| is strongly compact in L* (),
we have

lim sup/ |fn]dw+/ [Fn|p/dw=0,
k=400 neN J{|u,|>k—1} {k—1<u, <k}
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and so

2.9 lim sup / lg(z, un, Vu, )l dz = 0.
k=400 neN J{ju.1>k}
Using the fact that £ > ¢ and (1.6), we see that (2.9) implies (2.8).
The next step is the proof that for every k > o, the sequence Ty (u,) converges
strongly to 7y (u) in W, '*(Q2). In order to do this, we shall closely follow the outline
of [5]. Let k£ > o be fixed, and choose as test function in (2.6)

v = p(Tx(un) — Tr(u)),

where ¢(s) is as in Lemma 2.4, with a« = 1 and 4 = b(k)/a. Such a function is
admissible since it belongs to W, ?(Q) N L>®(Q). We thus have

) [ (e V) - VUTi11) = T(10)! (T tn) = Tiw)) s
®) + [ 0o, V) oTi) ~ Tiw)

© - /Q Fo9(Ti(2n) — Ti(w)) do

D) + /ﬂ Fo - V(Ti(un) — Ti(w)) @ (T (un) — Ti(w)) dz

Here and in the following, we write ¢, for any quantity which converges to zero as
n tends to infinity.
In order to deal with (A)~«(D), we write, for simplicity,

¢n =@ (Te(un) = Te(w),  on = @(Tr(un) — Te(u)) .

We shall often use the fact that, in the weakx topology of L>°((1), and almost
everywhere in 2, we have

(2.10) lim on = (0) =0, lim ¢l =¢'(0)=1.
Since f, is strongly compact in L'(2), (2.10) implies
2.11) (C)=¢€p.

Moreover, since Ty (u,) converges to Ty (u) weakly in W,"?(Q), and F,, is strongly
compact in (L7 (2))¥, (2.10) implies

(2.12) (D) = en.
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We can then decompose (A) as
(E) | e Tw)) - 9(Teln) = Tilw)) o, do
(F) + /Q a{z, Gy(un)) - V(Ti(un) — Ti(w)) ¢}, dx..

Since VTj(u, ) is zero where VG (u,) is different from zero, and conversely, we
have

(F) = /Q a(z, Gi(un)) - VTi(u) ¢, d
Since VT (u) = 0 on the set {}u| > k}, we have that
VTk(u) X{junj>ky — 0, almost everywhere in €.
In view of the fact that VT} (u) belongs to (LP(Q2))¥, the Lebesgue theorem implies
VT(t) X{ju, >k} — 0, strongly in (LP(Q))",
and so, since a(x, VG (u,)) is bounded in (L' (Q2))¥ by (1.3), we have
(2.13) F)=¢n.
As for (E), we can decompose it as
© [ (oo, V() = o, VT(w))]) - VTili) = Tu(w) 7 de

) + /ﬂ ale, VTe(w)) - V(Ti(un) — Ti(w)) ¢ d.

Since Ty (un) converges to Ty(u) weakly in WyP(Q), and a(z, VTx(u)) belongs to
(LF ()N by (1.3), (2.10) implies

(2.14) (H)=¢,.
Thus, putting together (2.13) and (2.14), we have
2.15) (A) = /Q la(z, VTi(un)) - a(e, VTk(w))] - V(Ti(un) — Te(w)) @)y da + e
We now deal with (B), decomposing it as
D f 9(z,up, Vun ) @n dz

{lun|2k}

@) +/ g(x, un, Vuy) ppdz .
{lun!<k}
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Using the fact that ¥ > o and assumption (1.6), and observing that on the set
{u, > k} we have

Yn = Qo(k - Tk(u)) >0
while on the set {u, < —k} we have
pn =@(—k — Ti(u)) <0,

we obtain
M =>o,

so that we can drop it. Using (1.5), we have

)] < b(k) /Q d(z) lgn] dz + b(E) / |V T ()P [ dz

where b is the function given in (1.5). Since d belongs to L'({2), we have using
(2.10)

/ d(z) |pn| ds = €, ,
Q

so that by (1.2)

b(k)

@1 <22 [ ale, VL)) - VTk(un) [onl do + .
Q
Now add and subtract to the above inequality the term
/Qa(x, VTi(u)) - V(Ti(un) — V(W) |on| dz,

which converges to zero as n tends to infinity since Ty(u,) converges to T (u)
weakly in W) P(Q) and a(x, VTi(u)) belongs to (LP (22))V), and the term

