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Summary.  - The  conven t iona l  s ta t is t ical  t heo ry  (with e n e r g y - m o m e n t u m  
but  wi thou t  angular  moaaen tum conservat ion)  is shown to give the  same 
results (mult ipl ici t ies  and spectra) as one can obta in  f rom a mode l  which 
assumes the  exis tence of an in t e rmed ia t e  ~( ho t  spot  ~ in the  collision 
of two high-energy part icles,  if the  (~ hot -spot  ~ fo rmat ion  is s ta t is t ical ly  
independen t  of its decay into m a n y  particles.  The  model  is suggested 
by  the  fo rmulae  used in s ta t is t ical  theory,  which in effect pu t  t he  prob- 
ab i l i ty  to produce  n part icles  propor t iona l  to the  p robab i l i ty  to find 
n par t ic les  toge ther  in a vo lume  ~2. Angular  m o m e n t u m  conservat ion  
( together  wi th  energy and m o m e n t u m  conservat ion)  can be satisfied 
by considering only states of n part icles  wi th  prescr ibed values  of to ta l  J ,  
energy, and m o m e n t u m .  By  using the formal ism of the  dens i ty  ma t r ix  
and an expl ic i t  expression for the  projec t ion  operators  on s ta tes  of g iven 
angular  m o m e n t u m  one arrives at  a modified form of the  phase-space 
integral ,  which is s imply re la ted  to the  p robab i l i ty  to produce  n par-  

�9 The  theory wi th  angular  m o m e n t u m  bu t  w i thou t  m o m e n t u m  
conservat ion ,  a.s g iven by  KOBA, is shown to be a special case easily 
der ivable  f rom the  present  formal ism.  The (( classical ~> theory  of angular  
m o m e n t u m  conserva t ion  by  EP.ICSO~ is shown to be a l imi t ing  ease 
of wide appl icabi l i ty ,  however .  The  conven t iona l  theory  is s t r ic t ly  speaking 
val id  only if all end part icles  are in s-states. The  formulae  have  been 
der ived  for a spherical  Gaussian shape for f2. Cont rac ted  shapes can in 
principle  be al lowed for. A Monte-Carlo p rogram is proposed to eva lua te  
this phase-space integral .  The  me thod  will  al low to compu te  spectra  
of the  longi tudina l  and the  t ransverse  m o m e n t a  of the  final particles.  
The  effect on mul t ip l i c i ty  of J - conse rva t i on  is evaluated .  Compared  to 
the convent ionaI  theory  mul t ip l ic i ty  is increased by 10% in p -~ann i -  
hi la t ion and decreased by  10% in 6 GeV p-p collisions. 
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PART I 

T H E O R Y  O F  A N G U L A R  M O M E N T U M  C O N S E R V A T I O N  

I N  S T A T I S T I C A L  M O D E L S  O F  M E S O N  P R O D U C T I O N  

1. - The hypotheses of the statistical theory. 

I n  t h e  c o n v e n t i o n a l  s t a t i s t i c a l  theor ie s  of m e s o n  p r o d u c t i o n  one t a k e s  as 

s t a r t i n g  p o i n t  t h e  fo l lowing  f o r m u l a  for  t h e  p r o b a b i l i t y  W, to  p r o d u c e  n pa r -  

t ic les  w i t h  masses  m~, m2, ..., m~ in a h i g h - e n e r g y  col l is ion w i th  g iven  t o t a l  

e n e r g y  E ,  in  the  cen t r e -o f -mass  s y s t e m  (c.m.s.) 

(1.1) n n 

where  ]~.~.. is a n u m e r i c a l  coeff icient  d e p e n d i n g  on t h e  sp ins  a n d  i sosp ins  

of t i l e  pa r t i c l e s ,  on t h e i r  n u m b e r  a n d  on the  t o t a l  i sosp in  a n d  [2 is  a t h ree -  

d i m e n s i o n a l  vo lume .  C is a n o r m a l i z i n g  fac to r ,  such t h a t  ~ W ~  = 1 ,  whe re  

t h e  s u m  is over  al l  n u m b e r s  a n d  k i n d s  of pa r t i c l e s  t h a t  can  be  p r o d u c e d  in  

such a col l is ion,  w i t h o u t  v i o l a t i n g  a n y  of t he  s t r o n g - i n t e r a c t i o n  c o n s e r v a t i o n  
laws. 

This f o r m u l a  can  be  d e r i v e d  f rom S - m a t r i x  t h e o r y ,  w i t h  su i t ab l e  h y p o t h e s e s  

as  to  t he  b e h a v i o u r  of t he  S - m a t r i x  d e m e n t s  as a f u n c t i o n  of t o t a l  ene rgy ,  

i sospin ,  etc.  (~,~) (~). 

W e  shM1 t r y  in t h e  p r e s e n t  w o r k  to  look  a t  i t  also f rom a more  i n t u i t i v e  

p o i n t  of v iew,  a n d  a sk  w h a t  p h y s i c a l  a s s u m p t i o n s  are  m a d e  in  s t a t i n g  such  

a f o r m u l a .  

To a r r ive  a t  a p h y s i c a l  i n t e r p r e t a t i o n ,  le t  us a s sume  t h a t  we h a v e  de- 

sc r ibed  t h e  n pa r t i c l e s  in t h e  e n d - s t a t e s  b y  a s u p e r p o s i t i o n  of p l a n e  waves ,  

(1) ]1. I-]AGEDORN: •UOVO Cimento, i5 ,  434 (1960). 
(2) R. tlAC, nDOEN: Fortschr. d. Phys. ,  9, 1 (]961). 
(*) This formula, in its simplest form due to Fermi,  has been derived and t reated 

by  many authors;  see the above references ~or detailed references to previous l i terature.  
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We could then write fo rmula  (1.1) in the following fo rm (omitt ing the f ac to r  

(1.2) W,,:- Cf2"-11 dp1 ...j dp~ cxp [--i ,=1 ~ ( ' ' '  xJ]" 

�9 8 E - -  ~ / m ~ + p ,  ~ p ,  e x p i  ( p ~ , x J  

(1.2?) . . . .  ~'j"d~li~ 1 oI~ jdx, d1~i I ...)~C~j~,I ' 

�9 ]~u~(p~,.. . ;x~,.. .)l~8 E - -  "V/m, T p ,  8 p~ 8 x, . 

The last  a-function has been in t roduced essentially for dimensional reasons,. 
and means  t ha t  the  average  co-ordinate has been t~ken as 0; because the 
to ta l  m o m e n t u m  is zero a const ra in t  of this type  is necessary. I f  we in terpre t  

lTj(px, ...; Xl, ...)t ~ (which is s t r ict ly speaking equal  to l e x p [ i ( p , x ) ] ! ~ l ) ,  
as the densi ty of particles in the  region of phase-space around p~ ... ; x~ ... 
the formula  means t h a t  the  probabi l i ty  to produce n particles is propor t ional  to 
~he probabi l i ty  to find n particles in a region of phase-space which corresponds 
to a vo lume t9 (for each particle) in configuration space t imes the volume of a 
complicated hypersurface  (defined by  the 8-functions) in m o m e n t u m  space. 
Because I T~ ]~ = 1 the phase-space densi ty is constant ,  and all s tates in the  above  
defined region are equally probable.  Another  way  of saying the  same thing is: 
W~ is proport ional  to the sum of the probabili t ies to find the  n par t i c les - -which  
are in a s ta te  described b y  p~, ..., p,~--in the volume t2, where the sum is ove r  
all s tates wi th  the given to ta l  energy E and tota l  m o m e n t u m  zero~ and all 
s tates in the sum have  equal  probabi l i ty .  ~ plays the role of an adjustable  
parameter .  

H o w  can one unders tand  this result? Let  us start ,  as in the derivat ion (~), 
of (1.1) f rom S-mat r ix  theory  by  s tat ing tha t  

(1,a) m,, = ~ I ~ ] f s I i >  I' ,  
Y 

where ~ is the S-matr ix ,  [i} the initial s ta te  (two colliding" particles) and I ]} 
an n-part icle state. The sum is over  all n-part icle final states. 

Because we believe t ha t  t ime- invar ianee  holds in strong interact ions and 
because S is un i ta ry  we have  

I <yl s1r [' = I <r s iF,> ] ' �9 

On the r.h.s, we have  the value of the ma t r ix  element  squared between an 
n-particle initial s ta te  and a two-part icle  final state~ i.e. the probabi l i ty  of the. 
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inverse reaction.  We could hence also write 

wo = Z ! < t  ist/~,}l ~ , 
f 

and b y  compar ing with (1.2') we see t h a t  the sum of the probabili t ies to go 
f rom any  n-part icle s ta te  to a two-part ic le  s ta te  is effectively pu t  equal  to 
the probabi l i ty  to find the n initial particles in a volume ~ ;  the  s u m  of the 
,squared ma t r ix  element,  can be expressed- -ex t rac t ing  the ~-functions for 
ene rgy -momen tu m  cons e rva t i on - -by  the  average of a reduced squared ma t r ix  
e lement  S '  

(a.~) I 5 + 

The  statistica.1 hypothesis  means then  t h a t  on the average the reduced ma t r ix  
e lement  squared is equal to the probabi l i ty  to find the n initial particles (in the 
reverse reaction) in the volume ~ .  

We see therefore tha t  one has not  made  any  detailed hypothesis  on the 
S -ma t r ix  clement between the given two-part icle  s ta te  and  a par t icular  n-par-  
ticle s ta te;  the statist ical  theory  as condensed in (1.1) makes  only a s t a t ement  
abou t  the average behaviour  of the S-mat r ix  elements. 

One can now make  a model  which leads also to (1.2') and shows therefore 
the  same average behavionr  of the t ransi t ion probabili t ies as was assumed 
for the  S-matr ix  : if one assumes t ha t  in the  collision a (< hot  spot )) is formed~ 
which can af terwards decay in any  of the ~llowed n-part icle states~ and  tha t  
the  probabi l i ty  of fo rmat ion  of the hot  spot  is independent  of the  probabi l i ty  
os decay. One sees t ha t  this assumpt ion  is closely akin to the  compound  
nucleus idea in nuclear physics. 

Denot ing the probabi l i ty  for hot -spot  fo rmat ion  by  W2_~ ~ and for its decgy 
by  W ~ .  the model  means 

and  for the reverse react ion 

W,~ = ~_,oWo_+~.  

