EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR SOME NONLINEAR ELLIPTIC EQUATIONS

By

LUCIO BOCCARDO, THIERRY GALLOUËT AND LUIGI ORSINA

1 Introduction and statement of results

In this paper we consider nonlinear boundary value problems whose simplest model is the following:

(1.1)
$$\begin{cases} -\Delta u + u |\nabla u|^2 = \mu & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where Ω is a bounded open set in \mathbb{R}^N , $N \ge 2$, and μ is a Radon measure on Ω .

We are interested in existence and nonexistence of solutions for (1.1). More precisely, we prove the existence of a solution u in $H_0^1(\Omega)$ for problem (1.1) if and only if the measure μ does not charge the sets of capacity zero in Ω . The main tool of our proof will be a characterization result, proved by the authors in [6], which states that every measure which is zero on sets of zero capacity is an element of $L^1(\Omega) + H^{-1}(\Omega)$ (see also Theorem 2.3, below). We also prove that if we consider a sequence $\{u_n\}$ of solutions of (1.1) with $L^{\infty}(\Omega)$ data μ_n converging to a nonzero measure which is singular with respect to the capacity (for example, a Dirac mass), then u_n converges to zero as n tends to infinity. For semilinear problems, an analogous result can be found in [10].

Our result is closely related to the work of H. Brezis and L. Nirenberg (see [11]), where (as a particular case of more general results) it is proved that if μ is a bounded $L^{\infty}(\Omega)$ function and u is a smooth solution of (1.1) in $\Omega \setminus K$, with K a closed set of zero capacity, then u is smooth in the whole of Ω ; that is to say, u cannot be singular on sets of zero capacity.

The link between the two results is due to the fact that, as a consequence of a theorem of [17] (see Proposition 3.1 below), every bounded Radon measure μ on Ω can be decomposed in a unique way as the sum of a measure μ_0 which is zero on the sets of zero capacity and a measure λ which is concentrated on a set E of

zero capacity. Hence, problem (1.1) implies that

$$-\Delta u + u |\nabla u|^2 = \mu_0 \qquad \text{in } \Omega \setminus E.$$

The result of [11] states that if μ_0 is an $L^{\infty}(\Omega)$ function, then u is a solution of the problem with datum μ_0 in the whole Ω ; that is to say, the term λ does not play any role. Our result states that if we look for solutions in the whole of Ω , then we have to take into account only the term μ_0 , without the $L^{\infty}(\Omega)$ restriction on μ_0 .

Problem (1.1), and some variants of it, have been widely studied in the literature. For example, if the nonlinear lower order term is independent of ∇u , and behaves like $|u|^{q-1}u$, with q > 1, there are existence and nonexistence results depending on the measure μ ; see, e.g., [10], [12], [13], [1], [18], [20]. If the nonlinear term is as in (1.1), there are existence results if μ belongs to $H^{-1}(\Omega)$ (see [2], [7] and [16]) or to $L^1(\Omega)$ (see [4], [5], and [21]).

Since we are going to consider more general nonlinear boundary value problems, we now state the assumptions that will hold throughout the paper.

Let Ω be a bounded, open subset of \mathbb{R}^N , $N \ge 2$. Let p be a real number such that 1 , and let p' be its Hölder conjugate exponent (i.e., <math>1/p + 1/p' = 1).

Let $a: \Omega \times \mathbf{R}^N \to \mathbf{R}^N$ be a Carathéodory function (i.e., $a(x, \cdot)$ is continuous on \mathbf{R}^N for almost every x in Ω , and $a(\cdot, \xi)$ is measurable on Ω for every ξ in \mathbf{R}^N) such that

(1.2)
$$a(x,\xi) \cdot \xi \ge \alpha \, |\xi|^p \,,$$

for almost every $x \in \Omega$ and every $\xi \in \mathbf{R}^N$, where α is a positive constant;

(1.3)
$$|a(x,\xi)| \le \ell(x) + \beta |\xi|^{p-1},$$

for almost every $x \in \Omega$ and every $\xi \in \mathbf{R}^N$, where β is a positive constant and ℓ belongs to $L^{p'}(\Omega)$; and

(1.4)
$$[a(x,\xi) - a(x,\eta)] \cdot (\xi - \eta) > 0,$$

for almost every $x \in \Omega$ and every ξ and η in \mathbb{R}^N with $\xi \neq \eta$.

Let

$$A(u) = -\operatorname{div}\left(a(x, \nabla u)\right).$$

By (1.2), (1.3) and (1.4), A is a monotone and coercive differential operator acting between $W_0^{1,p}(\Omega)$ and its dual $W^{-1,p'}(\Omega)$; hence, it is surjective on $W^{-1,p'}(\Omega)$ (see [19]).

Let $g: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ be a Carathéodory function (i.e., $g(\cdot, s, \xi)$ is measurable in Ω for any (s, ξ) in $\mathbb{R} \times \mathbb{R}^N$, and $g(x, \cdot, \cdot)$ is continuous in $\mathbb{R} \times \mathbb{R}^N$ for almost every $x \in \Omega$) such that

(1.5)
$$|g(x,s,\xi)| \le b(|s|) \left[|\xi|^p + d(x)\right],$$

with b a real valued, positive, increasing, continuous function, and d a nonnegative function in $L^1(\Omega)$;

(1.6)
$$g(x,s,\xi)\operatorname{sgn}(s) \ge \rho \,|\xi|^p\,,$$

for almost every x in Ω , every ξ in \mathbb{R}^N , and every s in \mathbb{R} such that $|s| \ge \sigma$, where σ and ρ are two positive real numbers.

For every compact subset K of Ω , the *p*-capacity of K with respect to Ω is defined as

$$\operatorname{cap}_p(K,\Omega) = \inf \left\{ \int_{\Omega} |\nabla u|^p \, dx : u \in C_0^{\infty}(\Omega), \; u \ge \chi_K \right\}$$

where χ_K is the characteristic function of K; we use the convention that $\inf \emptyset = +\infty$. The *p*-capacity of any open subset U of Ω is then defined by

 $\operatorname{cap}_{p}(U,\Omega) = \sup \left\{ \operatorname{cap}_{p}(K,\Omega), \ K \text{ compact}, \ K \subseteq U \right\},\$

and the *p*-capacity of any subset $B \subseteq \Omega$ by

$$\operatorname{cap}_{p}(B,\Omega) = \inf \left\{ \operatorname{cap}_{p}(U,\Omega), \ U \text{ open}, B \subseteq U \right\}.$$

We denote by $\mathcal{M}_{b}(\Omega)$ the space of all signed measures on Ω , i.e., the space of all σ -additive set functions μ with values in \mathbf{R} defined on the Borel σ -algebra. Note that if μ belongs to $\mathcal{M}_{b}(\Omega)$, then $|\mu|$ (the total variation of μ) is a bounded positive measure on Ω . We denote by $\mathcal{M}_{0}^{p}(\Omega)$ the space of all measures μ in $\mathcal{M}_{b}(\Omega)$ such that $\mu(E) = 0$ for every set such that $\operatorname{cap}_{p}(E, \Omega) = 0$. Examples of measures in $\mathcal{M}_{0}^{p}(\Omega)$ are $L^{1}(\Omega)$ function and measures in $W^{-1,p'}(\Omega)$.

