EXISTENCE AND NONEXISTENCE OF SOLUTIONS LUCIO BOCCARDO, THIERRY GALLOUET AND LUIGI ORSINA

 By

LUCIO BOCCARDO, THIERRY GALLOUËT AND LUIGI ORSINA

1 Introduction and statement of results

In this paper we consider nonlinear boundary value problems whose simplest model is the following:

(1.1)
$$
\begin{cases}\n-\Delta u + u |\nabla u|^2 = \mu & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,\n\end{cases}
$$

where Ω is a bounded open set in \mathbb{R}^N , $N > 2$, and μ is a Radon measure on Ω . where α is a countried open set if $\mathbf{r} = \mathbf{s}$, and μ is a radion friedric on \mathbf{r} .

 m_0 are merchant m_0 existence and nonexistence or solutions for (n_1) . There precisely, we prove the existence of a solution u in $H_0^1(\Omega)$ for problem (1.1) if and only if the measure μ does not charge the sets of capacity zero in Ω . The main tool of our proof will be a characterization result, proved by the authors in $\frac{1}{100}$ for solutions of $\frac{1}{100}$ with solutions of $\frac{1}{100}$ and $\$ to *f*, which states that every measure which is zero on sets of zero capacity is an element of $L^1(\Omega) + H^{-1}(\Omega)$ (see also Theorem 2.3, below). We also prove that if we consider a sequence $\{u_n\}$ of solutions of (1.1) with $L^{\infty}(\Omega)$ data μ_n converging to a nonzero measure which is singular with respect to the capacity (for example, a Dirac mass), then u_n converges to zero as *n* tends to infinity. For semilinear problems, an analogous result can be found in $[10]$. μ bounded Laten and up is a smooth solution of μ is a smooth solution of \mathbb{R} .

closed set of zero capacity, then us in the whole of the whole of the whole of f~; the index $\frac{1}{2}$ [11]), where (as a particular case of more general results) it is proved that if μ is a bounded $L^{\infty}(\Omega)$ function and u is a smooth solution of (1.1) in $\Omega \setminus K$, with K a T_{max} between the two results is due to the fact that, as a consequence of $\left(117\right)$ as a consequence of $\left(117\right)$ t_{17} (see Proposition 3.1 below), when α is defined in the whole α rad α bounded by α frace cannot be singular on sets of zero capacity.
The link between the two results is due to the fact that, as a consequence of a

theorem of [17] (see Proposition 3.1 below), every bounded Radon measure μ on On the sets of zero eapacity and a mea

zero capacity. Hence, problem (1.1) implies that

$$
-\Delta u + u|\nabla u|^2 = \mu_0 \quad \text{in } \Omega \setminus E.
$$

The result of [11] states that if μ_0 is an $L^{\infty}(\Omega)$ function, then u is a solution of the problem with datum μ_0 in the whole Ω ; that is to say, the term λ does not play any role. Our result states that if we look for solutions in the whole of Ω , then we have to take into account only the term μ_0 , without the $L^{\infty}(\Omega)$ restriction on μ_0 .

Problem (1.1), and some variants of it, have been widely studied in the literature. For example, if the nonlinear lower order term is independent of ∇u , and behaves like $|u|^{q-1}u$, with $q>1$, there are existence and nonexistence results depending on the measure μ ; see, e.g., [10], [12], [13], [1], [18], [20]. If the nonlinear term is as in (1.1), there are existence results if μ belongs to $H^{-1}(\Omega)$ (see [2], [7] and [16]) or to $L^1(\Omega)$ (see [4], [5], and [21]).

Since we are going to consider more general nonlinear boundary value problems, we now state the assumptions that will hold throughout the paper.

Let Ω be a bounded, open subset of \mathbb{R}^N , $N > 2$. Let p be a real number such that $1 < p < N$, and let p' be its Hölder conjugate exponent (i.e., $1/p + 1/p' = 1$).

Let $a : \Omega \times \mathbb{R}^N \to \mathbb{R}^N$ be a Carathéodory function (i.e., $a(x, \cdot)$ is continuous on R^N for almost every x in Ω , and $a(\cdot, \xi)$ is measurable on Ω for every ξ in R^N) such that

$$
(1.2) \t a(x,\xi) \cdot \xi \ge \alpha |\xi|^p,
$$

for almost every $x \in \Omega$ and every $\xi \in \mathbb{R}^N$, where α is a positive constant;

(1.3)
$$
|a(x,\xi)| \leq \ell(x) + \beta |\xi|^{p-1},
$$

for almost every $x \in \Omega$ and every $\xi \in \mathbb{R}^N$, where β is a positive constant and ℓ belongs to $L^{p'}(\Omega)$; and

(1.4)
$$
[a(x,\xi)-a(x,\eta)]\cdot(\xi-\eta) > 0,
$$

for almost every $x \in \Omega$ and every ξ and η in \mathbb{R}^N with $\xi \neq \eta$.

Let

$$
A(u) = -\mathrm{div}\left(a(x,\nabla u)\right).
$$

By (1.2) , (1.3) and (1.4) , A is a monotone and coercive differential operator acting between $W_0^{1,p}(\Omega)$ and its dual $W^{-1,p'}(\Omega)$; hence, it is surjective on $W^{-1,p'}(\Omega)$ (see $[19]$).

Let $g : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ be a Carathéodory function (i.e., $g(\cdot, s, \xi)$ is measurable in Ω for any (s, ξ) in $\mathbf{R} \times \mathbf{R}^N$, and $g(x, \cdot, \cdot)$ is continuous in $\mathbf{R} \times \mathbf{R}^N$ for almost every $x \in \Omega$) such that

(1.5)
$$
|g(x, s, \xi)| \leq b(|s|) [|\xi|^p + d(x)],
$$

with b a real valued, positive, increasing, continuous function, and d a nonnegative function in $L^1(\Omega)$:

$$
(1.6) \t\t g(x,s,\xi) \operatorname{sgn}(s) \ge \rho |\xi|^p,
$$

for almost every x in Ω , every ξ in \mathbb{R}^N , and every s in \mathbb{R} such that $|s| \ge \sigma$, where σ and ρ are two positive real numbers.

For every compact subset K of Ω , the p-capacity of K with respect to Ω is defined as

$$
\operatorname{cap}_p(K,\Omega)=\inf\left\{\int_{\Omega}|\nabla u|^p dx: u\in C_0^{\infty}(\Omega), u\geq \chi_K\right\},\,
$$

where χ_K is the characteristic function of K; we use the convention that inf $\emptyset = +\infty$. The *p*-capacity of any open subset U of Ω is then defined by

 $cap_n(U, \Omega) = \sup \{cap_n(K, \Omega), K \text{ compact}, K \subseteq U\},$

and the *p*-capacity of any subset $B \subset \Omega$ by

$$
\operatorname{cap}_{p}(B,\Omega)=\inf\left\{\operatorname{cap}_{p}(U,\Omega), U \text{ open}, B \subseteq U\right\}.
$$

We denote by $\mathcal{M}_{b}(\Omega)$ the space of all signed measures on Ω , i.e., the space of all σ -additive set functions μ with values in **R** defined on the Borel σ -algebra. Note that if μ belongs to $\mathcal{M}_b(\Omega)$, then $|\mu|$ (the total variation of μ) is a bounded positive measure on Ω . We denote by $\mathcal{M}_{0}^{p}(\Omega)$ the space of all measures μ in $\mathcal{M}_{b}(\Omega)$ such that $\mu(E) = 0$ for every set such that $cap_n(E, \Omega) = 0$. Examples of measures in $\mathcal{M}_0^p(\Omega)$ are $L^1(\Omega)$ function and measures in $W^{-1,p'}(\Omega)$.