I f  now in addit ion one makes  tile fu r ther  physical  assumpt ion  t ha t  W~_~= C,," 
�9 (probabi l i ty  to find the  particle in D) [i.e., probabi l i ty  in the reverse reaction 
to fo rm a hot  spot is propor t ional  to the probabi l i ty  to find all particles to- 
ge ther  in a volume D] then we get 

0.5)  w~, = G ~ w , ~  ~ - - l o , ( E ;  0) .  



962 F. CERULUS 

Here  z9 has got evident ly  a very  precise meaning:  its linear extension has to - 
be of the order of magn i tude  of the range of the strong interactions.  This 
formula  will only be identical  with (1.1) if we assume fur thermore  tha t  the 
propor t ional i ty  constant  C. is in fact  independent  of n, i.e. t ha t  hot -spot  for- 
mat ion  depends only on all the particles being in ~O, whatever  is their  n u m b e r  
(or their  m o m e n t a  for t ha t  mat ter) .  

One sees also t ha t  it is necessary to make  the  hot-spot  model to arrive 
a t  (1.1): according to (1.1) W~ depends only on the probabi l i ty  for the n par-  
ticles to be in D, which is physical ly only the first phase of the (reverse) process. 
The tota l  probabi l i ty  W~ is only independent  of the second phase (2 part icles  
coming out of D) if the two phases are stat ist ically independent .  

We emphasize again tha t  for the val id i ty  of (1.1) this model  need not  be 
true, in all its details. The true S-mat r ix  should only on the average give the  
same results as this model. However ,  the contents of wha t  one calls usually 
stat is t ical  theory  are not  exhaus ted  b y  formula  (1.1), which can only predict  
multiplicities, bu t  no spectra  or angular  distribution. In  order to get infor- 
ma t ion  about  spectra,  one usually takes the formula  

(1.6) 

(1.6') 

ff~(p) dp~ C],,, ~. ~ g,,_, Vp~  4- m~, 

. . . . .  j~ g 

where e~ is the uni t  vector  along p~. One gets (1.6) in effect f rom (1.6') by 
omi t t ing  the integrat ion over the magni tude  of p,~, and takes W~(p,)dp~ to  
be the probabi l i ty  tha t  p ,  shall fall between p~ and p,, 4-dp~.  One can now 
make  the same kind of reasoning as before, by  taking for the allowed n-part icle 
s tates only those with given tota l  ene rgy -momen tum and with the n- th  par-  
ticle m o m e n t u m  equal  p~: 

(1.7) ]</;s' li)[~ ~ s ' ( p 0 ,  

and in order to get (1.6) one mus t  pu t  this proport ional  to the average  of the 
probabil i t ies tha t  n particles with to ta l  energy E in their  c.m.s., the last  par-  
ticle having  m o m e n t u m  p,~, will find themselves  together  in f2, when the den- 
s i ty in the allowed pa r t  os phase-space is uniform. One sees immedia te ly  t ha t  
(1.6) demands  tha t  S'(pn) be in fact  independent  of p~, (and equal  to ~ con- 
s tan t  of the form f2"-~), and  here we take  in effect the (r hot -spot  )) model  more 
seriously. One should point  out  t ha t  on the other hand the spec t rum of par-  
ticles within ~ given mult ipl ici ty n is independent  of the assumpt ion C, =cons t an t .  

Formal ly ,  i t  is possible to go on in this vein, to leave, e.g. ~lso the angles 
e .  out of the in tegrat ion in (1.1) and derive a new formula  where the  S-mat r ix  

element squared averaged over a still smaller number  of variables is pu t  equal  
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to the corresponding average  f rom the hot -spot  model;  this yields an isotropie 
distr ibution,  as in the in tegrand of (].6) no direction e~ is privileged: 

At  this point  we have  to introduce explicit ly angular  m o m e n t u m  conser- 
vation. Formula  (] .1) is not  in contradict ion with this conservat ion law, be- 
cause the S-mat r ix  element  will t~ke care of it  by  its dependence on the p,- 
(magnitude and  direction); af ter  averaging no explicit t race of this remnins, 
except  perhaps  in the magni tude  of f2. The same c~nnot be said of (1.6) and 
a'/ortiori of (1.8), where the assumed independence of the  reduced ma t r i x  
element  squared f rom p~ or p ,  m a y  be in contradict ion with angular  momen-  
t u m  conservation.  This contradict ion m a y  be ~voided b y  restr ict ing the al- 
lowed n-part icle s tates to those having  given tota l  energy E,  m o m e n t u m  P~ot~, 
angular  m o m e n t u m  squared j(j-~:[) and z component  of angular  m o m e n t u m  m 
(as we operate in the c.m.s, where Pt~t~ = 0 these four q u a n t u m  numbers  can 
be specified simultaneously).  E,  P :  0, j and m are of course the same as 
in the initial state,  and  the states left out  by  restr ict ing the averaging to those 
with fixed j a.nd m would have  contr ibuted zero to the integral .  Averaging 
then  I(ilSI]}] ~- over these more  restr ic ted final s tates (specified b y  E, P =  0, 
), m and p~) one shall get a different funct ion S~'(p~), because the region of 
in tegra t ion is different. Taking this funct ion independent  of p~ is an ~ssump- 
t ion which involves no contradict ion with angular  m o m e n t u m  conservation.  
The  hot -spot  model  which should yield the same average is obta ined restr ict ing 
here also the allowed initial s tates 1]~} for the reverse react ion to n-part icle 
s ta tes  having well-defined values, E,  P --~ 0, ], m, and tak ing  consequent ly  the 
probabi l i ty  W~__~ for hot -spot  fo rmat ion  propor t ional  to the probabi l i ty  to 
find the n pa r t i c les - -wi th  the q u a n t u m  specified ~ b o v e - - i n  the volume /2. 
Tak ing  the spec t rum and the angular  distr ibution f rom this hot -spot  model  
will cer tainly give a be t te r  approx imat ion  to W~(p,) or W~(p~) t han  formulae 
(1.6) or (1.6'); bu t  there is of course no a priori reason thu t  it  will yield the  
whole story,  i.e. t ha t  S"(p~) is really independent  of p . .  

Specifying n-particle s tates with the  q u a n t u m  numbers  given above,  and  
finding an expression for this last  p robabi l i ty  is not  a tr ivial  problem;  the nex t  
section is devoted to it. 

2 .  - T h e  d e n s i t y  m a t r i x .  

I n  th i s  section we shall answer the following question: (( wha t  is the pro- 
babi l i ty  ~ ,  tha t  n particles are found inside a vo lume /2, assuming tha t  the  
n particles have  well-defined to ta l  energy~ to ta l  angular  m o m e n t u m  and t h a t  
their  to ta l  m o m e n t u m  is zero? ,. 
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Hav ing  s ta ted  t ha t  the n-part icle sys tem has sharp values of H,  J 5  J~ 
and has P = 0 is of course not  sufficient to define the s ta te  of the system. 
We have  seen on the other hand  t h a t  the stat is t ical  theory  of meson-product ion 
considers every s ta te  as equally probable,  provided no conservat ion laws are 
violated. This then leads in a na tura l  way  to the description of the  n-part icle 
sys tem b y  a densi ty  mat r ix .  A densi ty  ma t r ix  can be wri t ten quite general ly as 

J, Ja 

We have  a l ready taken  advan tage  in writ ing this t ha t  we shM1 only be inter-  
ested in states with P ~ 0. The ~ s tand for all the q u a n t u m  numbers  nec- 
essary to define the s ta te  complete ly  in addit ion to E,  j, j~ and P = 0. S ta t ing  
t h a t  only states wi th  fixed E, j, j~ (say E' ,  f ,  ]'3) are allowed means pu t t ing  
the weights P~.~,r = 0 if .E, j, j~ have  values different f rom E' ,  j ' ,  j~. Stat ing 
tha t  all allowed states have  equal probabi l i ty  means put t ing  

P~,~',~',~i ~ constant  

independent  of ~ (say C,~ ; it might  in principle still depend on n). One could 
a t  this stage allow for final-state in teract ion b y  a suitable choice of the sys tem 
of observables ~, and  b y  mak ing  p~,~, ,g, dependent  on ~. We shall, however,  
st ick here to the simple assumpt ion  

(2.2) 

where C~ is a propor t iona l i ty  constant .  This means tha t  we assume for the 
densi ty  ma t r ix  in effect the simple form 

(2.3) ~ = C ~ H ~ H , ~ H o ,  

where ~ . ,  ~ ,  H~,~ are project ion operators  on n-particle s tates having  respec- 

t ively to ta l  e n e r g y = E ,  to ta l  angular  m o m e n t u m  = ~ / j ( j + l ) ,  to ta l  angular  
m o m e n t u m  third component  m, and Ho is the project ion opera tor  on to ta l  
m o m e n t u m  = 0 states. 

This densi ty  mat r ix  allows us to s ta te  the probabi l i ty  to find a given ob- 
servable  A in a range of values a0 ... a . ;  as is well-known this is 

Tr  0 ~ ,  

where ~ is the project ion operator  on the subspace of eigenstates of A having 

eigenvalues in the range ao ... an. 
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Our question now is to find the  probabi l i ty  t h a t  the  observable x~ ( =  po- 
sit ion of i - th  particle) will have  an eigenvalue ~ inside /2. The corresponding 
project ion operator  is s imply 

['d~,5(x~. - -  ~,) 

r 

~nd the probabi l i ty  t ha t  the n particles are inside /2 is given b y  

(~.4) 
/3 *.:' 

I n  order to work this out  we h~ve to introduce a t  this stage a complete  
sys tem of states of n particles.  For  this we shall t ake  products  of plane w~ves;  
i t  will t u rn  out tha t  with this choice the ma themat i c s  are still manageable ;  
other choices {e.g. spherical waves) are of course allowed in principle, bu t  
would make  it ha rd  in pract ice to re ta in  rigorously m o m e n t u m  conservat ion 
in the formalism 

lp , . . ,  p o >  = e x p  ( e , ,  
i=I 

With  this choice we have  

fdpl fdp,(p~ ... p~]~ ~ ~(x, ~)!i)1 . . .  pn> Tr  ~o~(x~ - -  ~1) ... c$(x~ - -  ~ )  =, . . . .  ,=~ r = 

z =1 = 1  "l=l 

~nd consequently 

(2.5) ~Tnfl,) : - f d p l  ' ' ' f d p ~ / d ~ l  " ' ' fd~ ' a  

(Strictly speaking, one should first compute  the b ra  <pl ... p~ t ~ and carry  out 
the  x~ integrat ion af terwards;  it will be clear tha t  this does not  al ter  the 
result.) 