./s;a(:r, VTi(un)) - VTi{u) |n| dz,

which is an ¢, since a(z, VT (u,)) is bounded in (L? (22))" and ¢, converges to
zero by (2.10). We thus get

bk
01 < 28 [ fa(@, VTe(un)) - ala, VT - V(Telun) = Tela) lonl e + 1.
Q
Putting this inequality together with (2.15), we thus obtain that

[ @, VT (00) - e, VI )] P Talan) = T — “lpnl)da
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is an ¢,,. Hence, by (2.4),
/Q [a{z, VT (un)) — a(z, VIr(u))] - V(T (un) — Ti(uw))dz = &, .

This fact and the assumptions on a imply, by a result in [8] (see also [14]), that
Ti(un) converges strongly to Ty (u) in Wy P(Q).
Now let E be a measurable subset of £2. Then

/ [Vu,|Pdz = / |Vun|pdm+/ [Vu,|Pdz.
E B jual <k} En{[un|>k}

Let £ > 0 be fixed. Since

/ [Vu,|Pdz < / |Vu,|P dr,
En{|un|>k} {lun|>k}

(2.8) implies that there exists k > o such that
/ ]Vun|pda:55, neN.
En{|un|>k} 2

Once k is fixed, since we have

/ IVunlpde/ VT (un)|P dz,
EN{lun|<k} E

the strong compactness of Tx (u,) in W, ?(§2) implies that there exists § > 0 such
that if meas (F) < §, then

/ IVunlpdeE, neN.
En{Junl <k} 2
Thus, for every £ > 0 there exists § > 0 such that if meas (E) < §, then
/|Vun]”dw§6, ne N,
E

that is to say, the sequence {|Vu,|P} is equi-integrable. Since, up to a subsequence
still denoted by u,,, Vu, is almost everywhere convergent to Vu (as a consequence
of the strong convergence of truncates), u,, converges strongly to u in W, *(Q).

In order to pass to the limit in the approximate equation, we now show that

9(z, un, Vu,) — g(z,u, Vu) strongly in L1(Q2).

Since g(x,un, Vu,) converges almost everywhere to g(z,u, Vu), it remains to
prove the equi-integrability of the sequence {|g(z,u,, Vu,)|}. Once again, if E is
a measurable subset of 2, we have

/ 19(2 U, Vun)lde = / 19(2, n, V)| do
E En{|u,|<k}

+ lg(z, un, Vun)|dz .
En{jun|>k}
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Let £ > 0 be fixed. Since

/ et Vun)lde < [ gl Vun)]da
En{|un >k} {lunl>k}

we can use (2.9) in order to choose & > o such that

, néeN.

ha ] ™

/ |g{z, un, Vuy,)| dz <
En{|un|>k}
Moreover, using (1.3), we have

/ 10(2, tn, V)| dz < b(k) / [d(z) + [V Tk (un)[?] de
En{|un|<k} E

and, since d belongs to L!(Q) and Ty (uy) is strongly compact in Wy?(Q), there
exists § > 0 such that if meas (E) < §, then

/ 19, wn, V)| do <
En{lun]<k}

Thus, as before, we have proved that {|g(z, u,, Vu, )|} is equi-integrable, and this
allows us to pass to the limit in (2.6), in order to obtain (1.8). O

neN.

Bt M

Remark 2.5. Since there exists a solution of (1.7) in the sense (1.8) if and only
if 1« belongs to ME(Q), that is to say if and only if  belongs to L'(Q) + WP (),
the class of admissible test functions in (1.8) can be extended by means of an easy
density argument in arder to consider test functions v in W *(€2) N L=(0).

Remark 2.6. The result of Theorem 1.1 refines the result of Theorem 2.3 in
the sense that it states that if x is a measure in M5 (), then there exists a function
u in W, *(Q) such that

p = A(u) + g(z,u, Vu),
with g(z,u, Vu) in L1(Q).

If, for example, p = 2, a(z,§) = &, and g(z, s,£) = sgn(s) |£]?, then for every
nonnegative measure g in M2(Q) there exists a function v in Hj () such that

p = —div(Vu) 4 |Vul|?.

It is also easy to see, taking for instance T} (u~) as test function in (1.8), that such
a function u is nonnegative.

