LOWERING TOPOLOGICAL ENTROPY

By

ELON LINDENSTRAUSS

Abstract. The main result we prove in this paper is that for any finite
dimensional dynamical system (with topological entropy 4), and for any factor
with strictly lower entropy 4’, there exists an intermediate factor of entropy 4’ for
every h' € [i', h]. Two examples, one of them minimal, show that this is not the
case for infinite dimensional systems.

1. Introduction

The problem considered here was suggested in the paper [7]. It can be stated as
follows:

Problem (1.1) Given a dynamical system (X,T) with positive topological
entropy, what can be said about the range of values of A, (Y) as Y raﬂges over the
factors of (X, T); in particular, when does such a dynamical system have factors
with arbitrarily small entropy?

In what follows, by a dynamical system (X, T) we mean a compact metric space
X, and a continuous bijection T: X — X. A factor of (X, T) is a system (Y, S) with
a continuous surjection 7: X — Y such that S o 7 = w o T. This surjection is called
the facror transformation.

A natural dynamical system in this context is the system [0, 1]% (the infinite
dimensional cube with the usual Tychonoff topology) together with the shift o.
The Hilbert cube is universal for compact metric spaces since every such space can
be imbedded in it. Dynamically it is universal in the following sense:

Proposition (1.2) Any dynamical system (X, T) has a non-trivial factor
imbedded in the (bi-)infinite dimensional cube.

Proof Letf:X — [0, 1] be any continuous function. Define f: X — [0, 1]Z by
(1.2.1) fix (o foT™Yx),f(x),foT(x),...).

Set Y = f(X) C [0,1]% and S = oly. It is clear that (Y,S) is a factor, with f the
factor map, since f is continuous and f o T = o o f. o

In the next section we show that this system has no finite entropy factors.
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The system [0, 1]Z has infinite dimension. In Sections 3 and 4 we prove that
if X has finite dimension then for any factor Y’ of X with hup(Y’) < hop(X) we
can find, for any h € (hp(Y’), Mop(X)), a factor Y of X compatible with Y’ with
hiop(Y) = h. By compatible we mean that if ¢y x: X — Y and ¢y x: X — Y’ are the
factor transformations from X to ¥ and Y’ respectively then we can find a factor
transformation ¢y’ y: ¥ — Y’ such that

¢y .y o dyx = ¢y x.

The proof of this result will be divided into two parts. In Section 3 we use
dimension theory to prove some facts about any finite dimensional dynamical
system. In Section 4 we show that a consequence of these facts is that we can
construct the intermediate factors described above.

This theorem has a few interesting corollaries. First note that if we take Y’ to
be the trivial factor consisting of a single point then the above theorem gives a
complete answer to Problem (1.1) for finite dimensional systems:

For any finite dimensional system (X,T) the range of values of hop(Y) as Y
ranges over the factors of (X, T) is [0, hyop(X)).

Thus in particular there are no finite dimensional prime systems (i.e. dynamical
systems with no non-trivial factors) with positive entropy.

Also note that in particular the theorem gives a connection between finite
dimension and finite topological entropy: while it is very easy to construct a
finite dimensional dynamical system with infinite entropy, the theorem ensures us
that any finite dimensional dynamical system has a factor with finite entropy.

In Section 5 we will give a construction of an infinite dimensional minimal
system with no finite entropy factors. An interesting open problem that remains in
this context is whether there exists an (infinite dimensional) finite entropy system
with (say) a positive lower bound on the topological entropy of its factors. We
believe (at least if we require that the system be minimal) that no such system
exists. Note that for the finite dimensional case we did not need any condition on
the entropy.

After the preparation of the initial version of this manuscript, S. Glasner has
shown that the existence of a minimal system with no finite entropy factors gives
a positive answer to a question posed by H. Furstenberg ([3]) whether there exist
a pair of minimal dynamical systems which have a common almost one-to-one
extension but no common factors. With his permission we present this result in

_ the last section.

This paper essentially contains the author’s M.Sc. thesis, conducted under the
guidance of Professor Benjamin Weiss from the Hebrew University. The author
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is grateful to B. Weiss for introducing him to this problem, for many enlightening
discussions about this and related topics, and for helping him bring this paper into
what is hoped to be a readable form.

2. Factors of the system [0, 1]2

For the one sided shift, a proof, due to J. Ashley, that the system [0, 1]N has no
finite entropy factors, is given in [7]. However, new ideas must be used to prove the
same for the two sided shift, and in particular one must use a classical topological
result: the Brouwer fixed point theorem. Let H=[0, 1]Z.

Theorem (2.1) Let (Y, T) be a non-trivial factor of ([0,1]%,0). Then there
exists an N such that ([0,1]%,0) is a factor of (Y, TV).

The following lemma is a simple consequence of the Brouwer fixed point
theorem:

Lemma (2.2) Let F = (fi,...,fn):[0,1]" — [0, 1]" be a continuous map such
that for every 1 <i<n,

9 1
ﬁ(an--- )xi—lvlvxi+17"~ axn) > E and ﬁ(x07"' 7xi—1a0»xi+1a~-' ’xn) < 1_0'
Then

(2.2.1) [4,3]" c F((0,1]").

Proof Suppose xp € [1/4,3/4]" but not in the image of F. For any x € [0, 1]*
define G(x) as the point where the ray from F(x) to xp intersects the boundary of
[0,1]*. This point is well defined since xq is not in the image of F, and clearly
G so defined is continuous. But the conditions on F guarantees that any point on
the boundary of the cube [0, 1]" is not mapped to itself, and since the image of
G is contained in the boundary of [0, 1]” we see that G is a continuous function
G:[0,1]* — [0,1]" with no fixed points, in violation of the Brouwer fixed point
theorem. a

Proof of the Theorem Without loss of generality one can assume that the
factor is of the form (1.2.1). That is, the factor is of the form (Y,o|y) where
Y C [0,1)% and the factor mapping ¢ is generated from the continuous function
$:[0,1}Z — [0, 1] by

d:x— (..., 00T (x),é(x),p0T(x),...).

We can normalize ¢ so that 0 and 1 will both be in its image. (Since [0, 1]Z is
connected this'means that ¢ is onto the interval [0, 1].)
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From the (uniform) continuity of ¢ it follows that there is an Ny such that for
any two points in the infinite dimensional cube, x and y,

(2.1.1) xy=y, forevery —-No <k<Ny = |o(x)—o)| < —=.
Set N = 2Ny + 1, and let i: ([0, 1]%, V) — ([0, 1]%, o) be the map

By X1, X0, X0y e - ) 2 (oo ey XN X0, XN, - - )

Since we assume (Y, T) to be imbedded in ([0, 14, o) this map defines a map from
(Y, TV) to the infinite dimensional cube, and we will prove the image of Y contains

. the smaller infinite dimensional cube H'= [%, %] % Sinceitis easy to find a factor
transformation from [0, 1)Z to itself such that the image of the smaller cube is [0, 1]Z
this proves the theorem.

We want to see that i(Y) D H’, that is that 70 $(H) D H'. Since H is compact,
s0 is 4 o ¢(H). If we will show that for every point & € H' and every n there is a
point ' € i o ¢(H) that agrees with A in the coordinates —n,. . . ,n it will follow that
h itself is in i o $(H). So we need only look, for every n, at the projection 7 of
io qE(H ) on that range of coordinates, and verify that they contain the projection of
H'. We now have a function

gZroiog:H — |0, 172+,

We will define a function y: [0, 1]>"*! — H such that go: [0, 1]2**! — [0, 1]?**!
will satisfy the conditions of Lemma (2.2). Let p, p! € [0, 1]Z such that ¢(p°) = 0
and ¢(p') = 1. Set

() =(1-1)-p% +1-pY for — oo <k < o0,

and define ¢ as follows:

def
"vb(x—n’ sy X1, X0, X1y - - s -xn)=

( ...0,0, 0?p—No(x—n)7p—No+1 (x—n)’ s pNo(x—n)’

P—No(X—nt1)s P—No+1(X=n+1), - - - PNg(X—n1),

(2.1.2)

P—No(X0),P—Ng+1(X0), - - - Po(X0), - - - PNy (¥0),

P—No(xn)’p—No+l(xn), s pNo(xn)7 0) 070’ e )
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(the O™ coordinate is po(xp)).
Suppose xop = 0. Then 9(...,x_1,0,x1,...) is identical to p° in the coordinates
—No,. .., Ng. Using (2.1.1) we see that

|¢01/1(...,X_I,O,XI,.--) _¢(p0)’ < %a

thatis, o (..., x_1,0,x1,...) < %. In this way we see that if x; = O then the k'
coordinate of g o1 is smaller than %, and if x; = 1 then the k™ coordinate is bigger
than % — 1.e. g o satisfies the conditions of Lemma (2.2). Thus the image of

this map contains the small cube [}, 3]2+1. O

Conclusion (2.2) Any factor of [0,1]% has infinite entropy.

3. The existence of open sets with small boundary

If (X, T) is a dynamical system, we will denote by per(X) the set of its periodic
points, and by per,(X) the set of its periodic points with period < k. We shall
denote the metric on X by d(-, -); and to simplify notations we shall (without loss
of generality) assume that for every x,y € X, d(x,y) < 1. Also, in this and the
next section every measure is assumed to be a normalized Borel measure. We will
denote the set of all T-invariant measures of (X, T) by Mr.

We wish to show that every open subset of X can be approximated (in a rather
strong sense) by an open set such that the set of the non-periodic points on its
boundary will be small, in the sense introduced in [7]:

Definition (3.1) A set E C X will be called (N,n)-disjoint if the intersection
of any n sets from the collection

E, T(E), T(E), T*(E),..., T""Y(E)

is empty.