3.  - The  projec t ion  operators  for  m o m e n t u m  and energy .  

The whole point  of the present  method  lies in the use of a suitable form 
of the angular  m o m e n t u m  project ion operator.  Because the  operators  H,  P,  
J~, J a - -o f  which our states are pure  e igens ta tes - -can  be considered as infini- 

"~ 61 - l l  Nuovo Cimento. 
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tesimal generators of continuous groups, we are led to the following problem 

of group theory. 
To find the projection operator on a given irreducible representation of 

compact  group (space-time translation group for H, P ;  rotat ion group for 
j2 und Ja). This problem can be solved quite generally for all finite and com- 

pact  groups, and the answer is (~,~) 

dr~g 
(3.1) ~r-~ ~" (A) dAzr*(A)A , 

where A:  ~n operator~ element of the group~ 

F :  a representation of the group 

~ r :  the projection operator on F~ 

dr:  the dimension of the representation, 

Zr(A): the character of the element A in the representation F, 

g(A) dA : tile (( volume element )) in the integration of the space of the 

group elements~ 

h ~-fg(A)dA = the (( volume )) of the group 
(for a finite group:  h = number  of elements of the group). 

We recall the orthogonali ty proper ty  of the characters:  

f g(A )g r'* (A)zr(A) dX h'Jr, r '  

In  order to make this clear we apply this formalism to ~ well-known c~se and 

we propose to derive the projection operator on one-particle states with mo- 
mentum p '  along the x-axis. We have then to build the projection operator ~ .  

on this representation of the group of all linear translutions ~long the x-axis. 
The elements of the group are the operators of linear displacement: 

A ( a ) = e x p  a ~ x  , 

because evidently ](x+a)-~ exp [a(d/dx)/(x)]. This group is Abelian, all re- 

presentutions are one-dimensional functions of a and consequently the char- 

acters equal the representative functions 

Z~)(a) -~ exp [ipa] 

(3) E. WIGN~a: Gruppentheorie ... (Braunschweig, 1931). 
(4) V. H]~INE: Group Theory in Quantum Mechanics (London, 1960). 
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whose orthogonality relations are 

.fdaz(Y)*(r,) Z(~)(a) 
~ c o  

=fexp [i(p - -  p')a] da : 2zb(p --p ' )  . 

Consequently 

(3.2) exp [-- ipa] exp [a ~ ]  . 

Let us apply this to a function with known Fourier transform 

(3.3) l(z) = ] dk exp [i]~z]~(k), 
--co 

(3.4) __1 da dk~(k) [--/pa] exp [ikx] ~J(x) = 2~.f  f exp [a d ]  exp = 
--ca --r 

A-m + c a  

- ~  - c o  

+ m  

~-fdk~(/,:) exp ['ikx] 6(p - -  k) = 
- - m  

(3.5) : ~(p) exp [ ipx] .  

This gives the well-known result; comparing (3.4) with the definition of ]@), 
we see also that one could put, when . ~  is applied to an eigenfunetion of 
momentum p~ (i.e. a representation of the trgnslation group along the m-axis), 

(3.6) -~, exp [ikx] == 6(p - -  k) exp [ilr . 

We can now apply this immediately to our problem and write 

(3.7) exp [-- i 2 (P;, ~)]  -~@o= exp [-- i 2 (P~, ~)]  • (E--,=I 
I = 1  ~=1 = 

in order to get this result one should remember that for independent particles 

H =  ~H~ (H~ = energy operator on i-th particle) and the time variation of 
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the  plane waves  is exp [ - - i  ~ sit]. A similar a r g u m e n t  on t ime  t rans la t ions  
z 

gives then  the  d-funct ion for  the  energy.  

4. - The  projec t ion  operators  for  a n g u l a r  m o m e n t u m .  

Were  i t  no t  for the  opera tors  ~ j  ~ this would  lead a t  once to the  resul t  
ob ta ined  b y  the  t rad i t iona l  theory~ w i t h o u t  angular  m o m e n t u m  conse rva t ion  

(4.1) ~;~.~ ~ ~9,~ .. ( E  

I n  order  to  have  an  explici t  f o r m  of ~ we have  to choose first sui table  

pa ramete r s  to  describe ro ta t ions .  W e  shall use in the  fol lowing two equi- 

va len t  sets:  

a) r o t a t i on  axis, i.e. a uni t  vec to r  n ;  r o t a t i o n  angle ~o, where  0~<eo4~ 

b) En lc r  angles:  e, fi, 7. 

F o r  each of those  the  fac tors  t h a t  en ter  the  in t eg rand  of the  projec t ion 

opera to r  ~ ,  are as follows (Table I)  (a,~,6). 

TABLE I. 

n, (9 ~, /3, 7 

h 

g(A) 

zr(A) 

A 

2 j+1  

2~ ~ 

sin 2 0)/2 

sin (j T �89 co/2 

R(n, co) = exp lifo(n, J)] 

2 j +  1 

8 ~  2 

sin fl 
+J  

(D 

/~(e, fl, ~,) = exp [-- ieJ~] exp [-- iflJu] exp [-- i?,J,] 

(5) A. EDMONDS: Angular Momentum in Quantum Mechanics (Princeton, 1957). 
(8) M. Ros~: Elementary Theory o] Angular Momentum (New York, 1957). 
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We shall first construct  the ~ opera tor  with the (n, w) parameters ,  which 
gives the  simpler form. Subst i tu t ing  in (3.1) we get (*) 

(~.2) 
=1 i = l  

2J2~21fdnfd~gsin~COsin(j~-�89176 
- -  2 sin 0)/2 exp [-- i  ,=,~ (p~, ri)]" 

o 

�9 e x p  e x p  
z ~=1 

Our next  p rob lem is then to express the effect of a finite ro ta t ion  of the co- 
ordinate sys tem on ~ plane wave,  i.e. to compute  

(4.3) exp leo(n, ~ r ,  • exp [i ~ (pi, r~)] = 

= f i  exp [o)(n, r~ • exp [i(pVi, r~)] .  

One can compute  this b y  expanding the ro ta t ion  operator  in an exponent ia l  
series 

(4.4) 

To evaluate  

e x p  [o~(~, ~ •  = ~ ~ ;~y_0-W. T (n,  r •  ' . 

(n, r ~ V ) "  exp [i(p, r)] 

is not  tr ivial  because of the non-vanishing commuta to rs  Jr, ~7]. The algebra 
involved is not  complicated,  however,  and  the result  is 

(4.5) exp [o~(n, r xV)]  exp Ei'(p, r)] = 

= exp [i(p, r)] exp [i(r, p • n) sin eo - -  i(r, (p • n) • n)(eos ~ - -  1)], 

(4.6) = e x p  [ i ( r ' ,  p ) ]  = e x p  [ i ( r ,  F ) ] ,  

(*) In this form we consider only orbital angular momenta; one could in principle 
introduce spinor plane wave,~ for the nucleons, and make/?  also act on these spinors. 
This seems at the moment an unnecessary complication, as the bulk of the (high) 
angular momenta is certainly due to orbital motion of the fast product particles. 
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where  

H.6.) r ' =  r - - ( r X n )  sin e~ - -  [ ( r  X n) X n] (cos oJ - - 1 )  , 

(4.6b) p ' =  p + ( p  x n) s in ~ - -  [ (p  x n) X n] (cos v~ - -  1 ) .  

This  r e su l t  is qu i t e  n a t m ' a l :  r '  is t h e  v e c t o r  r t u r n e d  ove r  an  ang le  09 a r o u n d  n. 

One  can  a l t e r n a t i v e l y  cons ider  t h e  o p e r a t i o n  of r o t a t i o u  as  a f fec t ing  the  f ield,  

w i t h  a s t a t i o n a r y  f r a m e  a n d  th i s  l eads  t h e n  to  a r o t a t i o n  of t h e  m o m e n t u m  

vec to r s  ove r  an  angle  [~ol in  t h e  o p p o s i t e  d i rec t ion ,  p '  is n o t h i n g  b u t  t he  

o r ig ina l  v e c t o r  p t u r n e d  ove r  an  angle  - - c o  a r o u n d  n, (4.6a) a n d  (4.6b) 

exp res s  i n d e e d  the  r e s u l t  of p e r f o r m i n g  a r o t a t i o n  (n, ~ co) on a v e c t o r  (7); 

t h e  n e w  v e c t o r  is a sum of t h r e e  m u t u a l l y  o r t h o g o n M  vec to r s .  One  sees also 

t h a t  t h e  dillerence b e t w e e n  t h e  t u r n e d  v e c t o r  a n d  t h e  o r ig ina l  v e c t o r  is o r t ho -  

t o n a l  to  t h e  axis  of r o t a t i o n ,  a n d  i t s  l e n g t h  is 

/l '-PiJ - - 

T h e  m a t r i x  e l e m e n t  of t h e  p r o j e c t i o n  o p e r a t o r  for  t o t a l  a n g u l a r  m o m e n t u m  

j ( j ~ - l )  b e t w e e n  p l a n e  waves  r eads  n o w  

(~.s) 
z 

- -  2 z  2 n d o J s i n s s m ( j - b � 8 9  ( K ~ , r , ) ] ,  

o 

where  

K~ -~ sin (o(p~ X n) - -  (cos co - -  1)[(p~ • n) • n] 

is t h e  d i f ference  b e t w e e n  t h e  t u r n e d  v e c t o r  p :  a n d  

or ig ina l  v e c t o r  p~ (see F ig .  1). 

t h e  

Fig. 1. - The vector p, the rotat ion axis n and the t r iad  of orthogonal 
vectors n, p • n, (p x n) x n to which the tin'ned vector is referred 

in formulu (4.6b). 

(v) j .  L. SYNGE: Classical Dynamics, in ttandb, d. Phys., vol. 8/1 (Berlin, 1960). 
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5. - The projection operator for magnetic quantum numbers. 

Here  we are concerned with states having a well-defined value of J~, the 
z-component of the tot.~l angular  momentum.  Th e  operator  J is the  infini- 
tesimal generator  of rotat ions around the z-axis; one convinces oneself easily 
tha t  in ease of this Abelian group the projection operator  is 

(5.1) 
2~ 

0 

exp [--  imp] exp [ i ~ J , ]  . 

The interest ing thing, however,  for high-energy collisions is the  operator  

~ ~ with m == 0. 

