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1 I n t r o d u c t i o n  a n d  s t a t e m e n t  o f  results  

In this paper we consider nonlinear boundary value problems whose simplest 

model is the following: 

f-2xu+u[~Tul2=# in f t ,  
(1.1) / u = 0 on Ogt, 

where f~ is a bounded open set in R N, N >_ 2, and # is a Radon measure on ft. 

We are interested in existence and nonexistence of  solutions for (1.1). More  

precisely, we prove the existence o f  a solution u in Hl ( f t )  for problem (1.1) i f  

and only if  the measure # does not charge the sets o f  capacity zero in fL The 

main tool o f  our p roof  will be a characterization result, proved by the authors in 

[6], which states that every measure which is zero on sets o f  zero capacity is an 

element o f  L 1 (f~) + H -1 (ft) (see also Theorem 2.3, below). We also prove that i f  

we consider a sequence {un } o f  solutions o f  (1.1) with L ~ (ft) data #,~ converging 

to a nonzero measure which is singular with respect to the capacity (for example, 

a Dirac mass), then un converges to zero as n tends to infinity. For semilinear 

problems, an analogous result can be found in [10]. 

Our result is closely related to the work o f  H. Brezis and L. Nirenberg (see 

[11]), where (as a particular case of  more general results) it is proved that i f  # is 

a bounded L~( f t )  function and u is a smooth solution o f  (1.1) in f t \ K ,  with K a 

closed set o f  zero capacity,  then u is smooth in the whole o f  f~; that is to say, u 

cannot be singular on sets o f  zero capacity. 

The link between the two results is due to the fact that, a s  a consequence o f  a 

theorem of  [ 17] (see Proposition 3.1 below), every bounded Radon measure # on 

ft can be decomposed in a unique way as the sum of  a measure #o which is zero 

on the sets o f  zero capacity and a measure A which is concentrated on a set E o f  
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zero capacity. Hence, problem (1.1) implies that 

- A u  + ulVu[ 2 =/~0 in f~\E. 

The result of  [ 11 ] states that if  #0 is an L ~ (9t) function, then u is a solution of  the 

problem with datum/~0 in the whole f~; that is to say, the term A does not play any 

role. Our result states that if  we look for solutions in the whole o f  f~, then we have 

to take into account only the term #0, without the L ~ (9t) restriction on #0. 

Problem (1.1), and some variants of  it, have been widely studied in the literature. 

For example, i f  the nonlinear lower order term is independent of  Vu, and behaves 

like ]u[ q- 1 u, with q > 1, there are existence and nonexistence results depending on 

the measure #; see, e.g., [10], [12], [13], [1], [18], [20]. I f  the nonlinear term is as 

in (1.1), there are existence results i f  # belongs to H - I ( ~ )  (see [2], [7] and [16]) 

or to Ll(f t)  (see [4], [5], and [21]). 

Since we are going to consider more general nonlinear boundary value prob- 

lems, we now state the assumptions that will hold throughout the paper. 

Let f~ be a bounded, open subset of  R N,  N _> 2. Let p be a real number such 

that 1 < p <_ N, and let p' be its H61der conjugate exponent (i.e., l i p  + l i p '  -- 1). 

Let a : ft • R N ~ R N be a Carath6odory function (i.e., a(x, .) is continuous on 

R N for almost every x in f~, and a(., ~) is measurable on f~ for every ( in R N) such 

that 

(1.2) a ( z , ~ ) .  ~ ~ ~ I~1 p , 

for almost every x E ~ and every ~ E R N, where ~ is a positive constant; 

(1.3) la(x,O[ _< e(x) +/~ I~1 p-1 , 

for almost every z E f~ and every ~ E R N, where/3 is a positive constant and g 

belongs to L p' (f~); and 

(1.4) [a(x, ~) - a(x, 77)1- (~ - 7/) > O, 

for almost every x E f~ and every ( and r/in R N with ( r ~/. 

Let 

A(u)  = -d iv  (a(x, Vu)).  

By (1.2), (1.3) and (1.4), A is a monotone and coercive differential operator acting 

between Wd'P(Ct) and its dual W -I'p' (~2); hence, it is surjective on W -I'p' (~2) (see 

[19]). 

Let 9 : ~ • R • R N ~ R be a Carath6odory function (i.e., g(., s, ~) is measurable 

in ~2 for any (s, ~) in R x R N, and g(x, . ,  .) is continuous in R x R u for almost 
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every x E 9t) such that 

(1.5) Ig(x, s,~) I < b(Is[) [[~l p + d(x)], 

with b a real valued, positive, increasing, continuous function, and d a nonnegative 

function in Ll(gt); 

(1.6) g(x, s, ~) sgn(s) > p I~[ p , 

for almost every x in 12, every r in R N, and every s in R such that js[ _> a, where 

cr and p are two positive real numbers. 