Define, for s and k in **R**, with $k \ge 0$, $T_k(s) = \max(-k, \min(k, s))$ and $G_k(s) = s - T_k(s)$.

Our result is the following.

Theorem 1.1. Let μ be a measure in $\mathcal{M}_b(\Omega)$. Then there exists a solution u of

(1.7)
$$\begin{cases} A(u) + g(x, u, \nabla u) = \mu & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

in the sense that u belongs to $W_0^{1,p}(\Omega)$, $g(x, u, \nabla u)$ belongs to $L^1(\Omega)$, and

(1.8)
$$\int_{\Omega} a(x, \nabla u) \cdot \nabla v \, dx + \int_{\Omega} g(x, u, \nabla u) \, v \, dx = \int_{\Omega} v \, d\mu \,,$$

for every v in $C_0^{\infty}(\Omega)$, if and only if μ belongs to $\mathcal{M}_0^p(\Omega)$.

Remark 1.2. Note that the solution of (1.7) given by the previous theorem belongs to $W_0^{1,p}(\Omega)$ even if μ belongs to $L^1(\Omega)$: this is in sharp contrast with the results in the case $g \equiv 0$, since the solutions of

$$\begin{cases} A(u) = \mu & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

are known to belong only to $W_0^{1,q}(\Omega)$ for every q < N(p-1)/(N-1) (see [3]). The better regularity of the solution of (1.7) is due to assumption (1.6). Indeed, even if the nonlinear lower order term has a growth of order p with respect to the gradient, but does not satisfy (1.6), we may not have solutions in $W_0^{1,p}(\Omega)$. To show this, let us consider the following example. Let p = 2, $\Omega = \{x \in \mathbb{R}^N : |x| < 1\}$, and $a(x,\xi) = \xi$, so that $A(u) = -\Delta u$, the Laplacian. Let $m = \frac{1}{2}N - 1$ and let $u(\rho) = \rho^{-m} - 1$, where $\rho = |x|$. Then u is solution of

$$-\Delta u + \frac{|\nabla u|^2}{1+u} = f(\rho)\,,$$

where

$$f(
ho) = rac{(N-2)^2}{2
ho^{m+2}} \,.$$

It is easily seen that u does not belong to $H_0^1(\Omega)$, while f belongs to $L^s(\Omega)$, for every s in $\left[1, \frac{2N}{N+2}\right)$.

Remark 1.3. The result of Theorem 1.1 explains the restriction $p \leq N$. Indeed, if p > N, then there are no nonempty sets of zero *p*-capacity; in other words, every measure in $\mathcal{M}_{b}(\Omega)$ is in $\mathcal{M}_{0}^{p}(\Omega)$. Moreover, due to the Sobolev embeddings, every measure in $\mathcal{M}_{b}(\Omega)$ is in $W^{-1,p'}(\Omega)$.

2 **Proof of Theorem 1.1**

In the following, we denote by c any constant which depends on the various quantities of the problem but not on n. The value of c may vary from line to line.

We begin with an existence result for problem (1.7) in the case in which the datum μ is regular.

Theorem 2.1. Let f be an $L^{\infty}(\Omega)$ function, and let F be an element of $(L^{s}(\Omega))^{N}$, with s > N/(p-1). Then there exists a solution u in $W_{0}^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ of

(2.1)
$$\begin{cases} A(u) + g(x, u, \nabla u) = f - \operatorname{div}(F) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

in the sense that

$$\int_\Omega a(x,
abla u)\cdot
abla v+\int_\Omega g(x,u,
abla u)\,v=\int_\Omega f\,v+\int_\Omega F\cdot
abla v\,,$$

for every v in $W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$.

Remark 2.2. We remark that the result of the preceding theorem does not exist in the literature. Indeed, existence results in $W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ have been given, under the same assumptions on f and F as in Theorem 2.1, for the problem

$$A(u) + g(x, u, \nabla u) + \alpha_0 |u|^{p-2} u = f - \operatorname{div}(F),$$

with $\alpha_0 > 0$ (see, for example, [9] and the references contained therein), or under a sign assumption on g: namely,

$$g(x,s,\xi) s \ge 0$$
,

for almost every x in Ω , for every s in \mathbf{R} , for every ξ in \mathbf{R}^N (see [2]). In our case, (1.6) gives a sign condition on g only for large values of s.

Proof of Theorem 2.1. For the sake of simplicity, we give a proof of this result in the case $f \equiv 0$; the case of f different from zero can be dealt with by means of minor technical modifications.

Let n be in N and let

$$g_n(x,s,\xi) = rac{g(x,s,\xi)}{1+rac{1}{n} |g(x,s,\xi)|}$$

Then $g_n(x, s, \xi)$ is bounded, satisfies (1.5) and, thanks to (1.6), is such that

(2.2)
$$g_n(x,s,\xi)\operatorname{sgn}(s) \ge 0,$$

for almost every x in Ω , for every ξ in \mathbb{R}^N , and for every s in \mathbb{R} with $|s| \ge \sigma$.

Since g_n is bounded, by classical results (see for example [19]) there exists a solution u_n in $W_0^{1,p}(\Omega)$ of

$$\begin{cases} A(u_n) + g_n(x, u_n, \nabla u_n) = -\operatorname{div}(F) & \text{in } \Omega, \\ u_n = 0 & \text{on } \partial\Omega, \end{cases}$$

in the sense that

(2.3)
$$\int_{\Omega} a(x, \nabla u_n) \cdot \nabla v \, dx + \int_{\Omega} g_n(x, u_n, \nabla u_n) \, v \, dx = \int_{\Omega} F \cdot \nabla v \, dx \, ,$$

for every v in $W_0^{1,p}(\Omega)$.

As proved in [8], [9], if the sequence $\{u_n\}$ is bounded in $L^{\infty}(\Omega)$, then it is possible to extract a subsequence which converges strongly in $W_0^{1,p}(\Omega)$ to a solution of (2.1). Thus, the proof of the theorem will be achieved if we prove an $L^{\infty}(\Omega)$ a priori estimate on the sequence $\{u_n\}$.