Remark 2.7. The same result of Theorem 1.1 holds true if the function a
depends also on u, and satisfies the following assumptions:

a(z,s,§) - £ > alEP,
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la(z,5,8)| < L(=z)+ B[|sP~" + €77,
[a(a:,s,{) - a(fas,ﬂ)] : (£ - 77) >0,

for almost every = € Q, for every s in R, for every £, nin RY (€ # n), where a and
7 are positive constants, and ¢ belongs to L*' (Q).

3 A nonexistence result

We recall that if x4 is a Radon measure, and E is a Borel subset of €, the
restriction of y to E is the measure A = ul_ F defined by

A(B) = (ENB),

for every Borel subset B of 2. We say that a measure ) is concentrated on a Borel
set Eif A= AL E.
We recall the following result, proved in [17], Lemma 2.1.

Proposition 3.1. Let p be a measure in My,(Q), and let1 < p < N. Then u
can be decomposed in a unique way as uo + A, where

(1) po belongs to ME(Q);
(2) A=pu_E, and cap,(E,Q) = 0.

Given a measure ¢ in My, (€2), we can decompose it, by the previous proposition,
as po + A. The result of Theorem 1.1 then states that problem (1.7) has a solution
with datum g if and only if A = 0. Suppose now that yo = 0, so that u = A is
singular with respect to the p-capacity. What happens if we try (as in the proof
of Theorem 1.1) to approximate the measure A with a sequence {f,} of L>(Q2)
functions and solve the corresponding problems with data f,? If we take the
sequence {f,} bounded in L'({2), then the same technique used in the proof of
Theorem 1.1 yields that the corresponding sequence of solutions {u,, } is bounded
in W, P(); hence, it converges weakly in W, ?(Q) to some function u. Clearly, u
cannot be a solution of the problem with datum A, since such a solution does not
exist. What can we say about u? The answer is given by the following theorem,
under a sign condition on the lower order nonlinearity g.

Theorem 3.2. Let A be a positive measure in My(f2), concentrated on a set
E such that cap,(E,Q) = 0, and let {f,} be a sequence of nonnegative L>(Q)
Sfunctions such that

lim /fncpdmz/gad)\ Y € C°(9).
Q Q

n——+oo
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Suppose that, in addition to assumptions (1.5) and (1.6), g also satisfies

3.1 9(z,s,£)s > 0,

Jor almost every z in Q, for every s in R, and for every £ in RY. Let u, be a
solution of the equation

{ Alun) + g(z,un, Vu,) = fn in Q,

3.2
(3.2) U, =0 on 99,

in the sense (2.6) (with F' = 0). Then there exists k > 0 (depending on g and o),
such that
Ti{uyn) — 0 strongly in Wy P (Q).

Moreover; u,, converges weakly to zero in Wy *(Q), and

lim 9z, un, Vuy ) pdx = / pdA Vo € C3(Q).
Q )

n—-4o00

In the following we denote by e5 and £, s respectively any real numbers such
that

lim ¢ =0, lim Iim e,5=0.
§—0+ §—0+ n—+o0

Before giving the proof of the theorem, we need to construct as in [15] a suitable
collection of cut-off functions.

Lemma 3.3. Let ) be a nonnegative measure in My, () which is concentrated
on a set E of zero p-capacity. Then for every § > 0 there exists a C§°(2) function
15 such that

(3.3) ‘/lewalpdx=€5, 0<9ys <1, /Q(l—'(ﬁ,s)dz\=€5.

Proof. Since )\ belongs to My (Q), for every é > 0 there exists a compact set
Ks C E such that A(E\ K;) < 8. Since K is compact, and its p-capacity is zero,
there exists a C§°(f2) function s which is equal to 1 in a neighbourhood of Ky and
that satisfies both the first and second conditions of (3.3). As for the third, we have

05/(1—1/;6)d)\= (1 - i) dA < A(E\K3) < 6.
Q E\Ks

This completes the proof. O
Remark 3.4. If E is compact, we can choose K; = E for every § > 0. As

a consequence of (3.3), we have that ¢s converges to zero strongly in Wol”’ (Q),
almost everywhere in {2, and in the weak* topology of L>°(Q).
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Proof of Theorem 3.2.  Since f, is nonnegative, the sign assumption (3.1)
on g implies that u,, is also nonnegative. As in the proof of Theorem 1.1, it is easy
to see, using the assumptions on a and g, that the sequence {u,} is bounded in
W, (). Thus, there exists a subsequence, again denoted by u,,, a function v in
W)P(Q), and an element G in (L ()" such that