Define, for s and k in R, with $k \ge 0$, $T_k(s) = \max(-k, \min(k, s))$ and $G_k(s) =$ $s - T_k(s)$.

Our result is the following.

Theorem 1.1. Let μ be a measure in $M_b(\Omega)$. Then there exists a solution u of

(1.7)
$$
\begin{cases} A(u) + g(x, u, \nabla u) = \mu & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}
$$

in the sense that u belongs to $W_0^{1,p}(\Omega)$, $g(x, u, \nabla u)$ *belongs to* $L^1(\Omega)$, and

(1.8)
$$
\int_{\Omega} a(x, \nabla u) \cdot \nabla v \, dx + \int_{\Omega} g(x, u, \nabla u) v \, dx = \int_{\Omega} v \, d\mu,
$$

for every v in $C_0^{\infty}(\Omega)$ *, if and only if* μ *belongs to* $\mathcal{M}_0^p(\Omega)$ *.*

Remark 1.2. Note that the solution of (1.7) given by the previous theorem belongs to $W_0^{1,p}(\Omega)$ even if μ belongs to $L^1(\Omega)$: this is in sharp contrast with the results in the case $q \equiv 0$, since the solutions of

$$
\begin{cases}\nA(u) = \mu & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,\n\end{cases}
$$

are known to belong only to $W_0^{1,q}(\Omega)$ for every $q \lt N(p-1)/(N-1)$ (see [3]). The better regularity of the solution of (1.7) is due to assumption (1.6) . Indeed, even if the nonlinear lower order term has a growth of order p with respect to the gradient, but does not satisfy (1.6), we may not have solutions in $W_0^{1,p}(\Omega)$. To show this, let us consider the following example. Let $p = 2$, $\Omega = \{x \in \mathbb{R}^N : |x| < 1\}$, and $a(x, \xi) = \xi$, so that $A(u) = -\Delta u$, the Laplacian. Let $m = \frac{1}{2}N - 1$ and let $u(\rho) = \rho^{-m} - 1$, where $\rho = |x|$. Then u is solution of

$$
-\Delta u + \frac{|\nabla u|^2}{1+u} = f(\rho) \,,
$$

where

$$
f(\rho) = \frac{(N-2)^2}{2\rho^{m+2}} \, .
$$

It is easily seen that u does not belong to $H_0^1(\Omega)$, while f belongs to $L^s(\Omega)$, for every s in $\left[1, \frac{2N}{N}\right]$

Remark 1.3. The result of Theorem 1.1 explains the restriction $p \leq N$. Indeed, if $p > N$, then there are no nonempty sets of zero p-capacity; in other words, every measure in $\mathcal{M}_{b}(\Omega)$ is in $\mathcal{M}_{0}^{p}(\Omega)$. Moreover, due to the Sobolev embeddings, every measure in $\mathcal{M}_b(\Omega)$ is in $W^{-1,p'}(\Omega)$.

2 Proof of Theorem 1.1

In the following, we denote by c any constant which depends on the various quantities of the problem but not on n . The value of c may vary from line to line.

We begin with an existence result for problem (1.7) in the case in which the datum μ is regular.

Theorem 2.1. Let f be an $L^{\infty}(\Omega)$ function, and let F be an element of $(L^s(\Omega))^N$, with $s > N/(p-1)$. Then there exists a solution u in $W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ *of*

(2.1)
$$
\begin{cases} A(u) + g(x, u, \nabla u) = f - \text{div}(F) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}
$$

in the sense that

$$
\int_{\Omega} a(x, \nabla u) \cdot \nabla v + \int_{\Omega} g(x, u, \nabla u) v = \int_{\Omega} f v + \int_{\Omega} F \cdot \nabla v,
$$

for every v in $W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$.

Remark 2.2. We remark that the result of the preceding theorem does not exist in the literature. Indeed, existence results in $W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ have been given, under the same assumptions on f and F as in Theorem 2.1, for the problem

$$
A(u) + g(x, u, \nabla u) + \alpha_0 |u|^{p-2} u = f - \text{div}(F),
$$

with $\alpha_0 > 0$ (see, for example, [9] and the references contained therein), or under a sign assumption on q : namely,

$$
g(x, s, \xi) s \geq 0,
$$

for almost every x in Ω , for every s in **R**, for every ξ in \mathbb{R}^N (see [2]). In our case, (1.6) gives a sign condition on q only for large values of s .

Proof of Theorem 2.1. For the sake of simplicity, we give a proof of this result in the case $f \equiv 0$; the case of f different from zero can be dealt with by means of minor technical modifications.

Let n be in N and let

$$
g_n(x,s,\xi)=\frac{g(x,s,\xi)}{1+\frac{1}{n}\left|g(x,s,\xi)\right|}.
$$

Then $g_n(x, s, \xi)$ is bounded, satisfies (1.5) and, thanks to (1.6), is such that

$$
(2.2) \t\t\t g_n(x,s,\xi) \operatorname{sgn}(s) \geq 0,
$$

for almost every x in Ω , for every ξ in \mathbb{R}^N , and for every s in \mathbb{R} with $|s| \ge \sigma$.

Since g_n is bounded, by classical results (see for example [19]) there exists a solution u_n in $W_0^{1,p}(\Omega)$ of

$$
\begin{cases}\nA(u_n) + g_n(x, u_n, \nabla u_n) = -\text{div}(F) & \text{in } \Omega, \\
u_n = 0 & \text{on } \partial\Omega,\n\end{cases}
$$

in the sense that

$$
(2.3) \qquad \int_{\Omega} a(x, \nabla u_n) \cdot \nabla v \, dx + \int_{\Omega} g_n(x, u_n, \nabla u_n) \, v \, dx = \int_{\Omega} F \cdot \nabla v \, dx,
$$

for every v in $W_0^{1,p}(\Omega)$.

As proved in [8], [9], if the sequence $\{u_n\}$ is bounded in $L^{\infty}(\Omega)$, then it is possible to extract a subsequence which converges strongly in $W_0^{1,p}(\Omega)$ to a solution of (2.1). Thus, the proof of the theorem will be achieved if we prove an $L^{\infty}(\Omega)$ *a priori* estimate on the sequence $\{u_n\}$.