For every compact subset K of  9t, the p-capacity o f  K with respect to ~ is 

defined as 

cap~(K,~) = inf { faWu[P dx : u e C~(~), u >_ XK } , 

where )/~ is the characteristic function of  K;  we use the convention that inf (3 = +co. 

The p-capacity of  any open subset U of  f~ is then defined by 

Capp(U, ~) = sup {capp(K, l"t), K compact, K C U},  

and the p-capacity of  any subset B c_ ~ by 

capp(B, a)  = inf {capp(U, ~2), U open, B C U}. 

We denote by A4b(12) the space of  all signed measures on f~, i.e., the space ot 

all a-additive set functions # with values in R defined on the Borel a-algebra. Note 

that i f #  belongs to Adb(12), then I#[ (the total variation o f # )  is a bounded positive 

measure on f~. We denote by .M~(Vt) the space o f  all measures # in .MD(~) such 

that #(E) = 0 for every set such that capp(E, 9t) = 0. Examples of  measures in 

A4~(12) are L1(~2) function and measures in W-l,#(f~).  

Define, for s and k in R,  with k >_ O, Tk(s) = max(-k, min(k,s)) and Gk(s) = 
s - 

Our result is the following. 

T h e o r e m  1.1. Let # be a measure in .A,4b(~ ). Then there exists a solution u 

.7) ~ A(u)+g(x,u,  V u ) = #  inO, (1 
( u = 0 on 0~, 

in the sense that u belongs to W~'P(~), g(x, u, Vu) belongs to Ll(f~), and 

(1.8) f a(x, Vu).  Vvdx + ~ g(x,u, V u ) v d x =  ~ vd#, 

for every v in C~(f~), i f  and only i f# belongs to AJ~(gt). 
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R e m a r k  1.2. Note that the solution of  (1.7) given by  the previous theorem 

belongs to W~'P(f~) even i f  # belongs to Ll(f~): this is in sharp contrast with the 

results in the case 9 -z 0, since the solutions o f  

A ( u ) = #  i n f ' ,  

u = 0 on 0f~, 

are known to belong only to W(~'q(ft) for every q < N(p  - 1 ) / (N  - 1) (see [3]). 

The better regularity o f  the solution of  (1.7) is due to assumption (1.6). Indeed, 

even i f  the nonlinear lower order term has a growth o f  order p with respect to the 

gradient, but does not satisfy (1.6), we may not have solutions in Wo'V(ft). To show 

this, let us consider the following example. Let  p = 2, f~ = {x E R x : [x[ < 1}, 
1 and a(x, () = (,  so that A(u) = - A u ,  the Laplacian. Let  m = g N  - 1 and let 

u(p) = p-m _ 1, where p = Ix]. Then u is solution o f  

-Au + [Vu]2 -- / (p) ,  
l + u  

where 
Y(o) = (N - z) 2 

2pro+ 2 

It is easily seen that u does not belong to H I (~ ) ,  while f belongs to L~(ft), for 
2N 

every s in [1, 

R e m a r k  1.3. The result of  Theorem 1.1 explains the restriction p <__ N. 

Indeed, i f  p > N, then there are no nonempty sets o f  zero p-capacity; in other 

words, every measure in .Mb(f~) is in 3,t~(fl). Moreover,  due to the Sobolev 

embeddings,  every measure in 3,tb(fl) is in W -I 'p '  (f~). 

2 P r o o f  o f  T h e o r e m  1 . 1  

In the following, we denote by c any constant which depends on the various 

quantities o f  the problem but not on n. The value o f  c may  vary from line to line. 

We begin with an existence result for problem (1.7) in the case in which the 

datum # is regular. 

T h e o r e m  2.1. Let  f be an L~(f~) function, and let F be an element o f  

(L*(f~)) N, with s > N / ( p  - 1). Then there exists a solution u in WI 'p (~)  n L~176 

of 

f A(u)+9(z,u, Vu) = f -  div(F) in f~, 
(2.1) 

t u = 0 on Of't, 
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in the sense that 

for every v in wl'p ( it ) (~ L~C ( f~ ). 

R e m a r k  2.2. We remark that the result of  the preceding theorem does not 

exist in the literature. Indeed, existence results in W~'V(it) n L~ have been 

given, under the same assumptions on f and F as in Theorem 2.1, for the problem 

A(u) + g(x, u, Vu) + C~o -- y - div(F) ,  

with so > 0 (see, for example, [9] and the references contained therein), or under 

a sign assumption on 9: namely, 

g(x,s,~)s >_ o, 

for almost every x in ~, for every s in R, for every ~ in R N (see [2]). In our case, 

(1.6) gives a sign condition on g only for large values o f s .  