To do this, we choose $v = G_k(u_n)$ as test function in (2.3), with $k \ge \sigma$. We obtain

$$\int_{\Omega} a(x, \nabla u_n) \cdot \nabla G_k(u_n) \, dx + \int_{\Omega} g_n(x, u_n, \nabla u_n) G_k(u_n) \, dx = \int_{\Omega} F \cdot \nabla G_k(u_n) \, dx.$$

Since $G_k(s)$ has the same sign as s, and since $G_k(s)$ is different from zero only where $|s| \ge k \ge \sigma$, (2.2) then implies

$$\int_{\Omega} g_n(x, u_n, \nabla u_n) \, G_k(u_n) \, dx \ge 0 \, .$$

On the other hand, setting

$$A_{k,n}=\left\{ \left| u_{n}\right| \geq k\right\} ,$$

we have, by the Young inequality,

$$\int_{\Omega} F \cdot \nabla G_k(u_n) \, dx \leq c \, \int_{A_{k,n}} |F|^{p'} \, dx + \frac{\alpha}{2} \, \int_{\Omega} |\nabla G_k(u_n)|^p \, dx \, .$$

Thus, using (1.2) we have

$$\frac{\alpha}{2} \int_{\Omega} |\nabla G_k(u_n)|^p \, dx \le c \, \int_{A_{k,n}} |F|^{p'} \, dx \, .$$

From now on we will follow the method introduced by G. Stampacchia in order to prove $L^{\infty}(\Omega)$ a priori estimates for solutions of elliptic equations (see [22]). Since |F| belongs to $L^{s}(\Omega)$, and s > p', we have, by the Hölder inequality,

$$\int_{A_{k,n}} |F|^{p'} dx \le \|F\|_{(L^s(\Omega))^N} \max (A_{k,n})^{1-p'/s}$$

On the other hand, by the Sobolev embedding, we have

$$\int_{\Omega} |\nabla G_k(u_n)|^p \, dx \ge c \, \left(\int_{\Omega} |G_k(u_n)|^{p^*} \, dx \right)^{p/p^*} \, ,$$

where $p^* = Np/(N - p)$ if p < N, and is any real number greater than Ns(N-1)/(Ns - N - s) if p = N. Thus, we have

$$\left(\int_{\Omega} |G_k(u_n)|^{p^*} \, dx\right)^{p/p^*} \le c \max{(A_{k,n})^{1-p'/s}} \, .$$

Choosing h > k, and using the fact that $|G_k(u_n)| \ge h - k$ on $A_{h,n}$, we have

$$(h-k)^p \max (A_{h,n})^{p/p^*} \le c \max (A_{k,n})^{1-p'/s}, \qquad \forall h > k \ge \sigma,$$

that is,

$$\operatorname{meas}\left(A_{h,n}\right) \leq \frac{c}{(h-k)^{p^*}} \operatorname{meas}\left(A_{k,n}\right)^{\frac{p^*}{p}\left(1-\frac{p'}{s}\right)}, \qquad \forall h > k \geq \sigma.$$

Since, by our choice of p^* and s, we have

$$\frac{p^*}{p}\left(1-\frac{p'}{s}\right) > 1\,,$$

a well-known result by G. Stampacchia (see [22], Lemme 4.1) implies that there exists a constant M (independent on n), such that

$$\operatorname{meas}\left(A_{k,n}\right) = 0, \qquad \forall k \ge \sigma + M,$$

that is to say,

$$\|u_n\|_{L^{\infty}(\Omega)} \leq \sigma + M$$

This fact concludes the proof of the theorem.

The next result is a decomposition theorem for measures in $\mathcal{M}_b(\Omega)$, proved in [6], Theorem 2.1.

Theorem 2.3. Let $1 and let <math>\mu \in \mathcal{M}_b(\Omega)$. Then $\mu \in L^1(\Omega) + W^{-1,p'}(\Omega)$ if and only if $\mu \in \mathcal{M}_b^p(\Omega)$.

Finally, we state a technical lemma, whose proof is straightforward.

Lemma 2.4. Let a and b be two nonnegative real numbers, and let

$$\varphi(s) = s \,\mathrm{e}^{\theta \,s^2} \,,$$

with $\theta = b^2/4a^2$. Then

(2.4)
$$a \varphi'(s) - b |\varphi(s)| \ge a/2, \qquad s \in \mathbf{R}.$$

Using the previous results, we can prove Theorem 1.1.

Proof of Theorem 1.1. It is clear that if there exists a solution u of (1.7), with u in $W_0^{1,p}(\Omega)$ and $g(x, u, \nabla u)$ in $L^1(\Omega)$, then, since $a(x, \nabla u)$ belongs to $(L^{p'}(\Omega))^N$ thanks to assumption (1.3), μ belongs to $L^1(\Omega) + W^{-1,p'}(\Omega)$ and so is in $\mathcal{M}_0^p(\Omega)$ by Theorem 2.3.

On the other hand, suppose that μ belongs to $\mathcal{M}_0^p(\Omega)$. By Theorem 2.3, μ can be decomposed as $f - \operatorname{div}(F)$, with $f \in L^1(\Omega)$ and F in $(L^{p'}(\Omega))^N$.

Let $\{f_n\}$ be a sequence of $L^{\infty}(\Omega)$ functions that converges to f strongly in $L^1(\Omega)$, and let $\{F_n\}$ be a sequence of $(L^{\infty}(\Omega))^N$ functions that converges to F strongly in $(L^{p'}(\Omega))^N$.

By Theorem 2.1, there exists a solution u_n of

(2.5)
$$\begin{cases} A(u_n) + g(x, u_n, \nabla u_n) = f_n - \operatorname{div}(F_n) & \text{in } \Omega, \\ u_n = 0 & \text{on } \partial\Omega, \end{cases}$$

in the sense that u_n belongs to $W_0^{1,p}(\Omega)$, $g(x, u_n, \nabla u_n)$ belongs to $L^1(\Omega)$, and

(2.6)
$$\int_{\Omega} a(x, \nabla u_n) \cdot \nabla v \, dx + \int_{\Omega} g(x, u_n, \nabla u_n) \, v \, dx = \int_{\Omega} f_n \, v \, dx + \int_{\Omega} F_n \cdot \nabla v \, dx \, ,$$

for every $v \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$.

Let us choose

$$v = \varphi(T_{\sigma}(u_n)),$$

as test function in (2.6), where σ is given by 1.6, and $\varphi(s)$ is as in Lemma 2.4, with $a = \alpha/2$ and $b = b(\sigma)$ (b(s) is given by (1.5)).

Using (1.2) and the Young inequality, and writing $\varphi'_{\sigma} = \varphi'(T_{\sigma}(u_n))$ and $\varphi_{\sigma} = \varphi(T_{\sigma}(u_n))$ for simplicity, we obtain

$$\alpha \int_{\Omega} |\nabla T_{\sigma}(u_n)|^p \varphi'_{\sigma} dx + \int_{\Omega} \varphi_{\sigma} g(x, u_n, \nabla u_n) dx \leq \varphi(\sigma) \int_{\Omega} |f_n| dx + \varphi'(\sigma) \int_{\Omega} |F_n|^{p'} dx + \frac{\alpha}{2} \int_{\Omega} |\nabla T_k(u_n)|^p \varphi'_{\sigma} dx ,$$

so that, since $\{f_n\}$ is bounded in $L^1(\Omega)$, and $\{|F_n|\}$ is bounded in $L^{p'}(\Omega)$,

(2.7)
$$\frac{\alpha}{2} \int_{\Omega} |\nabla T_k(u_n)|^p \varphi'_{\sigma} dx + \int_{\Omega} \varphi_{\sigma} g(x, u_n, \nabla u_n) dx \le c \left(\varphi(\sigma) + \varphi'(\sigma)\right).$$

We now have

$$\int_{\Omega} \varphi_{\sigma} g(x, u_n, \nabla u_n) dx = \int_{\{|u_n| < \sigma\}} \varphi_{\sigma} g(x, u_n, \nabla u_n) dx + \int_{\{|u_n| \ge \sigma\}} \varphi_{\sigma} g(x, u_n, \nabla u_n) dx$$