I f  the z-axis is taken P/ong the collision line the total  angular m o m en tu m  must  
be orthogonal to the  z-axis, and hence only states with J~ = 0 can contr ibute  
to  the final state. So we have  to compute  

(5.2) 
z z 

One can do this by  applying in succession the explicit  forms (5.1) and (4.8) 
or else making use of the fact  tha t  ~ ~+:o is a projection operator  on u par- 
t icular line of the 2 j + 1  dimensional irreducible representat ion of the ro ta t ion 
group.  The general form of such an operator  is (3,~) 

(5.3) 

where ~ r  is the diagonal element on the part icular  line m of the represen- 
ta t ive  matrix.  Formula  (3.1) is a special case of this theorem, because 

Xr ~ r 

Applied to the problem at  hand  this gives 

y~ 

2 j + 1  d de) sin ~-~ ~J) ~o,o(n, a}) exp [03(n, 2 r ,  XV,)]  
2~ ~ 

o 
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W e  see t h a t  the  only  difference wi th  the  opera to r  /)~ consists in the  subst i-  
o2(~) has a pa r t i cu la r ly  t u t i o n  of -o.9~n,~(~)/ co) for  Z(J)(co). The m a t r i x  e lement  --o.o 

simple expression w h e n  the  r o t a t i o n  is expressed wi th  Euler  angles 

(5.5) ~(~)/,, (J) ~9,0( O, fl, = /~) -o.o,~, fi, r )  = o) P,(cos , 

(P, (cos f l ) =  Lcgendre  po lynomia l  of order  j). As a func t ion  of n, co i t  is ob- 
t a ined  b y  expressing /? as a func t ion  of n and  co. ~ATe notice t h a t  

(5.6) cos/~ = ~9.o,'-,vz(z~r 09) = (ea, R(n,  co)e3) , 

i.e. t he  un i t  vec to r  a long the  z-axis, e~, t u r n e d  over  co a round  n, and  p ro jec ted  
on the  z-axis. 

B y  us ing (4.6a) one finds 

cos fl = cos 2 0 + sin 2 0 cos o~, 

where  0 is the  angle be tween  n and  the  z-axis. 
Consequen t ly  

(5.7) r ( -  co) P~ (cos 2 0 + sin ~ 0 cos co) = 

= 2 ( j  (p(cos 0))0 

W e  see t h a t  t he  pa ramete r s  (n, co) give simple results in the  fo rmula  for  ~ j  

on ly ;  for  express ing ~J~, , -o  it is easier to  use the  Eu le r  angles. 

6. - Statistical theory with J but without  P conservation (Koba's theory) .  

I n  Section 2 it  was po in ted  ou t  t h a t  the  fo rmal i sm of the  dens i ty  ma t r i x  
leaves one in principle  free to  choose a ny  comple te  set of n-par t ic le  wave  func-  
tions. The  explici t  fo rm of T r o ~  will of 'course depend  on the  chosen 
system.  

I n  connec t ion  wi th  the  t heo ry  developed b y  KoB• (8,9) i t  is in te res t ing  to  
calculate  the  f o r m  of ( ~ , ~ ) u s i n g  spherical  ha rmonics  ins tead  of p lane  

(s) Z. KOBA: Statistical theory o] multiple particle production with angular momeutum 
conservation, preprint Warsaw, October 1960; to be published in Acta Phys. Polon. 

(9) Z. Ko]~_: The angular momentum weight ]actor iu the statistical theory o] multiple 
production - I, II ,  preprints February and April 1961; to be published in BulIeti~ of 
the Polish Academy o] Sciences. 
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w a v e s .  A c o m p l e t e  s y s t e m  of w a v e  func t ions  of a free scalar part ic le  is then  

I k l m }  ~ j,(kr):F?(O, ~ ) ,  

(j~(kr)----the l - th  spherical  B e s s e l  func t ion )  and a diagonal  m a t r i x  e l emen~  

of ~ is therefore  

�9 ,.co co  

0 D 

O O O O O O fl 

�9 ~.=~, ~, ~) y~, ( o ~ )  ... Y T : ( O ~ = ) .  

B e c a u s e  the  Y~  are o r t h o n o r m a l  and be long  to  a wel l -def ined  irreducible  re- 
presenta t ion  of the  ro ta t ion  group 

2n 

[ ~ . *  m = ( , )  , = / ~ , , ,  (6.2) d~ i n 0 d 0 Y ~  R(~z~Y~ = ~ . ~  ~ r ,  

o o 

and the  last  t w o  l ines of f o r m u l a  (6.1) reduce  to  

2~ ~ 27~ 

i':H (6.3) s in ~ ~r ' " " 

o o 

I f  one  chooses  to  neglect momentum conservation and c o n s e q u e n t l y  takes  as 
d e n s i t y  m a t r i x  

and c o m p u t e  in this  case 

(6.5) Tr ~o' 5(x~ - -  ~ )  ... 8(x~ - -  ~ . )  

the  trace w o u l d  i n v o l v e  s u m m i n g  over  all m~ (as wel l  as l~ and integrals  over  k d. 
Taking  the  express ion  (6.2) and s u m m i n g  over  all m~ g ives  a certa in  coeff ic ient  

2~ ~ 2~ 

z=(~, l=)=. d V~ , - -=.= ~ --. ~1 -.- ~176 (6 .6)  <~) s i n  t ~ 2  ~ (=~) �9 * * ~ ? ? g  1, ?'lZ t 
~n~--~ 1 ~nn~-~ n 

0 0 0 



974 F. CERULUS 

which  can in principle be  compu ted ,  as the  ~ ( f l y )  are wel l -known.  This 
coefficient conta ins  impl ic i t ly  ~11 the  selection rules due  to  the  addi t ion  of the  
the  angu la r  m o m e n t a  l~, ..., l,= to  a r e su l t an t  j, wi th  m ~ + m = + . . . + m = = m .  
I f  e.g. l~ +. . .  +t,~ < j or ~o > j q-Z~ + . . .  + l=_= so t h a t  t he  t r i angula r  condi t ions  canno t  
be satisfied, then  Z(S~q l=) is ~n tomat i ea l ly  zero. This m e t h o d  has been 
used in two previous  ~rticles for  c o m p u t i n g  <~ phase-space  in tegra ls  ~> in isospin 
space, e i ther  b y  rceurs ion using Clebsch-Gordon coefficients (~o) or in closed 
form (~). 

The  phase  space in tegra l  for  ~ spherical  ~2 wi th  radius  R looks then  ~s follows 
(up to a cons t an t  coefficient) 

(6.7) 

l~  co co  

r~ ... r k~ ... k . . . .  Z~)(l~... l ,  k~r~lj,,(/~,r,) �9 
, ,  , , ]  ~ l = O  I n = O  ~ = 1  
O 0 0 0 

t 

F o r m u l a  (6.7) is essential ly K o b a ' s  f o rmu la t i on  of angular  m o m e n t u m  conser- 
va t ion  in the  s ta t is t ical  theory .  

7. - Phase - space  integral  w i t h  angu lar  m o m e n t u m  conservat ion .  

The p robab i l i ty  to  find n part icles in vo lume Y2, wi th  specified E,  P = 0, 
j ,  and  m = 0 is then  

(7.1) 

where 

I s  j ;  m - - o )  = 

= . . .  . . .  P~) , 

- -  s ln  - ~ o o ( n , o )  dr1 . . ,  r~ , 
2~ "~ J J ' ,=. 

o f2 ~2 

or a, l ternatively 

; f ,i' i a 8n" " d ~ ' d f i .  d y s i n f i P , ( e o s  fi r l . . .  r ,  exp[i~(r,,K,)],,=, 

o o 0 ~2 

(10) F. CERULUS: Suppl .  Nuovo Cimento, 15, 402 (1960). 
(11) F. CBRULUS: NUOVO Cimeuto, 19, 528 (1961). 
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~and K is each t ime the difference between the turned  vector  p '  and the ori- 
ginal p (4.6). 

The fur ther  development  depends now on the assumption made about  the 
interact ion volume t'2. W-e shall here t a l i e a  spherical shape, and replace the 
sharp cut-off by  a Gaussian cut-off. We replace then  

(7.4) d r  exp [i(K, r)] by  r exp --~aa, h + i(r,  K ) t .  

This form of cut-off is made  for computat ional  convenience. The mean square 
radius of the volume ~4th this cut-off is 

i.e. we could take as radius 

(7.5) 

<r~> ~ 6a, ~ 

R : %~66a = 2 . 4 5 a .  

'The intega~at (7.4) is the Fourier  t ransform of the form fac tor  of ~ .  For  a 
spherical Gaussian we get 

(7.6) d r  exp [i(K, r) -~ 8 ~ a  3 exp [--  a~K :] = -~ R a 
g 

and 

,(7.7) r~ ... exp [i 2 (r~, K~)] = , R exp [ - - a 2 ( 2 K ~ ) ] .  

This expression depends tufty on the length of the vector  K~. 
a l ready given for the parameters  of ro ta t ion n, co (4.7). 

For  the Euler  angles it  is easily computed  as fotlows: 

This length was 

K = p ' - - p  = ~ ( ~ ) ( ~ f l y ) p - - p ,  

where N(~) is the t ransformat ion matr ix  of a vector  under  a rota t ion (efiT). 
Consequently 

K'~ = ( 2 , . p ) ~  + V o - -  2 (p,  ~ t , .p )  = 2 ( p ~ - -  (p,  ~ I ~ e ) )  �9 

Using the  known formulae for the  mat r ix  ~,~'(~PT) (s) one finds 

~(7.9) ~j (I) ) (p, p = p~ cos fi -? p~_ 1 § cos fi - - ~ Z  ...... cos (~9 , )  
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where p~ and p ~ are the components  of p ~long the z-axis and perpendicular  
to the z-axis. 

We axe now led to the following expression for the probabi l i ty  to find n 
particles in a spherical Gaussian volume $2 

(7.~0) 

The change, with respect  to the  stutistical theory  wi thout  J -conserva t ion  is, 

if) a factor  2j -~ i , 

b) a factor  (�89 , 

(this amounts  in effect only to an un impor t an t  change of the interaetior~ 
volume~ due to the in t roduct ion of a Gaussian cut-off); 

e) a weight funct ion ~ ( P l  ... P~) in the  integrand.  