P r o o f  o f  T h e o r e m  2.1. For the sake of  simplicity, we give a proof  o f  this 

result in the case f = 0; the case of  f different from zero can be dealt with by 

means of  minor technical modifications. 

Let n be in N and let 

9n(x, s,~) = g(x , s ,~)  
1 + ~ I9(x,s,~)l 

Then g,~(x, s, ~) is bounded, satisfies (1.5) and, thanks to (1.5), is such that 

(2.2) g,,(x, s, ~) sgn(s) > 0, 

for almost every x in it, for every ~ in R N, and for every s in R with Isl _> a. 

Since 9n is bounded, by classical results (see for example [19]) there exists a 
solution un in WI'p(~) of  

{ A(u,~) + 9,~(x, un, Vun) = -d iv (F )  in it, 

un = 0 on Oft, 

in the sense that 

(2.3) s  Vu ,~) .Vvdx+ s  s  

for every v in W~'P(it). 
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As proved in [8], [9], i f  the sequence {u,~} is bounded in L ~ ( ~ ) ,  then it 

is possible to extract a subsequence which converges strongly in Wo'P(~) to a 

solution of  (2.1). Thus, the proof of  the theorem will be achieved if we prove an 

L ~ (~) a priori estimate on the sequence {un }. 

To do this, we choose v = Gk(un) as test function in (2.3), with k > a. We 

obtain 

~ a(x, Vu,,) . VGk(u,~)dx § f gn(X, un,Vu,~)Gk(un)dx = f F .  VGk(u,~)dx. 

Since G~(s) has the same sign as s, and since Gk(s) is different from zero only 

where Is] > k _> or, (2.2) then implies 

agn(z, un, Vun) Gk(un) dx > O. 

On the other hand, setting 

Ak,n = {]unl > k}, 

we have, by the Young inequality, 

F .VGk(un)dz <_ c IFI"' dx + ~ ]VGk(un)lPdx. 
k , n  

Thus, using (1.2) we have 

f tVa (un)p dx < c fA IF,P' dx. 
2 - ~ , n  

From now on we will follow the method introduced by G. Stampacchia in order to 

prove L~(~2) a priori estimates for solutions of  elliptic equations (see [22]). Since 

IF1 belongs to L~(~), and s > p', we have, by the H61der inequality, 

a IF[ p' dx <_ m e a s  (Ak,n) 1-p'/~ . 

On the other hand, by the Sobolev embedding, we have 

~ 'VGk(un)'P dx >- c ( ~  'Gk(un)'P'dx) p/p" , 

where p* = N p / ( N -  p) if p < N,  and is any real number greater than 

Ns(N - 1)/(Ns - N - s) i fp  = N. Thus, we have 

[Gk(Un)] p* dx < cmeas k_~k,n) . 
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Choosing h > k, and using the fact that IGle(u,~)[ _> h - k on An,s, we have 

t t  

(h - k) p meas (Ah,n) p/p" < cmeas  (Ak,n) 1-p /s ,  Vh > k > or, 

that is, 

e L { C )  C 
meas ( a k , . ) P ~ , l - ~ J  Vh > k > a .  meas ( Ah,n ) <_ ( h - ' h  )p* ' - 

Since, by our choice of  p* and s, we have 

- -  1 -  > 1 ,  
P 

a well-known result by G. Stampacchia (see [22], Lemme 4.1) implies that there 

exists a constant M (independent on n), such that 

meas (Ale,n) = O, Vk >_ a + M ,  

that is to say, 

Ilunll~oo(a) --< a + m .  

This fact concludes the proof of  the theorem. [] 

The next result is a decomposition theorem for measures in A/lb (f~), proved in 

[6], Theorem 2.1. 

T h e o r e m  2.3. Let 1 < p < +~o and l e t #  ~ .Mb(f~). Then # E LI(Ft) + 

W-I'P' (f~) i f  andonly  i f  It E A4P(~). 

Finally, we state a technical lemma, whose proof is straightforward. 

L e m m a  2.4. Let a and b be two nonnegative real numbers, and let 

~ ( s )  = s e ~ , 

with 0 = b2/4a 2. Then 

(2.4) a ~ ' ( ~ ) -  bl~(s)l > a/2,  s e R .  

Using the previous results, we can prove Theorem 1.1. 

P r o o f  o f  T h e o r e m  1.1. It is clear that if  there exists a solution u of  

(1.7), with u in W~'P(Ft) and g(x, u, Vu) in LI(~) ,  then, since a(x, Vu) belongs to 

(LP'(ft)) N thanks to assumption (1.3), # belongs to L1 (f~) + W-I 'P ' (f t )  and so is in 

A//~(ft) by Theorem 2.3. 