Using (1.5), we have

$$\left|\int_{\{|u_n|<\sigma\}}\varphi_{\sigma} g(x,u_n,\nabla u_n) \, dx\right| \leq b(\sigma) \left(\int_{\Omega} |\nabla T_{\sigma}(u_n)|^p \varphi_{\sigma} \, dx + \varphi(\sigma) \left\|d\right\|_{L^1(\Omega)}\right) \, ,$$

while, using (1.6), we get

$$\int_{\{|u_n|\geq\sigma\}}\varphi_{\sigma}\,g(x,u_n,\nabla u_n)\,dx\geq\rho\,\varphi(\sigma)\,\int_{\{|u_n|\geq\sigma\}}|\nabla u_n|^p\,dx\,.$$

We thus obtain

$$\int_{\Omega} |\nabla T_{\sigma}(u_n)|^p \left[\frac{\alpha}{2} \, \varphi_{\sigma}' - b(\sigma) |\varphi_{\sigma}| \right] \, dx + \rho \, \varphi(\sigma) \, \int_{\{|u_n| \ge \sigma\}} |\nabla u_n|^p \, dx \le c \, ,$$

so that, by (2.4),

$$\int_{\Omega} |\nabla T_{\sigma}(u_n^{\cdot})|^p \, dx + \int_{\{|u_n| \ge \sigma\}} |\nabla u_n|^p \, dx \le c \, .$$

This proves that $\{u_n\}$ is bounded in $W_0^{1,p}(\Omega)$; hence, there exist a function $u \in W_0^{1,p}(\Omega)$ and a subsequence, still denoted by $\{u_n\}$, such that u_n converges to u weakly in $W_0^{1,p}(\Omega)$ and almost everywhere in Ω .

The next step of the proof is the strong convergence of u_n to u in $W_0^{1,p}(\Omega)$.

We begin proving that we have

(2.8)
$$\lim_{k \to +\infty} \sup_{n \in \mathbb{N}} \int_{\{|u_n| \ge k\}} |\nabla u_n|^p \, dx = 0$$

We choose $v = \psi_{k-1}(u_n)$ as test function in (2.6), where

$$\psi_{k-1}(s) = T_1(G_{k-1}(s))$$

and $k \ge \sigma + 1$. We get, again using (1.2) and the Young inequality,

$$\alpha \int_{\Omega} |\nabla \psi_{k-1}(u_n)|^p \, dx + \int_{\Omega} \psi_{k-1}(u_n) \, g(x, u_n, \nabla u_n) \, dx \\ \leq \int_{\{|u_n| \ge k-1\}} |f_n| \, dx + \int_{\{k-1 \le |u_n| \le k\}} |F_n|^{p'} \, dx + \frac{\alpha}{2} \int_{\Omega} |\nabla \psi_{k-1}(u_n)|^p \, dx \, .$$

Using (1.6) and the fact that $\psi_{k-1}(s)$ has the same sign as s if $|s| > \sigma$ and is zero if $|s| \le \sigma$, we have

$$g(x, u_n, \nabla u_n) \psi_{k-1}(u_n) \geq |g(x, u_n, \nabla u_n)| \chi_{\{|u_n| \geq k\}},$$

so that we obtain, dropping positive terms,

$$\int_{\{|u_n| \ge k\}} |g(x, u_n, \nabla u_n)| \, dx \le \int_{\{|u_n| \ge k-1\}} |f_n| \, dx + \int_{\{k-1 \le |u_n| \le k\}} |F_n|^{p'} \, dx$$

Since $\{u_n\}$ is bounded in $L^1(\Omega)$, we have

$$\lim_{k \to +\infty} \sup_{n \in \mathbb{N}} \max \left(\{ |u_n| \ge k - 1 \} \right) = 0.$$

Thus, since f_n is strongly compact in $L^1(\Omega)$, and $|F_n|$ is strongly compact in $L^{p'}(\Omega)$, we have

$$\lim_{k \to +\infty} \sup_{n \in \mathbb{N}} \int_{\{|u_n| \ge k-1\}} |f_n| \, dx + \int_{\{k-1 \le |u_n| \le k\}} |F_n|^{p'} \, dx = 0,$$

and so

(2.9)
$$\lim_{k \to +\infty} \sup_{n \in \mathbb{N}} \int_{\{|u_n| \ge k\}} |g(x, u_n, \nabla u_n)| \, dx = 0.$$

Using the fact that $k \ge \sigma$ and (1.6), we see that (2.9) implies (2.8).

The next step is the proof that for every $k \ge \sigma$, the sequence $T_k(u_n)$ converges strongly to $T_k(u)$ in $W_0^{1,p}(\Omega)$. In order to do this, we shall closely follow the outline of [5]. Let $k \ge \sigma$ be fixed, and choose as test function in (2.6)

$$v = \varphi(T_k(u_n) - T_k(u))$$

where $\varphi(s)$ is as in Lemma 2.4, with a = 1 and $b = b(k)/\alpha$. Such a function is admissible since it belongs to $W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$. We thus have

(A)
$$\int_{\Omega} a(x, \nabla u_n) \cdot \nabla (T_k(u_n) - T_k(u)) \varphi'(T_k(u_n) - T_k(u)) dx$$

(B)
$$+ \int_{\Omega} g(x, u_n \nabla u_n) \varphi(T_k(u_n) - T_k(u)) dx$$

(C)
$$= \int_{\Omega} f_n \varphi(T_k(u_n) - T_k(u)) dx$$

(D)
$$+ \int_{\Omega} F_n \cdot \nabla (T_k(u_n) - T_k(u)) \varphi'(T_k(u_n) - T_k(u)) dx.$$

Here and in the following, we write ε_n for any quantity which converges to zero as n tends to infinity.

In order to deal with (A)-(D), we write, for simplicity,

$$\varphi'_n = \varphi'(T_k(u_n) - T_k(u)), \qquad \varphi_n = \varphi(T_k(u_n) - T_k(u)).$$

We shall often use the fact that, in the weak* topology of $L^{\infty}(\Omega)$, and almost everywhere in Ω , we have

(2.10)
$$\lim_{n \to +\infty} \varphi_n = \varphi(0) = 0, \qquad \lim_{n \to +\infty} \varphi'_n = \varphi'(0) = 1.$$

Since f_n is strongly compact in $L^1(\Omega)$, (2.10) implies

(2.11) (C) =
$$\varepsilon_n$$

Moreover, since $T_k(u_n)$ converges to $T_k(u)$ weakly in $W_0^{1,p}(\Omega)$, and F_n is strongly compact in $(L^{p'}(\Omega))^N$, (2.10) implies

$$(2.12) (D) = \varepsilon_n$$

We can then decompose (A) as

(E)
$$\int_{\Omega} a(x, T_k(u_n)) \cdot \nabla(T_k(u_n) - T_k(u)) \varphi'_n dx$$

(F)
$$+ \int_{\Omega} a(x, G_k(u_n)) \cdot \nabla(T_k(u_n) - T_k(u)) \varphi'_n dx.$$

Since $\nabla T_k(u_n)$ is zero where $\nabla G_k(u_n)$ is different from zero, and conversely, we have

$$(\mathbf{F}) = -\int_{\Omega} a(x, G_k(u_n)) \cdot \nabla T_k(u) \, \varphi'_n \, dx \, .$$

Since $\nabla T_k(u) \equiv 0$ on the set $\{|u| \ge k\}$, we have that

$$\nabla T_k(u) \chi_{\{|u_n| \ge k\}} \to 0$$
, almost everywhere in Ω .