Definition (3.2) A set E C X will be called T-small (or simply small if T is
understood) if for every € > O there is an N such that E is (N, | eN{)-disjoint.

Note that if a (measurable) set E is (N,n)-disjoint then no point of X can
be covered by more than n sets from the collection {T*(E)}¥-;! and so, for any
u € Mr,

WE) = & Y T'(E)) < 1ulX) = 1

In particular, if a set E is small then for any such measure y, the measure of E is
zero. For closed sets the converse also holds, but we will not use this fact. For
details see [7]. Clearly, a subset of a small set is also small; it is also very easy to
see that the union of two small sets is small.
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In this section we will prove the following theorem:

Theorem (3.3) Let (X,T) be a finite dimensional dynamical system. Then
for every open set U C X, and any open V D 8U \ per(X), there is an open U’,
UcU CUUYV, such that OU' is the union of a small set and a subset of per(X).

We will see in the next section that the fact that any open set can be approximated
by an open set with its boundary satisfying the conditions above is sufficient to
ensure the existence of factors of the system (X, T) with arbitrary entropy.

We will prove this theorem using ideas from [5]. The following definition is
also taken from [5]:

Definition (3.4) A collection B of subsets of an n-dimensional space X will
be said to be in general position if for every finite sub-collection S C B with m
elements, dim NS < max(—1,n — m).

(Recall that by definition dimM = —1 iff M = 0.) The motivation for this
definition is that given a collection of n — 1 dimensional subsets of an » dimensional
space then generically any two will have intersection with dimension < n — 2, etc.
In the rest of this section, we will take » to be dim(X). Notice that if the collection
{T"E};;(l) is in general position then in particular, since the intersection of any
n + 1 sets from this collection is empty, E is (r,n + 1)-disjoint.

We will use the following standard results in dimension theory valid for every
separable metric space M. For proofs of these results see [1].

D1 (“The Subspace Theorem™) If A C B then dimA < dim B.

D2 (“The Countable Closed Sum Theorem™) Let {B;} be a countable
collection of closed sets, with dim B; < k for every i. Then dim|JB; < k.

D3 Let E be a zero dimensional subset of the space M. Then for every x € M
and every open neighbourhood U of x there is a U’ ¢ U with x € U’ such
that U’ NE = 0.

D4 IfdimM > —1 there is a zero dimensional subset E of M which is the union of
a countable number of closed sets in M and such that dim M\ E = dimM — 1.

Also, the following result is a consequence of D1 and D2:

D5 Any finite or countable union of F,k-dimensional sets is an F,
k-dimensional set.

To see DS is true note that each F, set is a countable union of closed sets that by
D1 have dimension < k, and so the union of the original F, sets is a countable
union of closed at most k-dimensional sets. By D2 this union has dimension < k.

Let Py = per;(X), and P = per(X).
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The important step towards proving the main result of this section is the following
lemma, which is a modification of a lemma proved by J. Kulesza in [5]:

Lemma (3.5) Ler (X, T) be an n dimensional dynamical system, and let U C X
be an open set. Then for every k and every open set V O 0U \ P, there exists an
openset U', UC U Cc UUV with3U' C 8U UV such that

{8U’'\ P, T (BU")\ P,...,T*"" (8U") \ P}

is in general position.

(Notice that for any U’, if 8U’ contains a periodic point with a short period the
more natural collection {8U’,..., T~ (8U")} will not be in general position.)

To prove Lemma (3.5) we will need the following simple result:

Lemma (3.6) Let U be an open set, and let E C X be zero dimensional. Then
for any open 'V D cl(U), there exists an open set U' D cl(U), with U’ C V and such
that 8U' NE = 0.

Proof By D3 for every x € 0U there is neighbourhood U, inside V whose
boundary does not intersect E. By compactness of 8U a finite number of these,
say Uy,,. .., Uy, suffice for covering 8U. Set U’ = UUJ._, Us,.

Clearly U’ c V and cl(U) c U’. Also, since the union is finite, every point x
in U’ is in AU or in some OUy,. The first possibility is impossible since the U,,’s
cover QU and so every point of JU is an internal point of U’. Thus x is in Uy, for
some i, and since this set has empty intersection with E, x ¢ E. Thus 8U'NE = §.

[m]

Proof of Lemma (3.5)

We will prove the lemma by induction on k. If k = 0 we can simply take for U’
the set U itself.

Now, suppose that the lemma is true for some k& > 0. We will prove it is true for
k + 1. Without loss of generality we can assume

VNP =0

for otherwise we can take V' = V \ P, that also satisfies the conditions of this
lemma and if the lemma holds for V' it also holds for V. Define further for any
-integer r,

Vrz{x:d(x,X\V)Z%};

clearly each V, is compact and V = (J;2, V,. Using the induction hypothesis we
know that there exists an open Ag with U C A9 C U U V such that 8Ag C U UV
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and such that
{8Ac\ P, T (OAc)\ P,..., T*" ! (8A¢) \ P}

is in general position.

For every x € 8Ag NV, there exists an 7, > 0 such that c1 B(x,7n,) C V and such
that the sets B(x, ), TB(x,n,), ...,T*B(x,n,) are disjoint (since x & Piy). Let
B, =B(x,n,/2) and B,ZB(x, n,). The B,’s form a cover of Ao N V, and we can find
a countable sub-cover B; such that

(3.7.1) lim diam(B;) =0,

— 00

and such that for any V; there exists an r; such that

VlﬂﬁBiIQ.

i=r

Indeed, for every integer r define the compact set C; as

C,déf{xe OAp : % >dx,X\V)> r%l}

We can construct a sub-cover with the required properties by taking for every r a
finite number of sets of the form B, with x € C, that cover C,. Since 84, NV =
U2, C, we have indeed a subcover of 84y N V. Furthermore, for any x € C,
the diameter of By is < 1/r, and so (3.7.1) holds. Since d(V;,C,) > 1/r for r
large enough, we see that the second condition imposed on the above sub-cover
also holds, and so the existence of a sub-cover B; with the required properties is
established.

We will construct recursively, starting with Ag, a sequence of open sets {A;};2,
such that

Pl A CAUUZ,B;,
P2 A DAy,

P3 8A; COUUYV,

P4 A\Bi=Ai_1\B;

P5 A% {aA,- \P, T(8A)\ P, ..., T"' (8A,) \ P, T* (BAi nUL, Bj) } isin
general position.
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(It is easy to see that Ay satisfies all these conditions for i = 0.)

Given this sequence we will define U’ as U;’ioAg. By P1, and since U}fo B;CV,

we see that
U cAuVCc(UuV)uvVv=UUV.

By P2 we see that U C U’. We now claim that U’ ¢ 8U U V. Indeed, let x be
a boundary point of U’. Then either it is in 8A; for some i or it is the limit of a
sequence (x;)2, with x; € A,, \ An,—1 With ny strictly increasing. Consequently,
since by P4 A, \A,_ C B,

x€ ﬁCI(GBn,) C 0Ao
I=r

=0

where the last inequality follows from the fact that the centers of the B;’s are in
OAp and their radii tend to zero. Thus we see that

oU' c 0Agu| JoAi coU UV,
i=0

where the second inclusion is a consequence of P3.
It remains to be verified that

(3.7.2) {8U'\ P, T(BU')\ P,..., T (8U')\ P, T* (8U") \ P}

is in general position. First note that (for a given ) 83U’ NV, = A, NV} if r is large
enough. For according to P4, A, \ U2, B; = A, \ U, B; for any r' > r, and
so U'\ U2, 4 B = A\ U B;. According to the way the B;’s were chosen,
there is an r such that for every i > r, B;n Viimi=0,andsoU' NV =A, NV,
Since V; C int(Vyy;) we see that indeed (OU’) N V; = (8A,) N V;. We can take r
large enough so that V;, C |J;_, B;. Now we know that

{aA, \P, T (8A)\P,..., T\ (9A,) \ P, T* (aA, UL, B,)}

is in general positions and the same is true if we replace each set of the above
collection by a smaller set, and so

{8A, N VI\ P, T (8A, N V)\P,...,T*" 1 (A, N V) \ P, T (dA, N V)) \ P}
={oU' NnV,\P,T(BU' nV)\P,..., T*"" (8U' n V) \ P, TH(8U' n V}) \ P}
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is in general position. Since this is true for every /, and since T° (38U’ NV)) \ P
is closed in X \ P, then an immediate consequence of the Countable Closed Sum
Theorem (D2) is that the collection

{8U'nV\P, T(BU' NV)\P,....,T"L (8U' nV)\ P, T*(8U' n V) \ P}

is in general position. We have already seen that 8U’ C 3UU V; since U\ P C V
we see that U’ C PU V and so the collection above is the same as the collection
(3.7.2). Thus it only remains to be seen how to construct A;;| using A;.

For every finite sub-collection S C A4; with dim (NS) > —1 there is according
to D4 a zero-dimensional set Es C NS, F, in NS, such that dim(NS\ Es) =
dim (NS) — 1 (for § = @, NS is undefined; for convenience we set it to be X). Ey is
in fact o-compact, for NS is o-compact and an F, subset of a o-compact space is
o-compact. Set

E= |J T7Es.

