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A b s t r a c t .  The main result we prove in this paper is that for any finite 
dimensional dynamical system (with topological entropy h), and for any factor 
with strictly lower entropy h I, there exists an intermediate factor of entropy h" for 
every h" E [if, h]. Two examples, one of them minimal, show that this is not the 
case for infinite dimensional systems. 

1. Introduct ion 

The problem considered here was suggested in the paper [7]. It can be stated as 

follows: 

P r o b l e m  (1.1) Given a dynamical system (X, T) with positive topological 

entropy, what can be said about the range of  values of  htop(Y) as Y ranges over the 

factors of  (X, T); in particular, when does such a dynamical system have factors 
with arbitrarily small entropy? 

In what follows, by a dynamical system (X, T) we mean a compact metric space 

X, and a continuous bijection T: X ~ X. A factor of (X, T) is a system (Y, S) with 

a continuous surjection 7r: X --* Y such that S o 7r = lr o T. This surjection is called 

the factor transformation. 

A natural dynamical system in this context is the system [0, 1] z (the infinite 

dimensional cube with the usual Tychonoff topology) together with the shift a. 

The Hilbert cube is universal for compact metric spaces since every such space can 

be imbedded in it. Dynamically it is universal in the following sense: 

Proposit ion (1.2) Any dynamical system (X, T) has a non-trivial factor 

imbedded in the (bi-)infinite dimensional cube. 

Proof  Let f :  X ~ [0, 1] be any continuous function. Define)7: X ~ [0, 1] z by 

(1.2.1) j:: x H ( . . .  , f  o T -  1 ( x ) , f ( x ) , f  o T(x) , . . .  ). 

Set Y = )~(X) c [0, 1] z and S = air.  It is clear that (Y,S) is a factor, w i th j  ~ the 

factor map, since )7 is continuous and f o T = ~r o)~. [] 

In the next section we show that this system has no finite entropy factors. 
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The system [0, 1] z has infinite dimension. In Sections 3 and 4 we prove that 

if X has finite dimension then for any factor Y' of X with htop(Y') < htop(X) we 
can find, for any h E (htop(Y'), htop(X)), a factor Y of X compatible with Y' with 

htop(Y) -= h. By compatible we mean that ifr --+ Y and ~r,,x:X ~ Y' are the 

factor transformations from X to Y and Y' respectively then we can find a factor 

transformation r Y ~ Y' such that 

~Y' , v  o r = r 

The proof of this result will be divided into two parts. In Section 3 we use 

dimension theory to prove some facts about any finite dimensional dynamical 

system. In Section 4 we show that a consequence of these facts is that we can 

construct the intermediate factors described above. 

This theorem has a few interesting corollaries. First note that if we take Y' to 

be the trivial factor consisting of a single point then the above theorem gives a 

complete answer to Problem (1.1) for finite dimensional systems: 

For any finite dimensional system (X, T) the range of values of htop(Y) a s  Y 

ranges over the factors of(X, T) is [0, htop(X)]. 

Thus in particular there are no finite dimensional prime systems (i.e. dynamical 

systems with no non-trivial factors) with positive entropy. 

Also note that in particular the theorem gives a connection between finite 

dimension and finite topological entropy: while it is very easy to construct a 

finite dimensional dynamical system with infinite entropy, the theorem ensures us 

that any finite dimensional dynamical system has a factor with finite entropy. 

In Section 5 we will give a construction of an infinite dimensional minimal 

system with no finite entropy factors. An interesting open problem that remains in 

this context is whether there exists an (infinite dimensional) finite entropy system 

with (say) a positive lower bound on the topological entropy of its factors. We 

believe (at least if we require that the system be minimal) that no such system 

exists. Note that for the finite dimensional case we did not need any condition on 

the entropy. 

After the preparation of the initial version of this manuscript, S. Glasner has 

shown that the existence of a minimal system with no finite entropy factors gives 

a positive answer to a question posed by H. Furstenberg ([3]) whether there exist 

a pair of minimal dynamical systems which have a common almost one-to-one 

extension but no common factors. With his permission we present this result in 

the last section. 

This paper essentially contains the author's M.Sc. thesis, conducted under the 
guidance of Professor Benjamin Weiss from the Hebrew University. The author 
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is grateful to B. Weiss for introducing him to this problem, for many enlightening 

discussions about this and related topics, and for helping him bring this paper into 
what is hoped to be a readable form. 

2. Factors  o f  the sys tem [0, 1] z 

For the one sided shift, a proof, due to J. Ashley, that the system [0, 1] N has no 

finite entropy factors, is given in [7]. However,  new ideas must be used to prove the 
same for the two sided shift, and in particular one must use a classical topological 

result: the Brouwer  fixed point theorem. Let H~[0 ,  1] z. 

T h e o r e m  (2.1)  Let (Y, T) be a non-trivial factor of  ([0, 1] z, a). Then there 

exists an N such that ([0, 1] z, a) is a factor o f (Y ,  TN). 

The following lemma is a simple consequence of  the Brouwer  fixed point 
theorem: 

L e m m a  (2.2)  Let F = ( f l , . . .  , fn ) :  [0, 1] n ---+ [0, 1] n be a continuous map such 

that for  every 1 < i < n, 

9 
fi(Xo,.. .  ,Xi-1, 1,Xi+I,... ,Xn) > "-~ 

Then 

1 
and fi(xo, . . .  ,Xi--l,O,Xi+l,... ,Xn) ( 1"--0" 

(2.2.1) 14,[1 4] 3In C F([0, 1]~). 

P r o o f  Suppose x0 E [1/4,3/4] n but not in the image o f F .  For any x E [0, 1] n 

define G(x) as the point where the ray from F(x) to x0 intersects the boundary of  
[0, 1] n. This point is well defined since x0 is not in the image of  F,  and clearly 

G so defined is continuous. But the conditions on F guarantees that any point on 
the boundary of  the cube [0, 1] n is not mapped to itself, and since the image of  

G is contained in the boundary of  [0, 1] ~ we see that G is a continuous function 
G: [0, 1] n ---* [0, 1] n with no fixed points, in violation of  the Brouwer  fixed point 

theorem. [] 

P r o o f  o f  the T h e o r e m  Without loss of  generality one can assume that the 

factor is of  the form (1.2.1). That is, the factor is of  the form (Y, a l r  ) where 
Y C [0, 1] z and the factor mapping r is generated from the continuous function 
r [0, 1] z ~ [0, 1] by  

t~:X b--+ ( . . .  ,~bO T-I(x),~)(X),~)o T(x), . . .  ). 

We can normalize r so that 0 and 1 will both be in its image. (Since [0, 1] z is 

connected this aneans that r is onto the interval [0, 1].) 
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F rom  the (un i form)  cont inui ty  o f  4~ it fo l lows that there  is an No such that for  

any two points  in the infinite d imens iona l  cube,  x and y, 

1 
(2.1.1) xk=yk for  every  - N 0  < k < N o  ~ Ir162 < ]-6" 

Set N = 2N0 + 1, and let ~: ([0, 1] z, a N) ~ ([0, 1] z ,  or) be the map  

) H ( . . . , x _ u , x o , x N , . . .  ). 