On the other hand, suppose that # belongs to A4~(f~). By Theorem 2.3, # can 

be decomposed as f - div(F), with f E L I ( ~ )  and F in (ZP'(f~))N. 



210 L. BOCCARDO, T. GALLOUI~T AND L. ORSINA 

Let {fn} be a sequence of  L~(f~) functions that converges to f strongly in 
LI(~), and let {Fn} be a sequence of  (L~(ft)) N functions that converges to F 

strongly in (Lp' (ft)) N. 

By Theorem 2.1, there exists a solution u,, of  

(2.5) ~ A(u,J +9(x,un, Vun) = fn - div(Fn) in f~, 

( u, ,  = 0 o n  0 f~ ,  

in the sense that u,, belongs to WI'p(9), g(x, u,,, Vu,~) belongs to L 1 (f~), and 

(2.6, L a(x, Vu,~).Vvdx+ Lg(x,u,,,Vu~,)vdx--- L fnvdx+ L Fn.Vvdx, 

for every v 6 WI'p(f~) n L~(ft).  

Let us choose 

v : 

as test function in (2.5), where a is given by 1.6, and ~(s) is as in Lemma 2.4, with 

a = c~/2 and b -- b(a) (b(s) is given by (1.fi)). 

Using (1.2) and the Young inequality, and writing ~ = ~'(T~ (u,~)) and ~ -- 

~(To (u,,)) for simplicity, we obtain 

a L IVT,~(un)lP~:dx + L cP~g(x, un, Vu,~)dx 

L a ~  'VTk(un)lpqo~dx' < ~(a) Ifnl dx + ~'(a) IFnl p' dx + -~ 

so that, since {fn} is bounded in LI(ft), and {IFnl} is bounded in LP'(f~), 

~ ' 
(2.7) 7 

We now have 

J{lu,~l<cr} 

+ [ ~,~ g(x, un, Vu,~) dx. 
J{lu,,l_>o'} 

Using (1.5), we have 

while, using (1.6), we get 

I~,l_>~'} lu,~l_>',r} 
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We thus obtain 

IVT~(~)I  ~ 7 ~ -  b (~) l~ l  dx + p~(~) IVunlP dx <_ c, 
lu~l>~} 

SO that, by (2.4), 

f tvro( ; )I" ex + f tv olp < c .  
Ja  J{l~.l>o} 

This proves that {un} is bounded in W~'P(ft); hence, there exist a function u E 

W~'P(f~) and a subsequence, still denoted by  {un}, such that u,~ converges to u 

weakly in W~'P(ft) and almost everywhere in f~. 

The next step of  the proof  is the strong convergence ofu,~ to u in W~'P(Ft). 

We begin proving that we have 

(2.8) lim sup f IVu,d p dx = o. k~+~o n~N J{lu~l>_k} 

We choose v = ek - l (u~ )  as test function in (2.6), where 

e k - l ( S )  = T l ( a k - l ( S ) ) ,  

and k _> cr + 1. We get, again using (1.2) and the Young inequality, 

o l uo/rp x§ l/Uo/g/x, uo, un/dx 

_< I~1 dz + levi p' dz + ~ . 
lu,~l~k-U k-l~lunl~k} 

Using (1.6) and the fact that ~k-l(S) has the same sign as s if Isl > ~ and is zero if  

Isl _< ~, we have 

g(~, un, w n )  ek-l(Un) _> Ig(x, un, w,n)l x~juo,_>~, 

so that we obtain, dropping positive terms, 

f{,~.,>~} 'g(x, un, Vu'~)' dx <- f(,,~.,,>k_~i 'fn' dx + f{k_~<_,u,~l<k} 'F'~f dx" 

Since {u,~} is bounded in Ll(ft) ,  we have 

lira sup meas({lunl _> k -  1}) = 0. 
k.-.-*+oo h E N  

Thus, since f~ i s strongly compact in L ~ (f~), and I F~I is strongly compact  in I2 '  (f~), 

we have 

lim sup jr( , f n ldx+/  ,Fn,P'dx--O, 
k ~ + o c  h E N  lunl>k--1} k-l<lu,, l<_k } 
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and so 

(2.9) lim sup f tg(x,u~, Vu,~)l dx = O. 
k--*+oo n c N  d{lunl>k} 

Using the fact that k > ~r and (1.6), we see that (2.9) implies (2.8). 