To do this, we choose $v = G_k(u_n)$ as test function in (2.3), with $k \ge \sigma$. We obtain

$$
\int_{\Omega} a(x, \nabla u_n) \cdot \nabla G_k(u_n) dx + \int_{\Omega} g_n(x, u_n, \nabla u_n) G_k(u_n) dx = \int_{\Omega} F \cdot \nabla G_k(u_n) dx.
$$

Since $G_k(s)$ has the same sign as s, and since $G_k(s)$ is different from zero only where $|s| \ge k \ge \sigma$, (2.2) then implies

$$
\int_{\Omega} g_n(x, u_n, \nabla u_n) G_k(u_n) dx \geq 0.
$$

On the other hand, setting

$$
A_{k,n} = \{ |u_n| \geq k \},\
$$

we have, by the Young inequality,

$$
\int_{\Omega} F \cdot \nabla G_k(u_n) \, dx \leq c \int_{A_{k,n}} |F|^{p'} \, dx + \frac{\alpha}{2} \int_{\Omega} |\nabla G_k(u_n)|^p \, dx \, .
$$

Thus, using (1.2) we have

$$
\frac{\alpha}{2}\int_{\Omega}|\nabla G_k(u_n)|^p\,dx\leq c\int_{A_{k,n}}|F|^{p'}\,dx\,.
$$

From now on we will follow the method introduced by G. Stampacchia in order to prove $L^{\infty}(\Omega)$ *a priori* estimates for solutions of elliptic equations (see [22]). Since |F| belongs to $L^s(\Omega)$, and $s > p'$, we have, by the Hölder inequality,

$$
\int_{A_{k,n}} |F|^{p'} dx \leq ||F||_{(L^s(\Omega))^N} \operatorname{meas} (A_{k,n})^{1-p'/s}.
$$

On the other hand, by the Sobolev embedding, *we* have

$$
\int_{\Omega} |\nabla G_k(u_n)|^p dx \geq c \left(\int_{\Omega} |G_k(u_n)|^{p^*} dx \right)^{p/p^*},
$$

where $p^* = Np/(N - p)$ if $p < N$, and is any real number greater than $Ns(N-1)/(Ns-N-s)$ if $p = N$. Thus, we have

$$
\left(\int_{\Omega} |G_k(u_n)|^{p^*} dx\right)^{p/p^*} \leq c \operatorname{meas} (A_{k,n})^{1-p'/s}.
$$

Choosing $h > k$, and using the fact that $|G_k(u_n)| \geq h - k$ on $A_{h,n}$, we have

$$
(h-k)^p \operatorname{meas} (A_{h,n})^{p/p^*} \leq c \operatorname{meas} (A_{k,n})^{1-p'/s}, \qquad \forall h > k \geq \sigma,
$$

that is,

meas
$$
(A_{h,n}) \leq \frac{c}{(h-k)^{p^*}}
$$
meas $(A_{k,n})^{\frac{p^*}{p}(1-\frac{p'}{s})}$, $\forall h > k \geq \sigma$.

Since, by our choice of p^* and s, we have

$$
\frac{p^*}{p}\left(1-\frac{p'}{s}\right) > 1\,,
$$

a well-known result by G. Stampacchia (see [22], Lemme 4.1) implies that there exists a constant M (independent on n), such that

$$
\text{meas}\,(A_{k,n})=0\,,\qquad \forall k\geq \sigma+M\,,
$$

that is to say,

$$
||u_n||_{L^{\infty}(\Omega)} \leq \sigma + M.
$$

This fact concludes the proof of the theorem. \Box

The next result is a decomposition theorem for measures in $\mathcal{M}_{b}(\Omega)$, proved in [6], Theorem 2.1.

Theorem 2.3. Let $1 < p < +\infty$ and let $\mu \in M_b(\Omega)$. Then $\mu \in L^1(\Omega)$ + $W^{-1,p'}(\Omega)$ *if and only if* $\mu \in \mathcal{M}_0^p(\Omega)$.

Finally, we state a technical lemma, whose proof is straightforward.

Lemma 2.4. *Let a and b be two nonnegative real numbers, and let*

$$
\varphi(s)=s\,\mathrm{e}^{\theta\,s^2}\,,
$$

with $\theta = b^2/4a^2$. *Then*

$$
(2.4) \t a\varphi'(s)-b|\varphi(s)|\geq a/2, \t s\in\mathbf{R}.
$$

Using the previous results, we can prove Theorem 1.1.

Proof of Theorem 1.1. It is clear that if there exists a solution u of (1.7), with u in $W_0^{1,p}(\Omega)$ and $g(x, u, \nabla u)$ in $L^1(\Omega)$, then, since $a(x, \nabla u)$ belongs to $(L^{p'}(\Omega))^N$ thanks to assumption (1.3), μ belongs to $L^1(\Omega) + W^{-1,p'}(\Omega)$ and so is in $\mathcal{M}_0^p(\Omega)$ by Theorem 2.3.

On the other hand, suppose that μ belongs to $\mathcal{M}_0^p(\Omega)$. By Theorem 2.3, μ can be decomposed as $f - \text{div}(F)$, with $f \in L^1(\Omega)$ and F in $(L^{p'}(\Omega))^N$.

Let ${f_n}$ be a sequence of $L^{\infty}(\Omega)$ functions that converges to f strongly in $L^1(\Omega)$, and let ${F_n}$ be a sequence of $(L^{\infty}(\Omega))^N$ functions that converges to F strongly in $(L^{p'}(\Omega))^N$.

By Theorem 2.1, there exists a solution u_n of

(2.5)
$$
\begin{cases} A(u_n) + g(x, u_n, \nabla u_n) = f_n - \text{div}(F_n) & \text{in } \Omega, \\ u_n = 0 & \text{on } \partial \Omega, \end{cases}
$$

in the sense that u_n belongs to $W_0^{1,p}(\Omega)$, $g(x, u_n, \nabla u_n)$ belongs to $L^1(\Omega)$, and

$$
(2.6)\ \int_{\Omega} a(x,\nabla u_n)\cdot \nabla v\,dx + \int_{\Omega} g(x,u_n,\nabla u_n)\,v\,dx = \int_{\Omega} f_n\,v\,dx + \int_{\Omega} F_n\cdot \nabla v\,dx,
$$

for every $v \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$.

Let us choose

$$
v=\varphi(T_{\sigma}(u_n)),
$$

as test function in (2.6), where σ is given by 1.6, and $\varphi(s)$ is as in Lemma 2.4, with $a = \alpha/2$ and $b = b(\sigma)$ (b(s) is given by (1.5)).

Using (1.2) and the Young inequality, and writing $\varphi_{\sigma} = \varphi'(T_{\sigma}(u_n))$ and $\varphi_{\sigma} =$ $\varphi(T_{\sigma}(u_n))$ for simplicity, we obtain

$$
\alpha \int_{\Omega} |\nabla T_{\sigma}(u_n)|^p \varphi_{\sigma}' dx + \int_{\Omega} \varphi_{\sigma} g(x, u_n, \nabla u_n) dx
$$

\$\leq \varphi(\sigma) \int_{\Omega} |f_n| dx + \varphi'(\sigma) \int_{\Omega} |F_n|^{p'} dx + \frac{\alpha}{2} \int_{\Omega} |\nabla T_k(u_n)|^p \varphi_{\sigma}' dx\$,

so that, since $\{f_n\}$ is bounded in $L^1(\Omega)$, and $\{|F_n|\}$ is bounded in $L^{p'}(\Omega)$,

(2.7)
$$
\frac{\alpha}{2} \int_{\Omega} |\nabla T_k(u_n)|^p \varphi_{\sigma}' dx + \int_{\Omega} \varphi_{\sigma} g(x, u_n, \nabla u_n) dx \leq c (\varphi(\sigma) + \varphi'(\sigma)).
$$

We now have

$$
\int_{\Omega} \varphi_{\sigma} g(x, u_n, \nabla u_n) dx = \int_{\{|u_n| < \sigma\}} \varphi_{\sigma} g(x, u_n, \nabla u_n) dx \n+ \int_{\{|u_n| \ge \sigma\}} \varphi_{\sigma} g(x, u_n, \nabla u_n) dx.
$$

