1L, NUOVO CIMENTO Vorn. XXII, N. 5 10 Dicembre 1961

Statistical Theory of Multiple Meson Production
with Angular Momentum Conservation.

F. CERULUS

CERN - Geneva
Institut Interuniversitaire des Seiences Nucléaires - Belgique

(ricevuto il 23 Agosto 1961)

Summary. - The conventional statistical theory (with energy-momentum
but without angular mowmentum conservation) is shown to give the same
results (multiplicities and spectra) as one can obtain from a model which
assumes the existence of an intermediate « hot spot» in the collision
of two high-energy particles, if the « hot-spot » formation is statistically
independent of its decay into many particles. The model is suggested
by the formulae used in statistical theory, which in effect put the prob-
ability to produce n particles proportional to the probability to find
# particles together in a volume 2. Angular momentum conservation
{together with energy and momentum conservation) can be satisfied
by considering only states of n particles with preseribed values of total ./,
energy and momentum. By using the formalism of the density matrix
and an explicit expression for the projection operators on states of given
angular momentum one arrives at a modified form of the phase-space
integral, which ig gimply related to the probability to produce n par-
- ticles. The theory with angular momentum but without momentum
conservalion, as given by Koma, is shown to be a special case easily
derivable from the present formalism. The « classical » theory of angular
momentum conservation by Ericson is shown to be a limiting case
of wide applicability, however. The conventional theory is strictly speaking
valid only if all end particles are in s-states. The formulae have been
derived for a spherical Gaussian shape for Q2. Contraeted shapes can in
principle be allowed for. A Monte-Carlo program is proposed to evaluate
thiz phase-space integral. The method will allow to compute spectra
of the longitudinal and the transverse momenta of the final particles.
The effect on multiplicity of J-congervation is evaluated. Compared to
the coanventional theory multiplicity is increased by 109% in p-p anni-
hilation and decreased by 109% in 6 GeV p-p collisions.
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STATISTICAL THEORY OF MULTIPLE MESON PRODUCTION ETC. 959

Part 1

THEORY OF ANGULAR MOMENTUM CONSERVATION
IN STATISTICAL MODELS OF MESON PRODUCTION

1. — The hypoiheses of the statistical theory.

In the conventional statistical theories of meson production one takes as
starting point the following formula for the probability W, to produce »n par-
ticles with masses Mg, M, ..., m, in a high-energy collision with given total
energy F, in the centre-of-mass system (c.m.s.)

W, = Of.. r...Q”_lQn(E; 0),

(1.1)

0u(B;0) = | dp, .. ;dpna(E_gv;ﬁﬁgg)a(zzp,),

. r=1

where f . is a numerical coefficient depending on the spins and isospins
of the particles, on their number and on the total isospin and £ is a three-
dimensional volume. ¢ is a normalizing factor, such that > W,=1, where

the sum is over all numbers and kinds of particles that can be produced in
such a collision, without violating any of the strong-interaction conservation
laws.

This formula can be derived from S-matrix theory, with suitable hypotheses
as to the behaviour of the S-matrix elements as a function of total energy,
isospin, ete. {(-2) (7).

We shall try in the present work to look at it also from a more intuitive
point of view, and ask what physical assumptions are made in stating such
a formula.

To arrive at a physical interpretation, let us assume that we have de-
scribed the n particles in the end-states by a superposition of plane waves,

Pipry oo %1y o) = €xp [0 D (p, x)]

=]

(*) R. HAGEDORN: Nuovo Cimento, 15, 434 (1960).

(?) R. HAGEDORN: Fortschr. d. Phys., 9, 1 {1961).

(*) This formula, in its simplest form due to Fermi, has been derived and treated
by many authors; see the above references for detailed references to previous literature.
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960 F. CERULUS

We could then write formula (1.1) in the following form (omitting the factor

fn,T“..)

1.2) W, = C.Q""l}dpl j ap. exp [—i 3 (p., %]
. F=1

-8(H —g Vi + p?) 6(Z:pz) exp [ é(pu x,)]

(1.27) = ( mdxl ndxnfdpl... ﬂdpn-
[l
NP Puy s 2y ) OB — 3 Vimd -+ p2) 8(3 po) 6(3 %) -

The last J-function has been introduced essentially for dimensional reasomns,
and means that the average co-ordinate has been taken as 0; because the
total momentum is zero a constraint of this type is necessary. If we interpret
[¥i(p1y -o; %1, ...) |2 (which is strictly speaking equal to |exp [i(p, x)]|2=1),
as the density of particles in the region of phase-space around p,...; x; ..
the formula means that the probability to produce n particles is proportional to
the probability to find » particles in a region of phase-space which corresponds
to a volume ©Q (for each particle) in configuration space times the volume of a
complicated hypersurface (defined by the dJ-functions) in momentum space.
Because |#;|2=1 the phase-space density is constant, and all states in the above
defined region are equally probable. Another way of saying the same thing is:
W, is proportional to the sum of the probabilities to find the » particles—which
are in a state described by p,, ..., p,—in the volume £2, where the sum is over
all states with the given total energy £ and total momentum zero, and all
states in the sum have equal probability. £ plays the role of an adjustable
parameter.

How can one understand this result? TLet us start, as in the derivation (')
of (1.1) from S-matrix theory by stating that

(1.3) W. = 21<fI8] ]2,
f

where § is the S-matrix, |¢) the initial state (two colliding particles) and |f>
an n-particle state. The sum is over all n-particle final states.

Because we believe that time-invariance holds in strong interactions and
because 8 is unitary we have

[FIS [P = (<4, STfe |

On the r.h.s. we have the value of the matrix element squared between an
n-particle initial state and a two-particle final state, 7.c. the probability of the
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STATISTICAL THEORY OF MULTIPLE MESON PRODUCTION ETC. 961

inverse reaction. We could hence also write
W, = 21,8112,
7

and by comparing with (1.2") we see that the sum of the probabilities to go
from any n-particle state to a two-particle state is effectively put equal to
the probability to find the # initial particles in a volume £; the sum of the
squared matrix element, can be expressed—extracting the J§-functions for
energy-momentum conservation—by the awverage of a reduced squared matrix
element 8’

(1.4) W, = ig| 8 |fo> | .'fZ oE—3Vpl+mi)s(Zp.).

The statistical hypothesis means then that on the average the reduced matrix
element squared is equal to the probability to find the # initial particles (in the
reverse reaction) in the volume £.

We see therefore that one has not made any detailed hypothesis on the
S-matrix element between the given two-particle state and a particular n-par-
ticle state; the statistical theory as condensed in (1.1) makes only a statement
about the average behaviour of the S-matrix elements.

One can now make a model which leads also to (1.2') and shows therefore
the same average behaviour of the transition probabilities as was assumed
for the §-matrix: if one assumes that in the collision a « hot spot » is formed,
which can afterwards decay in any of the allowed n-particie states, and that
the probability of formation of the hot spot is independent of the probability
of decay. One sees that this assnmption is closely akin o the compound
nucleus idea in nuclear physies.

Denoting the probability for hot-spot formation by W,_,, and for its decay
by W, the model means

W, =W, W

2—re &>

and for the reverse reaction

Wo=W,_ W, ...
If now in addition one makes the further physical assumption that W, =C,-
- {probability to find the particle in £) {4.e., probability in the reverse reaction
to form a hot spot is proportional to the probability to find all particles to-
gether in a volume (2] then we get

(1.5) W, = C.W,_,, Q"19,(E;0).

e—>2
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962 F. CERULUS

Here £ has got evidently a very precise meaning: its linear extension has to
be of the order of magnitude of the range of the strong interactions. This
formula will only be identical with (1.1) if we assume furthermore that the
proportionality constant C, is in fact independent of =, é.e. that hot-spot for-
mation depends only on all the particles being in Q, whatever is their number
(or their momenta for that matter).