The next step is the proof  that for every k > a, the sequence Tk(un) converges 

strongly to Tk (u) in W o'p(f2). In order to do this, we shall closely follow the outline 

o f  [5]. Let k > a be fixed, and choose as test function in (2.6) 

v - ~ ( T ~ ( u . )  - T k ( ~ ) ) ,  

where ~(s) is as in Lemma 2.4, with a = 1 and b = b(k)/e, Such a function is 

admissible since it belongs to W~'P(fl) n L~176 We thus have 

(A) 

(B) 

(C) 

(D) 

f a(x, W.~)- V(Tk(~.) -- Tk 0,))~'(T~(un) - T~(~,))ax 

+ fa a(x, u,~ W,~) ~(Tk(un) - Tk(~)) dz 

= L fn ~p(Tk(un) -- Tk(u))dx 

+ L F,,. V(Tk(u,~) - Tk(u))qJ(Tk(un) - Tk(u)) dx. 

Here and in the following, we write E,~ for any quantity which converges to zero as 

n tends to infinity. 

In order to deal with (A)-(D), we write, for simplicity, 

t 

W e  shall often use the fact that, in the weak.  topology of  L~176 and almost 

everywhere in f~, we have 

( 2 . 1 0 )  l im ~ n  = qo(0) = 0 ,  l im  ~a~ = qo'(0) : 1 .  
n - - ~ + o c  n - - - , +  oo 

Since fn is strongly compact in Ll(f~), (2.10) implies 

( 2 . 1 1 )  ( c )  = , n .  

Moreover, since Tk(un) converges to Tk(u) weakly in WI'p(f~), and Fn is strongly 

compact in (LP' (f~))N, (2.10) implies 

(2.12) (D) = en. 



NONLINEAR ELLIPTIC EQUATIONS 213 

We can then decompose (A) as 

(E) .L a(x, Tk(u,~) ) . V(Tk(un) - Tk(u) ) ~'n dx 

(F) + L a(x, Gk(un))" V(Tk(un) - Tk(u)) ~ dx. 

Since VT~(u,,) is zero where VGk(u,~) is different from zero, and conversely, we 

have 

( F )  = - J~ a(~, Ck(~)) - VTk(u) ~" d~. 

Since VTk(u) -= 0 on the set {lul > k}, we have that 

VTk(u) X{I,,,I_>~ } -+ 0, almost everywhere in fL 

In view of  the fact that VTk (u) belongs to (LP(~)) N, the Lebesgue theorem implies 

VTk(u) X{ju, J>k) ---' 0, strongly in (LP(f~)) N, 

and so, since a(x, VGk(un)) is bounded in (L#(~)) N by (1.3), we have 

(2.13) (F) = e,~. 

As for (E), we can decompose it as 

(G) .~  [a(x, VTk(un)) - a(x, VTk(u))] �9 V(Tk(un) -- Tk(u)) ~'~ dx 

~ a(x, VTk(u)) �9 V(Tk(un) - Tk(u) ) ~ dx . ( H )  + 

Since Tk(u,~) converges to Tk(u) weakly in W~'P(fl), and a(x, VTk(u)) belongs to 

(Lp' (~))N by (1.3), (2.10) implies 

(2.14) (H) = e,~. 

Thus, putting together (2.13) and (2.14), we have 

(2.15) (A) : f~  [a(x, VTk(un)) - a(x, VTk(u))].  V(Tk(u,~) - Tk(u)) ~ dx + 6n-  

We now deal with (B), decomposing it as 

(I) f g(x, un, r u n )  ~n dx 
J(  

(J) + J{/I,~,l<k} 9(x, un, Vu,~) ~,~ dx. 
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Using the fact that k > a and assumption (1.6), and observing that on the set 

{u,~ > k} we have 

~ n  = ~ ( k  -- T ~ ( u ) )  > 0 

while on the set {un < - k }  we have 

we obtain 

~,, = ~ ( - k  - Tk(u))  _< 0,  

(I) > 0, 

so that we can drop it. Using (I .5), we have 

](J)l < b(k) /a d(x) l~nldx +b(k) f~ IVTk(un)lPl~nldx, 

where b is the function given in (1.5). Since d belongs to L1(~2), we have using 

(2.10) 

~ d(x) I~pnl dx = En~ 

so that by (1.2) 

b(k) f 
I(J)l _< 1 a(x ,  VTk(un))  �9 VTk(un) I~n l  dx + ~ .  

OL Ja  

Now add and subtract to the above inequality the term 

a a(x, VTk(u)) �9 V(Tk(un) - VTk(u))I~,~l dx, 

which converges to zero as n tends to infinity since Tk(un) converges to Tk(u) 
weakly  in W~'P(f~) and a(x, VTk(u)) belongs to (L p' (f}))N), and the term 

~ a(x, VTk(un) ) . VTk(u) IPn[ dx , 

which is an en since a(x, VTk(un)) is bounded in (LP'(ft)) N and ~n converges to 

zero by (2.10). We thus get 

i(j) I _< b(k_..._~)a fa [a(x, VTk(un)) - a(x, VTk(u))] �9 V(Tk(un) - Tk(u)) I~,~l dx + e,~. 