Using (1.5), we have

$$
\left|\int_{\{|u_n|<\sigma\}}\varphi_{\sigma} g(x,u_n,\nabla u_n)\,dx\right|\leq b(\sigma)\left(\int_{\Omega}|\nabla T_{\sigma}(u_n)|^p\,\varphi_{\sigma}\,dx+\varphi(\sigma)\,||d||_{L^1(\Omega)}\right)\,,
$$

while, using (1.6), we get

$$
\int_{\{|u_n|\geq\sigma\}}\varphi_\sigma\,g(x,u_n,\nabla u_n)\,dx\geq\rho\,\varphi(\sigma)\,\int_{\{|u_n|\geq\sigma\}}|\nabla u_n|^p\,dx\,.
$$

We thus obtain

$$
\int_{\Omega} |\nabla T_{\sigma}(u_{n})|^{p} \left[\frac{\alpha}{2} \varphi'_{\sigma} - b(\sigma)|\varphi_{\sigma}|\right] dx + \rho \varphi(\sigma) \int_{\{|u_{n}|\geq \sigma\}} |\nabla u_{n}|^{p} dx \leq c,
$$

so that, by (2.4) ,

$$
\int_{\Omega} |\nabla T_{\sigma}(u_n)|^p dx + \int_{\{|u_n| \geq \sigma\}} |\nabla u_n|^p dx \leq c.
$$

This proves that $\{u_n\}$ is bounded in $W_0^{1,p}(\Omega)$; hence, there exist a function $u \in$ $W_0^{1,p}(\Omega)$ and a subsequence, still denoted by $\{u_n\}$, such that u_n converges to u weakly in $W_0^{1,p}(\Omega)$ and almost everywhere in Ω .

The next step of the proof is the strong convergence of u_n to u in $W_0^{1,p}(\Omega)$.

We begin proving that we have

(2.8)
$$
\lim_{k \to +\infty} \sup_{n \in \mathbb{N}} \int_{\{|u_n| \ge k\}} |\nabla u_n|^p dx = 0.
$$

We choose $v = \psi_{k-1}(u_n)$ as test function in (2.6), where

$$
\psi_{k-1}(s) = T_1(G_{k-1}(s))
$$

and $k \ge \sigma + 1$. We get, again using (1.2) and the Young inequality,

$$
\alpha \int_{\Omega} |\nabla \psi_{k-1}(u_n)|^p \, dx + \int_{\Omega} \psi_{k-1}(u_n) g(x, u_n, \nabla u_n) \, dx \n\leq \int_{\{|u_n| \geq k-1\}} |f_n| \, dx + \int_{\{k-1 \leq |u_n| \leq k\}} |F_n|^{p'} \, dx + \frac{\alpha}{2} \int_{\Omega} |\nabla \psi_{k-1}(u_n)|^p \, dx.
$$

Using (1.6) and the fact that $\psi_{k-1}(s)$ has the same sign as s if $|s| > \sigma$ and is zero if $|s| \leq \sigma$, we have

$$
g(x, u_n, \nabla u_n) \psi_{k-1}(u_n) \geq |g(x, u_n, \nabla u_n)| \chi_{\{|u_n| \geq k\}},
$$

so that we obtain, dropping positive terms,

$$
\int_{\{|u_n|\geq k\}}|g(x,u_n,\nabla u_n)|\,dx\leq \int_{\{|u_n|\geq k-1\}}|f_n|\,dx+\int_{\{k-1\leq |u_n|\leq k\}}|F_n|^{p'}\,dx.
$$

Since $\{u_n\}$ is bounded in $L^1(\Omega)$, we have

$$
\lim_{k\to+\infty}\sup_{n\in\mathbb{N}}\text{meas}\left(\{|u_n|\geq k-1\}\right)=0.
$$

Thus, since f_n is strongly compact in $L^1(\Omega)$, and $|F_n|$ is strongly compact in $L^{p'}(\Omega)$, we have

$$
\lim_{k \to +\infty} \sup_{n \in \mathbb{N}} \int_{\{|u_n| \ge k-1\}} |f_n| \, dx + \int_{\{k-1 \le |u_n| \le k\}} |F_n|^{p'} \, dx = 0,
$$

and so

(2.9)
$$
\lim_{k \to +\infty} \sup_{n \in \mathbf{N}} \int_{\{|u_n| \ge k\}} |g(x, u_n, \nabla u_n)| dx = 0.
$$

Using the fact that $k \ge \sigma$ and (1.6), we see that (2.9) implies (2.8).

The next step is the proof that for every $k \geq \sigma$, the sequence $T_k(u_n)$ converges strongly to $T_k(u)$ in $W_0^{1,p}(\Omega)$. In order to do this, we shall closely follow the outline of [5]. Let $k > \sigma$ be fixed, and choose as test function in (2.6)

$$
v=\varphi(T_k(u_n)-T_k(u))\,,
$$

where $\varphi(s)$ is as in Lemma 2.4, with $a = 1$ and $b = b(k)/\alpha$. Such a function is admissible since it belongs to $W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$. We thus have

(A)
$$
\int_{\Omega} a(x, \nabla u_n) \cdot \nabla (T_k(u_n) - T_k(u)) \varphi'(T_k(u_n) - T_k(u)) dx
$$

(B)
$$
+ \int_{\Omega} g(x, u_n \nabla u_n) \varphi(T_k(u_n) - T_k(u)) dx
$$

(C)
$$
= \int_{\Omega} f_n \, \varphi(T_k(u_n) - T_k(u)) \, dx
$$

(D)
$$
+ \int_{\Omega} F_n \cdot \nabla (T_k(u_n) - T_k(u)) \varphi'(T_k(u_n) - T_k(u)) dx.
$$

Here and in the following, we write ε_n for any quantity which converges to zero as n tends to infinity.

In order to deal with (A) - (D) , we write, for simplicity,

$$
\varphi'_n = \varphi'(T_k(u_n) - T_k(u)), \qquad \varphi_n = \varphi(T_k(u_n) - T_k(u)).
$$

We shall often use the fact that, in the weak* topology of $L^{\infty}(\Omega)$, and almost everywhere in Ω , we have

(2.10)
$$
\lim_{n \to +\infty} \varphi_n = \varphi(0) = 0, \qquad \lim_{n \to +\infty} \varphi'_n = \varphi'(0) = 1.
$$

Since f_n is strongly compact in $L^1(\Omega)$, (2.10) implies

$$
(2.11) \t\t\t\t(C) = \varepsilon_n
$$

Moreover, since $T_k(u_n)$ converges to $T_k(u)$ weakly in $W_0^{1,p}(\Omega)$, and F_n is strongly compact in $(L^{p'}(\Omega))^N$, (2.10) implies

$$
(2.12) \t\t\t\t\t(D) = \varepsilon_n.
$$

We can then decompose (A) as

(E)
$$
\int_{\Omega} a(x, T_k(u_n)) \cdot \nabla (T_k(u_n) - T_k(u)) \varphi'_n dx
$$

(F)
$$
+ \int_{\Omega} a(x, G_k(u_n)) \cdot \nabla (T_k(u_n) - T_k(u)) \varphi'_n dx.
$$

Since $\nabla T_k(u_n)$ is zero where $\nabla G_k(u_n)$ is different from zero, and conversely, we have

$$
(\mathbf{F}) = -\int_{\Omega} a(x, G_k(u_n)) \cdot \nabla T_k(u) \varphi'_n dx.
$$

Since $\nabla T_k(u) \equiv 0$ on the set $\{|u| \geq k\}$, we have that

$$
\nabla T_k(u) \chi_{\{|u_n| \ge k\}} \to 0, \quad \text{almost everywhere in } \Omega.
$$

In view of the fact that $\nabla T_k(u)$ belongs to $(L^p(\Omega))^N$, the Lebesgue theorem implies

$$
\nabla T_k(u)\chi_{\{|u_n|\geq k\}}\to 0\,,\quad\text{strongly in }(L^p(\Omega))^N,
$$

and so, since $a(x, \nabla G_k(u_n))$ is bounded in $(L^{p'}(\Omega))^N$ by (1.3), we have

(2.13) (F) = e,~.