One sees also that it is necessary to make the hot-spot model to arrive
at (1.1): according to (1.1) W, depends only on the probability for the n par-
ticles to be in £2, which is physically only the first phase of the (reverse) process.
The total probability W, is only independent of the second phase (2 particles
coming out of ) if the two phases are statistically independent.

We emphasize again that for the validity of (1.1) this model need not be
true, in all its details. The true S-matrix should only on the average give the
same results as this model. However, the contents of what one calls usually
statistical theory are not exhausted by formula (1.1), which can only predict
multiplicities, but no spectra or angular distribution. In order to get infor-
mation about spectra, one usually takes the formula

(1.6) Wo(p)dp, = Cfy r. 27200y (B — VD2 + mE, p,) dpidp, ,

(L6') owr E—V/p% & mE, pa) = [apl fapw [ de,d(E— 3V T md)o(Sp.),

o

where e, is the unit vector along p,. One gets (1.6) in effect from (1.6') by
omitting the integration over the magnitude of p,, and takes W, (p.)dp,. to
be the probability that p, shall fall between p, and p,+dp.. One can now
make the same kind of reasoning as before, by taking for the allowed n-particle
statey only those with given total energy-momentum and with the n-th par-
ticle momentum equal p,:

(1.7) Kiis' |2 = 8'(pa)

and in order to get (1.6) one must put this proportional to the average of the
probabilities that » particles with total energy F in their c.m.s., the last par-
ticle having momentum p,, will find themselves together in 2, when the den-
sity in the allowed part of phase-space is uniform. One sees immediately that
(1.6) demands that S’(p,) be in fact independent of p,, (and equal to a con-
stant of the form £2°-), and here we take in effect the « hot-spot » model more
seriously. One should point out that on the other hand the spectrum of par-
ticles within a given multiplicity # is independent of the asgsumption C,==constant.

Formally, it is possible to go on in this vein, to leave, e.g. also the angles
e, out of the integration in (1.1) and derive a new formula where the S-matrix
element squared averaged over a still smaller number of variables is put equal
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to the corresponding average from the hot-spot model; this yields an isotropic
distribution, as in the integrand of (1.6) no direction e, is privileged:

0.8)  Walpa) = Clar.o @ [ap, . f dpud(B—3 Vit i)s(Sp).

At this point we have to introduce explicitly angular momentum conser-
vation. Formula (1.1) is not in contradiction with this conservation law, be-
cause the S-matrix element will take care of it by its dependence on the p,
(magnitude and direction); after averaging no explicit trace of this remains,
except perhaps in the magnitude of £2. The same cannot be said of (1.6) and
a *fortiori of (1.8), where the assumed independence of the reduced matrix
element squared from p, or p, may be in contradiction with angular momen-
tum conservation. This contradiction may be avoided by restricting the al-
lowed n-particle states to those having given total energy K, momentum P, .,
angular momentum squared j(j+1) and ¢ component of angular momentum m
(a8 we operate in the c.m.s. where P, = 0 these four quantum numbers can
be specified simultaneously). E, P=0, j and m are of course the same as
in the initial state, and the states left out by restricting the averaging to those
with fixed j and m would have confributed zero to the integral. Averaging
then |(Z|8|f>]? over these more restricted final states (specified by E, P =0,
j, m and p,) one shall get a different function 8"(p,), because the region of
integration is different. Taking this function independent of p, is an assump-
tion which involves no contradiction with angular momentum conservation.
The hot-spot model which should yield the same average is obtained restricting
here also the allowed initial states |f,> for the reverse reaction to m-particle
states having well-defined values, E, P =0, {, m, and taking consequently the
probability W, for hot-spot formation proportional to the probability to
find the n particles—with the quantum specified above—in the volume 0.
Taking the spectrum and the angular distribution from this hot-spot model
will certainly give a better approximation to W,(p,) or W,(p.) than formulae
(1.6) or (1.6’); but there is of course no a priori reason that it will yield the
whole story, i.e. that §8"{p,) is really independent of p,.

Specifying n-particle states with the quantum numbers given above, and
finding an expression for this last probability is not a trivial problem; the next
section is devoted to it.

2. — The density matrix.

In this section we shall answer the following question: « what is the pro-
bability W,, that n particles are found ingide a volume 2, agsuming that the
n particles have well-defined total energy, total angular momentum and that
their total momentum is zero? ».
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964 F. CERULUS

Having stated that the n-particle system has sharp values of H, J2, J,
and has P=0 is of course not sufficient to define the state of the system.
We have seen on the other hand that the statistical theory of meson-production
congiders every state as equally probable, provided no conservation laws are
violated. This then leads in a natural way to the description of the n-particle
system by a density matrix. A density matrix can be written quite generally as

(2.1) 0= 2l B, j, i P= 00D, 50.0,$% B, §y sy P=0].
wH

Fida

We have already taken advantage in writing this that we shall only be inter-
ested in states with P=0. The « stand for all the quantum numbers nec-
essary to define the state completely in addition to E, j, j; and P=0. Stating
that ounly states with fixed E, j, §; (say &', §/, j;) are allowed means putting
the weights p,, . =0if E,j, j; have values different from £, §', jr. Stating
that all allowed states have equal probability means putting

Doy = constant

independent of « (say C,; it might in principle still depend on n). One counld
at this stage allow for final-state interaction by a suitable choice of the system
of observables «, and by making p, . .., dependent on «. We shall, however,
stick here to the simple assumption

(2.2) Popigse = On O —E') (G —J') 8js—7g) »

where €, is a proportionality constant. This means that we assume for the
density matrix in effect the simple form

(2.3) ¢ = CYL‘@E@J@WE@‘J’

where &,, #,, &, are projection operators on wn-particle states having respec-

tively tofal energy = FE, total angular momentum = \/j(j +1), total angular
momentum third component m, and %, is the projection operator on total
momentum = 0 states.

This density matrix allows us to state the probability to find a given ob-
servable A in a range of values a,...a,; as is well-known this is

Tr o, ,

where #,is the projection operator on the subspace of eigenstates of 4 having
eigenvalues in the range a,...a,.
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Our question now is to find the probability that the observable x; (= po-
sition of ¢-th particle) will have an eigenvalue §, ingide £2. The corresponding
projection operator is simply

[dgla(xi-‘ E.),

Q2

and the probability that the » particles are inside £ is given by

{2.4) W,o=1dE; ...fdgn Trod(x, —&,) ... 8(x, —E,) .

2 2

In order to work this out we have to introduce at this stage a complete
system of states of » particles. For this we shall take products of plane waves;
it will turn out that with this choice the mathematics are still manageable;
other choices (e.g. spherical waves) are of course allowed in principle, but
would make it hard in practice to retain rigorously momentum congervation
in the formalism

[Piy oy Puy = €Xp [7' 2 (ps xl)} .

i=1

With this choice we have

Trod{x, —&;) ... 6(x, —E,) :[dpl...fdpn<pl e Pale ]j dx, —E)ip1... puy =
:fdpl... dpnfdxl...fdxn exp [—ié(p” xl)]glié(xl—’él) exp [ig"l(p“ )],

and congequently

(2.5) W.o :[dpl ...fdpnfdgl ...fdgn exp [—-—iZ(pl, )] exp ['iz (P €0] -
» . 3 =1 =1
(Strictly speaking, one should first compute the bra < Pi-- Pnlp and carry out

the x; integration afterwards; it will be clear that this does not alter the
result,)

3. — The projection operators for momentum and energy.
The whole point of the present method lies in the use of a suitable form

of the angular momentum projection operator. Because the operators H , P,
J% Jy—of which our states are pure eigenstates—can be considered as infini-
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966 F. CERULUS

tesimal generators of eontinuous groups, we are led to the following problem
of group theory.