B y  analogy with the usual statistical theory  we shall henceforth call (( phase-- 
space integral  )) the expression 

also to be denoted for short  by  o*(E, j, 0). 
The weight  funct ion , ~  is expressed as a triple integral  over  the para-  

meters  of the ro ta t ion  

,f (7.12) - ~ ( p l . . . p ~ ) = ~ e x p [ - - a ~ Q  ~ d dys in f iP~(cos f i ) .  

o 0 o 

�9 exp [2a2Z 2 cos fi] exp [a~T~(1 q- cos fi) cos (~ ~ y)] ,, 

where 

Q~ ~ ~ p~ = Z~ 4- T ~ , 
t=1 

Z~ ~ ~ p:, , 
i = l  

~.~ ~ ~ P ~  . 
i = l  



S T A T I S T I C A L  T H E O R Y  OF M U L T I P L E  M E S O N  P R O D U C T I O N  E T C .  977 

We see from this tha t  the weight function 5~, depends on a single p~ only 
so to say through the average over the n perpendicular and the n longitudinal 

components of the momenta.  The alternative form of ~ is 

(7.13) 

where 

~ =  d o o s i n ~  o,o~ ,m) e x p [ - - 2 a 3 0 : ] ( 1 - - c o s e ) ) ,  

0 

03 = ~ (P~ • n)  "~ , 

-= sum of the projection squared of p~ on a plane perpendicular 

to the axis of rotat ion n. 

We shall not  use this form for computat ion,  but  it is useful for qualitative 

discussion. 

8.  - The  class ical  l i m i t  of the  phase -space  integral .  

T. E~tcso~ (~3) has been able to derive m a n y  results of statistical theory  

with angular momentum conservation by  treating the /~-vectors of each single 

particle as classical vectors, i,e. by  neglecting the fact  tha t  r, p and 1 do not  

commute.  
W h a t  happens in our case when we neglect these commutators?  The rota- 

tion of a plane wave is then written as 

(s.1) 
exp [w(n, r •  exp [i(p, r)] : exp [i~o(n, r •  § i(p,  r)] ,  

= exp [i(r, p § co(p • n)], 

:so tha t  now K = ~o(p • n). 

{s.2) z~ j y ' 
o 

with ~o ) tn  co) as given in (5.7). O,O\ 

When is this a good approximation? In  all such cases where 

(8.3) exp [ - -  a203o) ~] ~ exp [ - -  2a:O3(1 - -  cos ~o)] 

(23) T. ERICSON: Nuovo Cimeuto, 21, 605 (1961). 
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as is easily seen by  comparing (8.2) with (7.13); this means when a~O ~ is so. 
big tha t  moderate  values of co make the factor exp [ - - a :0%o ~] already va- 
nishingly small. The condition is then 

a2 i (p,• . 

Because n is an integration variable (over the unit  sphere) this is only sure 
if the p('s are big enough, and with fairly spread out directions. The last 
point is true on the average, for n not  too small, because configurations of p~- 
which cluster together occur very seldom and contribute therefore a negligible 
amount  to the phase-space integral. The physical requirement for the clas- 
sical picture to hold is then 

1 

a) (p~} >~ ha--- ~ ; 

b) n rather  large to assure the probable spreading of directions. 

]f  we can neglect the particles' masses as compared to their energies the 
first condition can be stated as a condition on the total energy which has to  
be larger than 

We shall see in Section 9 the exact limits of validity of the classical approxi- 

mation by comparing the exact end formula with the classical one. Eq. (8.4)r 
however, shows already tha t  in most  practical cases condition a) will be ful- 
filled. For  e.g. 6 particles and R ~ 1.r -23 cm one has E m t ~  ] GeV. 

9. - Explicit form of the phase-space integrand. 

We shall presently carry out the integrations in formula (7.12) for ~ .  

The integrals over ~ and y are simple and of the form 

2~ 2~ 

(9.1) fdo: fd ,  e x p [ A c o s ( ~ §  
o o 

where Io(A)= Jo(iA), the Bessel function of pure imaginary argument.  After 

T- 
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this we a~'e left  with one more integrM 

(9.2) -~ = l f d f l  sin t iP,  (cos fi) exp [--2a~Qq exp [2a'2Z ~ cos f i]Io[a~T2(l+cos fi>]. 

O 

Remembering tha t  Q~ ........ T 2 + Z  ~ the integrand can be wri t ten as a product  

of three factors 

F~(cos fi) ..... /?,(cos fl) sin f l ,  

F~(cos fl) = exp [--  (2a~Z ~ + a=Tg(1 - -  cos fi)],  

Ea(eos fl) = exp [-- a~T~(1 + cos fl)]Io(a~T~(1 + cos fl)) . 

We shM1 faust t ransform the integral  to get rid of the oscillating PA cos 0). 
The factor  F.~(cos fi) can be expressed as a Laplace t ransform using the formula  

2b 

(g a) exp [-- bpJ o(bp) --  --fexp [-- St] (2bt-- t~ 
0 

Put t ing  for a moment  

2asZ ~ + a~T ~ = a2(Q "~ + z ~) =- A ,  

a~T "~ = a~(Q~ - z~) ~- B ,  

we have 

(9.a) 
0 0 

sin tiP, (cos fi) exp [--  A (i  - -  cos fi) - -  t(1 + cos fi)] 

(9.5) 

~B 

( 2 B t -  t~)~ exp I - - t ]  (A - - t )  ~I'+~(A 
0 

(9.6) = 4 z V ~  exp [--  to] (A--  to)-~ e x p [ - -  (A- - to ) ] I ,+dA- - to )  e x p [ - - B ] I o ( B ) ,  

where the last line is derived from the foregoing b y  using the mean value 
theorem, to being a value between 0 and 2B.  For  most practical purposes A 
is a large number,  because the  particles' momenta  are larger t han  # = 1/R,  
except  perhaps for ve ry  high multiplici~es;  i t  is of the  order of n(R~<p}~/6). 

Because L+~(x) is a fast growing funct ion of x (see fur ther  down for their  
general behaviour),  the impor tan t  contributions to the integral come from 
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small  vahles of t; for - , 1 ?~ .~ -<2A  the  width  (i.e. where exp [ - -  t](A - -  t) -~- 
�9 Ij+�89 - - t )  == ~A-dI~+~(A)) i t  t ~ �89 which is quite negligible eompaa'ed 
to A. I n  mos t  cases i t  will therefore  be  a good approx ima t ion  to t ake  s imply  
A - - t o  ~ - A  and exp [--to] ~ 2 -~. Fo r  ex t reme cases one will have  to resort  

to a numerical  evaluat ion.  
Ta~king for the m o m e n t  the  app rox ima te  formula  one ge~s 

1 
(9.7) ~ --  2%/~ exp [ - -  a2T2]Io(a~T ~ exp [--a~(2Z ~ + T")]. 

1 
.L+~(a~(2Z'~ + T~)) a(2Z~ + T~)~ " 

Before discussing how to calculate the phase-space integral  with this funct ion 
in the  in tegrand we shall discuss the general behaviour  of ,~ .  

The functions exp[ - -xJ I~ (x )  are smooth,  real functions of x and v. Fo r  
very  small or ve ry  large values of x they  can be easily app rox ima ted  b y  the 
first t e rm  of a power-series expansion,  or of an  ~sympto t i c  series respectively.  
We have  as a m a t t e r  of definition 

(9.8) I,.(x) ~- ~ (�89 --  i-~'J~(ix) ~ ~ ,Y(~ ~ ~) ! 

therefore for x < < l  

(9.9) exp [--x]I , , (x)  ~: (�89 (1 x + (�89 ) 

For  x ~ > l  and x~>v 

1 1 (9.10) exp [-- x]I,(x) ~ ~ ( --  4 ~ - -  ~ 
8x + ' " )  

Fo r  modera te  or large v the following fo rm is more  accura te  (Debye asympto t i c  

form) 

l/tgh (9.11) exp [ - -  x]I~.(x) ~ |~ 2~v- exp [ - -  x + v(cotgh ;v - -  ~,)]. 

�9 l + ~ t g h , , ( 3 - - 5 t g h ~ ) + . . .  , 

with 

sinh V ~ -- i.e. tgh F --  
x ~/~T+~x~" 

For  modera te  v and  v < l x  formula  (9.11) is approx ima te ly  (up to te rms 
o(~/x3)) 

(9.12) exp [ - - x ] I , ( x )  ~ ~ - x  exp - -  1 -  r x2 ] . 

In  Fig. 2 and  3 are shown the  functions for v = 0 ,  ~ 3 and  fur ther  for  
v = 17 3 ,  ..., 11. As m a y  be seen f rom 0 .8)  only exp [ - -  x]I0(x) does not  vanish  
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0 I 2 3 4 5 

]~ig. 2. C~raphs of t i l e  f u n c t i o n s :  y - -  1 / ~ / 2 ~ x :  . . . .  , y == e x p  [ - -  x ] I ~ ( x ) :  - - -  

y == e x p  [ - -  x ] I o ( x ) :  - - - - - - ,  y = e x p [ - -  x ] l ~ ( x ) :  . . . . .  . 

0.15 

0.1 C 

0,05 

o s lo 2o s'o 4o 6 ~o 75 s'o so ~6o 

Fig'.  3. - G r a p h s  of t h e  func~. ions  e x p  [ - -  x ] I ~ ( x )  for  , n = 0 ,  1, 3, 5, 7, 9, 11 ( c o u n t i n g  

f r o m  t o p  to  b o t t o m ) .  

-~ ( ] 2  - I l  Nuoeo  Cimenlo.  
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for x = 0 ( Io (0 )=  1). All the other  functions s tar t  f rom O, and remMn prac- 
t ically 0 up to x m  v. F r o m  there they  rise to a m a x i m u m  around x ~ v2. 
and beyond  this point  can be fair ly ~vell approx ima ted  by  exp [--x]I~(x)m 

To unders tand  the formula  one can think therefore of exp [--xJI~(x) as 
a cut-off funct ion:  for given x i t  
is zero (very roughly  speuking) 
for v > x %  for v < x  2 i t  is equal  
to 1/V/~--~5; of. e.g. Fig. 4. 

0.15 The functions I~+~(x) h~ve been 
t abu la ted  (~3). They  can always 
be expressed as 

0.1 

0.05 

0 
0 1 2 3 4 5 6 7 8 9 10 11 12 

Fig. 4. - The functions exp [-- xJI~(x) plotted 
vs. the order v, for different values of the varia- 
ble x. The cut-off character is quite apparent. 