In view of the fact that $\nabla T_k(u)$ belongs to $(L^p(\Omega))^N$, the Lebesgue theorem implies

$$abla T_k(u) \chi_{\{|u_n| \ge k\}} \to 0$$
, strongly in $(L^p(\Omega))^N$,

and so, since $a(x, \nabla G_k(u_n))$ is bounded in $(L^{p'}(\Omega))^N$ by (1.3), we have

$$(2.13) (F) = \varepsilon_n$$

As for (E), we can decompose it as

(G)
$$\int_{\Omega} \left[a(x, \nabla T_k(u_n)) - a(x, \nabla T_k(u)) \right] \cdot \nabla (T_k(u_n) - T_k(u)) \varphi'_n \, dx$$

(H)
$$+ \int_{\Omega} a(x, \nabla T_k(u)) \cdot \nabla (T_k(u_n) - T_k(u)) \varphi'_n dx$$

Since $T_k(u_n)$ converges to $T_k(u)$ weakly in $W_0^{1,p}(\Omega)$, and $a(x, \nabla T_k(u))$ belongs to $(L^{p'}(\Omega))^N$ by (1.3), (2.10) implies

$$(2.14) (H) = \varepsilon_n \,.$$

Thus, putting together (2.13) and (2.14), we have

(2.15) (A) =
$$\int_{\Omega} \left[a(x, \nabla T_k(u_n)) - a(x, \nabla T_k(u)) \right] \cdot \nabla (T_k(u_n) - T_k(u)) \varphi'_n \, dx + \varepsilon_n \, .$$

We now deal with (B), decomposing it as

(I)
$$\int_{\{|u_n|\geq k\}} g(x,u_n,\nabla u_n)\,\varphi_n\,dx$$

(J)
$$+ \int_{\{|u_n| < k\}} g(x, u_n, \nabla u_n) \varphi_n \, dx$$

Using the fact that $k \ge \sigma$ and assumption (1.6), and observing that on the set $\{u_n \ge k\}$ we have

$$\varphi_n = \varphi(k - T_k(u)) \ge 0$$

while on the set $\{u_n \leq -k\}$ we have

$$\varphi_n = \varphi(-k - T_k(u)) \le 0,$$

we obtain

 $(\mathbf{I})\geq 0\,,$

so that we can drop it. Using (1.5), we have

$$|(\mathbf{J})| \leq b(k) \int_{\Omega} d(x) |\varphi_n| \, dx + b(k) \int_{\Omega} |\nabla T_k(u_n)|^p |\varphi_n| \, dx \, ,$$

where b is the function given in (1.5). Since d belongs to $L^{1}(\Omega)$, we have using (2.10)

$$\int_{\Omega} d(x) |\varphi_n| \, dx = \varepsilon_n \, ,$$

so that by (1.2)

$$|(\mathrm{J})| \leq rac{b(k)}{lpha} \, \int_\Omega a(x,
abla T_k(u_n)) \cdot
abla T_k(u_n) \, |arphi_n| \, dx + arepsilon_n \, .$$

Now add and subtract to the above inequality the term

$$\int_{\Omega} a(x, \nabla T_k(u)) \cdot \nabla (T_k(u_n) - \nabla T_k(u)) |\varphi_n| \, dx \, ,$$

which converges to zero as n tends to infinity since $T_k(u_n)$ converges to $T_k(u)$ weakly in $W_0^{1,p}(\Omega)$ and $a(x, \nabla T_k(u))$ belongs to $(L^{p'}(\Omega))^N$, and the term

$$\int_{\Omega} a(x, \nabla T_k(u_n)) \cdot \nabla T_k(u) |\varphi_n| \, dx \, ,$$

which is an ε_n since $a(x, \nabla T_k(u_n))$ is bounded in $(L^{p'}(\Omega))^N$ and φ_n converges to zero by (2.10). We thus get

$$|(\mathbf{J})| \leq \frac{b(k)}{\alpha} \int_{\Omega} \left[a(x, \nabla T_k(u_n)) - a(x, \nabla T_k(u)) \right] \cdot \nabla (T_k(u_n) - T_k(u)) \left| \varphi_n \right| dx + \varepsilon_n \, .$$

Putting this inequality together with (2.15), we thus obtain that

$$\int_{\Omega} \left[a(x, \nabla T_k(u_n)) - a(x, \nabla T_k(u)) \right] \cdot \nabla (T_k(u_n) - T_k(u)) [\varphi'_n - \frac{b(k)}{\alpha} |\varphi_n|] \, dx$$

is an ε_n . Hence, by (2.4),

$$\int_{\Omega} \left[a(x, \nabla T_k(u_n)) - a(x, \nabla T_k(u)) \right] \cdot \nabla (T_k(u_n) - T_k(u)) \, dx = \varepsilon_n \, dx$$

This fact and the assumptions on a imply, by a result in [8] (see also [14]), that $T_k(u_n)$ converges strongly to $T_k(u)$ in $W_0^{1,p}(\Omega)$.

Now let E be a measurable subset of Ω . Then

$$\int_{E} |\nabla u_{n}|^{p} dx = \int_{E \cap \{|u_{n}| \le k\}} |\nabla u_{n}|^{p} dx + \int_{E \cap \{|u_{n}| > k\}} |\nabla u_{n}|^{p} dx$$

Let $\varepsilon > 0$ be fixed. Since

$$\int_{E\cap\{|u_n|>k\}} |\nabla u_n|^p \, dx \leq \int_{\{|u_n|>k\}} |\nabla u_n|^p \, dx \, ,$$

(2.8) implies that there exists $k \ge \sigma$ such that

$$\int_{E \cap \{|u_n| > k\}} |\nabla u_n|^p \, dx \leq \frac{\varepsilon}{2} \,, \qquad n \in \mathbf{N} \,.$$

Once k is fixed, since we have

$$\int_{E \cap \{|u_n| \le k\}} |\nabla u_n|^p \, dx \le \int_E |\nabla T_k(u_n)|^p \, dx \, ,$$

the strong compactness of $T_k(u_n)$ in $W_0^{1,p}(\Omega)$ implies that there exists $\delta > 0$ such that if meas $(E) < \delta$, then

$$\int_{E\cap\{|u_n|\leq k\}}|
abla u_n|^p\,dx\leq rac{arepsilon}{2}\,,\qquad n\inoldsymbol{N}\,.$$

Thus, for every $\varepsilon > 0$ there exists $\delta > 0$ such that if meas $(E) < \delta$, then

$$\int_E |\nabla u_n|^p \, dx \le \varepsilon \,, \qquad n \in \mathbf{N} \,,$$

that is to say, the sequence $\{|\nabla u_n|^p\}$ is equi-integrable. Since, up to a subsequence still denoted by u_n , ∇u_n is almost everywhere convergent to ∇u (as a consequence of the strong convergence of truncates), u_n converges strongly to u in $W_0^{1,p}(\Omega)$.