SCA;

0<j<k
Since T is a homeomorphism the image of a zerc dimensional o-compact set is
zero dimensional and o-compact. Thus E is a finite union of o-compact zero
dimensional sets, and so according to D5, E itself is both o-compact and zero
dimensional. Using Lemma (3.6), there is an open set W D cl (B;; N A;) such that
(W) C Biy n (UUUZ, Bj) NV, with 8W N E = §. We claim that A, ZA; U W
satisfies P1 — P5. That A, satisfies P1 — P4 is trivial, and thus it only remains to
be shown that PS5 is satisfied.

Suppose that PS5 is not satisfied, i.e. there exists a collection S C A;+; of
cardinality m such that dim NS > max(—1,n —m). Let S = {S1,S>,...,Sx}, where
each §; is a distinct element of A;,1, i.e. either T (8A;1) \ P for some j; < k or
else T* (8A,-+1 nUZ! Bj) \ P (in which case we set j; = k). Notice that since the
Sy’s are distinct, j; # jy for I # I'.

Now 0A;1; C (8A; \ W)U 8W and so for any / such that j; < k,

Sy C (T (BA;) \ P) U T (8W)..

A similar result holds for j; = k:
i+1
S=T (3A,~+1 N UBj) \P
j=1

C (T’ ((BA,- \W)n Ol B,-) urT’ (8W)) \ P

j=1
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_ (T’((BA,- \W)n OBJ-> uT” (6W)> \P

j=1

C (T’ (aA,- nl B,-) \P) uTr (W),
j=1
where the second equality holds since cl(B;1; NA;) C W. Combining the two
cases, we see that each S is a subset of the union of two sets: S?, the element of
A; corresponding to S, and S} =7 (W). Thus (S is a subset of the finite union

nse U (As]

ae{0,1}" \i=1

and, since dim((S) > max(—1,n — m), at least one of these intersections must
have dimension larger than max(—1,n — m). But since cI(W) C Bi;) and the
TiB;;,’s for j = 0,.. .k are pairwise disjoint, any a with more than two «;’s 1 has
Nie1 S7* = 0. For a = (0,...0), each S7* is a (distinct) element of 4;, and since this
collection is in general position we see that dim(\j_; $? < max(—1,n —m). We
haven’t assumed anything on the order of the S;’s yet, so without loss of generality
we can assume that

dim (s} u | J87) > max(—1,n — m).
=2

But this too is impossible — to see this, let § = {S9,...,5%}. Now § C A; so we
know that

dim (ﬂS‘\Es) < dim (ﬂs) —1 < min(—1,n— m).

By construction, W is disjoint from E and thus also from T‘f‘ES C E, so that
Sl =T (8W) C X \ E. Thus

m
stn()s) ¢S\ E;,
1=2
a set of dimension < min(—1,n — m) — a contradiction. O

Lemma (3.8) Suppose that A is closed and that A\ P is (k,m)-disjoint. Then
there is an open set V O A\ P such that V is also (k, m)-disjoint.

Proof SetA’SA\ P
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Take any m sets from the collection {T* (A’)}f;ol, say Ay, ..., An, where, for
every i,
Ai =TH(A') =T"(A)\ P.

Note that cl(4;) C T"(A) C A; UP, and so

(3.8.1) Arn(el(A) c Ain()(AiuP) =AU (A NP) =0,
i=2 =2 =1

where the last equality is true since A’ = A\ Pis (k, m)-disjoint, and since A; NP = .
Define for every 1 < j < k the open set

Sc{l,...k} res

Vj:{x:d(x,Tj(A'))< min maxd(x,T’(A’))}.
|S|=m—1, jgS

From (3.8.1) we see that for every S C {1,...,k} with [S| =m — 1 andj ¢ S, and
every x € TV(A’), max,csd(x,T"(A")) > O since x & (,escl T7(A). It follows that
every x € T/(A’) is in V}, and thus for every j, T/(A’) C V.

Now take any m sets from the collection {V;}*_,, say V;,...,V;,, and let § =
{j2,--,jm}. Then

m

Q Vi, C{x d(x, T"(A")) < I?E%Xd(x’ T’(A’))}

N ﬂ{x :d(x, T"(A")) < d(x, T (A’))} =0.

res

Define V = [\_, T~(V;). Since T/(A") C V; for every j we see that A’ = A\ P C V.
And since for every j, T/(V) C V;, the equation above shows that V is (k,m)-
disjoint. O

We are now ready to prove Theorem (3.3). For the convenience of the reader

we will restate it:

Theorem (3.3) Let (X,T) be a finite dimensional dynamical system. Then
for every open set U C X, and any open V > 8U \ P, there is an open U',
Uc U cUUYV, such that dU' is the union of a small set and a subset of P.

Proof We will construct recursively two sequences of open sets {U;}{2, and
{Vi}32,, starting from Uy = U and Vy = V such that the following conditions hold:

Cl BUN\PCV

C2 Uptq CULUV,
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C3 (Vi) \PC V4,
C4  Viis (k,n+ 1)-disjoint,

Cs Vk+1 C Vi and Uk+1 > Us.

Suppose that U;, V; have already been defined. Define U’ = |J;2, U;. Using C2
and C5 we see that for every r,

Uir UV CUpgr 1 U Vit UV = Ut UV C - C UK UV,

and thus for every &k, Uy ¢ U’ C Uy, U V,. Taking k = 0 we see that
U Cc U’ ¢ UuU V. Furthermore, using this, Cl1 and C2 we see that for every
k
ou’ \P C (cl(Ug+1 U Vs 1)\ Urs1) \ P
C(OUk \P)U (cl(Vir1)\ P)
= Cl(Vk+1) \PC V.

Since Vi is (k, n+1)-disjoint the same is true for 9U’\ P. Since nis fixed ( = dim(X))
and k arbitrary, we see that 9U’ \ P is T-small.

Thus it only remains to show how to build such sequences of sets. Clearly
Uy and V) satisfy C1 and since any set is (0,7 + 1)-disjoint also C4. Suppose
Uy, ..., Ur and Vy, ..., Vi have already been defined, satisfying the conditions
imposed on these sets by C1 - C5.

From C1 we know that U, \ P C Vy, and so using Lemma (3.5) we can find a
set Up+1 such that Uy C Upyy C Uy UV, Uk \ P C Vi, and such that 83Uy \ P
is (k,n + 1)-disjoint. Using the previous lemma we can find a (k,n + 1)-disjoint
open set V; | D Ui \ P. Define W C Vj as

Wi = {x : d(x, 8Uk+1) < d(x,X\ Vk)} s
and set
Vigl1 = VI€+1 N W.

Clearly Ui, and Vi satisfy C2, C4 and C5. By definition Uy \ P C V.
For every x € 8Up41 \ P, d(x,U4+1) = 0 butd(x, X \ Vi) > 0 (since x € V}). Thus
8Uis1 \ P C Wi and thus C1 holds. To prove C3 holds, it clearly suffices to show
that cl(W;) \ P C V. So suppose x € cl(W;) \ V. Then

d(x,0Uis1) < d(x, X \ Vi) =0,

and so x € 80Uy \ Vi C P. Since this is true for any x € cl(W;) \ Vi we see that
indeed ci(Wy) \ P C Vi. o
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Note that we have in fact proved that for any k the set 8U'\ P is (k, n+ 1)-disjoint,
which is a much stronger statement than merely saying that U’ \ P is T-small. We
will also need the following corollary to Theorem (3.3) and Lemma (3.8):

Corollary (3.10) Suppose E is closed and E \ P is (k,m)-disjoint, withV D E
an open set. Then there exists an open set U', V O U' D E\ P such that U’ is
(k, m)-disjoint and such that U’ \ P is small.

Proof According to Lemma (3.8) there is an open, (k,m)-disjoint V' D> E\ P.
Without loss of generality V' C V for otherwise we can replace V' by V' n V.
Define the open set W as

W = {x:d(x,E) < d(x, X\ V')}.

As in the proof of Theorem (3.3), c{ W) C V' U P. Thus we can apply Theorem
(3.3) to find an open set U’ with W € U’ C V' and such that U’ \ P is small. Since
U c V', U'is also (k,m)-disjoint. O

4. The construction of factors with arbitrary entropy

In this section we will prove that if the conclusion of Theorem (3.3) holds (and
thus its Corollary (3.10)) for the dynamical system (X, T), then we can find for
every ¢, £’ € X and any 5 > Oafactor (Y, S) with entropy < 7 and such that the factor
transformation maps £ and ¢’ into distinct points in Y. From this we will deduce
that if (Z, R) is any factor of the system (X, T') with hop(Z) < hiop(X), then for any
h € (hop(Z), hiop(X)), we can find a factor (Y, S) of (X, T') with topological entropy
h, and such that if ¢: X — Z and ¥: X — Y are the respective factor transformations
then ¢ o ¢~ is well defined, and is a factor transformation ¥ — Z.

We first need to see how the information given on the system (X, T) by (3.3) can
help to construct factors with small entropy.

For any measurable set A we can construct in a natural way a (not necessarily
continuous) map my: X — {0, 1}Z as follows:

ma:x— (.., 140 T (x),14(x), 14 0 T(x), .. ).

Define the set S & ¢l m4(X) C {0, 1}Z. This set is shift invariant — and so together
with the shift ¢ it is a dynamical system. We will define for any set A the entropy
of A as

h(AYZhiop(S4).

Proposition (4.1) For any two (measurable) sets A and B,

h(AUB) < h(A) + h(B).
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Proof Take any x € X. Note that we can calculate mag(x) from m,(x) and
mp(x), since
Laug(T"x) = max(14(T"x), 15(T"x)).