Since we assume (Y, T) to be imbedded  in ([0, 1] z ,  or) this map  defines a map  f rom 

(Y, T N) to the infinite d imensional  cube,  and we will p rove  the image  o f  Y contains 

�9 the smaller  infinite d imensional  cube  H '~~ [�88 43-] z .  Since  it is easy  to find a factor  

t ransformat ion  f rom [0, 1] z to i tself  such that the image  o f  the smal ler  cube is [0, 1] z 

this proves  the theorem.  

We want  to see that ~(Y) ~ H ' ,  that  is that ~ o ~(H)  3 H ' .  S ince  H is compact ,  

so is ~ o ~(H) .  I f  we  will show that for  every  point  h E H '  and every  n there is a 

point  h'  E ~ o ~ (H)  that agrees with h in the coordinates  - n  . . . . .  n it will fo l low that 

h i tself  is in ~ o ~(H) .  So we need  on ly  look,  for  every  n, at the project ion 7r o f  

o ~(H)  on that  range  o f  coordinates ,  and ver i fy  that they contain  the project ion o f  

H'. We now have a funct ion 

def g=Tr o ~ o q~:H ~ [0, 1] 2n+l . 

We will def ine a funct ion ~b: [0, 1] 2n+l ~ H such that g o ~b: [0, 1] 2n+! ~ [0, 1] 2n+l 

will satisfy the condi t ions  o f  L e m m a  (2.2). L e t p  ~ pl  E [0, 1] z such that 4~(p ~ = 0 

and 4~(p 1) = 1. Set  

pk(t) = (1 - t) .pO + t .p l  k for  - :x~ < k < cx~, 

and define ~b as fol lows:  

(2.1.2) 

~-J(X--n, . . .  , X - - l , X O , X 1 , . . .  Xn) dc-~f 

( . . .  O, O, O,p_No(X_n),P_No+l (X-n), �9 �9 �9 PNo(X-~), 

P-No (X-n+ 1 ),P-N0+l (X-n+ l ) , . . .  PNo(X-n+I ), 

P-No(XO),P-No+I(XO),... po(Xo),... PUo(XO), 

P-No (Xn),P-No+l (Xn), �9 �9 �9 PNo (Xn), O, O, 0 , . . .  ) 
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(the 0 th coordinate is po(xo)). 

Suppose x0 = 0. Then ~b(.. . ,  x_ 1 , 0 , X l , .  �9 �9 ) is identical to p0 in the coordinates 

- N o  . . . . .  No. Using (2.1.1) we see that 

1 
o ) - ego~ < 

that is, 0 o ~b(... ,x -1 ,0 ,Xl ,  �9 �9 �9 ) < 1 In this way we see that ifxk : 0 then the k th 

coordinate of  g o ~b is smaller than ~0, and ifxk = 1 then the k th coordinate is bigger 

than 9 __ i.e. g o ~b satisfies the conditions of  Lemma (2.2). Thus the image of  

this map contains the small cube [�88 [ ]  

C o n c l u s i o n  (2 .2)  Any factor of  [0, 1] z has infinite entropy. 

3.  T h e  e x i s t e n c e  o f  o p e n  s e t s  w i t h  s m a l l  b o u n d a r y  

I f  (X, T) is a dynamical  system, we will denote by per(X) the set of  its periodic 

points, and by perk(X ) the set of  its periodic points with period <_ k. We shall 

denote the metric on X by d( . , - ) ;  and to simplify notations we shall (without loss 

o f  generality) assume that for every x, y E X, d(x,y) < 1. Also, in this and the 

next section every measure is assumed to be a normalized Borel measure. We will 

denote the set of  all T-invariant measures of  (X, T) by Air .  

We wish to show that every open subset of  X can be approximated (in a rather 

strong sense) by an open set such that the set of  the non-periodic points on its 

boundary will be small, in the sense introduced in [7]: 

D e f i n i t i o n  (3.1)  A set E c X will be called (N, n)-disjoint i f  the intersection 

of  any n sets from the collection 

E, r(e), T2(e), T3(E),..., ru-l(e) 

is empty. 

D e f i n i t i o n  (3.2)  A set E C X will be called T - s m a l l  (or simply s m a l l  i f  T is 

understood) if for  every e > 0 there is an N such that E is (N, LeNJ )-disjoint. 

Note that if  a (measurable) set E is (N, n)-disjoint then no point of  X can 

be covered by more than n sets f rom the collection {Ti(E)}N_~ 1 and so, for any 

# E .Mr,  
1 n n 

#(E) : ~[ Z [~(Ti(E)) <~ ~[~(X) : ~ .  

In particular, if  a set E is small then for any such measure #, the measure of  E is 

zero. For closed sets the converse also holds, but we will not use this fact. For 

details see [7]. Clearly, a subset of  a small set is also small; it is also very easy to 

see that the union o f  two small sets is small. 
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In this section we will prove the following theorem: 

T h e o r e m  (3.3)  Let (X, T) be a finite dimensional dynamical  system. Then 

fo r  every open set U C X, and any open V 3 0 U  \ per(X), there is an open U', 

U c U t c U U V, such that OU t is the union o f  a small  set  and a subset o f  per(X). 

We will see in the next section that the fact that any open set can be approximated 

by an open set with its boundary satisfying the conditions above is sufficient to 

ensure the existence of  factors of  the system (X, T) with arbitrary entropy. 

We will prove this theorem using ideas from [5]. The following definition is 

also taken from [5]: 

D e f i n i t i o n  (3.4)  A collection B o f  subsets o f  an n-dimensional  space X will 

be said to be in g e n e r a l  p o s i t i o n  i f  f o r  every finite sub-collection S c B with m 

elements, dim AS < m a x ( -  1, n - m). 

(Recall that by definition d i m M  = - 1  iff M = 0.) The motivation for this 

definition is that given a collection of  n -  1 dimensional subsets of  an n dimensional 

space then generically any two will have intersection with dimension < n - 2, etc. 

In the rest of  this section, we will take n to be dim(X). Notice that if the collection 
k r - 1  

{T E}k=0 is in general position then in particular, since the intersection of  any 

n + 1 sets f rom this collection is empty, E is (r, n + 1)-disjoint. 

We will use the following standard results in dimension theory valid for every 

separable metric space M. For proofs of  these results see [ 1 ]. 

D1 ("The Subspace Theorem")  I fA  c B then dimA _< dimB. 

D2 ("The Countable Closed Sum Theorem")  Let  {Bi} be a countable 

collection of  closed sets, with dimBi < k for every i. Then dim U Bi <_ k. 

D3 Let  E be a zero dimensional subset of  the space M. Then for every x E M 

and every open neighbourhood U of  x there is a U' c U with x E U t such 

that OU' M E = O. 

D4 I f d i m M  > - 1 there is a zero dimensional subset E of  M which is the union of  

a countable number of  closed sets in M and such that dim M \ E = dim M - 1. 

Also, the following result is a consequence of  D1 and D2: 

D5 Any finite or countable union of  F~k-dimensional sets is an Fo 

k-dimensional set. 

To see D5 is true note that each F~ set is a countable union of  closed sets that by 

D1 have dimension _< k, and so the union of  the original F~ sets is a countable 

union of  closed at most k-dimensional sets. By D2 this union has dimension _< k. 