In order to pass to the limit in the approximate equation, we now show that

$$g(x, u_n, \nabla u_n) \to g(x, u, \nabla u)$$
 strongly in $L^1(\Omega)$.

Since $g(x, u_n, \nabla u_n)$ converges almost everywhere to $g(x, u, \nabla u)$, it remains to prove the equi-integrability of the sequence $\{|g(x, u_n, \nabla u_n)|\}$. Once again, if E is a measurable subset of Ω , we have

$$egin{array}{rcl} \displaystyle\int_{E}|g(x,u_n,
abla u_n)|dx&=&\displaystyle\int_{E\cap\{|u_n|\leq k\}}|g(x,u_n,
abla u_n)|dx\ &+\displaystyle\int_{E\cap\{|u_n|>k\}}|g(x,u_n,
abla u_n)|dx\,. \end{array}$$

Let $\varepsilon > 0$ be fixed. Since

$$\int_{E \cap \{|u_n| > k\}} |g(x, u_n, \nabla u_n)| \, dx \le \int_{\{|u_n| > k\}} |g(x, u_n, \nabla u_n)| \, dx \, ,$$

we can use (2.9) in order to choose $k \ge \sigma$ such that

$$\int_{E \cap \{|u_n| > k\}} |g(x, u_n, \nabla u_n)| \, dx \leq \frac{\varepsilon}{2} \,, \qquad n \in \mathbf{N} \,.$$

Moreover, using (1.3), we have

$$\int_{E \cap \{|u_n| \leq k\}} |g(x, u_n, \nabla u_n)| \, dx \leq b(k) \, \int_E \left[d(x) + |\nabla T_k(u_n)|^p \right] dx \, ,$$

and, since d belongs to $L^1(\Omega)$ and $T_k(u_n)$ is strongly compact in $W_0^{1,p}(\Omega)$, there exists $\delta > 0$ such that if meas $(E) < \delta$, then

$$\int_{E \cap \{|u_n| \le k\}} |g(x,u_n,
abla u_n)| \, dx \le rac{arepsilon}{2} \,, \qquad n \in oldsymbol{N} \,.$$

Thus, as before, we have proved that $\{|g(x, u_n, \nabla u_n)|\}$ is equi-integrable, and this allows us to pass to the limit in (2.6), in order to obtain (1.8).

Remark 2.5. Since there exists a solution of (1.7) in the sense (1.8) if and only if μ belongs to $\mathcal{M}_0^p(\Omega)$, that is to say if and only if μ belongs to $L^1(\Omega) + W^{-1,p'}(\Omega)$, the class of admissible test functions in (1.8) can be extended by means of an easy density argument in order to consider test functions v in $W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$.

Remark 2.6. The result of Theorem 1.1 refines the result of Theorem 2.3 in the sense that it states that if μ is a measure in $\mathcal{M}_0^p(\Omega)$, then there exists a function u in $W_0^{1,p}(\Omega)$ such that

$$\mu = A(u) + g(x, u, \nabla u),$$

with $g(x, u, \nabla u)$ in $L^1(\Omega)$.

If, for example, p = 2, $a(x,\xi) = \xi$, and $g(x,s,\xi) = \operatorname{sgn}(s) |\xi|^2$, then for every nonnegative measure μ in $\mathcal{M}_0^2(\Omega)$ there exists a function u in $H_0^1(\Omega)$ such that

$$\mu = -\operatorname{div}\left(\nabla u\right) + |\nabla u|^2$$

It is also easy to see, taking for instance $T_k(u^-)$ as test function in (1.8), that such a function u is nonnegative.

Remark 2.7. The same result of Theorem 1.1 holds true if the function a depends also on u, and satisfies the following assumptions:

$$a(x,s,\xi)\cdot\xi\geqlpha\,|\xi|^p\,,$$

$$\begin{aligned} |a(x,s,\xi)| &\leq \ell(x) + \beta \left[|s|^{p-1} + |\xi|^{p-1} \right], \\ [a(x,s,\xi) - a(x,s,\eta)] \cdot (\xi - \eta) > 0, \end{aligned}$$

for almost every $x \in \Omega$, for every s in **R**, for every ξ , η in \mathbf{R}^N ($\xi \neq \eta$), where α and β are positive constants, and ℓ belongs to $L^{p'}(\Omega)$.

3 A nonexistence result

We recall that if μ is a Radon measure, and E is a Borel subset of Ω , the *restriction* of μ to E is the measure $\lambda = \mu \sqcup E$ defined by

$$\lambda(B) = \mu(E \cap B) \,,$$

for every Borel subset B of Ω . We say that a measure λ is *concentrated* on a Borel set E if $\lambda = \lambda \sqcup E$.

We recall the following result, proved in [17], Lemma 2.1.

Proposition 3.1. Let μ be a measure in $\mathcal{M}_{\mathbf{b}}(\Omega)$, and let $1 . Then <math>\mu$ can be decomposed in a unique way as $\mu_0 + \lambda$, where

- (1) μ_0 belongs to $\mathcal{M}^p_0(\Omega)$;
- (2) $\lambda = \mu \subseteq E$, and $\operatorname{cap}_{p}(E, \Omega) = 0$.

Given a measure μ in $\mathcal{M}_{b}(\Omega)$, we can decompose it, by the previous proposition, as $\mu_{0} + \lambda$. The result of Theorem 1.1 then states that problem (1.7) has a solution with datum μ if and only if $\lambda = 0$. Suppose now that $\mu_{0} = 0$, so that $\mu = \lambda$ is singular with respect to the *p*-capacity. What happens if we try (as in the proof of Theorem 1.1) to approximate the measure λ with a sequence $\{f_n\}$ of $L^{\infty}(\Omega)$ functions and solve the corresponding problems with data f_n ? If we take the sequence $\{f_n\}$ bounded in $L^{1}(\Omega)$, then the same technique used in the proof of Theorem 1.1 yields that the corresponding sequence of solutions $\{u_n\}$ is bounded in $W_0^{1,p}(\Omega)$; hence, it converges weakly in $W_0^{1,p}(\Omega)$ to some function *u*. Clearly, *u* cannot be a solution of the problem with datum λ , since such a solution does not exist. What can we say about *u*? The answer is given by the following theorem, under a sign condition on the lower order nonlinearity *g*.

Theorem 3.2. Let λ be a positive measure in $\mathcal{M}_{b}(\Omega)$, concentrated on a set E such that $\operatorname{cap}_{p}(E, \Omega) = 0$, and let $\{f_{n}\}$ be a sequence of nonnegative $L^{\infty}(\Omega)$ functions such that

$$\lim_{n \to +\infty} \int_{\Omega} f_n \varphi \, dx = \int_{\Omega} \varphi \, d\lambda \qquad \forall \varphi \in C^0(\bar{\Omega}) \, .$$

Suppose that, in addition to assumptions (1.5) and (1.6), g also satisfies

$$(3.1) g(x,s,\xi) s \ge 0$$

for almost every x in Ω , for every s in **R**, and for every ξ in \mathbf{R}^N . Let u_n be a solution of the equation

(3.2)
$$\begin{cases} A(u_n) + g(x, u_n, \nabla u_n) = f_n & \text{in } \Omega, \\ u_n = 0 & \text{on } \partial\Omega, \end{cases}$$

in the sense (2.6) (with $F \equiv 0$). Then there exists k > 0 (depending on g and α), such that

$$T_k(u_n) \to 0$$
 strongly in $W_0^{1,p}(\Omega)$.