I~+~.(x) = V 2  IA,~ (1) cosh (x) + 

~-An- l (1 ) s inhx l  ~ 

with A,(t) a n-th order polynomiM 
in t, e.g. (~3) 

I+(x) = 7ex sinh x ' 

: x - -  1 siuh x] I ,(x)  V 2  Icosh x " 

The approx ima t ion  we have  
made  in deriving formula  (9.7) 
a S Q~ >> �89 log 2 = 0.346 coincides 
more  or less with the first of the 
two assumptions  made  by  the  

classical approximat ion .  F r o m  the discussion on p. 978 we know tha t  i t  
should be all r ight  in practice.  

H o w  does formula  (9.7) compare  then  to the classical approx imat ion?  
Taking the a sympto t i c  formulae  (9.19) and  (9.12) we find for 

(9.13) ~ ' ~  (2z)-~2-�89 ~ 4- T:)] -1 exp I 
(J + l 

2a2(2Z~ ~-T2)] ' 

(13) C. W. Joules: A short table o] the Bessel ]unctions I,+~(x), (2/~)K~+~(x), 
(Cambridge, 1952). 
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up to te rms of order (j/aQ) 2 a.nd compar ing this with the formula  (4.4)of  
EnIcso~" ( remember  6a 2 --~ R ~-) (x2) 

(9.14) 

one sees t ha t  bo th  are equal  if Z 2 = l / 3 Q ~ =  2 / 5 T  ~ (neglecting the difference 
between j2 and j ( j - ~ l ) - ~ ,  which is to be expected f rom a classical approxi-  
ma t ion  and the  fac tor  1/ ~/2- which comes f rom taking to ~- �89 So ~ c ,  ..... 
is s t r ict ly va l id  only for isotropic distr ibution of m o m e n t a ;  however,  for angular  
m o m e n t a  j small compared  to RQ the difference is not  impor tan t .  

10 .  - A n g u l a r  m o m e n t u m  z e r o .  

This special case is of pract ical  impor tance  in annihilgtion of anti-nucleons 
a t  rest  (together wi th  the case j ~ 1). Going back  to formulae (9.5) and  (9.7) 
we find 

(10.1) 3~'-o : 2-}7c -~ exp [ - -  a2T2]Io(a~T 2) exp [ - -  a:(2Z2+ T2)] sinh[a2(2Z2+T2)] 
a~(2Z 2 + T  2) 

One knows tha t  for ve ry  small m o m e n t a  ]P,I (i.e. m a n y  particles sharing a 
small  to ta l  energy (*), all end particles are necessarily in s-states, and  the  to ta l  
angular  m o m e n t u m  m u s t  be zero; this follows also a t  once f rom the exact  
formula  (9.2), because there for 

a T - +  O , aZ  -> O , 

we have  ~0 ~ 1, (i.e. a constant  independent  of T and Z, and n) up to te rms  
of order a2(Z~-~T~). This leads to 

(lO.2) 

i.e. essentially the expression one gets wi thout  introducing angu la r -momen tum 
conservat ion;  this is not  surprising since all available states are necessarily 

(*) A mathematically equivalent statement is: for very small a, +.e. very short 
radius of the interaction volume. 
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s-states, and hence no additional constraint  is imposed on the phase-space 

by  J-conservation.  
Conversely, the expressions (10.2) or (1.1) are only strictly valid for s-states, 

Mthough they may  still be a good approximation when the outgoing particles 

can have e.g. p and d waves. The above hypothesis (aQ --~ 0) is however very 
nnrealistic in all eases of practical importance 

For  annihilation we have (n} ~ 4.7 and (~r ~ 0.4 GeV. We find 
a 2 @ ~  {R=.n((E/n)2--t t~ ) ~ 5.51 for the ease n =  6, e.g., which allows go use 

the formula (9.7). This may  be further  checked: numerical  integration of (9.5) 
yields in the above mentioned ease 12.93 as compared with 12.37 from (9.7). 

For  n < 6 the approximation is still better. 
As no direction is privileged, the classical approximation may  therefore be 

used. which gives 
1 

One sees how this will affect the multiplici ty:  the higher n, the lower Q, and 
the higher ~-0. Angular momentum conservation will therefore increase the 
multiplicity of pions in annihilation at rest. Also for ] = 1 the above con- 

elusion wilt be almost true. 

PA~T I I  

T H E  VALUE OF T H E  P H A S E - S P A C E  I N T E G R A L  

W I T H  A N G U L A R  MO~C[ENTUM C O N S E R V A T I O N  

1 1 .  - P r o b l e m .  

In  the previous par t  we derived the following expression for the phase-space 

integra,1 

2 (11.1~ ~ ( E , ) ) =  ~ . . . .  d ~ -  Vp~+m~6 p~:~,, 

with 

= exp [ - - ~ R  T ]Io(aR 2" )[-~R (2Z + 

�9 exp [ - - ~ R ~ ( 2 z  -~ + T ~ ) ] ~ . + ~ [ ~ ( 2 Z ~  + T~) ] ,  

i = 1  

= P 2 ~  �9 
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One has now to devise ways and means to compute  this expression in prac- 
tice. The simpler problem with  ~ , , ~ 1  has been studied in the pas t  (~-~7), 
and  it  has appeared  t ha t  there the  big difficulty comes f rom the square-roots  

V/p ,+m,  which make  a dosed- form expression of the  integral  ve ry  difficult. 
Two approx imat ions  based on the  hypotheses  

A) ~/p~ ~- m~ ~ p~, (nltrarelat ivist ic);  

B) ~/p~ 4- m~ ~ m., @ P~ (unrelativistic);  

have been proposed,  which yield bo th  fairly simple formulae,  bu t  whose prae- 
ticM impor tnnce  is smM1, because nei ther  A) nor B) is t rue  in practice.  

A Monte-Carlo method,  which is free f rom the bias of A) or B) has been 
used to t r ea t  m a n y  problems,  in stat ist ical  theory  wi thout  angular  m o m e n t u m  
conservat ion @% All the  above  ment ioned methods  m~ke use of the fact  t h a t  
the  in tegrat ion over all directions of p~ can be done in closed form, because 

the in tegrand is isotropic. 
Because ~ ,  introduces the  direction of the z-axis, the p, and p •  have  now 

to be t rea ted  separate ly;  one introduces cylindrical co-ordinates, p,, p_ 

(1] .2) 2-( E, )) I I  a~dP2~ dq~ , ~ .  
0 --co 0 

qz 

The angles q~,. appea r  only in 6 ( ~ p •  The angular  integrat ion is therefore, 
t 

using the Fore' let  t r ans form of the  two-dimensional  &function 

(11.3) 
2~ 

[ d 

plane 0 

1t O~V 

2~ 27~ 

.[ exp =fd  E-- �9 cos = 
o o 

(14)  R. H. MILBUR~: Rev. ~iod. Phys., 27, 1 (1955). 
(15) S. Z. ]~EI, ENKII, V. MA~ZZIMEI~KO, A. ~IKISOV and [. R()SENTAL: ffortsch, d. 

Phys., 6, 524 (1958). 
(1~) G. FIAI, HO: Phys. Re',~., 105~ 328 (1957). 
(17) F. CEEULHS and R. HAGEDORN: SuppL Nuovo Cimento, 9, 646 (1958). 
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a n d  the  a n g u l a r  i n t e g r a t i o n  r educes  to  

(]].~) 
co 

(~ ) 2d )~Jo ( ) , pa~)  ... J0 (2p•  

0 

This  express ion  is a w e l l - k n o w n  r e s u l t  in  r a n d o m - w a l k  t h e o r y :  t h e r e  

co 

f P(2)(r; a l ,  . . . ,  a n )  ~-- 2 J o ( r 2 )  J 0 ( a , 2 ) d 2 ,  

o 

is t h e  p r o b a b i l i t y  t h a t  t h e  n vec to r s  in  a p l a n e  w i t h  l eng ths  al  ... an will  a d d  

u p  to  a r e s u l t a n t  r,  w h e n  al l  d i r ec t ions  a re  e q u a l l y  p r o b a b l e .  W e  shal l  a s s u m e  

t h a t  th i s  f u n c t i o n  is k n o w n  (el. A p p e n d i x ) .  

S imi l a r ly ,  we can  i n t e r p r e t  t h e  p ,  i n t e g r a t i o n  as a r a n d o m - w a l k  in  one 

d i m e n s i o n :  cons ider  t h e  i n t e g r a l  

(]].5) 
*~r -rco 

--co --r 

. . . ,  z~) O(zl + z~ ...  + z .  - -  Z )  

where  we can  sp l i t  t h e  i n t e g r a t i o n  reg ions  in  a n e g a t i v e  a n d  a p o s i t i v e  p a r t  

(1].6) 
co r 

o o 

- -  .. , )  is an  w h e r e  ~ m e a n s  a s u m  ove r  al l  c o m b i n a t i o n s  of ai =j=l a n d  F ( z ~ .  z 2 

a r b i t r a r y  even f u n c t i o n  of t h e  zl ,  . . . ,  z . .  The  f u n c t i o n  

(]~.7) P ( 1 ) ( Z ;  z i ,  - . . ,  ~'n) = (�89 ~ ( ~ ( a l Z l ~ -  " '"  ~ -  O * n Z ~ - -  Z )  , 
(a) 

is t h e  p r o b a b i l i t y  t h a t  a. p a r t i c l e  m o v i n g  a long  a l ine  in  success ive  s t eps  of  

m a g n i t u d e  zl ,  z~, ... b u t  r a n d o m  sign wil l  r e a c h  a f t e r  n s t eps  t h e  pos i t i on  Z. 

This  is t h e  r a n d o m - w a l k  f u n c t i o n  in  one d imens ion .  H e r e  we sha l l  also a s s u m e  

th i s  f u n c t i o n  to  be  k n o w n  (and  g ive  f o r m u l a e  for  i t  in  t h e  A p p e n d i x ) .  

W e  a re  t h e n  f aced  w i th  t h e  i n t e g r a l  ( p a t t i n g  p - =  a, p~ = z) 

(] ] .s) 
co co 

o o 

�9 P~)(O; a~, . . . ,  a.)P(~'(O; zl ,  . . . ,  z.)  . 
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To th i s  i t  seems  feas ib le  to  a p p l y  a Mon te -Ca r lo  m e t h o d  s imi la r  in  p r inc ip le  

to  t h e  one u sed  for  p~(E)~* i.e. t h e  p h a s e - s p a c e  i n t e g r a l  w i t h o u t  ~ngu l a r  mo-  

m e n t u m  conse rva t ion .  