Let  Pk = p e r k ( X ) ,  and P = per(X). 
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The important step towards proving the main result of  this section is the following 

lemma, which is a modification of  a lemma proved by J. Kulesza in [5]: 

L e m m a  (3.5) Let  (X, T) be an n dimensional dynamical  system, and let U c X 

be an open set. Then f o r  every k and every open set V D OU \ P, there exists an 

open set U ~, U c U' C U U V with OU ~ C OU U V such that 

{OU p \ P, T (OU') \ P , . . . ,  T k-1 (OU t) \ P}  

is in general position. 

(Notice that for any U J, if  OU' contains a periodic point with a short period the 

more  natural collection { 0 U ' , . . . ,  T k-1 (OU')} will not be in general position.) 

To prove Lemma (3.5) we will need the following simple result: 

L e m m a  (3.6)  Let  U be an open set, and let E C X be zero dimensional. Then 

f o r  any open V D cl(U), there exists an open set U' D cl(U), with U' C V and such 

that OU' N E -- O. 

P r o o f  By D3 for every x E OU there is neighbourhood Ux inside V whose 

boundary does not intersect E. By compactness of  OU a finite number  of  these, 
~ . . . ~  U r say Ux, Uxr, suffice for covering OU. Set U' = U Ui=i  Vxr. 

Clearly U p c V and cl(U) c U p. Also, since the union is finite, every point x 

in OU p is in OU or in some OUx,. The first possibility is impossible since the U~j's 

cover  OU and so every point of  OU is an internal point of  U p. Thus x is in OUx, for 

some i, and since this set has empty intersection with E, x ~ E. Thus OU' N E = O, 
[] 

P r o o f  o f  L e m m a  (3.5) 
We will prove the lemma by induction on k. I f  k = 0 we can simply take for U' 

the set U itself. 

Now, suppose that the lemma is true for some k > 0. We will prove it is true for 

k + 1. Without loss of  generality we can assume 

V n P k + l  = O 

for otherwise we can take V' = V \ Pk+l that also satisfies the conditions of  this 

lemma and if the l emma holds for W it also holds for V. Define further for any 

integer r, 

clearly each Vr is compact  and V = Ur~ V r.  Using the induction hypothesis we 

know that there exists an open A0 with U c A0 c U U V such that OAo c OU U V 
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and such that 

{0.4o \ P, T ( OAo ) \ P, . . . , T k-1 ( OAo ) \ P}  

is in general position. 

For every x E OAo n V, there exists an ~?x > 0 such that cl B(x, ~x) c V and such 

that the sets B(x, 77x), TB(x, ~x) . . . . .  TkB(x, ~Tx) are disjoint (since x ~ Pk+l). Let  

Bx%B(x, Zlx/2 ) and Bx~B(x, ~x). The Bx' s form a cover  of  OAo n V, and we can find 

a countable sub-cover  Bi such that 

(3.7.1) l im diam(Bi) = 0, 
i--*r 

and such that for  any VI there exists an rt such that 

Vtn f i# i  :0. 
i=rj 

Indeed, for every integer r define the compact  set Cr as 

{ '} Cr ~ I > d (x ,X  \ V) > 7-~ " x E OAo : 7 - 

We can construct  a sub-cover with the required properties by taking for every r a 

finite number  of  sets of  the fo rm B,  with x E Cr that cover  Cr. Since OAo n V = 

Ur%l Cr we have indeed a subcover  of  OAo M V. Furthermore,  for any x E Cr 

the diameter  o f  Bx is _< 1/r, and so (3.7.1) holds. Since d(Vt, Cr) > 1/r  for r 

large enough, we see that the second condition imposed  on the above sub-cover  

also holds, and so the existence of  a sub-cover  Bi with the  required properties is 

established. 

A r We will construct  recursively, starting with A0, a sequence of  open sets { i}i:0 
such that 

P1 ai c ao u U~oBj ,  

P2 Ai D Ai-1, 

P3 OAi c OU u V, 

P4 Ai \ Bi = Ai-1 \ [3i 

P5 u4i~ {OAi \ P, T(OAi) \ P,...,Tk-1 (OAi) \ P, Tk(OAir]U~:lOj) } isin 
general position. 
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(It is easy to see that A0 satisfies all these conditions for i = 0.) 

= ~x~ B Given this sequence we will define U' as U~=oAi. By P1, and since U)=0 ~ c v ,  

we see that 

U' c A 0 u  V c ( U u  V ) u  V =  U u V .  

By P2 we see that U C U'. We now claim that OU' c OU U V. Indeed, let x be 

a boundary point of  U'. Then either it is in OAi for some i or it is the limit of  a 

sequence (xt)~l with xt E A,, \ An,-1 with nt strictly increasing. Consequently, 

since by P4 Ant \ An,- I C Bn,, 

x E n cl nt C 0.4o 
1 = 0  \ l = r  / 

^ 

where the last inequality follows from the fact that the centers of  the Bi's are in 

OAo and their radii tend to zero. Thus we see that 

(3O 

OU' C OAo U U OAi C OU U V, 
i = 0  

where the second inclusion is a consequence of  P3. 

It remains to be verified that 

(3.7.2) {OU' \ P, T(OU') \ P , . . . , T  k-1 (OU') \ P, Tk(OU ') \ P} 

is in general position. First note that (for a given l) OU' n Vt = OAr n Vt i f  r is large 

enough. For according to P4, ar \ Ui~=r+l Bi = At, \ Ui~r+l/~i for any r' > r, and 
so U' \ Ui=r+l Bi Ar \ Ui=r+l i. According to the way the Bi's were chosen, 

there is an r such that for  every i > r ,  h i n gl+ 1 • 0, and so U' n Vt+l = Ar O Vt+l. 
Since Vt C int(Vt+l) we see that indeed (OU') N I,'l = (Oar) N Vt. We can take r 

large enough so that Vt c u i r l  Bi. Now we know that 

{OAr \ P, T(OAr) \ P , . . . , T  k-1 (OAr) \ P, Tk(OArNU~rl Bj) } 

is in general positions and the same is true if  we replace each set of  the above 

collection by a smaller set, and so 

{OAr n VI \ P, T (OAr n VI ) \ P, . . . , T k-1 (OAr n Vt ) \ P, T k (OAr N VI ) \ P} 

= {OU'NVt \P ,  T ( O U ' N V t ) \ P , . . . , T k - I ( O U ' N V ~ ) \ P ,  Tk (OU'NVt ) \P}  
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is in general position. Since this is true for every l, and since T i (OU' n Vl) \ P 
is closed in X \ P, then an immedia te  consequence of  the Countable Closed Sum 

Theorem (D2) is that the collection 

{OU' n V \  P, T(OU' fq V) \ P , . . . , T  k-1 (OU' n V) \ P, T k(OU' n V) \ P} 

is in general position. We have already seen that OU' c OU U V; since OU \ P C V 
we see that OU' C P u V and so the collection above is the same as the collection 

(3.7.2). Thus it only remains to be seen how to construct Ai+l using Ai. 