Up — U weakly in W, *(2) and almost everywhere in Q,

a(z,Vup) —» G weakly in (L (Q))¥;

the latter convergence is due to the fact that, by (1.3), a(z, Vu,) is bounded in
(L7 ()N
Let £ > 0 be such that

(3.4) (k) k < a/2,

where b is the function that appears in (1.5). Such a & exists since b is continuous.
We now choose as test function in (2.6) the function

v = (k—Ti(un))¥s,

which is admissible since it belongs to W, ?(Q) N L>®(2). We obtain

(A) - /Qa(a:,VTk(un)) VT (un) s dx
(B) +/n [a(z, Vuy,) - Vips] (k — Tk (un)) dz
© + [ g, Vi) (k= Te(un) vy
(D) = [ £tk = Tefun)) s da.

Since k — T (un) converges to k — Ti(u) both in the weakx topology of L>°(2) and
almost everywhere in §2, we have that Vs (k— T} (u,,)) converges to Vs (k— Tk (u))
strongly in (L?(Q))¥, and so

(3.5) (B) = [ G Vs (b~ Tu(w)do + e = e,

where the last passage is due to the first equality of (3.3). We then have, by (1.5)
and since k — Tk (u,) = 0 for u, > k,

(C)] < /{ o 2] = Th() i d(2) + [P e
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Thus,
/ b(ur) (k — Ti(un)) ¥s d{z) dz < % / d(z) s dz = €5,
{0<un<k} o

by the choice of k and since 15 converges to zero in the weakx topology of L*(Q)
as a consequence of (3.3). Moreover, again by the choice of %,

[ blun) (b= Ti(un)) s Vual? do < 5 [ 19T )P d
{0<un, <k} Q

‘We thus have
I(B)I < % / (VTi(un)|P Ysdz + €5 .
Q

Using (1.2), we also have
(8) 2~ [ [VTu(un)P s da.
Thus, since (D) is nonnegative,
o /Q Vi) P s do < 5 /ﬂ IV Tk ()P 6 A + €1
that is to say,
(3.6) [ VTP st = s
The next step consists in choosing as test function in (2.6) the function
v =Ti(un)(1 - s),

which is again admissible. We get

®) /n o(@, VTi(un)) - VT (un) (1 — s) dz
(F) - /Q (a(z, Vin) - Vibs] To(un) da
@) + /Q 02, Uy Vi) Te(un) (1 - ¥5) do
) = [ 1o Titun) (1= ).

The term (G) is nonnegative by (3.1), so we drop it. Reasoning as before, we have

(F) =Enb»
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while

@<k [ =)o =k [ (1=ws)drte, = s,
by the third part of (3.3). Thus, using (1.2) in (E), we get
3.7) a /Q IV T ()P (1~ 95) dz = £ 5.
Putting together (3.6) and (3.7), we easily obtain

/ [VTr(unl|P dz =€, ,
Q

that is to say, Ti(u,) converges strongly to zero in W, ?(Q). Since the limit is
independent of the choice of subsequence, the sequence T (u,) converges to zero
strongly in W, ?(). Thus, u = 0, and o u,, converges weakly to zero in W, ?(£2).

In order to prove the second part of the theorem, observe that from the strong
convergence to zero of T;(u, ) follows the almost everywhere convergence to zero
of Vu,, and this implies that G = 0. Now we choose a test function ¢ in C3(92) in
(2.6); we obtain

(3.8) /a(x,Vun)-chda?-i—/g(z,un,Vun)godw:/fnwdm.
Q o) Q

Since G = 0, we have

/ a(z,Vu,) - Vepdz =¢,,
o

/fncpd:rz/cpd)\+en.
0 Q

Thus, from (3.8) we obtain by subtracting

while

lim 9(z,un, Vuy ) pdr = / wdX,
Q Q

n—-+o0

for every ¢ in C3(Q), and this concludes the proof of the theorem. O

Remark 3.5. The result of the previous theorem also holds, with minor
technical modifications in the proof, if A is a signed measure. Results of this
kind, concerning problems where the lower order term is independent of the
gradient of u and behaves like |u|?"'u, can also be found in [20].
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