Consider the (continuous) map

f:(...,a_l,ao,al,...) X (...,b_l,bo,bl,...) —

(...,max(a_q,b_;), max{ag, by), max(aj, b;),...)
from Sy x Sp to {0, 1}%. We claim that Syup C f(Sa x Sp). Indeed, for any x € X,
J (ma(x), mp(x)) = maup(x),

and so myp(X) C f(Sa x Sp). Since f is continuous, f(S4 x Sg) is closed (as the
image of a compact set) and so contains cl maup = Saus-
Thus Saup is a subsystem of a factor of Sy x Sp, and so we have:

h(A UB) = hmp(sAug) S h(op (f(SA X SB)) S htop(SA X SB) S h(A) + h(B)

O

Lemma (4.2) Let E be a closed set. If E \ per(X) is small then forany V D E,
and any € > 0, there is an open set V D U D E such that:

(@ hU) <¢
(b) AU \ per(X) is small.

Proof Fix some sequence of integers Np, Ny, .... We will use this sequence to
construct an open U, and show that if the integers N; are large enough this set has
the required properties.

Applying Corollary (3.10), we can find an open set Uy, V D Up D E\ P such
that 8U, \ per(X) is small and such that Uy is (N, |[N/No | )-disjoint for some N and
the given Np. Using Theorem (3.3), thereisa V', V D V' D E such that 8V’ \ P is
small. For every k, let P¥ = {x : T*(x) = x}, and set

Ni
U (TH (V).
i=0

7 Clearly Uy D Py N E. Thus {U}2, form an open cover of the compact set E, and
50 a finite number of these, say U, . .., U,, suffice to cover E. Define UZJ_, U;.
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Note that for any £ > 1,

Ny
d(U\ P) C | JTH(aV'\ P),
i=0

and so, since the union of a finite number of small sets is small, for every k the set
AUy \ P is small. Thus 8U \ P, being a subset of |J;_o(0Uy \ P), is small. Also itis
clearthat EC U CV.

It remains to be shown that if the sequence N; increases fast enough, then
h(U) < e. Since by the previous proposition, h(U) < 3~I_, h(U;), this lemma will
be proved if we show that if N is large enough then A(U;) < 27% 1.

If S C {0, 1}7 is a shift invariant set, denote by W, (S) the set

W, (S)d-—e-f{(xl,xz, coosXn) i (oo, X21,%0,X1,...) € S}

It is well known (and easy to deduce from the definition of topological entropy)
that if S C {0, 1}%, the entropy of the system (S, o) is

.1 .1
hiop(S) = nlirgo p log [W, (S)| = 1nf; log [W, (S) |,

where the second equality is true since for any n and k, [Wi,, (S)| < [Wh (S) |.

If some n-tuple is the first n coordinates of some point in Sy,, it is also the
first n coordinates of a point of my,(X) (which is dense in Sy,). Since Up is
(N, [N/Ny]|)-disjoint, for no x € X can my,(x) have more than N/Ny ones in the
first N coordinates. Thus

(W) < 1og () < log | - (1)

i=0

which can be made arbitrarily small by taking Ny to be very large.

We will now consider what n-tuples can appear in W, (Sy,) for k > 0. Recall
that Uy = ﬂ?ﬁo T4(V'). Suppose now that (for some x € X) 1y, (x) = 1 but
1y, (T7%(x)) = 0. If this is true then this x must be in T7¥(V’) fori = 0, ..., Ny,
but not in T™M+1)(V"). Thus we see that this x is not in T%(U;) (or, equivalently,
ly, (T7%(x)) = 0)fori =1, ..., Ny. Take n = kNy, and consider for any n-tuple

(al,az, . ,aka*) € Wka (SUk)
the k N;-tuples

(@ir Qisksy - -+ 5 Bitk(Ne—1)) fori=1,..., M.
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We know that if for some j, a; = 1 anda;_; = 0, thenforany /suchthat1 < j—lk <j
we know that g;_y = 0. Similarly, if for some x, 1y,(x) = 1 but 1y, (T*(x)) = 0,
then for every 1 < i < Ni, 1y, (T%(x)) = 0. Thus if for some j, a; = 1 but a; 4 = 0,
then for any / such that j < j + kI < kN, aj1n = 0.

Thus the sequence (a;, @1, . . . , @it k(n,—1)) must be of the form

(0,0,...,0,1,1,...1,0,0,...,0).
The number of N;-tuples of this form is less than N2, and so
|Wka (SUk)l < ngk'

Thus

1 1 e 2
< — < j—
AU, < L log (Wi, (Su,)| < KN, log(N*) = N_k log(Ny),

and so we see that indeed if N, is large enough, A(Uy) will be smaller than 2%~ I,
O

(4.3) The construction

Let £, £ be distinct points of X, and € > 0. We will now construct a factor
imbedded in ([0, 1]%,0) and a (continuous) factor map ¢:X — [0,1]Z such that
q§(§ ) # q@({’ ). In the next subsection we will show that the entropy of this factor is
less than e.

We will first find a countable collection .A of open sets such that
Al Forany U € Aand any § > Othereisa V € Asuchthat U C V ¢ B(dU, ).
A2 Y 4 h(U) <e
A3 Thereisa U € Asuchthat £ € Ubut ¢ & cl(U).

This collection .A will be the union of a monotone increasing sequence of collections
.A()CA1CA2C-~-.

To construct these collections first note that for any x € X, {x} \ per(X) is
small, and thus according to Lemma (4.2) there is an open set U such that £ € U,
&' & cl(U), the boundary of U is a union of a small set and a set of periodic points,
and A(U) < €/2. Define A; = {U}.

Suppose A, has already been defined. According to Lemma (4.2) we can find
for any U € A, a set Vy , such that

(a) OU Cc Vy,, C B(8U, 1/n),
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(b) OVy , is a union of a small set and a set of periodic points,
©) h(Vya) < (2114 e,

and define A, as
A1 Z{Vyn: UclU}U A,

It is easy to see that A= U2, An has all the required properties.
Define
Ar={T"U:ne€Zand U € A}.

It is easy to see that Ay still satisfies properties Al and A3. Indeed, Ay clearly
satisfies the following three properties:

B1 Forany U € Arandanyé > OthereisaV & ArsuchthatdU C V C B(8U,$).
B2 Thereis a U € Ay such that £ € U but &’ ¢ cl(U).
B3 U e Ay iff T(U) € AT.

We will now define a (closed) equivalence relation ~ on X: we will say that
x ~ yiff forevery U € Az, 1y(x) = 1y(y). To show ~ is closed we must show that
if x £ y there are open neighbourhoods V, 3 x, V, 5 y such that for every x’' € V;
andanyy € V,,x' £ y'.

Without loss of generality we can assume that for some U € Ar, x € U but
y & U. There are two cases:

A If y ¢ 8U, there is a neigbourhood V, 5 y such that V, N U = @ and we can
take as V, the set U. Since all points of V), are not in U, no point of V, can
be equivalent to a point of V.

B If y € AU then there is an n such that d(x,8U) > 1/n. According to the
properties of the collection Ay there is a set U’ € Ar such that 8U c U’ C
B(8U,1/n), and thus y € U’, x ¢ cl(U’), and Case A is applicable.

Using the well known construction of quotient space, X/~ is a compact metric
space, and let m: X — X/~ denote the projection map from X to Y£X/~. Recall
that if d(-, -) is a metric on X, the metric on X/~ is defined by

px,y) = &(n~'x,m71y),
where 6(-, -) is the Hausdorff metric on the closed subsets of X, that is

8(A,A") =inf{§ >0:A C B(A',6) and A’ C B(A, 6)}.
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We can define a homeomorphism S: Y — Y by specifying that for any x € X,
Son(x) =noT(x).

This map is well defined since x ~ y iff T(x) ~ T(y), and is easily seen to be
continuous and to have a continuous inverse. Thus we have constructed a factor
(Y,S) of (X,T).

(4.4) Estimating the entropy

Recall the following definition of topological entropy:

Let (Z, R) be a dynamical system and let d(- -) be a metric on Z. A set E is said
to be n,8-separated if for every two distinct x and y in E, there is a 0 < k < n such
that d(T*x, T*y) > 6. Let S(Z;n,6) (or S(n,6) if Z is understood) be the maximal
cardinality of an n,6-separated set. Set

hs(Z)Zlim sup % log S(Z;n, 6),
then the topological entropy of (Z, R) is

(4.4.1) hiop(Z2)Z 1im hs(Z).
P §—0

We wish to show that the entropy of Y is less than . We will do so by showing
that ¥ is not only a factor of X but also of some dynamical system Z with Ap(Z) < €.
A is denumerable, and so we can present it as

A={U;,Us,.. ).

For any U; we have the dynamical system (Sy,,o) with entropy A(U;). Thus
Z' =TI, Su,, together with the transformation ¢’ = [[2, o, is a dynamical
system with entropy at most Y 2, h(U;) < e.

We have the following natural (non-continuous) map v from X to Z":

vix s (Vi) sice s
where v;, j = 1py,(x) for every i, j. This map v induces amap v’ fromY = X/~toZ
since if x ~ y then v(x) = v(y). Let Z = cl v(X) C Z’ and define the transformation
R:Z — Z as R = ¢’|z. Since (Z,R) is a subsystem of (Z’,0"), hop(Z) < €.
To show that h,p(Y) < € we wish to construct a continuous factormap f:Z — Y.
For any i, define U? = X \ U; and U} = cl U,. Take any a = v(x) € v(X). Then

xe [ TW™),

1<i<oo
—oo<j<oo
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and so for any « € Z = cl v(X),

Uan= TI(U) # 0,

and thus U, Z N3, Usw # 0.
Proposition (4.5) diam (7(U, n)) tends to zero uniformly in N.