For every finite sub-collection S c Ai with dim (nS) > - 1  there is according 

to D4 a zero-dimensional  set Es C nS, F~ in nS, such that dim (nS \ Es) = 
dim (nS) - 1 (for S = 0, nS is undefined; for convenience we set it to be X). Es is 

in fact a -compac t ,  for nS is a - c o m p a c t  and an F~ subset o f  a a - compac t  space is 

a -compact .  Set 

E =  U T-YEs" 
Sc.Ai 
O<j<_k 

Since T is a homeomorph i sm the image  of  a zero dimensional  a -compac t  set is 

zero dimensional  and a-compact .  Thus E is a finite union of  a -compac t  zero 

dimensional  sets, and so according to D5, E itself is both a - compac t  and zero 

dimensional.  Using L e m m a  (3.6), there is an open set W D cl (Bi+I fq Ai) such that 

cl(W) C Bi+l n (U u U~-o Bj) n V, with OWn E = 0. We cla im that ai+l~--~-fAi U W 
satisfies P1 - P5. That  Ai+l satisfies P1 - P4 is trivial, and thus it only remains to 

be shown that P5 is satisfied. 

Suppose that P5 is not satisfied, i.e. there exists a collection S c Ai+l of  

cardinality m such that dim nS > m a x ( -  1, n - m). Let  S = {$1, $ 2 , . . . ,  S,n}, where 

each S l is a distinct e lement  of  A/+l, i.e. either T jt (OAi+l) \ P for some jl < k or 
( IIi+l ) else T k OAi+l N Uj=l nj \ P (in which case we set j l  = k). Notice that since the 

Sfs  are distinct, jr Cje for I r l'. 

Now ~Ai+l C (OAi \ W) U OW and so for any 1 such that j l  < k, 

Sl C (T j' (OAi) \ P) U T j' (OW) . 

A similar result holds for j l  = k: 

i+1 \ 
SI = T r OAi+ l f-I U Bj ) \ P 

j=l (( /+l ,  ) 
c r r (oa iXw)  n U B j ) U T r ( O W )  \ P  

j=l " 
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i 

: (Tr((OAi\W) NUBj) UTr(Ow)) \e 
j = l  

i 

C (Tr(OAinUnj) \e) uzr(ow), 
j = l  

where the second equality holds since cl(Bi+l nAi)  c W. Combining the two 

cases, we see that each Sl is a subset of  the union of  two sets: ~ ,  the element of  

.A i corresponding to Sl, and  s}de-~fT jl (OW). Thus N s is a subset of  the finite union 

N s: U 
orE{O,1} m" 

and, since dim ( n  s)  > m a x ( - 1 ,  n - m), at least one of  these intersections must 

have dimension larger than m a x ( - 1 , n  - m). But since cl(W) c /~i+l and the 

TJni+l'S f o r j  = 0 . . . . .  k are pairwise disjoint, any a with more than two al'S 1 has 

Am S~ = 0. For a = (0, .. 0), each S? ~ is a (distinct) element of  Ai, and since this l = l  l 

collection is in general position we see that dim n ~ l  ~ < m a x ( - 1 ,  n - m). We 

haven' t  assumed anything on the order o f  the Sfs  yet, so without loss of  generality 

we can assume that 

m 

dim(S~ u U ~  ) > m a x ( - 1 , n -  m). 
1=2 

But this too is impossible - -  to see this, let S; -- { ~ , . . .  ,SOn}. Now S C Ai so we 

know that 

dim _< dim ( n  ~) - 1  < m i n ( - 1 ,  n - m ) .  

By construction, OW is disjoint f rom E and thus also from T-JtE~ C E, so that 

sl  = TJ, (OW) c X \ E~. Thus 

m 

l=2  

a set of  dimension < r a i n ( -  1, n - m) - -  a contradiction. [] 

L e m m a  (3..8) Suppose that A is closed and that A \ P is (k, m)-disjoint. Then 
there is an open set V D A \ P such that V is also (k, m)-disjoint. 

P r o o f  Set A'~A \ P. 
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STirAt~lk-1 Take any m sets f rom the collection t ~ )~i=0, say A1 . . . . .  Am, where, for  

every i, 
ai = Tni(A ') = Tni(a) \ P. 

Note  that  c l (Ai)  C Tni(A) C Ai U P ,  and  so 

(3.8.1) 
m m m 

A1 n n cl(Ai) c A 1  n N ( a ; u P )  = NAiU(A1 N P ) = 0 ,  
i=2 i=2 i= 1 

where the last equality is true since A' = A \ P  is (k, m)-disjoint, and since A 1MP = 0. 

Define for every 1 _< j < k the open set 

= { x :  d(x, TJ(A')) < min 
SC{1 ..... k} 

ISl=m-l,jf~S 
maXrEs d(x, Tr(A')) } .  

From (3.8.1) we see that for every S c {1 , . . .  ,k} with IS[ = m - 1 a n d j  ~ S, and 

every x c TJ(A'), maxrcsd(x, Tr(A')) > 0 since x r Nr~S cl Tr(A). It follows that 

every x E TJ(A') is in Vj, and thus for every j ,  TJ(A') c Vj. 
Now take any m sets f rom the collection {Vj}k=a, say Vjl . . . . .  Vj,,, and let S = 

{j2, . . .  ,jm}. Then 

m { } 
N Vjl C X:  d(x, TJ1(A')) < m a~d(x, Tr(A')) 
l=1 

MN{x:d(x ,  Tr(A')) < d(x, TJl(a'))} = 0 .  

rCS 

Define V = f']~-0 T-J(Vj). Since TJ(A') C Vj for ev e ry j  we see that A' = A \ P  c V. 

And since for every j, TJ(v) c Vj, the equation above shows that V is (k, m)- 

disjoint. [] 

We are now ready to prove Theorem (3.3). For the convenience of  the reader 

we will restate it: 

T h e o r e m  (3 .3)  Let (X, T) be a finite dimensional dynamical system. Then 
for every open set U C X, and any open V D OU \ P, there is an open U t, 
U C U t C U U V, such that OU ~ is the union of a small set and a subset of  P. 

�9 O0 P r o o f  We will construct recursively two sequences of  open sets {Ui}i=o and 
V oo { i}i=0' starting f rom U0 = U and V0 = V such that the following conditions hold: 

C1 OUk \ P c Vk, 

C2 Uk+l C Uk U Vk, 
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C3 cl(Vk+l) \ P C Vk, 

C4 Vk is (k, n + 1)-disjoint, 

C5 Vk+l c Vk and Uk+ 1 ~ Uk. 

Suppose that Ui, Vi have already been defined. Define U r = Ui~176 U i. Using C2 
and C5 we see that for every r, 

Uk+ r U V k C Uk+r -  1 U Vk+r_ 1 tO Vk = U k + r - I  U V k C " ' "  C Uk U Vk, 

and thus for every k, Uk c U' c UktO Vk. Taking k = 0 we see that 

U C U' c U tO V. Furthermore, using this, C1 and C2 we see that for every 

k 
OU'\  P C (cl(Uk+l tO Vk+l) \ Uk+l) \ P 

C (0Uk+l \ P) tO (cl(Vk+l) \ P) 

= cl(Vk+l) \ P  C Vk. 

Since Vk is (k, n +  1)-disjoint the same is true for OUr\P. Since n is fixed ( = dim(X)) 
and k arbitrary, we see that OU r \ P is T-small. 

Thus it only remains to show how to build such sequences of  sets. Clearly 

U0 and V0 satisfy CI  and since any set is (0,n + 1)-disjoint also C4. Suppose 

Uo . . . . .  Uk and Vo . . . . .  Vk have already been defined, satisfying the conditions 

imposed on these sets by C1 - C5. 