To find the projection operator on a given irreducible representation of
a compaet group (space-time translation group for H, P; rotation group for
J% and J,). This problem can be solved quite generally for all finite and com-
pact groups, and the answer is (>%)

I
3.1) - 2= [aad g,
where A: an operator, element of the group,

I': a representation of the group
P the projection operator on I,
d": the dimension of the representation,
% (A4): the character of the element A in the representation I,

g{A)dd: the « volume element » in the integration of the space of the
group elements,

Bo= f g(A)dA = the « volume » of the group
(for a finite group: » = nnmber of elements of the group).

We recall the orthogonality property of the characters:
fg(A T (A) g (AY A = B3y

In order to make this clear we apply this formalism to a well-known case and
we propose to derive the projection operator on one-particle states with mo-
mentum p’ along the x-axis. We have then to build the projection operator & .
on this representation of the group of all linear translations along the z-axis.
The elements of the group are the operators of linear displacement:

A(a) = exp |a —

dx

’

because evidently f(x-a)==exp[a(d/dx)f(x)]. This group is Abelian, all re-
presentations are one-dimensional functions of a and consequently the char-
acters equal the representative functions

2?(a) = exp [ipa]

() E. WieNER: Gruppentheorie ... (Braunschweig, 1931).
(*) V. HEINE: Group Theory in Quantum Mechanics (London, 1960).
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whose orthogonality relations are

e +

[ddx"“""”‘(a)x"“’(a) :fBXp [i(p —p")alda = 2xd(p —p’) .

Consequently
F-oo
(3.2) P, = 1 da exp [— ipa] exp|a 4 .
P 2x . dz

-0

Let us apply this to a function with known Fourier transform

+ o
~

(3.3) H) = , dk exp [ika]p(k),

—w

o oo

: P )= = % : d o
8.4)  Zflw)= Qﬂ.[dafdk(p(k) exp [—ipa] exp |a | exp [ika] =
1 +w e
= a;fd“fdksv(k) exp [—i(p — k)a] exp [ika] =

o0
:fdk(p(k) exp [tha|d(p — k) =

00

(3.5) = @(p) exp [ipx] .

967

This gives the well-known result; comparing (3.4) with the definition of f(z),
we see also that one could put, when %, is applied to an eigenfunction of
momentum p, (i.e. a representation of the translation group along the z-axis),

(3.6) Py exp [the] = 6(p — k) exp [ikz] .

We can now apply this immediately to our problem and write

6.1 exp [—i 3 (8] s exp [~ 3 (p B]3(B -3 Vot 1 md) o

Sp).

in order to get this result one should remember that for independent particles

H=3H, (H,=energy operator on i-th particle) and the time variation of

il
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the plane waves i8 exp [——iz.sit]. A similar argument on time translations

gives then the d-function for the energy.

4. ~ The projection operators for angular momentum.

Were it not for the operators #;#, this would lead at once to the result
obtained by the traditional theory, without angular momentum conservation

(4.1) W ~andp1 ...fdp,lé(E — 3 Vit md)o(Zpy)-

In order to have an explicit form of &, we have to choose first suitable
parameters to describe rotations. We shall use in the following two equi-
valent sets:

a) rotation axis, i.e. a unit vector n; rotation angle w, where 0<w<m
by FEuler angles: o, £, y.

For each of those the factors that enter the integrand of the projection
operator &, are as follows (Table I) (3:5f).

Tasre 1.
1 n, w o By
|
|
|
ar 21 ! 2j+1 |
oo 2n? 8n? x
! !
g(4) sin? f2 sin B |
. 1 ‘
Z(4) | sin (jro/sin w2 2 Dol B,7)
m=—3
A | R(n, o} = exp [tw(n, J)]| Rix, B, y) = exp [— it ,] exp [— J,] exp [— iyd,]
J=>7ji (Ji= —irixVy)
2=1

(®)y A. Epmoxps: Angular Momentum in Quantum Mechanics (Princeton, 1957).
() M. Rose: Elementary Theory of Angular Momentum (New York, 1957).
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We shall first construet the &, operator with the (n, w) parameters, which
gives the simpler form. Substituting in (3.1) we get (*)

(42)  exp[— zi (p., )] 2, exp [i i(pi, r)] =

%A1 L0 80 (+ Ho <
=55 fdnjdw 3 smo2 e‘cp[-—a‘zp,, )]

0

-exp [w(n, zr xV.)] exp [fo p“ r)] .

Our next problem is then to express the effect of a finite rotation of the co-
ordinate system on a plane wave, i.e. to compute

(4.3) exp [o(n, 2 r. xV.)] exp [@ p“ r)] =

=1

= f[ exp [w(n, r.x,)] exp [{(pV,, r)] .

One can compute this by expanding the rotation operator in an exponential
series

(4.4) exp [w(n, r XV)] i %)— n, rxXVv).

To evaluate

(n, rxV) exp [i(Py r)]

is not trivial because of the non-vanishing commutators [r, ¥]. The algebra
involved is not complicated, however, and the result is

(4.3) exp [w(n, r XV)] exp [i.(lh r)] =

= exp [i(p, r)] exp [i(r, p xn) sin w — i(r, (p Xn) X n){cos w — 1)],

(4.6) = exp [i(r', p}] = exp [i(r, p')],

(") In this form we consider only orbital angular momenta; one could in principIe
introduce spinor plane waves for the nucleons, and make R also act on thesespinors.
This seems at the moment an unnecessary complication, as the bulk of the (high)
angular momenta is certainly due to orbital motion of the fast product particles.
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where .
(4.6a) r'=r—(rxn)sinw—{(rxn)xn](cosw —1),
(4.60) p'=p+(pxXn)sine —[{pxn)xXn]{cosw—1).

This result is quite natural: r' is the vector r turned over an angle w around n.
One can alternatively consider the operation of rotation as affecting the field,
with a stationary frame and this leads then to a rotation of the momentum
vectors over an angle [w]| in the opposite direction. p’ is nothing but the
original vector p turned over an angle —w around n, (4.6a) and (4.6b)
express indeed the result of performing a rotation (n, +-®) on a vector (7);
the new vector is a sum of three mutually orthogonal vectors. One sees also
that the difference between the turned vector and the original vector is ortho-
gonal to the axis of rotation, and its length is

(4.7) { }~{ }ISIH@][Sln2m+(GOSw-—] {;}\smﬁ sm—

The matrix element of the projection operator for total angular momentum
j(j-+1) between plane waves reads now

(3)  exp[—iX(p,r)]2 exp [ 3 (p,ra]=

2i+1 : N N Lo
=5 [dnfdw sin 2 sin (7 + How exp [ZZI(K“ r,-)] ,
o

where

K, =sinw(p, xn) — (cos o — 1)[(p, xn) xn}

is the difference between the turned vector p, and the
P original vector p, (see Fig. 1).

Fig. 1. — The vector p, the rotation axis r and the triad of orthogonal
vectors n, pxn, (pXn)xn to which the turned vector is referred
(p-m)p-n in formula (4.60).

(") J. L. SyxcE: Ulassical Dynamics, in Handb. d. Phys., vol. 3/1 (Berlin, 1960).
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5. — The projection operator for magnetic quantum numbers.

Here we are concerned with states having a well-defined value of J,, the
z-component of the total angular momentum. The operator J is the infini-
tesimal generator of rotations around the z-axis; one convineces onesell easily
that in case of this Abelian group the projection operator is

27

5.1} Py = 51; f dy exp [— dmep] exp ligd.] .

L

The interesting thing, however, for high-energy collisions is the operator
PP, with m == 0.