As for (E), we can decompose it as

(G)
$$
\int_{\Omega} [a(x, \nabla T_k(u_n)) - a(x, \nabla T_k(u))] \cdot \nabla (T_k(u_n) - T_k(u)) \varphi'_n dx
$$

(H)
$$
+ \int_{\Omega} a(x, \nabla T_k(u)) \cdot \nabla (T_k(u_n) - T_k(u)) \varphi'_n dx.
$$

Since $T_k(u_n)$ converges to $T_k(u)$ weakly in $W_0^{1,p}(\Omega)$, and $a(x, \nabla T_k(u))$ belongs to $(L^{p'}(\Omega))^N$ by (1.3), (2.10) implies

(2.14) (H) = e,~.

Thus, putting together **(2.13) and (2.14), we have**

$$
(2.15) (A) = \int_{\Omega} \left[a(x, \nabla T_k(u_n)) - a(x, \nabla T_k(u)) \right] \cdot \nabla (T_k(u_n) - T_k(u)) \varphi'_n dx + \varepsilon_n.
$$

We now deal with (B), decomposing it as

$$
\int_{\{|u_n|\geq k\}} g(x, u_n, \nabla u_n)\varphi_n\,dx
$$

(J) + J{/I,~,l<k} *9(x, un,* Vu,~) ~,~ *dx.*

Using the fact that $k \geq \sigma$ and assumption (1.6), and observing that on the set ${u_n \geq k}$ we have

$$
\varphi_n=\varphi(k-T_k(u))\geq 0
$$

while on the set $\{u_n \leq -k\}$ we have

$$
\varphi_n = \varphi(-k - T_k(u)) \leq 0,
$$

we obtain

 $(I) \geq 0$,

so that we can drop it. Using (1.5) , we have

$$
|(J)| \leq b(k) \int_{\Omega} d(x) |\varphi_n| dx + b(k) \int_{\Omega} |\nabla T_k(u_n)|^p |\varphi_n| dx,
$$

where b is the function given in (1.5). Since d belongs to $L^1(\Omega)$, we have using (2.10)

$$
\int_{\Omega} d(x) \, |\varphi_n| \, dx = \varepsilon_n \, ,
$$

so that by (1.2)

$$
|(J)| \leq \frac{b(k)}{\alpha} \int_{\Omega} a(x, \nabla T_k(u_n)) \cdot \nabla T_k(u_n) |\varphi_n| dx + \varepsilon_n.
$$

Now add and subtract to the above inequality the term

$$
\int_{\Omega} a(x, \nabla T_k(u)) \cdot \nabla (T_k(u_n) - \nabla T_k(u)) |\varphi_n| dx,
$$

which converges to zero as *n* tends to infinity since $T_k(u_n)$ converges to $T_k(u)$ weakly in $W_0^{1,p}(\Omega)$ and $a(x, \nabla T_k(u))$ belongs to $(L^{p'}(\Omega))^N$), and the term

$$
\int_{\Omega} a(x, \nabla T_k(u_n)) \cdot \nabla T_k(u) |\varphi_n| dx,
$$

which is an ε_n since $a(x, \nabla T_k(u_n))$ is bounded in $(L^{p'}(\Omega))^N$ and φ_n converges to zero by (2.10). We thus get

$$
|(J)| \leq \frac{b(k)}{\alpha} \int_{\Omega} \left[a(x, \nabla T_k(u_n)) - a(x, \nabla T_k(u)) \right] \cdot \nabla (T_k(u_n) - T_k(u)) |\varphi_n| dx + \varepsilon_n.
$$

Putting this inequality together with **(2.15),** we thus obtain that

$$
\int_{\Omega} \left[a(x, \nabla T_k(u_n)) - a(x, \nabla T_k(u)) \right] \cdot \nabla (T_k(u_n) - T_k(u)) [\varphi'_n - \frac{b(k)}{\alpha} |\varphi_n|] dx
$$

is an ε_n . Hence, by (2.4),

$$
\int_{\Omega} \left[a(x, \nabla T_k(u_n)) - a(x, \nabla T_k(u)) \right] \cdot \nabla (T_k(u_n) - T_k(u)) dx = \varepsilon_n.
$$

This fact and the assumptions on α imply, by a result in [8] (see also [14]), that $T_k(u_n)$ converges strongly to $T_k(u)$ in $W_0^{1,p}(\Omega)$.

Now let E be a measurable subset of Ω . Then

$$
\int_E |\nabla u_n|^p dx = \int_{E \cap \{|u_n| \le k\}} |\nabla u_n|^p dx + \int_{E \cap \{|u_n| > k\}} |\nabla u_n|^p dx.
$$

Let $\varepsilon > 0$ be fixed. Since

$$
\int_{E \cap \{|u_n|>k\}} |\nabla u_n|^p dx \leq \int_{\{|u_n|>k\}} |\nabla u_n|^p dx,
$$

(2.8) implies that there exists $k \ge \sigma$ such that

$$
\int_{E \cap \{|u_n| > k\}} |\nabla u_n|^p dx \leq \frac{\varepsilon}{2}, \qquad n \in \mathbb{N}.
$$

Once k is fixed, since we have

$$
\int_{E \cap \{|u_n| \leq k\}} |\nabla u_n|^p dx \leq \int_E |\nabla T_k(u_n)|^p dx,
$$

the strong compactness of $T_k(u_n)$ in $W_0^{1,p}(\Omega)$ implies that there exists $\delta > 0$ such that if meas $(E) < \delta$, then

$$
\int_{E \cap \{|u_n| \leq k\}} |\nabla u_n|^p dx \leq \frac{\varepsilon}{2}, \qquad n \in \mathbb{N}.
$$

Thus, for every $\varepsilon > 0$ there exists $\delta > 0$ such that if meas $(E) < \delta$, then

$$
\int_E |\nabla u_n|^p\,dx\leq \varepsilon\,,\qquad n\in\mathbf{N}\,,
$$

that is to say, the sequence $\{|\nabla u_n|^p\}$ is equi-integrable. Since, up to a subsequence still denoted by u_n , ∇u_n is almost everywhere convergent to ∇u (as a consequence of the strong convergence of truncates), u_n converges strongly to u in $W_0^{1,p}(\Omega)$.

In order to pass to the limit in the approximate equation, we now show that

$$
g(x, u_n, \nabla u_n) \to g(x, u, \nabla u)
$$
 strongly in $L^1(\Omega)$.