Proof Suppose that the proposition is false, that is there exists a§ > O and a
sequence of a, € Z, an increasing sequence N, and two sequences X,, yn» € Uq, N,
such that

p(m(xn), m(yn)) > 6.

Since Z is compact there is a subsequence of a, (which w.l.o.g. we can assume
to be a, itself) that converges to a point of Z, say «. This means that there is a
sequence N, — oo, Nj, < N, for every n, such that (ay,);; = o;j for 1 <i < N,
=N, <j < Nj}. Thus X,, y» € Uan:.

X is compact, and so again we may assume that x, and y, converge to x € U,
and y € U,, respectively. Since p(m(x),n(y)) > 8, x 4 y. This means that there
is some 7V U; such that x € 7V U; and y ¢ T’ U;. Without loss of generality we can
assume that

(45.1) x€eTU; and  yd&c(TVUy),

for otherwise there is an Uy D 8U; such that x ¢ cl(7V Ui ), and as in the proof that
~ is closed we see that if we exchange the names of x and y and take 7V Uy instead
of TV U;, (4.5.1) will be true.

But this is impossible, for if o; ; = 0 both x and y cannot be in 77 U;; and if
a;, j = 1 both x and y must be in cl(7V U;). 0

Note that in particular we have proved that #(U, ) consists of exactly one point
for any o € Z. We will define f(«) as the single point of Y in n(U,). Clearly, as a
direct consequence of the definitions of f and S,

foR{(a)=Sof(a) for every a € Z.

fisonto Y since forany x € X, x € U,(yy, andsoforanyy € ¥, y € 7 Uy(y). f is

also continuous — this is merely a restatement of the fact that diam n(U, n) — O

uniformly in N. Thus f is a factor transformation from Z to ¥ and we are done.
We have in fact proved the following theorem:

Theorem (4.6) Let (X,T) be a finite dimensional dynamical system. Then
for every two points x,x’ € X and every € > O there is a factor transformation 1
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that maps the system (X,T) onto a system (Y,S) with hop(Y) < € and such that
P(x) £ P(x').
In fact, it is not hard to see that if we make sure that the collection A from (4.3)

contains arbitrarily small neighbourhoods of x then the resulting factor transfor-
mation v will have the additional property that

P(x) #P(y) foranyyeX.

(4.8) Constructing intermediate factors
We will need a small lemma before proving our main result:

Lemma (4.9) Let {(¥S:)} o, be a sequence of factors of the system (X,T),
andlet yi: X — Y, i =1, ..., be the associated factor transformations. Define for
every n the factor (Z,,R,) imbedded in

(Y1 ><Y2X-'-><Yn,S1 XS2><"~XS,,)

as the image of the system X under the factor mapping 11 x 12 X - - - X b,. Similarly,
define (Zoo, R ) as the image of X under the infinite product 11 x 12 X ---. Then

(49 1) htop (Zoo) - nllvrgo htop(Zn)
Proof We will first define for each n < co a metric d(-, -) on Z, as
d(z,2) = 27 dy, (v Y)),
i=1

where z = (y1,...,yn) and 2’ = (¥}, ..., ¥0)-

Since (Zn, Rn) is a factor of (Z,, R,) for m < n < oo the limit on the right-hand
side of equation (4.9.1) exists and is no bigger than the left-hand side. However,
in view of the metrics defined on [[%, ¥; and [, ¥, for every e there is an N and
€' such that

(4.9.2) he(Zso) < her(Zn).

This is true since for large enough N, the projection ny: Zo, — Zy does not change
the distances too much, i.e.

|d(x,y) — d(mn(x), Tn(¥))] < /4
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for any x,y € Z,, = [[;2, ¥;. Thus the projection of any n, e-separated set to the
first N coordinates will be a n, ¢/2-separated set in Zy, and so we have (4.9.2).

Assume hiop(Zo) < oo (the case hop(Zos) = oo is almost the same and is
omitted). Since hiop(Zoo) = lime_,0 he(Zoo ), for any 6 there exists an e such that
hop{Zoo) < he{Zs) + 6. Thus

hlop(zoo) -0< he(Zoo) < he’ (ZN) < htop(ZN) < nll»l{olo htop(zn)- o

Theorem (4.10) Let (X, T) be a finite dimensional dynamical system, and let
(Y',8") be a factor of (X, T) such that hip(Y') < hiep(X) (in particular (Y',S") can be
the trivial factor consisting of a single point). Then for any h € (hyop(Y'), hiop(X)),
we can find a factor (Y,S) of (X, T) with topological entropy h, and such that if
#:X — Y and ¢: X — Y are the respective factor transformations then ¢ o =1 is
well defined, and is a factor transformation Y — Y’.

Proof Take any hup(Y') < b < hop(X). Take €; = (h — hiop(Y’))/2. According
to Theorem (4.6), for every two points x # x’ in X there is a factor (Y} ,,,S1 )
of X with entropy < ¢; such that x and x’ are mapped to different points in Y;‘x,.
The factor transformation is continuous and so there are open sets U}yx, 3 x and
V, « 3 X such that the factor transformation maps U} ,, and V] , into disjoint sets.

The sets U} ,, x V] . are an open cover of X x X \ A, where A is the diagonal
in X x X. A countable number of these U} ,, x V!, suffice to cover X x X \ A,
say U} x V}. Denote by (Y/,S}) the associate factors and by %! (i > 1) the factor
transformations. Also set (Y],S}) = (¥, §) (the given factor of X), and ¢! = ¢.

Define using the (¥}, S})’s the factors (Z!,R}) and (Z. ,R),) as in the previous
lemma. The U} x V}’s cover X x X\ A and so for every x # x’ in X there is an i such
that ¥/} (x) # ¥} (x’'). Thus the factor map X — Z. is one-on-one; by definition
it is onto. Since X is compact we see that Z!  is homeomorphic to X, and this
homeomorphism is in fact an isomorphism between these two dynamical systems.
Consequently, we see that hp(ZL) = hiop(X) > h. Using Lemma (4.9) we see that
already for some finite N, the entropy hp(Z),) > h. Note that for any N we have

hiop(Zy11) < hiop(Zy) + Peop(Ya 1) < hiop(ZR) + €1,
since we can imbed (Z},,,Ry,,) as a dynamical system in

(ZY x Y}, Ry x Sk,,). If we take Ny to be the smallest integer such that
hiop(ZY) > h, we see that

h—€1 <htop ("/)% X¢% Xoeee Xl/’ll\ll—l(X)) Sh

(Note that since hiqp(Y’) + € < h, the integer Ny must be greater than 1.)
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We now take e2 = €)/2 and find exactly as for ¢; a sequence of factors
(Y?,T?) and factor transformations ¢? such that for every i, hwp(¥Y?) < e,
and so that for every x # x’ there is an i such that y?(x) # ¥?(x'). For the
same reasons as in the preceding paragraph

Pl XXy X YT X3 X (X) =X
and so there is an N, such that

h— e < hyop (¥ X"'X1/)11v]—1 xwfx-nxzp%,z_l(X)) <h.

Proceeding in this way and using (4.9) we see that

htop(¢} x...xwd)}vl_l X¢%X"'X¢12\12_1 ><¢%X"'X1/)13v3-1 X oo (X)):h,

and so, if we define v to be
gef 1 1 2 2 3 3
Y=Yy X XYy XYY X X Py, X X Xy X

YEy(X) is the required factor. Indeed, since Yl = ¢pthemap poyp™ 1Y — Y is
simply a map that projects elements of ¥ (imbedded in ¥’ x Y} ---) according to
the first coordinate and so is obviously well defined and continuous. It is also onto
Y’ since ¢ is. a

5. A construction of a minimal dynamical system with no small
factors

In Section 2 we used the fact that each coordinate of a point in [0, 1]% can be
varied continuously from 0 to 1 without having to change any other coordinate.
Obviously there can’t be any minimal system with this property, but we will build
a minimal system with enough flexibility that we will be able to use reasoning
similar to that in Section 2 to prove this system has no finite entropy factors. Our
system will be imbedded in [0, 1]%, and we will use the following metric on this
space:

dxy)E > 27Hpg -yl
—oo<k<oo

We will define inductively a monotone decreasing sequence of subsystems (i.e.

closed and shift invariant subset) {0,112 5 Xo D X; D --+ D X, - - - such that:

a. No X,, is empty.

b. For any two points x, y € X, there is a k such that d(y,o*x) < a,, where
(ak)pe g is a sequence tending to zero as k — oo.
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Lemma (5.1) If X, satisfy conditions a and b above then Xdéfﬂ:io X, is
minimal.

Proof Since [0, 1]% is compact ) X, is nonempty. Let x € X. We must show
that {okx} = X. Take any y € X. For every n, both x and y are in X,,; thus there
is a k such that d(y, o*x) < a,. Since a, — O this proves that y is in the closure of
{o*x}. O

The following terminology will be convenient for the construction of the se-
quence X, and in proving X has no small factors. We will look at finite sequences
of real numbers in the interval [0,1] as words from the (infinite) alphabet [0, 1] (the
letters). By an infinite word we simply mean an element of [0, 1]Z. If w is a word
we will designate its length by I(w). If x € [0,1]%, a and b in Z U {—o0, 00} define
x5 = (Xa,Xa+1,- - Xp—1). We will also use the notation w|2 for words, where the
first letter of a word has index 1 (if a < 1 or b > I(w) we set w|2d§w[$";((%fl(;”) iy,

A word w' is said to be a substring of a (finite or infinite) word w (or w’ < w) if
there exist integers ,,7; such that w' = w|2. If X C [0, 1] we define the words of
X or W (X) to be:

WX)y={w|IxeX w=x}

W, (X) to be the words of X of length I, W<, (X) those of length < I. And finally,
if w,w' are two words then w - w' is their concatenation.
Let wy be the length 1 word ‘0’, tp = 100. Set

Xo = {XE [O, I]Z | Ve wo jx|f+t° } .