From C1 we know that OUk \ P C Vk, and so using Lemma (3.5) we can find a 

set Uk+ 1 such that Uk C Uk+l C Uk tO Vk, OUk+l \ P C Vk, and such that OUk+l \ P 
is (k, n + 1)-disjoint. Using the previous lemma we can find a (k, n + 1)-disjoint 

open set V~+ 1 D OUk+l \ P. Define Wk C Vk as 

Wk = {x: d(x, OUk+l) < d ( x , X \  Vk)}, 

and set 

vk+l = v~+l n wk. 

Clearly Uk+l and Vk+l satisfy C2, C4 and C5. By definition 0Uk+l \ P C V~+ 1. 

For every x E OUi+I \ P, d(x, Uk+l) = 0 but d(x ,X \ Vk) > 0 (since x E Vk). Thus 

OUk+l \ P C Wk and thus C1 holds. To prove C3 holds, it clearly suffices to show 

that cl(Wk) \ P C Vk. So suppose x E cl(Wk) \ Vk. Then 

d(x, OUk+l) <_ d ( x , X \  Vk) = O, 

and so x E OUk+l \ Vk C P. Since this is true for any x E cl(Wk) \ Vt we see that 

indeed cl(Wk) \ P c Vk. [] 
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Note that we have in fact proved that for any k the set OU' \ P  is (k, n + 1)-disjoint, 

which is a much stronger statement than merely saying that OU r \ P is T-small. We 

will also need the following corollary to Theorem (3.3) and Lemma (3.8): 

C o r o l l a r y  (3.10) Suppose E is closed and E \ P is (k, m)-disjoint, with V D E 

an open set. Then there exists an open set U', V D U' D E \ P such that U' is 

(k, m)-disjoint and such that OU' \ P is small. 

Proof  According to Lemma (3.8) there is an open, (k, m)-disjoint V' ~ E \ P. 

Without loss of  generality V' C V for otherwise we can replace V' by V' n V. 

Define the open set W as 

W--  {x: d(x ,E)  < d (x ,X  \ V')}. 

As in the proof of  Theorem (3.3), cl(W) c W to P. Thus we can apply Theorem 

(3.3) to find an open set U' with W c U' c V' and such that OU' \ P is small. Since 

U' c V', U' is also (k, m)-disjoint. [] 

4. The construction o f  factors with arbitrary entropy 

In this section we will prove that if the conclusion of  Theorem (3.3) holds (and 

thus its Corollary (3.10)) for the dynamical system (X, T), then we can find for 

every (, ( '  C X and any ~ > 0 a factor (Y, S) with entropy _< ~7 and such that the factor 

transformation maps ( and ~P into distinct points in Y. From this we will deduce 

that if  (Z,R) is any factor of  the system (X, T) with htop(Z) < htop(X), then for any 

h C (htop(Z), htop(X)), we can find a factor (Y, S) of  (X, T) with topological entropy 
h, and such that i f  4~: X ~ Z and ~b: X ~ Y are the respective factor transformations 

then ~b o ~b- 1 is well defined, and is a factor transformation Y ---. Z. 

We first need to see how the information given on the system (X, T) by (3.3) can 

help to construct factors with small entropy. 

For any measurable set A we can construct in a natural way a (not necessarily 

continuous) map mA:X ~ {0, 1 }Z as follows: 

mA:X ~ ( . . . ,  1A o T-I(x) ,  1A(X), 1A o T ( x ) , . . . ) .  

Define the set SA N cl mA (X) C {0, 1}z. This set is shift invariant - -  and so together 

with the shift cr it is a dynamical system. We will define for any set A the entropy 

of A as 

h(a)~-htop(Sa). 

Proposit ion (4.1) For any two (measurable) sets A and B, 

h(A U B) < h(A) + h(B). 
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P r o o f  Take any x E X. Note that we can calculate mAuB(X) from mA(X) and 

roB(X), since 
1auB (Tnx) ---- max (1a (Tnx), 1B(Tnx)). 

Consider the (continuous) map 

f : ( . . . , a - l , a o ,  a l , . . . )  • ( . . . , b - l , bo ,  b l , . . . ) ,  , 

( . . . ,  max(a_l ,  b - l ) ,  max(a0, b0), max(al ,  b l ) , . . . )  

from SA x SB to {0, 1} z. We claim that SAuB c f ( S A  x SB). Indeed, for any x E X, 

f (mA (X), mB (X)) = mAuB (X), 

and so mAuB(X) c f (SA • SB). S i n c e f  is continuous, f (Sa  • SB) is closed (as the 

image of a compact set) and so contains cl mauB = SAuB. 

Thus SAuB is a subsystem of a factor of  SA x SB, and so we have: 

h(A UB) = htop(SAuB) <_ htop ( f(SA • SB)) <_ htop(SA x SB) = h(A) q- h(B). 

[] 

L e m m a  (4.2) Let E be a closed set. I f  E \ per(X) is small then for  any V ~ E, 

and any e > O, there is an open set V ~ U ~ E such that: 

(a) h(U) < e; 

(b) OU \ per(X) is small. 

P r o o f  Fix some sequence of integers No, N1 . . . . .  We will use this sequence to 

construct an open U, and show that if  the integers Ni are large enough this set has 

the required properties. 
Applying Corollary (3.10), we can find an open set U0, V ~ U0 ~ E \ P such 

that OUo \ per(X) is small and such that U0 is (N, IN~No] )-disjoint for some N and 

the given No. Using Theorem (3.3), there is a V', V ~ V' ~ E such that OV' \ P is 

small. For every k, let pk = {x : Tk(x) = x}, and set 

Nk 

i=0 

Clearly U~ ~ Pk M E. Thus {Uk}k~0 form an open cover of the compact set E, and 
�9 ' ' ,  r U so a finite number of  these, say Uo, Ur, suffice to cover E. Define U ~  Ui=0 i. 



246 E. LINDENSTRAUSS 

Note that for any k > 1, 

Nk 
o(uk \ P) c U Tk ( ~ \ P), 

i=0 

and so, since the union of  a finite number  of  small sets is small, for every k the set 

aUk \ P is small. Thus 0U \ P, being a subset of  I, JirO(OUk \ P), is small. Also it is 

clear that E c U c V. 

It remains to be shown that if  the sequence Ni increases fast enough, then 

h(U) < c. Since by the previous proposition, h(U) < ~ r  o h(Ui), this lemma will 

be proved if we show that ifNk is large enough then h(Uk) < e2 -k-l  . 
If S c {0, 1 }z is a shift invariant set, denote by Wn (S) the set 

def 
)/~n ( S ) : { ( X I , X 2 , . . . , X n ) :  (- . .  ,X-1,X0,X1,..  .) ~- S}. 

It is well known (and easy to deduce from the definition of  topological entropy) 

that if  S c {0, 1 }z, the entropy of  the system (S, cr) is 

htop(S) = lim 1 log IW, (S) l = inf 1 log IWn (S) I, 
n ~  n n 

where the second equality is true since for any n and k, [W~n (S) I < IWn (S) I k. 

If  some n-tuple is the first n coordinates of  some point in Sv0, it is also the 

first n coordinates of  a point of  taro(X) (which is dense in Su0). Since U0 is 

(N, LN/NoJ )-disjoint, for no x E X can mu0 (x) have more than N/No ones in the 

first N coordinates. Thus 

h(U~ ~ llog[~/~N(SU~ <~ 1log (LN~~ i=0 

which can be made arbitrarily small by taking No to be very large. 