Putting this inequality together with (2.15), we thus obtain that 

f [a(x, VTk (un)) - a(x, V n ( u ) ) ] .  V(Tk(un) - Tk.(u))[~p~ - b(-~k)]~n ]] dx 
J fl Ol 
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is an e,~. Hence, by (2.4), 

~ [a(x, VTk(un)) - a(x, VTk(u))] �9 V(Tk(un) - Tk(u)) dz = E n �9 

This fact and the assumptions on a imply, by a result in [8] (see also [14]), that 

Tk(un) converges strongly to Tk (u) in W~'P(f~). 
Now let E be a measurable subset o f  ft. Then 

fE  'VUnlP dx =" /E IVunlP dx + [ rVunlP dx . 
n{lu, l<k} aEnllu,~l>~} 

Let e > 0 be fixed. Since 

]Vun]P dx <- f{ ,Vu,dP dx , 
n(lu.,l>k} lunl>k} 

(2.8) implies that there exists k _> cr such that 

IVunlPdx < e n{I,~,l>k} -- 2 '  n E N .  

Once k is fixed, since we have 

s IVu'~IP dx < ~ IVTk(u,~)IP dx, 

the strong compactness of Tk(un) in WI'p(f~) implies that there exists 5 > 0 such 

that i fmeas  (E) < 5, then 

E IVunl p d x  < e n{lu~l_<k} - 2 '  n E N .  

Thus, for every e > 0 there exists ~ > 0 such that if  meas (E) < 5, then 

~ lVun]P dx <_ E N ,  n 

that is to say, the sequence { I Vu,~ I p} is equi-integrable. Since, up to a subsequence 

still denoted by un, Vun is almost everywhere convergent to Vu (as a consequence 

of  the strong convergence o f  truncates), un converges strongly to u in Wo'P(f~). 

In order to pass to the limit in the approximate equation, we now show that 

g(x, u,~, Vu,~) --* g(x, u, Vu) strongly in L 1 (f~). 

Since g(x, un, Vun) converges almost everywhere to g(x, u, Vu), it remains to 

prove the equi-integrability o f  the sequence {Ig(x, un, Vun)l}. Once again, if  E is 
a measurable subset o f  fl, we have 

JSn{lu,,l<_k} P 
+ /  Ig(x, u,~, Vun)ldx. 

JEn{f~,~l>k} 
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Let e > 0 be fixed. Since 

fEn{l~i>k } 'g(x, un, Vun)' dx <_ f{lu~l> k} ,g(x, un, ~'un), dx , 

we can use (2.9) in order to choose k _> cr such that 

n{l~.~l>k Ig(x,un,Vun)ldx<_ -~, n ~ N .  

Moreover,  using (1.3), we have 

JE Ig(x, un,Vu,dldx<_b(k) /E[d(x)+lVTk(un)lP]dx, 
n{lu,~l_<k} 

and, since d belongs to Ll(f~) and Tk(un) is strongly compact in W~'P(f~), there 

exists ~ > 0 such that if  meas (E) < 5, then 

~l~l<_k lg(x, un,V~)ld~<_ -~, n e N .  

Thus, as before, we have proved that {Ig(x, un, Vun)l} is equi-integrable, and this 

allows us to pass to the limit in (2.6), in order to obtain (1.8). [] 

R e m a r k  2.5. Since there exists a solution of(1.7)  in the sense (1.8) i f  and only 

i f #  belongs to A.tv(Ft), that is to say if  and only i f #  belongs to L ~ (f~) + W -I 'p'  (Ft), 

the class o f  admissible test functions in (1.8) can be extended by means o f  an easy 

density argument in order to consider test functions v in W01'P(f~) n L~(f~).  

R e m a r k  2.6. The result o f  Theorem 1.1 refines the result o f  Theorem 2.3 in 

the sense that it states that if  # is a measure in Ad~(f~), then there exists a function 

u in W~'P(f~) such that 

# = a(u) +g(x,u, Vu), 

with 9(x, u, Vu) in L 1(9t). 

If, for example, p = 2, a(x, ~) = ( ,  and g(x, s, () = sgn(8) I(I 2, then for every 

nonnegative measure # in .M~(f~) there exists a function u in H~ (ft) such that 

# = - d i v  (Vu) + IVul 2 . 

It is also easy to see, taking for instance Tk (u - )  as test function in (1.8), that such 

a function u is nonnegative. 

R e m a r k  2.7. The same result of  Theorem 1.1 holds true i f  the function a 

depends also on u, and satisfies the following assumptions: 

a(x,  8, ~ ) .  ~ > ~ I~t p , 
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la(x,  s, ~)1 ~< e(~)  + ~ [[sl p-1 + I~1P-13, 

[a(x, ~, ~) - a(~, ~, ~)1. (~ - n) > 0 ,  

for almost every x E ft, for every s in R,  for every ~, rl in R N (~ # ~), where a and 

3 are positive constants, and g belongs to L p' (ft). 