If the z-axis is taken along the collision line the total angular momentum must
be orthogonal to the z-axis, and hence only states with J, =0 can contribute
to the final state. So we have to compute

(3.2) exp[ —i X (poy r)] & Pucs exp [ 3 (poy 1] -

One can do this by applying in succession the explicit forms (5.1) and (4.8)
or else making use of the fact that &, #,., is a projection operator on a par-
ticular line of the 2j-+-1 dimensional irreducible representation of the rotation
group. The general form of such an operator is (*4)

(5.3) %{ [g(A) d(4)2;, (A)A

where @7 is the diagonal element on the particular line m of the represen-
tative matrix. Formula (3.1) is a special case of thig theorem, because

ZI‘:E@P

Applied to the problem at hand this gives

GA) B, =110 fdnfdwsmz Dipimy ) exp [o(n, Ir.xV )] -
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We see that the only difference with the operator P, consists in the substi-
tution of Zy(n, w) for x”(»). The matrix element %), has a particularly
simple expression when the rotation iy expressed with Euler angles

(5.5) Dol By v) = D5(0, B, 0) = P, (cos ),

(P, (cos 8) = Legendre polynomial of order j). As a function of n, @ it is ob-
tained by expressing f as a function of n and w. We notice that

(5.6) cos f = D(n, ) = (e, R(n, w)ey),

i.6. the unit vector along the z-axis, e;, turned over w around n, and projected
on the z-axis.
By using (4.6a) one finds

cos § = cos? @ + sin?f cos

where # is the angle between # and the z-axis.
Consequently

(5.7} Diy(n, w) = P,(cos®0 -+ sin® 6 cos w) =

= (P, (cos §))*+ 2m§_:1 " _P—F' (P(cos 0))2 cos ma .

‘We see that the parameters (n, w) give simple results in the formula for &
only; for expressing #;%,._, it is easier to use the Euler angles.

6. — Statistical theory with J but without P conservation (Koba’s theory).

In Section 2 it was pointed out that the formalism of the density matrix
leaves one in principle free to choose any complete set of n-particle wave funec-
tions. The explicit form of Tre?, will of course depend on the chosen
system.

In connection with the theory developed by Kosa (®%) it is interesting to
calculate the form of (%, #,> using spherical harmonics instead of plane

(®) Z. KoBa: Statistical theory of multiple particle production with engular momentwm
conservation, preprint Warsaw, October 1960; to be published in Acta Phys. Polon.

(®) Z. Kosa: The angular momentum weighl factor in the statistical theory of multiple
production - 1, II, preprints February and April 1961; to be published in Bulletin of
the Polish Academy of Sciences.
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waves. A complete system of wave functions of a free scalar particle is then
|[klm) = j(lr) Y7(0, ¢) ,

(4:(kr) = the I-th spherical Bessel function) and a diagonal matrix element
of #,2, is therefore

[~ [e]

(6.1) o Jﬁ dr, f?’i drg | §,(kary) o G (Bnra) |2
0

o

7 27 7 25 2m 44 27
: ’sin Gldﬂlqupl ...fsin endenqupnfdafdﬁfdy sin 8-
J 0 0 o 0 b
@mm(a” /37 01(?91) "'Yﬁn*(en(pn)R(ocﬁy) Yﬁl(glfpl) Yﬁn(eng’?n) .

Because the Y}* are orthonormal and belong to a well-defined irreducible re-
presentation of the rotation group

(6.2) l dep f $in 60 Y™ R, Y = DL, (afy)
d

0
and the last two lines of formula (6.1) reduce to

2m n 20

(6.3) j dfx} dg | dy sin BDL(fy) Dt (2BY) - Do, (2By) -

9 0 [

If one chooses to neglect momentum conservation and consequently takes as
density matrix

(6.4) 0'=10,2,%2,
and compute in this case

(6.5) Tr o' 6(x, —E,) ... d(x, —E,)

the trace would involve summing over all m, (as well as I, and integrals over k).
Taking the expression (6.2) and summing over all m, gives a certain coeflicient
7(3)( )

+iy +ln
(6.6) Z2(, ... n)#[doc[dﬁfdy Sin @Y S o D D Dt s

my=—T Ma=—ln
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which can in principle be computed, as the 22 (xfy) are well-known. This
coefficient contains implicitly all the selection rules due to the addition of the
the angunlar momenta 1y, ..., 1, to a resultant §, with m,-tm,+...+m, = m.
Ifeg lLi+..+l,<jorl,>j+l+..+1.- so that the triangular conditions cannot
be satisfied, then Z?(l,...1,) is automatically zero. This method has been
used in two previous articles for computing « phage-space integrals » in isospin
space, either by recursion using Clebsch-Gordon coefficients () or in closed
form (*2).

The phase space integral for a spherical £ with radius £ looks then as follows
(up to a constant coefficient)

R 5 « -]

(6.7) fdh {dm dkl ] 2

'n 0 b

nMB

20 L) LT (k)
S(B—3 VI md)

Formula (6.7} is essentially Koba’s formulation of angular momentum conser-
vation in the statistical theory.

7. — Phase-space integral with angular momentum conservation.

The probability to find = particles in volume £, with specified E, P =0,
4, and m==0 is then

(7.1} Waoll;j;m=0) =

= ij dp, ... 4p,6(H -2 Vpi4m3) (3 p.) 6Py Pa) s

1

where
2j =1, f 0 @ i)
(71.2) G, = —EF—/dn do sin® = Fa(n, o) | dry .. |dr, exp [@ (r., K,)],
Y% 22 2
or alternatively
27 :27 2
- 2§+ 1 PV L&
3) = /doc ’dﬁ dy sin BP, (cos B) [ dr, ... [drexp [i ¥ (., Ki)],
d R . . 1=1
o 0 [} Q Q

(19) ¥. Ceruvrrs: Suppl. Nuove Cimento, 15, 402 (1960).
(Y F. Cerurus: Nuovo Cimento, 19, 528 (1961).
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and K is each time the difference between the turned vector p’ and the ori-
ginal p (£.6).

The further development depends now ou the assumption made about the
interaction volume . We shall here take a spherical shape, and replace the
sharp cut-off by a Gaussian cut-off. We replace then

1
i

p? .
i +i{r, K)|.

(7.4} ]"dr exp [{K, r)] by fdr exp
P

This form of eut-off is made for computational convenience. The mean square
radiug of the volume with this cut-off is

(rey = 6a*,
t.e. we could take as radius

(7.5) R=+6a=245a.

“The integral (7.4) is the Fourier transform of the form factor of £2. For a
spherical Gaussian we get

{7.6) {dr exp [i(K, r) — 8ata® exp [ «2K?] = (gg)gR3 exp {“ quJ )
P
£2
and
@n  [anfar e [ 3 00 K] = ()27 B) exp [ (3 )]
1% w ? \ =1

L&) el
This expression depends only on the length of the vector K;. This length was

already given for the parameters of rotation n, w {(4.7).
For the Fuler angles it iz easily computed as follows:

K=p' —p=9%aupy)p—p,;

where 20 is the transformation matrix of a vector under a rotation («fy).
‘Consequently

(1.8 K2 = (Zp): + p*— 2 (p, DVp) = 2(?2_ (p, @(np)) .

Using the known formulae for the matrix 2% .(«fy) *) one finds

s

(7.9) (py 90p) = picos f+ pb — 22 cos (ufy)
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976 F. CERULUS

where p, and p . are the components of p along the z-axis and perpendicular
to the z-axis.

‘We are now led to the following expression for the probability to find =»
particles in a spherical Gaussian volume

(7.10) W,oll, j,0) = C, 27+1)( ]/Zﬂ) (4:: )
-/d 1...fdpn6<E—§\/p3+mi’) 5(;1;%)9;

The change, with respect to the statistical theory without J-conservation is
a) a factor 2j + 1,
b) a factor (1v'2x/3),

(this amounts in effect only to an unimportant change of the interaction
volume, due to the introduction of a Gaussian cut-off);

6) a weight function F(p,...p,) in the integrand.