We will now consider what n-tuples can appear in ~)n (SU k ) for k > 0. Recall 
Nk 

that Uk = Ni=0 Tki(v') �9 Suppose now that (for some x E X) lye(x) = 1 but 

lv~ (T-k(x)) = 0. If  this is true then this x must be in Tki(v') for i = 0 . . . . .  Ark, 

but not in Tk(Nk+I)(v'). Thus we see that this x is not in Tki(uk) (or, equivalently, 

lv~ (T-ki(x)) = 0) for i = 1 . . . . .  Nk. Take n = kNk, and consider for any n-tuple 

( a l , a 2 , . . .  ,a~k) E W ~  k (Svk) 

the k Nk-tuples 

(ai, ai+k,... ,ai+k(Nk-1)) for i = 1 . . . . .  Ark. 



LOWERING TOPOLOGICAL ENTROPY 247 

We know that if for some j ,  aj = 1 and aj-k = 0, then for any l such that 1 < j - l k  < j 

we know that aj-lk = 0. Similarly, if for some x, lug(x) = 1 but lu~ (Tk(x)) = O, 

then for every 1 < i < Nk, 1 uk (Tki(x)) = 0. Thus i f  for some j,  aj = 1 but aj+k = O, 

then for any I such tha t j  < j  + kl < kN,, aj+lk = O. 

ThUS the sequence (ai, ai+k, . . . ,  ai+k(Nk- 1)) must be of the form 

( 0 , 0 , . . . , 0 , 1 , 1 , . . . 1 , 0 , 0 , . . . , 0 ) .  

The number of Nk-tuples of  this form is less than Nk 2, and so 

IW , < 

T h u s  

1 1 1og(Nk2k) = ~ log(Nk), h(Uk) < ~ log IWkNk (Suk)l _< 

and so we see that indeed ifN~ is large enough, h(Uk) will be smaller than 2-k- le .  
[] 

(4.3) The construction 
Let ~, ~' be distinct points of X, and c > 0. We will now construct a factor 

imbedded in ([0, 1] z, a) and a (continuous) factor map 6:X ~ [0, 1] z such that 

$(~) # 6(~'). In the next subsection we will show that the entropy of  this factor is 

less than E. 

We will first find a countable collection -4 of  open sets such that 

A1 For any U E .4 and any 6 > 0 there is a V E .4 such that OU c V c B(OU, 6). 

A2 ~ u c ~ t h ( U )  < c. 

A3 There is a U E .4 such that ~ E U but ~' ~ cl(U). 

This collection .4 will be the union of a monotone increasing sequence of  collections 

.Ao c A1 C-42 C . - . .  

To construct these collections first note that for any x E X, {x} \ per(X) is 

small, and thus according to Lemma (4.2) there is an open set U such that ~ E U, 

~' 9~ cl(U), the boundary of  U is a union of  a small set and a set of  periodic points, 

and h(U) < r Define .41 = {U}. 

Suppose An has already been defined. According to Lemma (4.2) we can find 

for any U E An a set VU,n such that 

(a) OU C Vu,,, C B(OU, 1/n), 
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(b) OVv,n is a union of  a small set and a set of  periodic points, 

(C) h(Vu,n) < (2 n+l" [.Anl) -1 e, 

and define .A~+I as 

A . + ~  {vu, .  : u ~ u}  u A. .  

It is easy to see that .A~ U.~176 .An has all the required properties. 

Define 

.AT = {T"U : n E Z and U E .,4}. 

It is easy to see that .AT still satisfies properties A1 and A3. Indeed, .AT clearly 

satisfies the following three properties: 

B1 For any U E .At andany6  > 0 t h e r e i s a  V E .ArsuchthatOU c V c B(OU,6). 

B2 There is a U E .AT such that ~ E U but ~' ~ el(U). 

B3 U E .AT iff  T(U) E .AT. 

We will now define a (closed) equivalence relation ,-~ on X: we will say that 

x ,-~ y i f f fo r  every U E .AT, Iv(x)  = bY(Y). To show ,~ is closed we must show that 

if x # y there are open neighbourhoods V, ~ x, Vy 9 y such that for every x'  E Vx 

and any y' E Vy, x' 7~y'. 
Without loss of  generality we can assume that for  some U E .AT, x E U but 

y ~ U. There are two cases: 

A If  y ([ cOU, there is a neigbourhood Vy ~ y such that Vy M U = 0 and we can 

take as Vx the set U. Since all points of  Vy are not in U, no point of  Vy can 
be equivalent to a point o f  Vx. 

B I f y  E OU then there is an n such that d(x, OU) > 1/n. According to the 

properties of  the collection .AT there is a set U' E .At such that OU c U' c 
B(OU, l / n ) ,  and thus y E U ~, x r cl(U') ,  and Case A is applicable. 

us ing  the well known construction o f  quotient space, X/,,~ is a compact  metric 

space, and let 7r:X ~ X/,.~ denote the projection map f rom X to I~gx/.,~. Recall 

that if  d( . ,  .) is a metric on X, the metric on X/,,~ is defined by 

p(x,y) = ~(Tr-lx, 7r-ly), 

where 6(.,  .) is the Hausdorff  metric on the closed subsets o f  X, that is 

6(A,A') = inf{6 > 0: A C B(A', 6) andA' c B(A, 6)}. 
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We can define a hom eom orph i s m  S: Y ~ Y by specifying that for any x E X, 

s o = o : r ( x ) .  

This map is well defined since x ~ y iff  T(x) ,~ T(y), and is easily seen to be 

continuous and to have a continuous inverse. Thus we have constructed a factor 

(V, S) of  (X, T). 

(4.4) Estimating the entropy 
Recall the following definition of  topological  entropy: 

Let (Z,R) be a dynamical  system and let d( . . )  be  a metric on Z. A set E is said 

to be  n, &separated i f  for  every two distinct x and y in E, there is a 0 _< k < n such 

that d(Tix, Tky) > 6. Let  S(Z; n, 6) (or S(n, 6) i f  Z is understood) be the maximal  

cardinality of  an n,6-separated set. Set 

ha (Z)~ l im sup 1 log S(Z; n, 6), 

then the topological entropy of  (Z, R) is 

(4.4.1) htop (Z )~  ~ilm ha(Z). 

We wish to show that the entropy of  Y is less than e. We will do so by  showing 

that Y is not only a factor o f  X but also of  some dynamical  system Z with htop (Z) < e. 

.A is denumerable,  and so we can present it as 

�9 ,4 = { U 1 ,  U 2 , . . - } .  

For any Ui we have the dynamical  system (Su, ,a)  with entropy h(Ui). Thus 
Z '  r162 S oo = I-[i=l vi, together with the t ransformation a '  = r i i=l  a,  is a dynamical  

O 0  
system with entropy at most  ~i=1 h(Ui) < e. 

We have the fol lowing natural (non-continuous) map u f rom X to Z' :  

/ X  
u:x ~ kvi,i) ~<i<~ , 

-oo<j<oo 

where vi, j = 1TJUi(X) for every i,j. This map  u induces a m a p  u' f rom Y = X/,. ,  t o Z  

since i f x  ~ y then u(x) = u(y). Let Z = el u(X) C Z '  and define the t ransformation 

R: Z ~ Z as R = cr'lz. Since (Z, R) is a subsys tem of  (Z', # ) ,  htop(Z) < e. 