For every k set Ly = {0, %,... ,1 — %}% C [0, 1}%, with Lo, = U2 Le. We will
continue inductively to define X,wx and #, with the following properties:

1. w, € W(Xk_l ﬂLk).
2. Every word w € W, _, (Xix—1 N Ly) is a substring of wy.
3. 4, =50- 2kl(Wk).

4 K= {xe X |V w3,

If we will define how to get w; with the above properties given X;_; we will be
done with the definition. Set W = W5, | (X1 N Li). W is obviously a finite set.
By property 4, fork— 1, each w € W has awy_; as a substring of its first (and also
last) #, letters. For every such w remove at most #_; letters from its beginning
and its end until we have a word that begins and ends with the substring w;_;, and
let W’ be the set of all these smaller words. Take wy to be the concatenation of all
thew € W'.
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Since each w' € W (X;_1), and since they all begin and end with a wy_1,
wr € W(Xi—1) and so wy € W (X1 N Li) which is property 1. Also, since we
have not tampered with the middle #,_; letters of each w € W we have property 2.
Properties 3 and 4 are merely definitions for #, and X respectively.

In terms of the w; and #; we see that

(5.1.1) X,={x€0,1)%|vr,k<n w2}

X is the same but without the restriction that £k must be < n.

Lemma (5.2) The X, defined above satisfy the conditions of Lemma (5.1).
Thus X = (\peo Xk is minimal.

Proof Since wy is a word of X;_i, that is, it has “enough” wy substrings for
k' < k, and it begins and ends with a w,_;, the two sided infinite concatenation
oo Wi - Wi - Wy - - 18 1n X, so it is clear that X} is a non-empty closed shift invariant
set. Thus condition a of Lemma (5.1) is satisfied.

To prove that condition b is satisfied let x be any point of X;. Define a word
x" e W(X_1 N Ly) as follows :

X = for — %51 << %5t

(it is a word of X;_, since all the words wy., k' < k are composed of letters of the

form ™3£<). Now according to property 2, x’ is a substring of wy and so of any

y € X;. So we see that for any y € X; there is an m such that for —%* < [ < %!

the I'* coordinate of x is different from that of oy by less than 2~%. But this means
y by

(since #;_, > k) that there exists an m such that d(x,o™y) < 272 — which is

condition b. O

Since every w, begins and ends with a w,_;, there is a one sided word (with
its first letter having index 1) wy, such that .wc,o|ll(w")+1 = w, for every n, and
another one sided word (with its last letter having index 0) w, such that for every
n, v‘voo|1_,(w")Jrl = w,.

We will say a word w is legal if for every n, w, - w-w, € W (X), or since X
is closed this is equivalent to W, - w - wo, € X. This definition was chosen (in
preference to the more natural definition that w be in W (X)) so that we would have
an easy way to extend any legal word to an element of X. It is easy to see that a
word w is legal iff for every n

(5.2.1) W < (Wp o w-wy) [T forevery 1 <t < l(w) + 2l(wy) — t,.
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The fact, that for legal w equation (5.2.1) is satisfied for every n, is immediate from
the definitions. But if (5.2.1) is satisfied then it is easy to see that Wo, - W - Woo
satisfies the conditions for being an element of X stated in (5.1.1).

Notice that for large enough n, ¢, > I(w) + 2l(w,) since by definition ¢, >
100l(w,), and so (5.2.1) is satisfied vacuously. It is easy to see that for every n the
word w, is legal; and every word in W (X N Ly,) is a substring of w, for some n,
so that every such word is a substring of a legal one.

The following lemma supplies the necessary degrees of freedom we need to
apply the methods of Section 2, and is the important step in proving our system
does not have any small non-trivial factors:

Lemma (5.3) Ifvy and vy are both legal words of common length I, then there
exists a continuous path v(t), 0 < t < 1 between them consisting of legal words (a
legal path).

To prove this lemma we must look more closely at legal words. Say w is a legal
word. Some of its letters we can change at will without touching any substring
equal to a wy — indeed in general letters may even fail to be of the form l‘;fﬂ and
so by the definition of X given in terms of the 7; and wy, (5.1.1), the changed words
will all be legal. Other letters however can be crucial and changing them will
destroy an essential appearance of a w; substring. Even those crucial letters have
different roles: some appear as part of an essential wo (i.e. if they are changed,
there will be a ¢ such that wy £ W, - W - W |;+’°), others as part of an essential w,
etc. Notice that if the word w is shorter than #; there will be no essential wy’s.
Changing an essential letter (which is a thing we might need to do to pass from the
word v; to v;) involves constructing alternative copies of the relevant w; which is
harder for larger k’s. To designate such a pattern of words with some of their letters
fixed, and some ranging over.all values, independently of one another, we will use
a word in the extended alphabet [0, 1] U {*}, where a ‘*’ should be interpreted as
a letter that can be replaced with any value. To each pattern p of length I, we will
designate the set of words that fit it by (p). The intersection of two such sets for
two patterns p; and p; of common length [ is either an empty set or a set associated
to another pattern of the same length; if this pattern is p we will say that p = p; Ap.
Thus the following definition, which will play an important role in proving Lemma
(5.3), is natural:

Definition (5.4) A structure of a word w is a sequence of patterns (p;)ic, (i.e.
a sequence of words in the extended alphabet [0, 1] U {*}) such that:

1. wis in (px) for every k.

2. For every k, {pi} C (Pr+1)-
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3. Setting
Xs,={x €[0,1)% |Vi,k>n wi % x|it}

every word v in (p,) satisfies wi-v-wy € W (X>,) for every k (or, equivalently,
Woo * V* Woo € X>n; we will call such words v legal words for X, ).

The structure is minimal if there is no other structure of w, say (p})i~,, such that
for every i, {p}) D (p:).

Remarks Notice that if we have a structure (p;);, for a word w of length
< t, then (p})i2,, where p; = p; for i < k and p} = * * - -- x otherwise, is also a
structure. In particular, if /(w) < # then for any minimal structure (p;);>, of w, for
every k' > k, py = **--- . Another thing worth noting is that every legal word w
has a structure. Indeed the sequence of patterns p; = w is a structure, for both the
first and second conditions are trivial since all the p;s are the same, and the third
follows for every n from the legality of w.

We will need the following lemma, which shows that many patterns satisfying
condition 3 in (5.4) for some n can be completed to form a structure.

Lemma (5.5) Let p be a pattern satisfying property 3 of Definition (5.4) for
some n. Suppose in addition that for every t such that the " letter of p is not ‘*’
there are ' and t", ' < t < 1" such that (Weo - p - Woo )|, = wy with 0’ > n (fix the
indexing of this infinite word by taking the last letter of Woo as its 0" coordinate).
Then (p) contains a legal word.

Proof By induction on n. For n = 0 Definition (5.4) says every word in (p) is
legal so the lemma obviously holds.

If n > 0 we will show that there is a pattern p’ such that (p’) C {p) and p’ satisfies
the conditions of this lemma for n — 1.

We get the pattern p’ from p by taking any /(w,_;) consecutive ‘+’s of p and
replacing them by w,_; until there are no /(w,_;) consecutive ‘x’s in p’. This
new pattern clearly satisfies the second condition of this lemma, namely that every
non ‘x’ of p’ is part of a w,, substring for n’ > n — 1. We already know that for
every w € (p'), the infinite word wo, - w - Wy, (again the last letter of w, is the
0" cootdinate of the infinite word) is in X>,, and wish to show that it is in X>,_;.
Thus we only need to show that for every ¢,

t+ty -

(551) Wp—1 =2 (woo wwoo) |t

Since w,, ends with w,_;, and any finite substring of it is a substring of some w,,
(5.5.1)istrue fort < —I(w,_;) and in the same way we can see that (5.5.1) is true for
t > l(w)—t,—1 +1(wn_1). Suppose there is ¢, —l(wy—1) <t < (W) —th_1 +{(Wn-1)
that does not satisfy (5.5.1) for some word w € (p/). Changing the indexation we
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seethereisa?,0 < ¢ <Il(w)—1t,_1+2l(wn—1) and aw € (p’}), such that w,_; is not
a substring of (w,_; - w - wy,_1) ::“”“. Such a w exists iff w,_; is not a substring
of the pattern (w,_; - p’ - w,,_l)]i:ﬂ'“' (patterns are simply words in an extended
alphabet, and so we can use the word terminology for patterns as well). So we see
that (5.5.1) is equivalent to having

| & o PO

(5.5.2) Wn1 X Wn_1 P Wn1)l;

forevery 1 <t < I(w) — ty—1 + 2l(wy—1).