By analogy with the usual statistical theory we shall henceforth call « phase-
space integral » the expression

(7.11) g (B, P=0,], m=0) Efdpl ...fdpné(E — > Vpitmi)o(3Zp)F,

also to be denoted for short by ¢’ (B, j, 0).
The weight function #, is expressed as a triple integral over the para-
meters of the rotation

(7.12) F Py oee Pu) = exp [— azszdafdﬂ dy sin 5 P, (cos §)-

-exp 24272 cos B} exp [a*T3(1 + cos f3) cos (« + ¥)] »

where

52 = Z*4- T2,
AR zl’fn
i1

Tr=3p",.
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We see from this that the weight function &, depends on a single p, only
30 to say through the average over the »n perpendicular and the n longitudinal
components of the momenta. The alternative form of #, is

E13

1 f . ;
{7.13) F, = ﬁjdnfdw gin? % GPy(n, ) exp [~ 2a2@%]|(1 — cos w) ,
¢
where
Z p.Xn)?

= sum of the projection squared of p, on a plane perpendicular
to the axis of rotation n.

We shall not use this form for computation, but it is useful for qualitative
disenssion.

8. — The classical limit of the phase-space integral.

T. ERICSON {12} has been able to derive many results of statistical theory
with angnlar momentum conservation by treating the I-vectors of each single
particle as classical vectors, i.e. by neglecting the fact that r, p and I do not
commube.

What happens in our case when we neglect these commutators? The rota-
tion of a plane wave is then written as

8.1 exp [w(n, rxV)] exp [i(p, r)] = exp [iw(n, r X p) +i(p, 7],

== exp [t{r, p +o{pxn)],

so that now K= w(pxn).

1
(8.2} G (Plassioal — 5o dnfdw@f,f,(n, w) exp [— a2@w?],

o

with 20(n, w) as given in (5.7).
When is this a good approximation? In all such cases where

{8.3) exp [— a*@20?] & exp [— 2a*0*(1 — cos w})]

{12y T. Ertcson: Nuove Cimento, 21, 605 (1961).
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as is easily seen by comparing (8.2) with (7.13); this means when a2@? is so
big that moderate values of « make the factor exp|[— a*@2w?] already va-
nighingly small. The condition is then

n

a* Y (p,xXn)*>1.

=1

Because n is an integration variable (over the unit sphere) this is only sure
it the p,’s are big enough, and with fairly spread out directions. The last
point is true on the average, for #» not too small, because configurations of p,
which cluster together oceur very seldom and contribute therefore a negligible
amount to the phase-space integral. The physical requirement for the clas-
sical picture to hold is then
2N~y 1 .

@) <P >
b) m rather large to assure the probable spreading of directions.

If we can neglect the particles’ masses as compared to their energies the
first condition can be stated as a condition on the total energy which has to
be larger than

(8.4) B = 0V > V%% — «/éﬁ% .

We shall see in Section 9 the exact limits of validity of the classical approxi-
mation by comparing the exact end formula with the classical one. Eq. (8.4),
however, shows already that in most practical cases condition «) will be ful-
filled. Tor e.g. 6 particles and B ~ 1.4-10-'® cm one has F_,~ 1 GeV.

9. — Explicit form of the phase-space integrand.

We shall presently carry out the integrations in formula (7.12) for #,.
The integrals over « and y are simple and of the form

b4 27r
(9.1) fdocfd'y exp[A cos (a + )] = 4m2l,(4),

where [(A)=Jy(iA), the Bessel function of pure imaginary argument. After
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this we are left with one more integral

9.2) # = —i;fdﬂ sin B P, (cos B) exp{—2a%Q?] exp[2a2Z? cos f11,[a*T*(1+cos )] .

¢

Remembering that Q== T2} Z® the integrand can be written as a product
of three factors

Fi(cos §) = P,(cos ) sin f,

Fileos B) = exp [— (2a2Z? 4 a?T*)(1 — cos f}],

Fy(cos f) = exp [— a2T2(1 -+ cos B)]L,(a2T*(1 + cos §)) .

We shall first transform the integral to gebt rid of the oscillating P,( cos 6).
The factor F,(cos ) can be expressed as a Laplace transform using the formula

28

(9.3) exp [— bp|l{bp) = %fexp [— pt](2bt — 12)~tdi.

¢

Putting for a moment

20°2° + T2 = ax(Q*+ 7% = A,
T = a}Q*— Z%) =B,

we have

9.4 a'-*lz df 7zd'jP*‘ Al 8 t{1-+-cos

(9.4) J’“%fmgﬁf B sin B P, (cos f) exp [— A(L— cos ) — t{1+4-cos f)]
1 ¥ dt 1

(9.5) = l/%; exp [‘”fﬂf @B — P [—] - I,43(d —1)

(9.6) =47V 2m exp [—lo] (A— 1) exp [— (A— )11, 3(A—1,) exp[—B]I(B),

where the last line is derived from the foregoing by using the mean value
theorem, f, being a value between 0 and 2B. For most practical purposes A4
is a large number, because the particles’ momenta are larger than p=1/F,
excepl perhaps for very high multiplicities; it is of the order of n(Rz<p>2/6).

Because I;4(®) is a fast growing function of » (see further down for their
general behaviour), the important contributions to the integral come-from
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small values of #; for j-+4< 24 the width (i.e. where exp[—{f](4 —)t
1, +§(A—-t)z%fl"'§1 ,(d)) it t~ $log2, which is quite negligible compared
to 4. In most cases it will therefore be a good approximation to take simply
A—t,~ 4 and exp[—1,]~ 2%, For extreme cases one will have to resort
to a numerical evaluation.

Taking for the moment the approximate formula one gets

0.0 7= ;,\—/ exp [— a*T*]L,(a*T*) exp [—a*(22° + T%]-
1

Ia(a?(22% 4 T7)) GG T

Before discussing how to calculate the phase-space integral with this funetion
in the integrand we shall discuss the general behaviour of #,.

The functions exp[— ]I, (x) are smooth, real functions of # and ». For
very small or very large values of # they can be easily approximated by the
first term of a power-series expansion, or of an asymptotic series respectively.
We have as a matter of definition

kY %$}v+23

(9.8) I{x) = 25 o)l (i),
therefore for z < 1

- w) jo)* )
{9.9) exp [— x|l (x ( —}—;‘Mrl» 4 Sk

For >1 and z>>»

1 492 —1 )
(9.10) exp [-— .as]I,,(m) R m (1 — --gfg- - ...) .
For moderate or large v the following form is more accurate (Debye asymptotic
form)
(9.11)  exp[—a]l,(x ]/tghy exp [— x -+ v(cotghy — p)]-
. N 2 s a2
[1+ o tEh (3 — B tehty) )
with
; ¥ . v
sinh y == —x— 2.6, tghy = %m .
For moderate » and v <lo formula (9.11) is approximately (up to terms

0(v3/x?))

(9.12) exp [-évﬂv(w}%\/w e‘Pl ;;Kl igz}

In Fig. 2 and 3 are shown the functions for »=0, I, § and further for
p=1, 3, ..., 11. As may be seen from (9.8) only exp [— @]/ {«) does not vanish
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0.50

8]

Fig. 2. — Graphs of the functions: y == 1/4/Znz:

coe- y=exp[— zlli(@): - -
g = exp [— 2] (®): ———, y = exp[— x]lg(®): ———.

0154

0J0

0.05

L 1

O AU 1 H 1 1
0 5 10 20 30 40 50 80 70 80 390

100
Fig. 3. — Graphs of the functions exp[— #]IL, () for n=0,1,3,5,7,9, 11 (counting
from top to bottom).
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for #=0 (I,(0)=1). Al the other functions start from 0, and remain prac-
tically 0 up to #a». From there they rise to a maximum around =z =+
and beyond this poinf can be fairly well approximated by exp[—a]l ()~

~ 1/V2ax.