TO show that htop(Y) < e we wish to construct  a continuous factor map  f :  Z ~ Y. 

For any i, define U~i = X \ Ui and U 1 = cl Ui. Take any a = u(x) E u(X). Then 

1_<i<cr 
-oo<j<~, 
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and so for any o: E Z = cl u(X), 

U def 
o N =  N 

l < i < N  
- N  <j<_,v 

and thus U~ ~ f')N~= I U a , N  ~ O. 

Proposition (4.5)  diam ( Tr( U~,N ) ) tends to zero uniformly in N. 

Proof Suppose that the proposi t ion is false, that is there exists a 6 > 0 and a 

sequence of  o:n E Z, an increasing sequence Nn and two sequences xn, Yn E Uc,,,N, 
such that 

p(Tr(Xn),ZC(yn)) > 6. 

Since Z is compac t  there is a subsequence of  o: n (which w.l.o.g, we can assume 

to be o:n itself) that converges to a point of  Z, say 0:. This means  that there is a 

sequence N" ~ c~, N~' < Nn for every n, such that (o:~)ij = O:id for 1 < i < N ' ,  

-Ntn < j <_ N~. Thus Xn, Yn E Ua,N'. 
X is compact ,  and so again we m a y  assume that xn and Yn converge to x E U~ 

and y E U~, respectively. Since p(Tr(x), 7r(y)) > 6, x "A Y. This means that there 

is some TJ Ui such that x E TJ Ui and y q[ TJ Ui. Without loss of  generali ty we can 

assume that 

(4.5.1) x E TJui and y f[ cl(T j Ui), 

for otherwise there is an Ui, D cOUi such that x ~ cl(TJ Ui,), and as in the p roof  that 

,,~ is closed we see that if  we exchange the names of  x and y and take TJ Ui, instead 

of  TJ Ui, (4.5.1) will be true. 

But this is impossible,  for i f  ai, j = 0 both x and y cannot  be  in T j Ui; and if  

ai ,  j ~--- 1 both x and y must  be in c l ( T  j Ui). [] 

Note that in particular we have proved  that ~r(Uo) consists o f  exactly one point  

for any a E Z. We will d e f i n e f ( a )  as the single point of  Y in 7r(U~). Clearly, as a 

direct consequence of  the definitions o f f  and S, 

f o R(a)  = S o f ( a )  for every a E Z. 

f is o n t o  Y since for any x E X, x E Uv(x), and so for any y E Y, y E 7r Uv,(y). f is 

also continuous - -  this is merely  a res ta tement  of  the fact  that d iam 7r(U~,N) --+ 0 

uniformly in N. T h u s f  is a factor t ransformation f rom Z to Y and we are done. 

We have in fact proved the fol lowing theorem: 

T h e o r e m  (4.6)  Let (X, T) be a finite dimensional dynamical system. Then 

for  every two points x,x t E X and every e > 0 there is a fac tor  transformation ~b 
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that maps the system (X, T) onto a system (Y,S) with htop(Y) < e and such that 

r r r 

In fact, it is not hard to see that if we make sure that the collection .4 f rom (4.3) 

contains arbitrarily small neighbourhoods of  x then the resulting factor transfor- 

mation ~ will have the additional property that 

~ ( x ) r 1 6 2  for a n y y E X .  

(4.8) Construct ing intermediate  factors 
We will need a small lemma before proving our main result: 

L e m m a  (4.9) Let {( i, Si)}i=l be a sequence o f  factors o f  the system (X, T), 

and let ~bi: X -~ Yi, i = 1 . . . . .  be the associated factor  transformations. Define for  

every n the factor  (Zn, Rn) imbedded in 

(Y1 • I12 • "'" • In, S1 x S 2 x " '"  X an )  

as the image o f  the system X under the factor  mapping ~bl • ~2 x . . . x ~n. Similarly, 

define ( Z ~ , R ~ )  as the image o f  X under the infinite product ~1 X ~2 • " ' ' .  Then 

(4.9.1) htop(Zc~) --- J i m  h top (Zn ) .  

Proof  We will first define for each n _< oo a metric d(., .) on Zn as 

n 

d(z,z ')  = Y i (Y i ,Y i ) ,  
i = 1  

where z = (y l , . . .  ,Yn) and z ' =  (y ] , . . .  ,Yn)- 
Since (Zm,R,n) is a factor of  (Zn,Rn) for  m < n < c~ the limit on the right-hand 

side of  equation (4.9.1) exists and is no bigger than the left-hand side. However, 

in view of  the metrics defined on Hi~ Yi and HiLl Yi, for every e there is an N and 

e' such that 

(4.9.2) h,(Zoo) < h,,(ZN). 

This is true since for large enough N, the projection ~rN: Zoo ~ ZN does not change 

the distances too much, i.e. 

Id(x,y) - d(TCN(X), 7rN(y)){ < e/4 
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for any x ,y  E Zr = Hi~176 1 Yi. Thus the projection of  any n, e-separated set to the 
first N coordinates will be a n, E/2-separated set in ZN, and so we have (4.9.2). 

Assume htop(Zcr < cr (the case htop(Z~) -= e~ is almost the same and is 
omitted). Since htop(Zoo) -- l im,~0 h , (Z~) ,  for any 6 there exists an c such that 

htop(Z~) < he(Zoo) -4- r Thus 

htop(Zor - ~ < h,(Zcr <_ hr <_ htop(ZN) <__ lim htop(Zn). 
11---~ 0 0  

[] 

T h e o r e m  (4 .10)  Let (X, T) be a finite dimensional dynamical  system, and let 
( Y', S') be a fac tor  of(X,  T) such that htop(Y') < htop(X) ( in part icular ( Y', S') can be 
the trivial fac tor  consisting o f  a single point). Then f o r  any h E (htop(Y'), htop(X)), 

we can f ind a fac tor  (Y, S) o f  (X, T) with topological entropy h, and such that i f  
O:X --* Y' and O:X ~ Y are the respective factor  transformations then 0 o ~-1 is 
well defined, and is a factor  transformation Y --~ Y'. 

P r o o f  Take any htop(Y') < h < htop(X). Take El = (h - htop(Y'))/2. According 
to Theorem (4.6), for every two points x r x' in X there is a factor (Yl,x,,Slx,x,) 
of X with entropy < el such that x and x' are mapped to different points in Yl,x,. 
The factor transformation is continuous and so there are open sets Ul,x, ~ x and 

vl,~, ~ x' such that the factor transformation maps Ulx,x , and V~,~, into disjoint sets. 

The sets U~, x, x V~, x, are an open cover of  X x X \ A, where A is the diagonal 
in X x X. A countable number of  these U~, x, x V~, x, suffice to cover X • X \ A, 
say U/l • V/I . Denote by (Y] ,S]) the associate factors and by ~/1 (i > 1) the factor 

transformations. Also set (Y~, S I ) = (Y', S') (the given factor of  X), and ~I = 4~. 
Define using the (Y], S)) 's  the factors (Z~, R,  1 ) and (Z~,  R ~ )  as in the previous 

lemma. The U~ x V] 's cover X • X \ A and so for every x r x' in X there is an i such 
that ~b] (x) ~ g,1 (x'). Thus the factor map X ---, Z ~  is one-on-one; by definition 

it is onto. Since X is compact we see that Z ~  is homeomorphic  to X, and this 
homeomorphism is in fact an isomorphism between these two dynamical systems. 