Since $g(x, u_n, \nabla u_n)$ converges almost everywhere to $g(x, u, \nabla u)$, it remains to prove the equi-integrability of the sequence $\{|g(x, u_n, \nabla u_n)|\}$. Once again, if E is a measurable subset of Ω , we have

$$
\int_{E} |g(x, u_n, \nabla u_n)| dx = \int_{E \cap \{|u_n| \le k\}} |g(x, u_n, \nabla u_n)| dx \n+ \int_{E \cap \{|u_n| > k\}} |g(x, u_n, \nabla u_n)| dx.
$$

Let $\varepsilon > 0$ be fixed. Since

$$
\int_{E \cap \{|u_n| > k\}} |g(x, u_n, \nabla u_n)| dx \leq \int_{\{|u_n| > k\}} |g(x, u_n, \nabla u_n)| dx,
$$

we can use (2.9) in order to choose $k \ge \sigma$ such that

$$
\int_{E \cap \{|u_n| > k\}} |g(x, u_n, \nabla u_n)| dx \leq \frac{\varepsilon}{2}, \qquad n \in \mathbb{N}.
$$

Moreover, using (1.3), we have

$$
\int_{E\cap\{|u_n|\leq k\}}|g(x,u_n,\nabla u_n)|\,dx\leq b(k)\,\int_E\left[d(x)+|\nabla T_k(u_n)|^p\right]dx\,,
$$

and, since d belongs to $L^1(\Omega)$ and $T_k(u_n)$ is strongly compact in $W^{1,p}_0(\Omega)$, there exists $\delta > 0$ such that if meas $(E) < \delta$, then

$$
\int_{E \cap \{|u_n| \leq k\}} |g(x, u_n, \nabla u_n)| dx \leq \frac{\varepsilon}{2}, \qquad n \in \mathbb{N}.
$$

Thus, as before, we have proved that $\{ |g(x, u_n, \nabla u_n)| \}$ is equi-integrable, and this allows us to pass to the limit in (2.6), in order to obtain (1.8). \Box

Remark 2.5. Since there exists a solution of (1.7) in the sense (1.8) if and only if μ belongs to $\mathcal{M}_0^p(\Omega)$, that is to say if and only if μ belongs to $L^1(\Omega) + W^{-1,p'}(\Omega)$, the class of admissible test functions in (1.8) can be extended by means of an easy density argument in order to consider test functions v in $W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$.

Remark 2.6. The result of Theorem 1.1 refines the result of Theorem 2.3 in the sense that it states that if μ is a measure in $\mathcal{M}_{0}^{p}(\Omega)$, then there exists a function u in $W_0^{1,p}(\Omega)$ such that

$$
\mu = A(u) + g(x, u, \nabla u),
$$

with $g(x, u, \nabla u)$ in $L^1(\Omega)$.

If, for example, $p = 2$, $a(x, \xi) = \xi$, and $g(x, s, \xi) = \text{sgn}(s) |\xi|^2$, then for every nonnegative measure μ in $\mathcal{M}^2_0(\Omega)$ there exists a function u in $H^1_0(\Omega)$ such that

$$
\mu = -\mathrm{div}(\nabla u) + |\nabla u|^2.
$$

It is also easy to see, taking for instance $T_k(u^-)$ as test function in (1.8), that such a function u is nonnegative.

Remark 2.7. The same result of Theorem 1.1 holds true if the function a depends also on u , and satisfies the following assumptions:

$$
a(x,s,\xi)\cdot\xi\geq\alpha\,|\xi|^p\,,
$$

$$
|a(x, s, \xi)| \le \ell(x) + \beta [|s|^{p-1} + |\xi|^{p-1}],
$$

$$
[a(x, s, \xi) - a(x, s, \eta)] \cdot (\xi - \eta) > 0,
$$

for almost every $x \in \Omega$, for every s in R, for every ξ , η in \mathbb{R}^N ($\xi \neq \eta$), where α and β are positive constants, and ℓ belongs to $L^{p'}(\Omega)$.

3 A nonexistence result

We recall that if μ is a Radon measure, and E is a Borel subset of Ω , the *restriction* of μ to E is the measure $\lambda = \mu \sqcup E$ defined by

$$
\lambda(B)=\mu(E\cap B)\,,
$$

for every Borel subset B of Ω . We say that a measure λ is *concentrated* on a Borel set E if $\lambda = \lambda \square E$.

We recall the following result, proved in [17], Lemma 2.1.

Proposition 3.1. *Let* μ *be a measure in* $M_b(\Omega)$ *, and let* $1 < p \leq N$ *. Then* μ *can be decomposed in a unique way as* $\mu_0 + \lambda$, where

- (1) μ_0 *belongs to* $\mathcal{M}_0^p(\Omega)$;
- (2) $\lambda = \mu' _E$, and $\text{cap}_n(E, \Omega) = 0$.

Given a measure μ in $\mathcal{M}_b(\Omega)$, we can decompose it, by the previous proposition, as $\mu_0 + \lambda$. The result of Theorem 1.1 then states that problem (1.7) has a solution with datum μ if and only if $\lambda = 0$. Suppose now that $\mu_0 = 0$, so that $\mu = \lambda$ is singular with respect to the p-capacity. What happens if we try (as in the proof of Theorem 1.1) to approximate the measure λ with a sequence $\{f_n\}$ of $L^{\infty}(\Omega)$ functions and solve the corresponding problems with data f_n ? If we take the sequence $\{f_n\}$ bounded in $L^1(\Omega)$, then the same technique used in the proof of Theorem 1.1 yields that the corresponding sequence of solutions $\{u_n\}$ is bounded in $W_0^{1,p}(\Omega)$; hence, it converges weakly in $W_0^{1,p}(\Omega)$ to some function u. Clearly, u cannot be a solution of the problem with datum λ , since such a solution does not exist. What can we say about u ? The answer is given by the following theorem, under a sign condition on the lower order nonlinearity g .

Theorem 3.2. Let λ be a positive measure in $M_{\text{b}}(\Omega)$, concentrated on a set *E* such that $cap_n(E, \Omega) = 0$, and let $\{f_n\}$ be a sequence of nonnegative $L^{\infty}(\Omega)$ *functions such that*

$$
\lim_{n \to +\infty} \int_{\Omega} f_n \, \varphi \, dx = \int_{\Omega} \varphi \, d\lambda \qquad \forall \varphi \in C^0(\bar{\Omega}).
$$

Suppose that, in addition to assumptions (1.5) *and* (1.6), *g also satisfies*

$$
(3.1) \t\t g(x,s,\xi) s \geq 0,
$$

for almost every x in Ω *, for every s in R, and for every* ξ *in* \mathbb{R}^N *. Let* u_n *be a solution of the equation*

(3.2)
$$
\begin{cases} A(u_n) + g(x, u_n, \nabla u_n) = f_n & \text{in } \Omega, \\ u_n = 0 & \text{on } \partial \Omega, \end{cases}
$$

in the sense (2.6) *(with F* \equiv *0). Then there exists k > 0 (depending on g and* α *), such that*

$$
T_k(u_n) \to 0 \quad \text{strongly in } W_0^{1,p}(\Omega).
$$

Moreover, u_n converges weakly to zero in $W_0^{1,p}(\Omega)$ *, and*

$$
\lim_{n \to +\infty} \int_{\Omega} g(x, u_n, \nabla u_n) \varphi dx = \int_{\Omega} \varphi d\lambda \qquad \forall \varphi \in C_0^1(\Omega).
$$

In the following we denote by ε_{δ} and $\varepsilon_{n,\delta}$ respectively any real numbers such that

$$
\lim_{\delta \to 0^+} \varepsilon_\delta = 0, \qquad \lim_{\delta \to 0^+} \lim_{n \to +\infty} \varepsilon_{n,\delta} = 0.
$$

Before giving the proof of the theorem, we need to construct as in [15] a suitable collection of cut-off functions.