To understand the formula one can think therefore of exp[— «]Z (x) as

015

0.1

0.05

1 £ ] 1 |
0 1 2 3 4 5 6 7 8 9101 12
Vv

Fig. 4. — The functions exp [— x]7,(x) plotted
vs. the order », for different values of the varia-
ble . The cut-off character is quite apparent.

a cut-off function: for given = it
is zero (very roughly speaking)
for » > a2, for v <@? it is equal
to 1/v/2nx; of. e.g. Fig. 4.

The functions I, ,(#) have been
tabulated (*3). They can always
be expressed as

Listo) =/ 2. ( 4, (}0) cosh () +

7w
1y,
+ A, (—)smh a*J s
x

with 4,(t) a n-th order polynomial
in ¢, e.g. (%)

hio) = /2
@ =2

The approximation we have
made in deriving formula (9.7)
a?()? > 1 log2 = 0.346 coincides
more or less with the first of the
two assumptions made by the

sinh z ,

1 .
cosh ¢ ——ginh &
X

classical approximation. From the discussion on p. 978 we know that it

gshould be all right in practice.

How does formula (9.7) compare then to the classical approximation?
Taking the asymptotic formulae (9.10) and (9.12) we find for

(G +14)°

(9.13)  F~ 2n) 12 aT)[ax(222 + T2 texp|— — = 1 2

202(2Z°% + T%)|’

(18) €. W. Jones: A short fable of the Bessel functions I,.3(z), (2/7)K4y(®),

(Cambridge, 1952).
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up to terms of order (j/aQ))® and comparing this with the formula (4.4) of
EricsoN (remember 6a? = R?) (12)

1 72
G (Classical) __ (Qpy—% ___ 71 ——T
910 T = B g x| -stw]’

one sees that both are equal if Z2=1/3Q2=2/37% (neglecting the difference
between j* and j(j+1)-+4%, which is to be expected from a classical approxi-
mation and the factor 1/4/2 which comes from taking #,= 4log2). So Fo=
is strictly valid only for isotropic distribution of momenta; however, for angular
momenta j small compared to R the difference is not important.

10. — Angular momentum zero.

This special case iz of practical importance in annihilation of anti-nucleons
at rest (together with the case j=1). Going back to formulae (9.5) and (9.7)
we find

sinh[a?(2224-17))]

L7y = Y | ___g2/y2 aia a2 2 2
(10.1)  F,=2"tn"1 exp[— azT?|I,(a*T?) exp [— a?(222+ T?)] (377 LT

One knows that for very small momenta |p,| (¢.e. many particles sharing a
small total energy (*), all end particles are necessarily in s-states, and the total
angular momentum must be zero; this follows also at once from the exact
formula (9.2), because there for

al -0, aZ >0,

we have #,=1, {i.e. a constant independent of T and Z, and ») up to terms
of order a2?(Z*-T?). This leads to

(10.2)  W(H,0,0) = C, (é‘/?gg)“ (%ﬂ Ra)“fdpl _..fdpn.
(B —3 Vi +mi)d(Zpi),

i.e. essentially the expression one gets without introducing angular-momentum
congervation; this is not surprising since all available states are necessarily

(*) A mathematically equivalent statement is: for wvery small @, 1.e. very short
radius of the interaction volume.
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s-gtates, and hence no additional constraint is imposed on the phase-gpace
by J-consgervation.

Conversely, the expressions (10.2) or (1.1) are only strictly valid for s-states,
although they may still be a good approximation when the outgoing particles
can have e.g. p and d waves. The above hypothesis (a@} — 0) is however very
unrealistic in all cases of practical importance

For annihilation we have <{n}> a~ 4.7 and < ‘//p2+ pH & 0.4 GeV. We {ind
320> ~ %R2-n((E/n)Z—M2) ~ 5.51 for the case n =6, e.g., which allows to use
the formula (9.7). This may be further checked: numerical integration of (9.5)
vields in the above mentioned case 12.93 as compared with 12.37 from (9.7).
For »n < 6 the approximation is still better.

As no direction is privileged, the classical approximation may therefore be

used. which gives
1

) TG

F o Ry

One sees how this will affect the multiplicity: the higher », the lower ¢, and
the higher #,. Angular momentum conservation will therefore increase the
multiplicity of pions in annihilation at rest. Also for j=1 the above con-
clusion will be almost true.

Parr 11

THE VALUE OF THE PHASE-SPACE INTEGRAL
WITH ANGULAR MOMENTUM CONSERVATION

11. — Problem.

In the previous part we derived the following expression for the phage-gpace
integral
(11.1) oulE, §) :fdpl ..,fdpné(E -—g Vit ’+"m'§)é(§lpz)ﬁ, ,
with
Z, = 27 exp [— L R LG R*T?) [ X222 + To)] 7+
-exp [~ R2(222 4 T9)]1,,, [t B2 + T%)],

Zr =3P,
fa=l
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One has now to devise ways and means to compute this expression in prac-
tice. The simpler problem with %,=1 hag been studied in the past (),
and it has appeared that there the big difficulty comes from the square-roots
\/pz#m , which make a cloged-form expression of the integral very difficult.

Two approximations based on the hypotheses

4y Vv P2 +omE A Py (ultrarelativistic);

B) Vprimiam, + ——;;4 (unrelativistie);
have been proposed, which yield both fairly simple formulae, but whose prac-
ical importance is small, because neither A4) nor B) is true in practice.

A Monte-Carlo method, which is free from the bias of 4) or B) has been
used to treat many problems, in statistical theory without angular momentum
congervation (1). All the above mentioned methods make use of the fact that
the integration over all directions of p, can be done in closed form, because
the integrand is isotropic.

Because &, introduces the direction of the z-axis, the p, and p, have now
to be treated separately; one introduces cylindrical co-ordinates, p., p

w “+ 27

n [
(11 2) QW(E7 ,7) - fpﬁ@dpi ZJ dpzzfd(pi} ?7)
1o

)] D 0

(=3 Vot phtmi)o(Sp ) 630

The angles @, appear only in 6(3 p,.). The angular integration is therefore,
i

using the Fourier transform of the two-dimensional d-function

27

1
(11.3) (22 fdlil—[lfe‘ip{—l (A, por)]dy;:
plane 0

now

10

2m

do exp [—i(A, p,)] = |dg exp [—tdp | cosg] = 2mo(Ap.),
b B

(**} R. H. MitBURN: Rev. Mod. Phys., 27, 1 (1955).

(%) 8. Z. Brrrngl, V. Maxzivenxo, A. Nikisov and I. RoseENTAL: Forisch. d.
Phys., 6, 524 (1958).

(1%} G. Fiatmo: Phys. Rev., 105, 328 (1957).

(*y F. CeruLus and R. HagEDORN: Suppl. Nuovo Cimento, 9, 646 (1958).
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and the angular integration reduces fo

o©

(11.4) (2%)""1f/1d2J0 (Op11) oo Joldp 1)

0

This expression is a well-known result in random-walk theory: there

w

PO(r; a5, oy ay) :flJ(,(M) 11 Jo(a,2)da,
1]

2=1

is the probability that the » vectors in a plane with lengths g, ... a, will add
up to a resultant r, when all directions are equally probable. We shall assume
that this function is known (cf. Appendix).

Similarly, we can interpret the p, integration as a random-walk in one
dimension: consider the integral

4w B
(11.5) JEdel [dan(z’f, ey 2002 + 2 oo 2, — )

where we can split the integration regions in a negative and a positive part

@ w0

(11.6) J =3 |dz ...fdznlf’(zf )00 F Oy e O — Z)
[
1] 0

where Y means a sum over all combinations of ¢, = 41 and F(e]...2]) is an
{o)
arbitrary even function of the 2, ..., z,. The function

(11.7) PO(Zs 2y vy 2,) = (3)* D (0 + oo + 02— Z)

(o)

is the probability that a particle moving along a line in successive steps of
magnitude 2y, %, ... but random sign will reach after « steps the position Z.
This is the random-walk funetion in one dimension. Here we shall also agsume
this function to be known (and give formulae for it in the Appendix).