! 2 .  - A M o n t e - C a r l o  m e t h o d .  

co co 

L e t  us  f irst  t r a n s f o r m  t h e  i n t e g r a t i o n  fdafdz to  p o l a r  c o - o r d i n a t e s :  a a n d  z 
o 0 

a re  cons ide red  as r e c t a n g u l a r  co -o rd ina t e s  in  a p lane ,  whe reas  

p = Vh~-+ z~, 

a 

0 = a r c t g  z ' 

a re  co r r e spond ing  p o l a r  co -o rd ina te s .  So we h a v e  now 

co r ~I2 ~12 

"'." '-"'-i-/".... "-/4'~ 
0 0 0 0 

�9 p~ ... p~ sin 01 ... s in 0~P(~(0 ; P l  s in 01, . . . ,  p~ sin 0~)- 

�9 P(1)(0 ; P l  cos 01 ... p~ cos 0.) ~ (Z~; T ~) . 

One  can  go over  to  k i n e t i c  energies ,  i n s t e a d  of m o m e n t a  b y  p u t t i n g  t, = 

: ~ / p ~ - k m ~ - - m ~  a n d  wr i t e  c o n s e q u e n t l y  

dp~. . ,  p ~ p ~ . . . ~ . ~  ~,,~ p~sin01,  ...)P(1)(O; p l cos01 ,  . . . ) ~ ( Z 2 ;  T~) , 

as f u n c t i o n  of t he  t~ a n d  of t h e  cos0~ 

q~(tl~ t~, . . ,  t . ;  cos 01, . . ,  cos 0.) dt~ ... d t~ .  

And ,  as p r o v e d  in  (~7), ~,,(E, j)  can  be  w r i t t e n  as 

T T T 1 1 

(12.') ~.~(E, j): ,-1,n-l;dTiidT .,_ ~ .../dTn_l/d(eosO1).../dcosOn)" 
�9 @(T~, T~ - -  T1, . . . ,  T - -  T.-1 ; cos 01, . . . ,  cos 0.) �9 

Th i s  i n t e g r a l  is c o m p u t e d  b y  lV[onte-Carlo b y  d r a w i n g  N t imes  two  s~mples  

A )  a n d  B).  
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A) n - - 1  r andom  numbers ,  according to ~ uniform probabi l i ty  distri- 
but ion  f rom the segment  (0, T). These are labelled in ascending order of 
magni tude  

T ,  T~, ..., T~ 1. 

B) n r andom  numbers ,  according to a uniform probabi l i ty  dishJbut ion 
f rom the segment  (0, 1). These are labelled (in the order in which they  come) 

COS 0t, . . . ,  COS 0 . .  

For  each sample one computes  the expression 

'~(T1, ..., T - -  I'._~; c o s 0 ,  ..., cos 0.) 

adds up these numbers  for a.ll samples, takes the average value;  this is pro- 
por t ional  to ~ ( E ,  j). 

In  the same way  as in the me thod  described in (17) one can compute  here 
kinetic energy spectra;  these can even now be split into t ransverse  kinetic 
energy and longitudinal kinetic energy, giving in principle the answer of the  
stat ist ical  theory  as to the distr ibution of t ransverse  m o m e n t a  in a high-energy 
collision. 

13.  - E s t i m a t e s  of  the  i n f l u e n c e  of  a n g u l a r  m o m e n t u m  c o n s e r v a t i o n .  

As long as the me thod  outlined in the previous chapter  has not  been put  
to work it will not  be possible to have  detailed predictions of the stat ist ical  
theory. W h a t  we propose to do here is an approx imat ion  t ha t  should enable 
us to compare  semi-quant i ta t ive ly  the results of the theory  with and wi thout  
angular  m o m e n t u m  conservation. 

Let  us write the phase-space integral  again, bu t  taking out of the inte- 
gration the mean value of the weight funct ion J~(Pl... P.):  

(13.1) o~(E, j) -- <.7, dp~ ... dpo,~(E-- gp~ + m~) ~ p,) = <~>~[(m, 

~ E  where ~ (  ) is the phase-space integral  as conventional ly defined (17). This mean  
value,  which is precisely defined b y  formula  (13.1), we are now going to re- 
place b y  the function ~ (<Pl} ,  {P~> ..-) where we shall t ake  
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whith (e~) the average value of the energy computed  f rom the conventional  
phase-space integral;  e.g. 

fdpl .f 
This is, of course, an approx imat ion  the error of which could only be aseer- 
tained b y  comparison with an exact  calculation. We shall use it~ as men- 
tioned, as an explora tory  tool. 

For  two eases which have  been computed  previously {6 GeV p-p colli- 
sions (~) and &~ annihilat ion a t  rest  (~9) we shall compute  <J,> and see 
how the new results compare  wi th  the  old ones. A source of uncer ta in ty  is 
t ha t  the old calculation gives (e~) all r ight,  bu t  averaged over all angles~ 

whereas to compute  ( . ~ )  we should know separa te ly  ( Z ~ ) =  ( ~ p ~ )  fred 

(!F~) ( ~  2 We assume  = PLy)" shall here near- isot ropy as the  mos t  p robable  

configuration on which to base our es t imate  of (~- , ) ,  at  least  for not  too 
high values of j. This assumpt ion  is good as long as the classical approxi-  
ma t ion  to ~ ,  is valid, i.e. a~Q~>>j 2. With  ~ = 1  (i.e. no angular  momen-  
t u m  conservation) one gets of course tha t  ( Z  ~) -~ _}(Q2), because then no di- 
rection is privileged. We take  therefore 

(13.3) 
=1 7;=1 

for the p-p collisions, because we wan t  to distinguish between nueleons and 
pious. In  the annihilat ion only pious are t aken  into aceoun~ in the final state.  

The result  of subst i tu t ing then  in the  calculations for p-~ annihi lat ion 
at  rest  the expression (13.1) instead of Q*(E) is t ha t  the average n m n b e r  of 
pions is increased: 

(with J-conselwat ion and f2 = ~4~ ~ )  = 3.73, % 'H,~ ) 

as compared to 

Q~=) wi thout  J -conse rva t ion  and .(2 = ~-  = 3.40. 

Alternatively,  one can t ry  to adjust  ~Q so as to have  the observed mult ipl ic i ty  

(i8) R. HA(~EDORN: NUOVO Cimento, 15, 246 (1960). 
(~) F. C~VLUS: 2Vuovo Cimento, t4, 827 (1959). 

~J 
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42T ~ 
.(2 = 10 ~ -  ],,~ y i e lds  <n~> ~ 4.7 w i t h o u t  J - c o n s e r v a t i o n ,  

.Q = 5 4~ ~ y i e ld s  <n~} ~ 4.8 w i t h  J - c o n s e r v a t i o n .  
3 

A l l  th i s  in of course  done  not a s s u m i n g  a n y  ~-= i sobar .  F o r  t h e  p - p  colli- 

s ions a t  6 GeV t h e  r e su l t s  a re  d i s p l a y e d  in  F ig .  5, as a f u n c t i o n  of t h e  t o t a l  

=4s 

I I I I Z - - - ~  I 
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Fig. 5. - Average number  of pions produced in a 6 GeV p-p collision, as a function 
of total  angular momentum and of interact ion volume .Q0=(4~/3)~. 
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of ~ . 7  

a n g u l a r  m o m e n t u m  1. To ge t  t he  a v e r a g e  m u l t i p l i c i t y  one has  to  s u m  over  

all  1. I f  one t a k e s  t he  h o t - s p o t  m o d e l  se r ious ly  enough  al l  p h a s e  r e l a t i o n s h i p s  

b e t w e e n  i n i t i a l  a n d  f inal  s t a t e s  a re  d e s t r o y e d ,  a n d  t h e  on ly  t h i n g  t h a t  coun t s  

is t he  s t a t i s t i c a l  we igh t  w z of t he  / - th  p a r t i a l  w a v e  in  t h e  p l a n e  w a v e  i n c i d e n t  
on t h e  sphe re  .(2 

(13.4) 
~ ,  a3 

f2 

where  [i> = exp  [i(k, r l - - r~ ) ]  is t h e  w a v e  f u n c t i o n  of t he  two  co l l id ing  pa r -  
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t i des  in their  e . m . s . ;  (13.4)  is a, special case (n = 2) of formula  (2,.5). w~ is 
~kin to  the  (~ penet ra t ion  fac tor  )~ in nuelear  physics.  We  obtain  

(13.5) w~ = 2 - i ~ - ( 2 / +  1)(ak) -~ exp [ - -  4a2kz]I~,+i(4a~k 2) , 

where again we have  t aken  the  Gaussian cut-off (7.4). For  the 6 GeV p-p 
collision this is shown in Fig. 6. The l inear rise for small  1 corresponds to the  
factor  (2l~-1) in the  classical p ic ture  of the geometr ical  par t ia l  cross-section 
o%.~ (21+1)zrs which is valid for a k < < l .  

l 
2 2 w~.8a k 

:2C 

]C 

I J I ~ i I 
0 io 20 30 40 5o 

Fig. 6. - The penetra~,ion factors u'~ of the I)artiM waves fo~ differeH~ interaction 
spheres; ~9o=(4~/3)~a; k CoITespon4s to 6 GeV p-p collision in the e.m.s. 

The average  pion n m n b e r  then, result ing f rom folding (n~> for given t 
with the w~, is found to be 

agMnst 

<n~> = 2.25 with  J - c o n s e r v a t i o n ,  

One sees t h a t  here the correction is in the opposite direction as in an- 
nihilation. This is easily unders tood because in a high-energy collision the  
high-angular  m o m e n t a  contr ibute  most ,  and for those the exponentiM factor  
in ~ (9.13) makes  itself felt. 

<n~> = 2.50 wi thout  J - conse rva t i on .  
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The numbers  jus t  Inentioned are obtained using t~2 == (4~,/3)~ ~ Qo a,nd the. 
eMstence of a, ~-.V isobar;  el. (~s). I n  order to obta in  {n~) ----- 2.5 wi th  J-con-  
servat ion one should take  D .... 2.0Do. 

1 4 .  - C o n c : u s i o . n s .  

E x a m i n a t i o n  of the formulae used in conventional  stat ist ical  theory has 
led us to in terpre t  t hem in such a way  tha t  the probabi l i ty  to produce ~ par-- 
t ides  in a high-energy collision can be s imply related to the  probabi l i ty  of 
finding n particles together  in a ~'olmne so2. The transi t ion mat r ix  elements squared 
will behave  t h a t  wa, y if the process proceeds v ia  an in te rmedia te  e hot  s p o t ,  
~md the  format ion  and decay of this <( hot  spot  ~> are stat is t ical ly independent .  
The assumpt ions  one real ly makes  axe, however,  weaker  t han  this, because 
the ma t r ix  element  should only reproduce this behaviour  on the  a.vergge. 
As one asks however  for more  and more  informat ion  (spectra, angular  cor- 
relations and distributions) f rom the stat is t ical  theory,  the averaging  is 
done over less and less pa ramete r s  and the assumptions  are stronger and 
stronger. 