Lemma 3.3. Let λ be a nonnegative measure in $M_b(\Omega)$ which is concentrated *on a set E of zero p-capacity. Then for every* $\delta > 0$ *there exists a* $C_0^{\infty}(\Omega)$ *function* ψ_{δ} such that

(3.3)
$$
\int_{\Omega} |\nabla \psi_{\delta}|^p dx = \varepsilon_{\delta}, \qquad 0 \leq \psi_{\delta} \leq 1, \qquad \int_{\Omega} (1 - \psi_{\delta}) d\lambda = \varepsilon_{\delta}.
$$

Proof. Since λ belongs to $M_b(\Omega)$, for every $\delta > 0$ there exists a compact set $K_{\delta} \subseteq E$ such that $\lambda(E \setminus K_{\delta}) \leq \delta$. Since K_{δ} is compact, and its *p*-capacity is zero, there exists a $C_0^{\infty}(\Omega)$ function ψ_{δ} which is equal to 1 in a neighbourhood of K_{δ} and that satisfies both the first and second conditions of (3.3) . As for the third, we have

$$
0\leq \int_{\Omega} \left(1-\psi_{\delta}\right) d\lambda = \int_{E\setminus K_{\delta}} \left(1-\psi_{\delta}\right) d\lambda \leq \lambda (E\setminus K_{\delta}) \leq \delta.
$$

This completes the proof. \Box

Remark 3.4. If E is compact, we can choose $K_{\delta} = E$ for every $\delta > 0$. As a consequence of (3.3), we have that ψ_{δ} converges to zero strongly in $W_0^{1,p}(\Omega)$, almost everywhere in Ω , and in the weak* topology of $L^{\infty}(\Omega)$.

Proof of Theorem 3.2. Since f_n is nonnegative, the sign assumption (3.1) on g implies that u_n is also nonnegative. As in the proof of Theorem 1.1, it is easy to see, using the assumptions on a and g, that the sequence $\{u_n\}$ is bounded in $W_0^{1,p}(\Omega)$. Thus, there exists a subsequence, again denoted by u_n , a function u in $W_0^{1,p}(\Omega)$, and an element G in $(L^{p'}(\Omega))^N$ such that

$$
u_n \to u
$$
 weakly in $W_0^{1,p}(\Omega)$ and almost everywhere in Ω ,
 $a(x, \nabla u_n) \to G$ weakly in $(L^{p'}(\Omega))^N$;

the latter convergence is due to the fact that, by (1.3), $a(x, \nabla u_n)$ is bounded in $(L^{p'}(\Omega))^N$.

Let $k > 0$ be such that

$$
(3.4) \t\t b(k) k \leq \alpha/2,
$$

where b is the function that appears in (1.5) . Such a k exists since b is continuous.

We now choose as test function in (2.6) the function

$$
v=(k-T_k(u_n))\,\psi_\delta\,,
$$

which is admissible since it belongs to $W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$. We obtain

(A)
$$
- \int_{\Omega} a(x, \nabla T_k(u_n)) \cdot \nabla T_k(u_n) \psi_{\delta} dx
$$

(B)
$$
+ \int_{\Omega} \left[a(x, \nabla u_n) \cdot \nabla \psi_{\delta} \right] (k - T_k(u_n)) dx
$$

(C)
$$
+ \int_{\Omega} g(x, u_n, \nabla u_n) (k - T_k(u_n)) \psi_{\delta} dx
$$

(D)
$$
= \int_{\Omega} f_n(k - T_k(u_n)) \psi_{\delta} dx.
$$

Since $k - T_k(u_n)$ converges to $k - T_k(u)$ both in the weak* topology of $L^{\infty}(\Omega)$ and almost everywhere in Ω , we have that $\nabla \psi_{\delta} (k - T_k (u_n))$ converges to $\nabla \psi_{\delta} (k - T_k (u))$ strongly in $(L^p(\Omega))^N$, and so

(3.5)
$$
(B) = \int_{\Omega} G \cdot \nabla \psi_{\delta} (k - T_{k}(u)) dx + \varepsilon_{n} = \varepsilon_{n,\delta},
$$

where the last passage is due to the first equality of (3.3) . We then have, by (1.5) and since $k - T_k(u_n) = 0$ for $u_n > k$,

$$
|(C)| \leq \int_{\{0 \leq u_n \leq k\}} b(u_n) (k - T_k(u_n)) \psi_\delta [d(x) + |\nabla u_n|^p] dx.
$$

Thus,

$$
\int_{\{0\leq u_n\leq k\}} b(u_n)\left(k-T_k(u_n)\right)\psi_\delta\,d(x)\,dx\leq \frac{\alpha}{2}\int_{\Omega} d(x)\,\psi_\delta\,dx=\varepsilon_\delta
$$

by the choice of k and since ψ_{δ} converges to zero in the weak* topology of $L^{\infty}(\Omega)$ as a consequence of (3.3). Moreover, again by the choice of k ,

$$
\int_{\{0\leq u_n\leq k\}} b(u_n)(k-T_k(u_n))\,\psi_\delta\,|\nabla u_n|^p\,dx\leq \frac{\alpha}{2}\int_{\Omega}|\nabla T_k(u_n)|^p\,\psi_\delta\,dx\,.
$$

We thus have
$$
|(B)| \leq \frac{\alpha}{2} \int_{\Omega} |\nabla T_k(u_n)|^p \psi_{\delta} dx + \varepsilon_{\delta}.
$$

Using (1.2), we also have

$$
(\mathbf{A}) \geq -\alpha \int_{\Omega} |\nabla T_k(u_n)|^p \, \psi_{\delta} \, dx \, .
$$

Thus, since (D) is nonnegative,

$$
\alpha \int_{\Omega} |\nabla T_k(u_n)|^p \, \psi_{\delta} \, dx \leq \frac{\alpha}{2} \int_{\Omega} |\nabla T_k(u_n)|^p \, \psi_{\delta} \, dx + \varepsilon_{n,\delta} ,
$$

that is to say,

(3.6)
$$
\int_{\Omega} |\nabla T_k(u_n)|^p \psi_{\delta} dx = \varepsilon_{n,\delta}.
$$

The next step consists in choosing as test function in (2.6) the function

$$
v = T_k(u_n)(1 - \psi_\delta),
$$

which is again admissible. We get

(E)
$$
\int_{\Omega} a(x, \nabla T_k(u_n)) \cdot \nabla T_k(u_n) (1 - \psi_{\delta}) dx
$$

(F)
$$
- \int_{\Omega} \left[a(x, \nabla u_n) \cdot \nabla \psi_{\delta} \right] T_k(u_n) dx
$$