Now assume again that there is a ¢’ that does not satisfy (5.5.2). Since in p’ there
are no more than /(w,_;)— 1 consecutive ‘*’s, there is anon ‘«’ letter in the (smaller)
substring (Wp—1 - p’ - Wp_1) |;:_t;’(';:__ll)(w"") which is the substring p’ [::+t"‘1_2’(w"")
We know it is part of a w,, substring of W, - p' - We for n’ > n — 1. If it is part of
a w,_1 then we get a contradiction to ¢’ being ‘bad’. Suppose, then, that this letter
is a part of a w,, for n’ > n. If this w, contains all the letters of w,_; - p' - w,_1
in the range ¢ to ¢ + t,_1 — 1, then since w, € W (X) these letter must contain a
w,—1 substring — a contradiction. So this w,, substring must have either its end
or its beginning in this range of letters. Assume that its end is in this range — the
other case is exactly the same. We know that a letter in the range ¢’ + I(w,_1) to
t' + 1,1 — 1 — l(w,_1) is part of this w,, so the last /(w,_,) letters of this w, are
a substring of (w,_1 - p' - w,_1 )I;:H"“ . Since w,, ends with a w,,_), we again get a
contradiction. ‘

Thus the pattern p’ satisfies the conditions of this lemma for n — 1. By the
induction hypothesis we know that (p’) must contain a legal word; and since

(p) D (p') so does (p). |

Corollary (5.6) Any pattern p satisfying the conditions of Lemma (5.5) for some
n, can be completed to form a structure whose n™ element is p.

Proof Let w be a legal word in (p}; then

_w ifi<n
Pi=1 p, otherwise

is a structure for the word w. (]

We return to Lemma (5.3). Let (p?);-, and (p});~ be structures for the two
legal words v and v; respectively. Also define kg to be the smallest integer such
that Ly > t’(Vo).

Now suppose p§ and p| are the same. This means that there is a pattern which
both vg and v satisfy, such that any word satisfying this pattern is legal. So simply
vary every letter different in vy and v; continuously from its value in vy to that
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in v; and we get the required legal path. On the other hand, from the remark
following Definition (5.4), if (pf);-, and (p});, are minimal structures, p and
Py, are always the same, namely the trivial pattern “x % - - .

We will prove by induction on r the following lemma.

Lemma (5.3) Suppose vy and vy are both legal words of common length I,
with structures (p?) -, and (p}) -, respectively. If p® = p} for some r, then there
exists a legal path between them.

Remark Since we can choose any structures we like for vy and vy, we can
choose minimal structures, which we know satisfy p? = p} for r large enough. So
(5.3) does imply (5.3).

Proof of the Lemma Note that we have proved the case r = 0. So suppose
it is true for ¥ = r — 1; we must show the lemma is true also for r. Let kg be the
smallest k such that I < #,.

(5.8) We proceed to show that the structures (pg),~ and (p}),-, can be assumed
to be minimal. As we have already seen we can assume that for k > ko, p? and p}
are “xx--- ¥’. Also we can assume that for k > r we have p) = p} — in fact we can
take both of these equal to p%. Now we can start at k = ko and find a pattern p}, that
satisfies all the properties it needs to in Definition (5.4), and in addition (p?) C (p}),
such that for every other pattern g satisfying these conditions, {p;) ¢ (g). (There
is such a pattern, because (p},) C (g) simply means that some of the letters € [0, 1]
in p; were replaced by ‘*’s. So after a finite number of stages we must find the
pattern p; we wanted.) After we have defined p;, we can define in the same way,
but for k¥’ = k — 1, a pattern p;,_, and continue inductively. The resulting sequence
of patterns together with the all ‘x’ patterns for large k form a minimal structure
for vg.

Performing the same process for v; we can construct a minimal structure p; for
vy satisfying p} = p, for k > r, for in finding p; for k > r we only used p? fork > r
and these are the same as p} for these ks. In particular p! = p/, which is exactly the
condition imposed on the original structures by the assumptions of Lemma (5.3)'.
From now on we will assume that (pg),- , and (p}),., are minimal.

k=0
(5.9) Now suppose we find a pattern £, such that

(i) ¢ satisfies property 3 of Definition (5.4) forn=r -1,
(i) any non ‘x’ letter of ¢ is part of a w; substring of We, - £ - weo (k> r— 1),

(i) (€) N (p0_) #0and (&) N (p}_,) #0,
i) (&) c () (=(p)-
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Assume further that we can find legal words vj, in (¢ Ap?_,) and v{ in (¢ Ap}_,).
We can easily find structures (¢0).- and (£]),, for v} and v} respectively, such
that £ = ¢2 | = ¢! | (simply take & = v) fork <r—1and & = £ fork > r — 1
and the same also applies to £}). So according to the induction hypothesis v} and
v} can be connected with a legal path. From exactly the same reasons, completing
p°_, to structures for v and v, we see they can be connected, and the same is true
for v; and v{. Combining these three legal paths we get a legal path from vy to v;.

We can see that there is a legal word in (¢ Ap%_,) using Lemma (5.5). For
assumption (i) on £ says any word in (£) is legal for X>,_; and so the same is true
for the smaller set (¢ Ap?_,), which is the first part of the conditions of Lemma
(5.5). In addition p®_, as the r — 1™ element of a minimal structure also satisfies
assumption (ii), and so every non ‘x’ letter of ¢ A p® | being a non ‘*’ letter in
either ¢ or p®_, is part of a wy substring in the concatenation of this pattern with
Woo and wo, and so is part of a wy in the concatenation of £ A p(,’_1 with these two
one sided infinite words, which is the second part of the conditions of that lemma.
The same is of course true for the pattern £ A p!_,, so we see that the existence of
vy and v is a consequence of the conditions set on £.

(5.10) We will now construct £ by starting with §6d§p9, and modifying it until
at last we get a pattern that will satisfy the conditions on &, in a way very similar
to the way we got the pattern p’ from the pattern p in the proof of Lemma (5.5).
Suppose we have defined already £;. There are two cases:

A: Thereisal <t <I—I(w,—1)+ 1 such that

p Hwe—) 0 prHi(we—) 1 t+l(w,—1)
gk |t =DPr1 It "_**"'*—pr—l |t ’

in which case we get §; | by replacing the /(w,_;) ‘+’s starting at place ¢ with
Wy_1.

B: There is no such ¢, in which case we take £ to be &;.

Case A can be applied only a finite number of times. So eventually we do get
to case B and thus £ is defined. £ clearly satisfies the assumptions (iii) and (iv).
Also, since we started with p® which is an 7 element of a minimal structure and
replaced ‘x - - - %’ substrings with w,_;, assumption (ii) also holds.

To show that assumption (i) holds, we need to show that for every word w in (£),

Woo * W+ Woo € X>r1.

Since we know that (¢) C (p?), a set of legal words for X>,, then exactly as in the
proof of condition (5.5.2) in Lemma (5.5) it remains to be shown that for every
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1 <t< l+21(wr—1) — 1,

[ ]
t

(5.10.1) wr_t < (Wr—1 - € wy1) |

If there is a 7 in the range 0 < 7 < [+ 2I(w,_1) — t,_ that does not satisfy (5.10.1)
then (w,—1 - £-w,_1) |§+t"' is a pattern with #,_; letters but no w,_, substrings. We
want to show that this contradicts the fact that ¢ satisfies case B, and we start by

showing (using arguments very similar to those in the proof of (5.5)) that

t+t = l(wr_1) _
t+i(w,_1) -

(5.10.2) (Wr—1-P% - w,_1) | *k e
Since (p?),, is minimal every non ‘+’ letter in p? must be part of a wj substring
for k > r. If all the letters between ¢ and 7+ ¢, are part of this wy then, since w; €
W (X), there is in this range of letters a w,_; substring, which is a contradiction.
We know w; begins and ends with w,_;, so if the letters ¢,...,t +t_; — 1 of
(wy—1 - p2 - w,_1) are not part of the wy, the first or last letters of this wy are in this
range of letters; in order not to get a wy_; substring (and a contradiction to the
existence of a ‘bad’ 1) we see that the letters of p?, in the range that interests us,
that can appear as part of any wy for k > r are at most the first and last /(wx_;) — 1
letters. Thus the central letters between ¢ + [(w,_1) and ¢ + t,_1 — 1 — I(w,_) are
‘x’s,

Both p¥ , and p! | can be derived from p? by replacing ‘*’s with letters in
[0,1]. If we look at the letters from 7 + I(w,_1) to t + £,_y — l(w,_;) in p0_| we
claim that they cannot contain more than two complete appearances of w,_;. For
if they contain three appearances of w,_; the middle one is redundant — any ¢,_,
consecutive letters that contain the middle w,_; contains either the first or last
w,_1 — and so we can replace by ‘«+’ all the letters that compose the middle w,_,
and are not part of the other two w,_;s contradicting minimality. So the letters
t+ 2l(w,-1) to t + t,—; — 2l(w,_;) cannot contain more than two blocks of non
‘x’ letters, each of length < I(w,_;) (the two blocks can merge together to form a
larger block but no bigger than twice this size). The same is true for p!_,, and so
since t,_; > 100{(w,_,) there must be in the range ¢+ 2l(w,_;) to t+t,_1 — 2l(w,_1)
a subrange from ¢’ to ¢ + 3l(w,_;) such that in both p?_, and p!_, the letters in
this range are only ‘«+’. We know however that the letters of £ in this range do not
have a w,_; substring. Recall that ¢ was derived from p? by changing substrings
of {(w,_1) *¥’s by w,_1. Since the letters ¢’ to ' + 3l(w,_;) do not contain any full
copy of w,_1, and since they were in p? all ‘+’, we see that the middle third of
these letters must remain all ‘x’s. Thus at last we see that £ has an all * substring
satisfying the conditions of case A — a contradiction.
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Since we have seen in the previous subsection that the existence of a ¢ satisfying
assumptions (i)—(iv) implies the existence of a legal path between vy and v| we are
done. a

We need one more simple lemma:

Lemma (5.11) Ifv,,...,v, are all legal words of common lengthl < 1, —21(wy),
and n(l + l(wy)) < tey1 — 2l(Wir1), then vy - wy - va - - Wi - vy, Is a legal word,

The proof of this lemma is very similar to the proof of Lemma (5.5) and the last
subsection of the proof of Lemma (5.3)’, and involves no new ideas, so it will be
omitted.