3 A n o n e x i s t e n c e  resul t  

We recall that if  # is a Radon measure, and E is a Borel subset o f  f~, the 

restriction o f  # to E is the measure A -- # L E defined by 

;~(B) = ~ ( E n  B) ,  

for every Borel subset B o f  ft. We say that a measure A is concentrated on a Borel  

s e tE  ifA = AL_E. 

We recall the following result, proved in [17], Lemma 2.1. 

Proposition 3.1.  Let  # be a measure in A, tb(f~), and let 1 < p <_ N. Then # 

can be decomposed in a unique way as #o + A, where 

(1) #0 belongs to A4~(f~); 

(2) A = # ',_ E, and capp(E, f~) = 0. 

Given a measure # in 3Ab (f~), we can decompose it, by the previous proposition, 

as #0 + A. The result o f  Theorem 1.1 then states that problem (1.7) has a solution 

with datum ~t i f  and only if  A = 0. Suppose now that #0 = 0, so that ~ = A is 

singular with respect to the p-capacity. What happens if  we try (as in the p roof  

of Theorem 1.1) to approximate the measure A with a sequence {fn} o f  L~(a) 
functions and solve the corresponding problems with data fn? I f  we take the 

sequence {fn} bounded in Ll(f t ) ,  then the same technique used in the p roof  o f  

Theorem 1.1 yields that the corresponding sequence o f  solutions {un} is bounded 

in Wo'P(f~); hence, it converges weakly in wl 'p( f t )  to some function u. Clearly, u 

cannot be a solution o f  the problem with datum ),, since such a solution does not 

exist. What can we say about u? The answer is given by the following theorem, 

under a sign condition on the lower order nonlinearity 9. 

T h e o r e m  3.2.  Let  A be a posi t ive measure in .Mb(f~), concentrated on a set  

E such that capp(E, f~) = O, and let { fn}  be a sequence o fnonnega t i ve  L~ 

funct ions such that 

lim fafn~dx=-fa~dA v~cc~ 
r t , - -*  q.- o o  
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Suppose that, in addition to assumptions (1.5) and (1.6), g also satisfies 

(3.1) g ( x , s , { ) s  >_ O, 

f o r  almost every x in f~, f o r  every s in R,  and f o r  every { in R N. Let  u,~ be a 

solution o f  the equation 

(3.2) ~ A(u~) + g(x, u,~, ~7u,~) = f ,  in f~, 
( u,~ = 0 on 012, 

in the sense (2.6) (with F - 0). Then there exists k > 0 (depending on g and a), 

such that 

Tk(u,~) ~ 0 strongly in Wol'P(f~). 

Moreover, u,~ converges weakly to zero in W~'P(f2), and 

lim f g(x, u n , ~ T u n ) ~ d x = ~ d ) ~  V ~ E C ~ ( ~ ) .  
n--e q-oo 

In the following we denote by e~ and en,~ respectively any real numbers such 

that 

lim e~ = O, lim lim en,~ -- O. 
5---*0+ 5 ---~ 0 + n--,+oo 

Before giving the proof  o f  the theorem, we need to construct as in [ 15] a suitable 

collection o f  cut-off  functions. 

Lemma 3.3, Let A be a nonnegative measure in A4b(f~) which is concentrated 

on a set E o f  zero p-capacity. 

r such that 

(3.3) 1 [Vr I p dx = 86 ,  Ja  

Then f o r  every (5 > 0 there exists a C~~ funct ion 

0 < r  f( 1 - r  

P r o o f .  Since A belongs t o  . /~b(~~) ,  for every (5 > 0 there exists a compact  set 

K~ C E such that A(E\K~)  < (5. Since K~ is compact,  and its p-capacity is zero, 

there exists a C ~  (12) function r which is equal to 1 in a neighbourhood o f  K~ and 

that satisfies both the first and second conditions o f  (3.3). As for the third, we  have 

o < f (1-  = f (1-  _ < (5. 
Jf~ dE \K6 

This completes the proof. [] 

R e m a r k  3.4. I f  E is compact, we can choose K~ = E for every (5 > 0. As 

a consequence of  (3.3), we have that ~b~ converges to zero strongly in W~'P(f~), 

almost everywhere in 12, and in the weak .  topology o f  L~176 
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P r o o f  o f  T h e o r e m  3.2. Since f~ is nonnegative, the sign assumption (3.1) 

on g implies that un is also nonnegative. As in the proof of  Theorem 1.1, it is easy 

to see, using the assumptions on a and g, that the sequence {un} is bounded in 

W~'P(f~). Thus, there exists a subsequence, again denoted by Un, a function u in 

Wol'P(ft), and an element G in (LP'(f~)) N such that 

u~ --~ u weakly in WI'p(Ft) and almost everywhere in f~, 

a(x,  V u n )  ~ G weakly in (LP'(f~))N; 

the latter convergence is due to the fact that, by (1.3), a(x, Vun) is bounded in 

(Lp ' (a ) )  g.  