(G)
$$
+ \int_{\Omega} g(x, u_n, \nabla u_n) T_k(u_n) (1 - \psi_{\delta}) dx
$$

(H)
$$
= \int_{\Omega} f_n T_k(u_n) (1 - \psi_{\delta}) dx.
$$

The term (G) is nonnegative by (3.1), so we drop it. Reasoning as before, we have

$$
(\mathrm{F})=\varepsilon_{n,\delta}\,,
$$

while

$$
(H) \leq k \int_{\Omega} f_n (1 - \psi_{\delta}) dx = k \int_{\Omega} (1 - \psi_{\delta}) d\lambda + \varepsilon_n = \varepsilon_{n,\delta},
$$

by the third part of (3.3) . Thus, using (1.2) in (E) , we get

(3.7)
$$
\alpha \int_{\Omega} |\nabla T_k(u_n)|^p (1 - \psi_{\delta}) dx = \varepsilon_{n,\delta}.
$$

Putting together (3.6) and (3.7), we easily obtain

$$
\int_{\Omega} |\nabla T_k(u_n)|^p dx = \varepsilon_n,
$$

that is to say, $T_k(u_n)$ converges strongly to zero in $W_0^{1,p}(\Omega)$. Since the limit is independent of the choice of subsequence, the sequence $T_k(u_n)$ converges to zero strongly in $W_0^{1,p}(\Omega)$. Thus, $u = 0$, and so u_n converges weakly to zero in $W_0^{1,p}(\Omega)$.

In order to prove the second part of the theorem, observe that from the strong convergence to zero of $T_k(u_n)$ follows the almost everywhere convergence to zero of ∇u_n , and this implies that $G \equiv 0$. Now we choose a test function φ in $C_0^1(\Omega)$ in (2.6) ; we obtain

(3.8)
$$
\int_{\Omega} a(x, \nabla u_n) \cdot \nabla \varphi \, dx + \int_{\Omega} g(x, u_n, \nabla u_n) \varphi \, dx = \int_{\Omega} f_n \varphi \, dx.
$$

Since $G = 0$, we have

$$
\int_{\Omega} a(x, \nabla u_n) \cdot \nabla \varphi \, dx = \varepsilon_n \,,
$$

while

$$
\int_{\Omega} f_n \, \varphi \, dx = \int_{\Omega} \varphi \, d\lambda + \varepsilon_n \, .
$$

Thus, from (3.8) we obtain by subtracting

$$
\lim_{n \to +\infty} \int_{\Omega} g(x, u_n, \nabla u_n) \varphi \, dx = \int_{\Omega} \varphi \, d\lambda \, ,
$$

for every φ in $C_0^1(\Omega)$, and this concludes the proof of the theorem.

Remark 3.5. The result of the previous theorem also holds, with minor technical modifications in the proof, if λ is a signed measure. Results of this kind, concerning problems where the lower order term is independent of the gradient of u and behaves like $|u|^{q-1}u$, can also be found in [20].

 \Box

REFERENCES

- [1] P. Baras and M. Pierre, *Singularités éliminables pour des équations semi-linéaires*, Ann. Inst. Fourier (Grenoble) 34 (1984), 185-206.
- [2] A. Bensoussan, L. Boccardo and E Murat, *On a nonlinear PD.E. having natural growth terms and unbounded solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 347-364.*
- [3] L. Boccardo and T. Gallouët, *Nonlinear elliptic equations with right hand side measures*, Comm. Partial Differential Equations 17 (1992), 641-655.
- [4] L. Boccardo and T. Gallou~t, *Strongly nonlinear elliptic equations having natural growth terms and L¹ data, Nonlinear Anal.* **19** (1992), 573–579.
- [5] L. Boccardo, T. Gallouët and F. Murat, *A unified presentation of two existence results for problems with natural growth,* in *Progress in Partial Differential Equations." The Metz Surveys, 2 (1992),* Pitman Res. Notes Math. Ser., 296, Longman Sci. Tech., Harlow, 1993, pp. 127-137.
- [6] L. Boccardo, T. Gallouët and L. Orsina, *Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data*, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) , 539-551.
- [7] L. Boccardo, F. Murat and J.P. Puel, *Existence de solutions non bornées pour certaines bquations quasi-lin~aires,* Portugal. Math. 41 (1982), 507-534.
- [8] L. Boccardo, F. Murat and J. P. Puel, *Existence of bounded solutions for nonlinear elliptic unilateralprobtems,* Ann. Mat. Pura Appl. (4) 152 (1988), 183-196.
- [9] L. Boccardo, F. Murat and J. P. Puel, L^∞ -estimates for some nonlinear partial differential equations and application to an existence result, SIAM J. Math. Anal. 23 (1992), 326–333.
- [10] H. Brezis, *Nonlinear elliptic equations involving measures,* in *Contributions to Nonlinear Partial Differential Equations (Madrid, 1981),* Res. Notes in Math., 89, Pitman, Boston, Mass.-London, 1983, pp. 82-89.
- [11] H. Brezis and L. Nirenberg, *Removable singularities for nonlinear elliptic equations,* Topoi. Methods Nonlinear Anal., to appear.
- [12] L. Brezis and W. Strauss, *Semi-linear second-order elliptic equations in L*¹, J. Math. Soc. Japan 25 (1973), 565-590.
- [13] H. Brezis and L. Veron, *Removable singularities for some nonlinear elliptic equations,* Arch. Rational Mech. Anal. 75 (1980/81), 1-6.
- [14] F. E. Browder, *Existence theorems for nonlinear partial differential equations,* in *Global Analysis (Proc. Sympos. Pure Math., VoL XVI, Berkeley, Calif., 1968),* Amer. Math. Soc., Providence, R.I., 1970, pp. 1–60.
- [15] G. Dal Maso, E Murat, L. Orsina and A. Prignet, *Renormalized solutions for elliptic equations with general measure data,* preprint.
- [16] T. Del Vecchio, *Strongly nonlinear problems with Hamiltonian having natural growth,* Houston J. Math. 16 (1990), 7-24.
- [17] M. Fukushirna, K. Sato and S. Taniguchi, *On the closable part of pre-Dirichlet forms and the fine supports of underlying measures,* Osaka J.Math. 28 (1991), 517-535.
- [18] T. Gallouët and J. M. Morel, *Resolution of a semilinear equation in L*¹, Proc. Roy. Soc. Edinburgh 96 (1984), 275-288.
- [19] J. Leray and J.-L. Lions, *Quelques résultats de Višik sur les problèmes elliptiques semilinéaires par les méthodes de Minty et Browder*, Bull. Soc. Math. France 93 (1965), 97-107.
- [20] L. Orsina and A. Prignet, *Nonexistence of solutions for some nonlinear elliptic equations involving measures,* preprint.
- [21] A. Porretta, *Some remarks on the regularity of solutions for a class of elliptic equations with measure data,* Potential Anal., to appear.

[22] G. Stampacchia, *Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus,* Ann. Inst. Fourier (Grenoble) 15 (1965), 189-258.

Lucio Boceardo DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DI ROMA I P.LE **A. MORO 2** 00185, ROMA, ITALY

Thierry Gallouët ENS-LYoN 69364 LYON CEDEX 7, FRANCE

Luigi Orsina DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DI ROMA I P.LE A. MORO 2 00185, ROMA, ITALY

(Received May 28, 1997)