Atlast we are ready to prove:

Theorem (5.12) Every factor of the system (X,olx) has infinite
topological entropy.

Proof Recall the notations and the definition of entropy given at the beginning
of subsection (4.3).

Again, as in Theorem (2.1), we may consider only factors of the form (Y, o|y),
Y a subset of [0, 1)Z, with a factor map ¢ generated from a continuous function
¢:X — [0, 1] (with both 0 and 1 in its image) as in (1.2.1).

There is an Ny such that for any two points x,y € X, if x|1f‘}v0 = y|li"}vo then
|p(x) — d(¥)| < %. Since the points of X N L, are dense in X, we can find x° and
x! € X N Ly such that ¢(x) < 5, ¢(x!) > L.

Let v = x°|’f‘}vo, and in the same way define the word v} using x!. Both v/, and
v| are of course in W (X N L), and so both of them are substrings of w, for an n’
large enough. Suppose that v; begins at letter s; of w,» fori = 0,1. Setfori =0, 1

Di=*% - %Wy -k%-- %,
| S e’

s)_; times s; times

Both py and p; satisfy the conditions of Lemma (5.5) for n = n/, and so there
are legal words vy € {po) and v; € (p;) of common length [Zl(w,/) + so + 1.
These words satisfy v;|2751 72" = ] for i = 0,1 and so we see there is (an easily
computable) s such that for any x € X,

—stl-1 _ #(x) < 1/10, ifi=0,
== = { é(x) > 9/10, ifi=1.
According to Lemma (5.3), there exists a legal path, which we will denote by v(r),
0 <t <1, such that v(0) = vp and v(1) = v;.
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Using Lemma (5.11), and since we know [ < t» — 2l(w,), for every
S1s -5 8 € [0,1] with

_ Vn'+1 - 2l(Wn'+1)J
ry =
tyr
the word
G T )défv(sl) “Wng - V(82) + - Wy - V(Sy,)

is legal. Let 7, ..., 7, be the indices of the first letter of v(s1), ..., v(s,,)
respectively. By definition of legality, Woo - 71 (51, - - ,5r,) - Woo (the OF coordinate
is the last letter of W) is in X. If we take the projection of

~

¢(w00 'nl(sl""’sn)'woo)

to the coordinates 71 +s,. . . ,7, +s we get a function from [0, 1] to [0, 1]™ satisfying
the conditions of Lemma (2.2). Thus the whole cube [%, %}’1 is in its image. Since
there are m”™ points that differ from each other in at least one coordinate by more
that 1/2m in this cube, we see that s(Y;tn41,1/2m) > s(Y; 1, +5,1/2m) > m".
We can continue in this way one more step. Set

_ [tn’+2 - 2l(wn’+2)J
r = ’

Iniy1
and let
def
772(51,52’--- )Srzrl)znl(sla"' )srl) * Wn’+1 '771(Sn+17-~-,s2r1)' "
* Wn’+1 * 771 (s(rz——l)rl-f—l, e ,sr2r1)~

And in the same way as before show that s(Y; #, 42, -21;) > m™", We can proceed
further in this way to show that if

= {tn'+i - 2l(Wn/+i)J

P =

vti—1
then 1
S(Y; tn’+i, 2—';1') Z mrm'—p..rl'
Now since ¢
n'+-i
frsi=t S M) = 5570,

2 by gi
S - _ -
r; 2 (1 50.- 2n/+1) tnl+i_1 1

> (1= 1 by ti
= o' +i by i1 ’
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and so we have

1 rifi_1cer
1 Yitpriy—}) > ——1
T i Ogs( it Zm) tn’+i ogm
5.12.1 1 = 1
>clogm

for a positive constant ¢ > 0 that does not depend on i and m, and ¢ > O since the
product above converges. But (5.12.1) exactly says that A, /5,(Y) > clogm and
thus htop(Y) = OQ. O

6. Two minimal systems with a common almost 1-1 extension but no
common factors

In this section we present an application, due to S. Glasner, of the results of the
previous section.

We will say a map ¢: X — Y is almost 1-1 if the set Yy C Y of points y such that
the set ¢~!(y) consists of exactly one point is dense. It is a well known result of
elementary topology that the set Yy so defined is a G set for any map ¢, and so if
¢ is almost 1-1 then |¢~!(y)] = 1 on a dense G5 subset of Y. We will say (Z,R)
is an almost 1-1 extension of (X,T) if (X,T) is a factor of {Z,R) and the factor
transformation Z — X is almost 1-1.

Let (X, T') denote the minimal system we have constructed in the previous section
(or any other minimal system with no finite entropy factors). We wish to find an
almost 1-1, zero dimensional extension of X. The existence of such an extension
is part of the folklore on almost 1-1 extensions (see [2]). However, there does not
appear to be any published proof of this fact.

Lemma (6.1) Let (X, T) be a minimal system, and assume X is infinite. Then
X has a minimal, almost 1-1, zero dimensional extension (Z,R).

Proof X is, by assumption, a compact metric space. Thus, since (X, T) is
minimal and infinite, X has no isolated points. It is well known that under these
circumstances there exists an almost 1-1 map ¢ from the cantor set C = {0, 1}N
onto X. Let Xy be the set of points where ¢ !(x)| = 1. Recall that X, is a dense
G; subset of X, by definition of ¢.

The system Z we will construct will be a subsystem of CZ with the shift operation
o. We first define

Z'={(...,c_1,c0,¢1,...) ECE Vi€ Z ¢(c;) = T'¢(co)} -
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The map ¢ : Z' — X, defined by

q_s:(...,c(),...)i—)qs(Co),

is a factor transformation Z’ — X.

Now, any dynamical system (and in particular Z’) has a minimal subsystem.
Indeed, any subsystem of Z’ with no subsystems is minimal, and such subsystems
exist by Zorn’s Lemma. Let {Z, o|z) be a minimal subsystem of Z’.

#(Z) is a nonempty, closed and 7 invariant subset of X. Thus, since X is minimal
#(Z) = X and Z is an extension of X. Clearly Z is zero dimensional, so we only
need to prove that ¢ is almost 1-1. Since X is minimal, we only need to prove
|¢~(x0)| = 1 for some point xp € X.

Let -

x€ () T'(Xo).
i=—o00
This set is nonempty since it is the intersection of a countable number of dense G,
sets. Suppose ¢ and d are two distinct points of Z’ such that

$(c) = ¢(d) = xo.

Then for some i,
ci #d; but é(co) = ¢(do) = xo

so that |
¢(ci) = T'd(co) = T'(x0) = T'¢(do) = $(dy),

and so T%(xo) &€ Xo — a contradiction. O

Let (Z,R) be a minimal, almost 1-1, zero dimensional extension of X. It is
not hard to modify slightly the proof of Theorem (4.10) and show that any finite
dimensional dynamical system has a factor with any positive entropy we wish
(smaller than the entropy of the original system) such that the factor transformation
is almost 1-1. For the very special case of a zero dimensional minimal systems we
can give a direct proof of this fact, due to B. Weiss:

Theorem (6.2) Any zero dimensional dynamical system (Z,R) has, for any
n > 0, a factor (Y, S) with entropy h,(Y) < 1 such that the factor transformation
is almost 1-1.

Proof Take any z € Z. Since Z is minimal it suffices to show that the factor
transformation Z — Y is 1-1 at z. Let d be the metric on Z.
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Pick some large integer N. Let

H

1 : i
(6.2.1) 8= :n}.lnn,Nd(z,Tz).

Choose any é > 0 small enough so that for any x; and x;, and any —N <n <N, if
d(x1,x2) < 6 then d(T"x;, T"x,) < &'.
Since Z is zero dimensional, there is some clopen set U such that

z€ U C B(z,6).
Notice that for any 0 < k <N,
UnTHU) =0.

For assume u € U N T*(U). Then d(u,z) < 6 and d(T*u,z) < . Thus we see that
d(u,T*z) < &' and so
d(z,T*z) < 2§,

in contradiction to (6.2.1).
Define the map ¢ : Z — {0, 1}% by

¢z (. 1g(T7'2), 1y(z), Lu(TZ) . . ).

Since U is clopen, ¢ is continuous. Any infinite word of (’s and 1’s in ¢(X) must
have at least N zero’s between every two occurrences of 1’s, and so it is immediate
that by taking N large enough the entropy of the factor ¢(Z) can be made as small
as we wish. Notice also that if d(x,z) > é then ¢(x) # ¢(z).

To summarize, we have so far seen that for every ¢, § > 0, there exists a factor
Y. s of Z such that hp(Ye 5) < €, and such that if d(x, z) > 6 then x and z are mapped
into distinct points of Y, 5.

For every n > 0, let Y, = Y-, ,-1, and let ¢, be the associated factor transfor-
mations. Define ¢o.:Z — [[2, ¥, by

¢00»:x i (¢1 (X), ¢2(X), v ');

and set ¥ = ¢ (Z).
Clearly,

hlop(Y) < thop(Yn) <7
n=1

and if x # z then, for every n large enough, ¢.(x) # ¢,(z) and so
oo (X) # Poo(2)- 0
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Thus Z has a finite entropy factor (¥, S) with an almost 1-1 factor transformation.
Every factor of (X, T) has infinite entropy, every factor of (Y, S) finite entropy. So
these two minimal systems have a common almost 1-1 extension but no common
factors, answering the question posed by H. Furstenberg.
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