Let k > 0 be such that 

(3.4) b(k) k <_ a / 2 ,  

where b is the function that appears in (1.5). Such a k exists since b is continuous. 

We now choose as test function in (2.6) the function 

v = (k - Tk(~)) r 

which is admissible since it belongs to W~'P(~2) n L~ We obtain 

(A) 

(B) 

(r 

(D) 

Since k - Tk(un)  converges to k - T~(u) both in the weak, topology of  L~ and 

almost everywhere in f~, we have that Vr (k - Tk (un)) converges to Vr (k - Tk (u)) 
strongly in (LP(~) )  N, and so 

(3.5) (B) = f~ a .  Vr (k - Tk(~)) dx + ~ = ~n,6  ~ 

where the last passage is due to the first equality of  (3.3). We then have, by (1.5) 

and since k - Tk(un)  = 0 for un > k, 

I(C)l <_ f b(~n) (k - Tk(un))  ~'6 [d(x) + IVu~l p] dx .  
J{ 0<u~<k} 

- s a(x, VTk(un)). VTk(u~) r dx 

3v j~ [a(x, V~n)" Vr (~, -- Tk(Un)) dx 

+ f g(x,u,~,Vu,,)(k -Tk(un))r 

= s A (k - Tk(~n)) r dz. 
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Thus, 

j({ a /a d(x)r = r o_<~._<k} b(un) (k - Tk(un) ) r d(x) dx < -~ 

by the choice of  k and since r converges to zero in the weak.  topology of  L ~ (ft) 

as a consequence of  (3.3). Moreover, again by the choice of  k, 

f{ b(un) (k - Tk(un))r IVun'P dx < a /~ o_<~._<k} - -~ IVTk(u'~)lP r dx" 

We thus have ~163 I(g)l _< ~ t V Z k ( u n ) l P r  

Using (1.2), we also have 

(A) _> - ~  f~ IVTk(un)lP r 

Thus, since (D) is nonnegative, 

a ~ 'VTk(u'~)lp r + ~n'~ a rVTk(un)pr <_ ~ 

that is to say, 

(3.6) ~ IVTk(u,)[ p r dx = ~ n , 5  . 

The next step consists in choosing as test function in (2.6) the function 

v = Tk(un)(l - r 

which is again admissible. We get 

(E) fo a(x, VTk(un))" VTk (un) (1 - r dx 

(F) - .fo [a(x, VUn)" Vr Tk(un) dx 

(G) + ./o 9(x, un, Vu,~) Tk(u,~) (1 - r dx 

(H) = ~ fn Tk(un) (1 - r dx. 

The term (G) is nonnegative by (3.1), so we drop it. Reasoning as before, we have 

(F) = e~,e, 
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while 

(H) <_k f fi~(1-r fa(1-r =e,~,~, 

by the third part of  (3.3). Thus, using (1.2) in (E), we get 

o~ of ~ [VTk(u,~)l p (1 - r dx = en,~. (3.7) 

Putting together (3.6) and (3.7), we easily obtain 

f lVYk(un)l p dx = r 

that is to say, Tk(u,~) converges strongly to zero in Wo'P(f~). Since the limit is 

independent of  the choice of  subsequence, the sequence Tk(u,~) converges to zero 

strongly in W~'P(ft). Thus, u = 0, and so un converges weakly to zero in wl'p(f~). 

In order to prove the second part of  the theorem, observe that from the strong 

convergence to zero of  Tk(un) follows the almost everywhere convergence to zero 

of Vu,~, and this implies that G _= 0. Now we choose a test function ~ in C~ (ft) in 

(2.6); we obtain 

f a(x, Vun)'~7~dx+fg(x, un ,Vun)~dx=f fn~  dx. (3.8) 

Since G = 0, we have 

f a(x, Vu,~) �9 V~dx = ~,~, 

while 

[] 

f fn ~dx = Jn qod,k + 
g 

En p 

Thus, from (3.8) we obtain by subtracting 

n-~+cclim f g(X, Un,'Uun) qodx= f ~d~ 

for every ~ in Co 1 (ft), and this concludes the proof of  the theorem. 

R e m a r k  3.5. The result of  the previous theorem also holds, with minor 

technical modifications in the proof, if A is a signed measure. Results of  this 

kind, concerning problems where the lower order term is independent of  the 

gradient o f u  and behaves like Julq-lu, can also be found in [20]. 
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