We are then faced with the integral (putting p=a, p,=2)

(11.8) 2 Q)+, (B, )= H [ a, da,fdzl] S(B—3 Val+ &+ md)

0 0

P05 Ay, ey ) P05 2y, oy 20) .

©

o
©
=



STATISTICAL THEORY OF MULTIPLE MESON PRODUCTION ETC. 987
To this it seems feasible to apply a Monte-Carlo method similar in principle

to the one used for o) (E), i.e. the phase-space integral without angular mo-
mentum conservation.

12. — A Monte-Carlo method.

Let us first transform the integration _fda f dz to polar co-ordinates: « and =
L1} 0

are considered as rectangular co-ordinates in a plane, whereas
p = Var+ g2 )
a
f = arctg >

are corresponding polar co-ordinates. So we have now

ni2 mf2

fdpl dpnf...fdﬂl o 840,8(E —3 Vpt 4 mi) -

[ 0 0

(12.1)  ouE,j) = z—lm~1f..
o

P} ... p2sinb, ... sin 6, P®(0; p, sin by, ..., p, sin 6,)-
- PO(0; py cos Oy ... pycos,) F(Z2; T?) .

One can go over to kinetic energies, instead of momenta by putting ¢, =

=V ;er—mf—m and write consequently
dp, ... dp, py ... p2 PO(0; p,sinb,, ...) PY(0; p, cosby, ...} F(Z4%; T?),
as funetion of the ¢, and of the cosd;
Dty tay .oy 1n3 CO8 O, .o, cos0,)dE, ... AL, .

And, as proved in (), p.(E,j) can be written as

r r r 1 1
(12.2)  o.(B, j) = 2‘175"*1[dTIJdT2 ...den_lfd(cos 0.) fd 08 0,)"
6 7y Tp—s 0 Y
QI Ty— T,y ooy ' —T, 15 c080,, ..., c080,) .

This integral is computed by Monte-Cario by drawing N times two samples
Ay} and B).

~
kel
=)
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A) m—1 random numbers, according to s uniform probability distri-
bution from the segment (0, 7). These are labelled in ascending order of
magnitude

Ty, Ty ey Ty

B) »n random numbers, according to a uniform probability distribution
from the segment (0, 1). These are labelled (in the order in which they come)

cos Oy, ..., cos 0, .

For each sample one computes the expression

Sy oy T —1T,_15 cosby, ..., cos,)

adds up these numbers for all samples, takes the average value; this is pro-
portional to g.(Z, j).

In the same way as in the method described in (¥%) one can compute here
kinetic energy spectra; these can even now be split into transverse kinetic
energy and longitudinal kinetic energy, giving in principle the answer of the
statistical theory as to the distribution of transverse momenta in a high-energy
collision.

13. - Estimates of the influence of angular momentum conservation.

As long as the method outlined in the previous chapter has not been put
to work it will not be possible to have detailed predictions of the statistical
theory. What we propose to do here is an approximation that should enable
us to compare semi-quantitatively the results of the theory with and without
angular momentum conservation.

Let us write the phase-space integral again, but taking out of the inte-
gration the mean value of the weight function #,(p;... p.):

~ ~

13.1)  gu(H,j) = (F) ] 1p, .. |ap. (B =3Vt m)o(Ip) = Fyeim),

where g (¥) is the phase-space integral as conventionally defined (7). This mean
value, which is precisely defined by formula (13.1), we are now going to re-
place by the function F,({(p,>, {p:>...) where we ghall take

{poy = Viept—m?,
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whith {¢,> the average value of the energy computed from the conventional
phase-space integral; e.g.

(13:2) gl(B) (o) = [dpy o [dp. Vpy Fmto(B— 3 Vi S i) o[ S p).

This ig, of course, an approximation the error of which could only be ascer-
tained by comparison with an exact caleulation. We shall use it, as men-
tioned, as an exploratory tool.

For two cases which have been computed previously {6 GeV p-p colli-
sions () and N-N annihilation at rest (1*) we shall compute (%> and see

how the new results compare with the old ones. A source of uncertainty is
that the old calculation gives <{g;> all right, but averaged over all angles,

whereas to compute {#,> we should know separately <(Z2) =X p.> and
i=1

{Ir*» =3 p’ .- We shall assume here near-isotropy as the most probable
t=1

configuration on which to base our estimate of (#,), at least for not too

high values of j. This assumption is good as long as the classical approxi-

mation to %,, is valid, d.e. a?Q? > 42 With &, =1 (i.e. no angular momen-

tum conservation) one gets of course that {Z2?>= 1(¢)*>, because then no di-

rection is privileged. We take therefore

(13.3) 222 TP = 22 Q=30 =2 X (p* + X w7
=1 =1

for the p-p collisions, because we want to distinguish between nucleons and
pions. In the annibilation only pions are taken into account in the final state.

The result of substituting then in the calculations for p-p annihilation
at rest the expression (13.1) instead of o*(¥) is that the average number of
pions is increased:

Ay (wit.h J-congervation and 0 = %7_1 i[,i\ = 3.73,

as compared to
47

(R (without J-conservation and Q2 = 3 i§> = 3.40.

Alternatively, one can try to adjust {2 so as to have the observed multiplicity

(1*) R. HAGEDORN: Nuovo Cimento, 15, 246 (19€0).
(1*) 1. CErULUS: Nuovo Oimento, 14, 827 (1959).
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of ~4.7
4 . . .
2 =10 ; 72 yields (n.> ~ 4.7 without J-conservation ,
- % AP . .
Q=5 73 yields {(n;> ~ 4.8 with J-conservation .

3

All this is of course done nof assuming any m-w isobar. For the p-p colli-
sions at 6 GeV the results are displayed in Fig. 5, as a function of the total

<y
-2, 4%
2=-9,
i ! | ! =
0 10 20 30 40 50
Tig. 5. — Average number of pions produced in a 6 GeV p-p collision, as a function

of total angular momentum and of interaction volume 0,=(4a/3)43.

angular momentum /. To get the average multiplicity one has to sum over
all I. Tf one takes the hot-spot model seriously enough all phase relationships
between initial and final states are destroyed, and the only thing that counts
is the statistical weight w, of the I-th partial wave in the plane wave incident
on the sphere 0

(13.4) s :J'dgljﬁgxﬂ%gﬂmz.,é(xl —E)d(ms— E)|i>
£ 0

where |i) = exp[i(k, r,—r;)] is the wave function of the two colliding paz-
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ticlegs in their em.s.; (18.4) is a speeial case (n = 2) of formula (2.5}, w, is
akin to the « penetration factor » in nuclear physics. We obtain

(13.5) wy = 27874 (20 + 1)(ak) " exp [— da*k*] L, (4a%k?) ,

where again we have taken the Gaussian cut-off (7.4). For the 6 GeV p-p
collision this is shown in Fig. 6. The linear rise for small | corresponds to the
factor {21-+1) in the classical picture of the geometrical partial cross-section
0,,=(2l-+1)aZ%, which is valid for ek < 1.

W, 8a%k?

20

0 6 56 36 6 55

Fig. 6. — The penetraiion factors w, of the partial waves for different interaction
spheres; Q,=(4n/3¥i%; & corresponds to 6 GeV p-p collision in the e.m.s.

The average pion number then, resulting from folding (n,)> for given
with the w;, is found to be

i,y = 2.25 with J-conservation ,

against
{n> = 2.60 without ./-congervation .