Moreover, u_n converges weakly to zero in $W_0^{1,p}(\Omega)$, and

$$\lim_{n \to +\infty} \int_{\Omega} g(x, u_n, \nabla u_n) \varphi \, dx = \int_{\Omega} \varphi \, d\lambda \qquad \forall \varphi \in C_0^1(\Omega) \, .$$

In the following we denote by ε_{δ} and $\varepsilon_{n,\delta}$ respectively any real numbers such that

$$\lim_{\delta \to 0^+} \varepsilon_{\delta} = 0, \qquad \lim_{\delta \to 0^+} \lim_{n \to +\infty} \varepsilon_{n,\delta} = 0.$$

Before giving the proof of the theorem, we need to construct as in [15] a suitable collection of cut-off functions.

Lemma 3.3. Let λ be a nonnegative measure in $\mathcal{M}_{\mathbf{b}}(\Omega)$ which is concentrated on a set E of zero p-capacity. Then for every $\delta > 0$ there exists a $C_0^{\infty}(\Omega)$ function ψ_{δ} such that

(3.3)
$$\int_{\Omega} |\nabla \psi_{\delta}|^{p} dx = \varepsilon_{\delta}, \qquad 0 \leq \psi_{\delta} \leq 1, \qquad \int_{\Omega} (1 - \psi_{\delta}) d\lambda = \varepsilon_{\delta}.$$

Proof. Since λ belongs to $\mathcal{M}_{\mathbf{b}}(\Omega)$, for every $\delta > 0$ there exists a compact set $K_{\delta} \subseteq E$ such that $\lambda(E \setminus K_{\delta}) \leq \delta$. Since K_{δ} is compact, and its *p*-capacity is zero, there exists a $C_0^{\infty}(\Omega)$ function ψ_{δ} which is equal to 1 in a neighbourhood of K_{δ} and that satisfies both the first and second conditions of (3.3). As for the third, we have

$$0 \leq \int_{\Omega} \left(1-\psi_{\delta}
ight) d\lambda = \int_{E\setminus K_{\delta}} \left(1-\psi_{\delta}
ight) d\lambda \leq \lambda(E\setminus K_{\delta}) \leq \delta \,.$$

This completes the proof.

Remark 3.4. If E is compact, we can choose $K_{\delta} = E$ for every $\delta > 0$. As a consequence of (3.3), we have that ψ_{δ} converges to zero strongly in $W_0^{1,p}(\Omega)$, almost everywhere in Ω , and in the weak* topology of $L^{\infty}(\Omega)$.

Proof of Theorem 3.2. Since f_n is nonnegative, the sign assumption (3.1) on g implies that u_n is also nonnegative. As in the proof of Theorem 1.1, it is easy to see, using the assumptions on a and g, that the sequence $\{u_n\}$ is bounded in $W_0^{1,p}(\Omega)$. Thus, there exists a subsequence, again denoted by u_n , a function u in $W_0^{1,p}(\Omega)$, and an element G in $(L^{p'}(\Omega))^N$ such that

$$u_n \to u$$
 weakly in $W_0^{1,p}(\Omega)$ and almost everywhere in Ω ,
 $a(x, \nabla u_n) \to G$ weakly in $(L^{p'}(\Omega))^N$;

the latter convergence is due to the fact that, by (1.3), $a(x, \nabla u_n)$ is bounded in $(L^{p'}(\Omega))^N$.

Let k > 0 be such that

$$(3.4) b(k) k \le \alpha/2,$$

where b is the function that appears in (1.5). Such a k exists since b is continuous.

We now choose as test function in (2.6) the function

$$v = (k - T_k(u_n)) \psi_\delta \,,$$

which is admissible since it belongs to $W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$. We obtain

(A)
$$-\int_{\Omega} a(x, \nabla T_k(u_n)) \cdot \nabla T_k(u_n) \psi_{\delta} dx$$

(B)
$$+ \int_{\Omega} \left[a(x, \nabla u_n) \cdot \nabla \psi_{\delta} \right] (k - T_k(u_n)) \, dx$$

(C)
$$+ \int_{\Omega} g(x, u_n, \nabla u_n) \left(k - T_k(u_n)\right) \psi_{\delta} dx$$

(D)
$$= \int_{\Omega} f_n \left(k - T_k(u_n) \right) \psi_{\delta} \, dx$$

Since $k - T_k(u_n)$ converges to $k - T_k(u)$ both in the weak* topology of $L^{\infty}(\Omega)$ and almost everywhere in Ω , we have that $\nabla \psi_{\delta} (k - T_k(u_n))$ converges to $\nabla \psi_{\delta}(k - T_k(u))$ strongly in $(L^p(\Omega))^N$, and so

where the last passage is due to the first equality of (3.3). We then have, by (1.5) and since $k - T_k(u_n) = 0$ for $u_n > k$,

$$|(\mathbf{C})| \leq \int_{\{0 \leq u_n \leq k\}} b(u_n) \left(k - T_k(u_n)\right) \psi_{\delta} \left[d(x) + |\nabla u_n|^p\right] dx \,.$$

Thus,

$$\int_{\{0\leq u_n\leq k\}}b(u_n)\left(k-T_k(u_n)\right)\psi_\delta\,d(x)\,dx\leq \frac{\alpha}{2}\,\int_\Omega d(x)\,\psi_\delta\,dx=\varepsilon_\delta\,,$$

by the choice of k and since ψ_{δ} converges to zero in the weak* topology of $L^{\infty}(\Omega)$ as a consequence of (3.3). Moreover, again by the choice of k,

$$\int_{\{0 \le u_n \le k\}} b(u_n) \left(k - T_k(u_n)\right) \psi_\delta \left|\nabla u_n\right|^p dx \le \frac{\alpha}{2} \int_{\Omega} \left|\nabla T_k(u_n)\right|^p \psi_\delta dx.$$

We thus have

$$|(\mathrm{B})| \leq rac{lpha}{2} \int_{\Omega} |
abla T_k(u_n)|^p \psi_\delta \, dx + arepsilon_\delta \, .$$

Using (1.2), we also have

(A)
$$\geq -\alpha \int_{\Omega} |\nabla T_k(u_n)|^p \psi_{\delta} dx$$
.