Asking for ~ngular distr ibutions in the  convent ionaI  theory  is p robab ly  
making  too strong an assumpt ion  on the  maSrix elements,  w M e h - - s a v e  for 
N wa,ves--is in contradict ion with angular  m o m e n t u m  conservation.  

By  cm~sidering in the  averaging process over  the unobserved pa rame te r s  
of the final staCes only states of given to ta l  angular  m o m e n t u m  this eontra-  
(lietion can be avoided. One has still of course to m a k e  hypotheses  on l (] ISl i )  I ~, 
and these are mos t  easily found b y  comparison with  the  hot -spot  model.  

The avera,ging over final states having  specified values of J ,  E ~nd P = 0, 
(,an be done using the  project ion operatbrs  on states with these q u a n t u m  
nmnbers.  I f  one leaves out the  P-conserva t ion  the K o b a  theory  resuIts. 

The project ion operators  a,re given in in tegral  form;  the integrals  converge 
and ea, n be well app rox ima ted  b y  fairly simple formulae, in mos t  cases of 
practical interest ,  where the avai lable energy is several  GeV a, nd the  radius 
of the in teract ion volmne is ~ ~ .  

The theory  has then  given a modified form of the  phase-space integral,, 
which has to be computed  to get detMted results. 

As a fur ther  guide to methods  of ext rac t ing informat ion f rom the phase- 
space integral it will be useful to consider the so-called (< classieM ~ theory  
of T. ;Ericson; b y  a eompaNson with the present  me thod  i t  is seen t ha t  in 
mf~ny ca.sea its results should be good approxima,tions. Some qual i ta t ive  
features can, however,  be ex t rac ted  a t  once. 

For  high values of J ,  the phase-space integral will be depressed; a, lso in 
this ease there  will be a marked  correlation of the  end partieles~ which will 
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bend to come out peaked backward-forward.  For  low values of J~ as e.g. in 
,N~'-& ~ annihilat ion the phase-space integrM is increased, no correlation is 
int, roduced by  J-conservat ion.  

Because the integra,nd of the  phase-space integral  depends only on the  
average m o m e n t u m  of all the particles (for a given mult ipl iei ty)  the efl'eet 
on t, he spec t rum of a single part iele will be fairly smal!. One could therefore 
expect  t ha t  the spectra  of particles (averaged over angles in the  c.m.s.) front 
events with given mult ip l ic i ty  should not  be much different h 'om those ob- 
tained b y  the conventional  theory.  

The ~]Ionte Carlo me~hod proposed should be  able to obtMn reliable spectra,  
both  averaged over  angles tongitudinM and transverse.  I t  is of course an 
interest ing problem to find out how much  backward- forward  peaking J-con-  
servat ion is able to give, or wha t  magni tude  of J one has to  assume to be  
able to reproduce the exper imentMty observed peaking. 

The assumpt ions  of the hot -spot  model are bad ly  needed, finally, if one 
tries to es t imate  e.g. multiplicit ies f rom a high-energy collision where the  initial 
s ta te  is a plane wave  with definite phase  relat ionship between the  par t ia l  
waves. Averaging over all angular  m o m e n t a  incoherent ly  is only justified by  
the statistical independence of the two phases  of the collision process. A con- 
sequence of this independence is t ha t  the angular  distr ibutions in this form 
of statistical theory  are necessari ly symmet r i c  with respect  to a plane per- 
pendicular  to the collision line; this feature  is also clear f rom the phase-space 
in tegrand  where only the squares of the ' long i tud inM m o m e n t a  appear .  

Finally,  the changes in t roduced by  J-eonser,gation in the mul t ip l ic i ty  of 
oh'-,,V annihilation and  of high-energy p-p collision (increasing the former,  
reducing the latter)  make  t ha t  one~ has now to take  new values of the inter-  
act ion -volume t9 in order to get agreement  ~Jth exper iment ;  the long-standing 
d iscrepancy between the different values of f2 needed in each case is now 
reduced:  

sc2~h  = 2 5 0  
* ' ~ CO]]ieion 

but  has not  d isappeared completely.  

I t  is a pleasure to thank  L. VA~ HovE,  director  of the  C E R N  Theoretical  
Division, bo th  for hospi ta l i ty  at  CEt~N and for i l luminat ing discussions. The 
au thor  owes much  also to discussions with T. E~Icso~ ,  A. P~Is  and  1%. HAGE- 
DOt~. G. A. ERSmT~E has kindly computed  tables of Bessel funct ions of large 
imag ina ry  argument .  
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A P P E N D I X  

Random-flight Iunctions. 

The  p r o b a b i l i t y  t h a t  n u -d imens iona l  v e c t o r s  of g iven  l e ng th s  al ,  a2, . . . ,  a~ 
h a v e  a r e s u l t a n t  whose  l e n g t h  l ies  b e t w e e n  r a n d  r+dr  is (~o) 

(A.a) 

co 

P(~)(r)dr = 2 i F  ~ . ~ J,2I~)-~(rt) ... f l  ~J(m'-~(a~t)l 
0 

I n  a f i rs t  a p p r o x i m a t i o n  t h e s e  P(~)(r) a re  Gauss i ans .  I t  has  been  p r o v e d  (2~) 
for  a~=a~ . . . .  an or  m o r e  g e n e r a l l y  for  a l l  a ' s  of t h e  s a m e  o r d e r  of m a g n i -  
t u d e  (~*) t h a t  i n t e g r a l  (AI) can  be  a p p r o x i m a t e d ,  up  to  t e r m s  of o r d e r  1/n ~ 
b y  t h e  fo l lowing  expres s ions .  

(A.2) P ~ ' ( r ) d r - ( 2 7 ~ ) - ~ A - ~ e x p - - 2 ~  ~ 1 2 4 ~  3 - - 6 ~  d r ,  

(A.3) P ( 2 ) ( r ) d r = 2 r A - ~ e x p - - ~  1 - - - ~ 7  2 - - 4 - -  ~A~=--~ dr ,  

(A.4) P(~)(r)dr 4 e x p  3 r ~ 1 B ~ r 2 r 4 

where ,  for  v----1, 2, 3, one has  de f ined  

A ~  Za~ ,  

n 

B~ ~ Z al. 

The  f u n c t i o n  P(l~(r) g iven  in  (A.2) is sensu stricto n o t  t h e  p r o b a b i l i t y  to  r e a c h  
a p o i n t  r on a l ine  a f t e r  n s teps ,  wh ich  is a d i s c o n t i n u o u s  func t i on ,  b u t  r a t h e r  
t h e  d e n s i t y  of t h e  p o i n t s  t h a t  can  be  r e a c h e d  in  n s teps .  

(20) G. N. WATSOn: Besse$ Functions (Cambridge, 1945). 
(21) ~-~. CT. TRICOMI: F~tnzioni ipergeometriehe con]luenti (goma,  1954). 
(~2) F. C~RvLUS: to be published. 
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R I A S S U N T O  (*) 

Si d imost ra  c h e l a  teoria  s ta t is t ica  convenzionale  (con conservazione del l ' energia-  
impulso,  ma  senza eonservazione del momen to  angolare) d~ gli stessi r isul ta t i  (molte- 
l)ticit~ e sl)ettri ) che si possono o t tenere  da un modello che presuppone l 'es is tenza di 
un ~( hot -spot  )~ in te rmedio  nel la  collisione di due l)articelle di a l ta  energia,  se la for- 
mazione  dell'(( hot-sl)ot  )~ ~ s t a t i s t i camente  ind ipenden te  dal  suo decadimento  in nume- 
rose part icel le .  Questo modello ~ suggeri to dal le  formule  usa te  nella teoria  s ta t is t ica ,  
che in effet t i  l)ongono la probabi l i t~  di l)rodurre ~ part icel le  proporzionale  alla proba-  
bi l i ts  di t rova re  assieme ~ par t icel le  in un vo lume  ~9. La  conserva.zione del momento  
angolare  (assieme alia conservazione del l ' energia  e della quant i t s  di moto) pub essere 
soddisfa t ta  prendendo in considerazione solo s ta t i  di u l)articelle con valor i  l)rescrit t i  
del J to ta le ,  de l l ' energia  e del la  quant i th  di moto.  Facendo  uso del formal ismo della 
ma t r i ce  di densits  e di una espressione esplici ta  degli  opera tor i  di proiezione su sta.ti 
di dato  m o m e n t o  angolare,  si a r i iva  ad una forma modificata de l l ' in tegra le  dello spazio 
delle fasi, che ~ seml)l icemente collegata con la l)robabili t~ di produrre  n particelle.  
Si mos t ra  e h e l a  teor ia  con momen to  angolare,  ma  senza conservazione della qua.ntits di 
moto,  esposta da Koba,  ~ un caso speciale fac i lmente  der ivabi le  dal  p resente  forma- 
lismo. Si d imos t ra  c h e l a  teoria (~ classiea ~ della conservazione del momen to  angolare  di 
T. Ericson 5 un caso l imi te  che t u t t a v i a  ha una vas ta  applieabil i th.  S t r e t t a m e n t e  
par lando la teor ia  convenzionale  ~ val ida  solo se t t t t t e  le par t ieel le  finali sono nello 
s ta to  s. Le  formule sono s ta te  der iva te  per  una  forma sferica gaussiana di Y2. In  linea 
di principio si l)ossono a m m e t t e r e  forme contra t te .  Si l)rol)one un p rogramma tipo 
.~[onte Carlo l)er va lu ta re  questo in tegrale  dello spazio delle fasi. I1 metodo  l)ermetter~ 
di calcolare gli spe t t r i  degli iml)ulsi longi tudinal i  e t rasvers i  delle par t icel le  finali. Si cal- 
colano gli  effet t i  della conservazione di J sulla moltepl ici t~.  In  eonfronto della teoria  
convenzionale  la mol tepl ic i ts  ~ accresciuta del 10~o nelle  annichi lazioni  l) 'P e diminuitc~ 
del 10~o nelle collisioni P-l) di 6 GeV. 

(') T raduz tane  a cura della Redaz tone .  