One sees that here the correction is in the opposite direction as in an-
nihilation. This is easily understood because in a high-energy collision the

high-angular momenta contribute most, and for those the exponential factor
in %, {9.13) makes itself felt.
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The numbers just mentioned are obtained using £ = (4n/3)2% = &, and the
existenece of a w-X isobar; ef. (®¥). In order to obtain (n_ > =205 with J-con-
servation one should take Q=2.00,.

14. — Conec’usions.

Examination of the formulae used in conventional statistical theory hag
led us to interpret them in such a way that the probability to produce n par-
ticles in a high-energy collision can be simply related to the probability of
finding » particles fogether in a volume 2. The transition matrix elements squared
will behave that way if the process proceeds via an intermediate «hot spot»
and the formation and decay of thiz « hot spot» are statistically independent.
The assumptions one really makes are, however, weaker than this, beeause
the matrix element should only reproduce this behaviour on the average.
Ag one asks however for more and more information (spectra, angular cor-
relations and distributions) from the statistical theory, the averaging is
done over less and less parameters and the agsumptions are stronger and
stronger.

Agking for angunlar distributions in the conventional theory is probably
making too strong an assumption on the matrix elements, which—save for
S waves—is in eontradiction with angnlar momentum conservation.

By considering in the averaging process over the unobserved parameters
of the final states ondy states of given total angular momentum this contra-
diction can be avoided. One has still of course to make hypotheses on ,(f|Sli>|?,
and these are most easily found by comparison with the hot-spot model.

The averaging over final states having specified values of J, F and P=0
can be done using the projection operators on states with these quantum
numbers. 1f one leaves out the P-conservation the Koba theory results.

The projection operators are given in integral form; the integrals converge
and can be well approximated by fairly simple formulae in most cases of
practical interest, where the available energy is several GeV and the radius
of the interaction volume is ~ 7 .

The theory has then given a modified form of the phase-space integral,
which has to be computed to get detailed results.

As a further guide to methods of extracting information from the phase-
space integral it will be useful to consider the so-called « classical » theory
of T. Ericgon; by a comparison with the present method it is seen that in
many cases its results should be good approximations. Some qualitative
features can, however, be exfracted at once.

For high values of J, the phase-space integral will be depressed; also in
this case there will be a marked correlation of the end particles, which will
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tend to come out peaked backward-forward. For low values of J, as eg. in
N-N annihilation the phase-space integral is increased, no correlation is
introduced by J-conservation.

Because the integrand of the phase-space integral depends only on the
average momentum of all the particles (for a given multiplicity) the eflect
on the spectrum of o single particle will be fairly small. One could therefore
expect that the spectra of particles (averaged over angles in the c.m.s.) from
events with given multiplicity should not be much different from those ob-
tained by the conventional theory.

The Monte Carlo method proposed should be able to obtain reliable spectra,
both averaged over angles longitudinal and transverse. It is of course an
interesting problem to find out how much backward-forward peaking J-con-
servation is able to give, or what magnitude of J one has to assume to be
able to reproduce the experimentally observed peaking. '

The assumptions of the hot-spot model are badly needed, finally, if one
tries to estimate e.g. multiplicities from a high-energy collision where the initial
state is a plane wave with definite phase relafionship between the partial
waves. Averaging over all angnlar momenta incoherently is only justified by
the statistical independence of the two phases of the collision process. A con-
sequence of this independence is that the angular distributions in this form
of statistical theory are necessarily symmetric with respect to a plane per-
pendicular to the collision line; this feature is also clear from the phase-space
integrand where only the squares of the'longitudinal momenta appear.

Finally, the changes introduced by J-conservation in the multiplicity of
N-N° annihilation and of high-energy p-p collision (increasing the former,
reducing the latter) make that one has now to take new values of the inter-
action volume £ in order to get agreement with experiment; the long-standing
diserepancy between the different values of £ needed in each case is now
reduced:

2 2.5 0

annith — poltision

but has not disappeared completely.

It is a pleasure to thank L. VaN Hovg, director of the CERN Theoretical
Division, both for hospitality at CERN and for illuminating discussions. The
aunthor owes much also to discussions with T. Ericsow, A. PAts and R. Haer-
porN. G. A. ErSKINE has kindly computed tables of Bessel functions of large
imaginary argument.
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APPENDIX

Random-flight funetions.

The probability that » y-dimensional vectors of given lengths a,, ay, ..., 4,
have a resultant whose length lies between » and r--dr is (®)

©

=1 via
(A.1) PO(rydr = 2 {F (2)} [(%) J g1 (rt) .. ﬂ];l; {JW:;_; (:f:)‘fi} d.

0

In a first approximation these P¥(r) are Gaussians. It has been proved (2!)
for a,=a, ...=a, or more generally for all a’s of the same order of magni-
tude (22) that integral (4,) can be approximated, up to terms of order 1/n2
by the following expressions.

(A.2) PO(r)dr = (2n)'4d-texp |—

Pl LBy e d
oAx|" 2448 AzTA4 "

2 1 B4 2
(A.3) P (r)dr = 2rd-? exp {— r_} {1 ——— (2 1 A4)] dr,

A2 4 A+ o
N, 3rll, 1Bt r? )

where, for v=1, 2, 3, one has defined

3
A= Zaf ,
=1
k3
Bi=3al
=1

The function P®(r) given in (A.2) is sensu stricto not the probability to reach
a point r on a line after »n steps, which is a discontinuous function, but rather
the density of the points that can be reached in » steps.

() G. N. WarsoN: Bessel Functions (Cambridge, 1945).
(2t) F. G. Tricomi: Funzioni ipergeometriche confluenti (Roma, 1954).
(22) F. CerurUs: to be published.
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RIASSUNTO (%

Si dimostra che la teoria statistica convenzionale (con conservazione dell’energia-
impulso, ma senza conservazione del momento angolare) di gli stessi risultati (molte-
plicitd e spettri) che si possono ottenere da un modello che presuppone 1'esistenza di
un « hot-spot » intermedio nella collisione di due particelle di alta energia, se la for-
mazione dell’« hot-spot » & statisticamente indipendente dal suo decadimento in nume-
rose particelle. Questo modello & suggerito dalle formule usate nella teoria statistica,
che in effetti pongono la probabilitd di produrre » particelle proporzionale alla proba-
bilitd di trovare assieme n particelle in un volume 2. La conservazione del momento
angolare (assieme alla conservazione dell’energia e della quantitd di moto) pud essere
soddisfatta prendendo in considerazione solo stati di » particelle con valori prescritti
del J totale, dell’energia e della quantitd di moto. Facendo uso del formalismo della
matrice di densitd e di una espressione esplicita degli operatori di proiezione su stati
di dato momento angolare, si arriva ad una forma modificata dell’integrale dello spazio
delle fasi, che & semplicemente collegata con la probabilitdh di produrre n particelle.
8i mostra che la teoria con momento angolare, ma senza conservazione della quantitd di
moto, esposta da Koba, & un caso speciale facilmente derivabile dal presente forma-
lismo. 3i dimostra che la teoria « classica » della conservazione del momento angolare di
T. Ericson & un caso limite che tuttavia ha una vasta applicabilith. Strettamente
parlando la teoria convenzionale & valida solo se tutte le particelle finali sono nello
stato s. Le formule sono state derivate per una forma sferica gaussiana di 2. In linea
di principio si possono ammettere forme contratte. Si propone un programma tipo
Monte Carlo per valutare questo integrale dello spazio delle fasi. Il metodo permetterd
di calcolare gli spettri degli impulsi longitudinali e trasversi delle particelle finali. 8i cal-
colano gli effetti della conservazione di J sulla molteplicita. In confronto della teotia
convenzionale la molteplicitd & accresciuta del 109, nelle annichilazioni p-p e diminuito
del 109, nelle collisioni p-p di 6 GeV.

(*) Traduzione a cura della Redazione.
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