Thus, since (D) is nonnegative,

$$lpha \, \int_{\Omega} |
abla T_k(u_n)|^p \, \psi_\delta \, dx \leq rac{lpha}{2} \, \int_{\Omega} |
abla T_k(u_n)|^p \, \psi_\delta \, dx + arepsilon_{n,\delta} \, ,$$

that is to say,

(3.6)
$$\int_{\Omega} |\nabla T_k(u_n)|^p \psi_{\delta} \, dx = \varepsilon_{n,\delta} \, .$$

The next step consists in choosing as test function in (2.6) the function

$$v = T_k(u_n)(1-\psi_\delta),$$

which is again admissible. We get

(E)
$$\int_{\Omega} a(x, \nabla T_k(u_n)) \cdot \nabla T_k(u_n) (1 - \psi_{\delta}) dx$$

(F)
$$-\int_{\Omega} \left[a(x, \nabla u_n) \cdot \nabla \psi_{\delta}\right] T_k(u_n) \, dx$$

(G)
$$+ \int_{\Omega} g(x, u_n, \nabla u_n) T_k(u_n) (1 - \psi_{\delta}) dx$$

(H)
$$= \int_{\Omega} f_n T_k(u_n) (1 - \psi_{\delta}) dx$$

The term (G) is nonnegative by (3.1), so we drop it. Reasoning as before, we have

$$(\mathbf{F})=\varepsilon_{n,\delta}\,,$$

while

(H)
$$\leq k \int_{\Omega} f_n (1 - \psi_{\delta}) dx = k \int_{\Omega} (1 - \psi_{\delta}) d\lambda + \varepsilon_n = \varepsilon_{n,\delta},$$

by the third part of (3.3). Thus, using (1.2) in (E), we get

(3.7)
$$\alpha \int_{\Omega} |\nabla T_k(u_n)|^p (1-\psi_{\delta}) \, dx = \varepsilon_{n,\delta} \, .$$

Putting together (3.6) and (3.7), we easily obtain

$$\int_{\Omega} |\nabla T_k(u_n)|^p \, dx = \varepsilon_n \, ,$$

that is to say, $T_k(u_n)$ converges strongly to zero in $W_0^{1,p}(\Omega)$. Since the limit is independent of the choice of subsequence, the sequence $T_k(u_n)$ converges to zero strongly in $W_0^{1,p}(\Omega)$. Thus, u = 0, and so u_n converges weakly to zero in $W_0^{1,p}(\Omega)$.

In order to prove the second part of the theorem, observe that from the strong convergence to zero of $T_k(u_n)$ follows the almost everywhere convergence to zero of ∇u_n , and this implies that $G \equiv 0$. Now we choose a test function φ in $C_0^1(\Omega)$ in (2.6); we obtain

(3.8)
$$\int_{\Omega} a(x, \nabla u_n) \cdot \nabla \varphi \, dx + \int_{\Omega} g(x, u_n, \nabla u_n) \varphi \, dx = \int_{\Omega} f_n \varphi \, dx \, .$$

Since G = 0, we have

$$\int_{\Omega} a(x, \nabla u_n) \cdot \nabla \varphi \, dx = \varepsilon_n \,,$$

while

$$\int_{\Omega} f_n \, \varphi \, dx = \int_{\Omega} \varphi \, d\lambda + \varepsilon_n \, .$$

Thus, from (3.8) we obtain by subtracting

$$\lim_{n\to+\infty}\int_{\Omega}g(x,u_n,\nabla u_n)\,\varphi\,dx=\int_{\Omega}\varphi\,d\lambda\,,$$

for every φ in $C_0^1(\Omega)$, and this concludes the proof of the theorem.

Remark 3.5. The result of the previous theorem also holds, with minor technical modifications in the proof, if λ is a signed measure. Results of this kind, concerning problems where the lower order term is independent of the gradient of u and behaves like $|u|^{q-1}u$, can also be found in [20].

REFERENCES

- [1] P. Baras and M. Pierre, *Singularités éliminables pour des équations semi-linéaires*, Ann. Inst. Fourier (Grenoble) **34** (1984), 185–206.
- [2] A. Bensoussan, L. Boccardo and F. Murat, On a nonlinear P.D.E. having natural growth terms and unbounded solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 347–364.
- [3] L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures, Comm. Partial Differential Equations 17 (1992), 641–655.
- [4] L. Boccardo and T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and L^1 data, Nonlinear Anal. 19 (1992), 573–579.
- [5] L. Boccardo, T. Gallouët and F. Murat, A unified presentation of two existence results for problems with natural growth, in Progress in Partial Differential Equations: The Metz Surveys, 2 (1992), Pitman Res. Notes Math. Ser., 296, Longman Sci. Tech., Harlow, 1993, pp. 127–137.
- [6] L. Boccardo, T. Gallouët and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 539–551.
- [7] L. Boccardo, F. Murat and J.P. Puel, Existence de solutions non bornées pour certaines équations quasi-linéaires, Portugal. Math. 41 (1982), 507–534.
- [8] L. Boccardo, F. Murat and J. P. Puel, *Existence of bounded solutions for nonlinear elliptic unilateral problems*, Ann. Mat. Pura Appl. (4) **152** (1988), 183–196.
- [9] L. Boccardo, F. Murat and J. P. Puel, L[∞]-estimates for some nonlinear partial differential equations and application to an existence result, SIAM J. Math. Anal. 23 (1992), 326–333.
- [10] H. Brezis, Nonlinear elliptic equations involving measures, in Contributions to Nonlinear Partial Differential Equations (Madrid, 1981), Res. Notes in Math., 89, Pitman, Boston, Mass.-London, 1983, pp. 82-89.
- [11] H. Brezis and L. Nirenberg, *Removable singularities for nonlinear elliptic equations*, Topol. Methods Nonlinear Anal., to appear.
- [12] L. Brezis and W. Strauss, Semi-linear second-order elliptic equations in L¹, J. Math. Soc. Japan 25 (1973), 565–590.
- [13] H. Brezis and L. Veron, Removable singularities for some nonlinear elliptic equations, Arch. Rational Mech. Anal. 75 (1980/81), 1–6.
- [14] F. E. Browder, Existence theorems for nonlinear partial differential equations, in Global Analysis (Proc. Sympos. Pure Math., Vol. XVI, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 1–60.
- [15] G. Dal Maso, F. Murat, L. Orsina and A. Prignet, *Renormalized solutions for elliptic equations with general measure data*, preprint.
- [16] T. Del Vecchio, Strongly nonlinear problems with Hamiltonian having natural growth, Houston J. Math. 16 (1990), 7–24.
- [17] M. Fukushima, K. Sato and S. Taniguchi, On the closable part of pre-Dirichlet forms and the fine supports of underlying measures, Osaka J.Math. 28 (1991), 517–535.
- [18] T. Gallouët and J. M. Morel, Resolution of a semilinear equation in L^1 , Proc. Roy. Soc. Edinburgh **96** (1984), 275–288.
- [19] J. Leray and J.-L. Lions, Quelques résultats de Visik sur les problèmes elliptiques semilinéaires par les méthodes de Minty et Browder, Bull. Soc. Math. France 93 (1965), 97–107.
- [20] L. Orsina and A. Prignet, Nonexistence of solutions for some nonlinear elliptic equations involving measures, preprint.
- [21] A. Porretta, Some remarks on the regularity of solutions for a class of elliptic equations with measure data, Potential Anal., to appear.

[22] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), 189-258.

Lucio Boccardo Dipartimento di Matematica Università di Roma I P.Le A. Moro 2 00185, Roma, Italy

Thierry Gallouët ENS-Lyon 69364 Lyon Cedex 7, France

Luigi Orsina Dipartimento di Matematica Università di Roma I P.le A. Moro 2 00185, Roma, Italy

(Received May 28, 1997)