Consequently, we see that htop(Z 1 )  = htop(X) > h. Using Lemma (4.9) we see that 
already for some finite N, the entropy htop(Z 1) > h. Note that for any N we have 

htop(Zl+l) <_ htop(Z 1) + htop(yl+l) < htop(Z 1) + el, 

Since we can imbed 
(Z 1 • Y~+I,RIN x S~+1). 
htop(Z 1) > h, we see that 

(Z I+ I ,R I+ I )  as a dynamical system in 

If we take Nl to be the smallest integer such that 

h - e l  < htop (~b] x~b21 x . . .  • ~ , _ I ( X ) )  <_h. 

(Note that since htop(Y') + s < h, the integer NI must be greater than 1.) 
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We now take c2 = El/2 and find exactly as for el a sequence of  factors 

(Ii,.2, T/2) and factor transformations ~b/2 such that for every i, htop(Y 2) < e2, 

and so that for every x # x' there is an i such that ~b/Z(x) # ~b/2(x'). For the 

same reasons as in the preceding paragraph 

w~ •  • w~,_, • w,: • ~ •  (x) ~ x 

and so there is an N2 such that 

h - e 2  < htop (r •  x ~b~r 1 x ~bl 2 • . . .  • ~b2_l(X)) < h. 

Proceeding in this way and using (4.9) we see that 

htop (~b~ x . . .  x ~b~,_, • ~bl 2 x . . .  x ~)22_ 1 x ~3 x . . .  x ~33_ 1 x - . .  (X))  : h, 

and so, if  we define ~b to be 

~ • 2 1 5  ~ , - ,  • ~12 •  • ~ = ,  • ~,~ • 2 1 5  ~ L - ,  •  

YN~,(X) is the required factor. Indeed, since ~b~ = ~ the map ~b o ~b-l: Y ~ Y' is 

simply a map that projects elements of  Y (imbedded in Y' x Y~ . . . )  according to 

the first coordinate and so is obviously well defined and continuous. It is also onto 

Y' since ~ is. [] 

5. A c o n s t r u c t i o n  o f  a m i n i m a l  d y n a m i c a l  s y s t e m  w i t h  n o  smal l  

fac tors  

In Section 2 we used the fact that each coordinate of  a point in [0, 1] z can be 

varied continuously from 0 to 1 without having to change any other coordinate. 

Obviously there can ' t  be any minimal system with this property, but we will build 

a minimal system with enough flexibility that we will be able to use reasoning 

similar to that in Section 2 to prove this system has no finite entropy factors. Our 

system will be imbedded in [0, 1] z,  and we will use the following metric on this 

space: 
d(x,y)t4 ~ 2-1kllxk -- ykl. 

-<x~<k<~ 

We will define inductively a monotone decreasing sequence of  subsystems (i.e. 

closed and shift invariant subset) [0, 1] z D X0 D X1 D . . .  D Xn . . .  such that: 

a. No Xn is empty. 

b. For any two points x, y E Xn there is a k such that d(y, crkx) < an, where 
a ( k)k=0 is a sequence tending to zero as k ~ c~. 
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f OO 
L e m m a  (5 .1)  l f  Xn satisfy conditions a and b above then Xd-~ ~n=oXn is 

minimal. 

P r o o f  Since [0, 1] z is compact  f')Xn is nonempty. Let  x E X. We must show 

that {akx} = X. Take any y E X. For  every n, both x and y are in Xn; thus there 

is a k such that d(y, crkx) < an. Since an ~ 0 this proves that y is in the closure of  
{ ak x } . [] 

The following terminology will be convenient for the construction of  the se- 

quence Xn, and in proving X has no small factors. We will look at finite sequences 

of  real numbers in the interval [0,1] as words f rom the (infinite) alphabet [0, 1] (the 

letters). By an infinite word we simply mean an element of  [0, 1] z. If  w is a word 

we will designate its length by l(w). I f x  E [0, 1] z,  a and b in Z tJ {-c~ ,  cx~} define 

xl b = (Xa ,Xa+l , . . .  Xb_l).  We will also use the notation wl b for  words, where the 
bdef min(b,l(w)+ l )x first letter of  a word has index 1 ( i f a  < 1 o r b  > l(w) w e  setWa=Wmax(a,1) ). 

A word w ~ is said to be a substring of  a (finite or infinite) word w (or w' ~_ w) i f  

there exist integers tl,t2 such that w' = wltt21. I f X  c [0, 1] z we define the words o f  

X or W (X) to be: 

w(x)={wl x X 

14;1 (X) to be the words of  X of  length l, W<_I (X) those o f  length < l. And finally, 

if w,w' are two words then w.  w' is their concatenation. 

Let  w0 be the length 1 word '0 ' ,  to = 100. Set 

X0 = { x  E [0, 1] z I Vt w0 ~ xltt +t~ } .  

= ~ L For every k set Lk = {0, �89 . . .  , 1 - -  1}Z2 C [0, 1] z, with L ~  U~=0 k. We will 

continue inductively to define Xk,wk and tk, with the following properties: 

1. wk E W ( X k - 1 N L k ) .  

2. Every word w E Wtk_l (Xk-1 fq Lk) is a substafng ofwk.  

3. tk = 50.2kl(wk).  

4. Xk = { x E Xk-1 [ Vt wk "< xltt+tk }. 

If  we will define how to get wk with the above properties given Xk_ 1 we will be 

done with the definition. Set W = Watk_l (Xk-1 n Lk). W is obviously a finite set. 

By property 4, for  k - 1, each w E W has a Wk- 1 as a substring of  its first (and also 

last) tk-1 letters. For every such w remove at most tk-1 letters f rom its beginning 

and its end until we have a word that begins and ends with the substring wk-1, and 

let W' be the set o f  all these smaller words. Take wk to be the concatenation of  all 

the w' E W'. 



LOWERING TOPOLOGICAL ENTROPY 255 

Since each w' E IV(Xk-1),  and since they all begin and end with a Wk-1, 

w~ E IV(Xk-1) and so wk E IV(Xk-1  n L k )  which is property 1. Also, since we 

have not tampered with the middle tk- 1 letters o f  each w c W we have property 2. 

Properties 3 and 4 are merely  definitions for tk and Xk respectively. 

In terms of  the wk and tk we see that 

(5.1.1) Xn = { x E [0, 1] z I Vt, k < n wk -< xl; +'k }. 

X is the same but without the restriction that k must  be _< n. 

L e m m a  (5.2) The Xk def ined above  sat is fy  the condi t ions  o f  L e m m a  (5.1). 

oo X Thus  X = r')k=0 k is minimal .  

P r o o f  Since wk is a word of  Xk-1, that is, it has "enough"  wk, substrings for 

k'  < k, and it begins and ends with a wk-1, the two sided infinite concatenation 

. . .  wk. wk. wk . . .  is in Xk, so it is clear that Xk is a non-empty  closed shift invariant 

set. Thus condition a of  L e m m a  (5.1) is satisfied. 

To prove that condition b is satisfied let x be any point of  Xk. Define a word 

X' E I V ( X k - 1  f-ILk) as  f o l l o w s "  

L2kx/J 
x~ - 2k 

tk- 1 f~  - ~ - L < - I <  2 

(it is a word of  Xk_ 1 since all the words wk,, k' < k are composed  of  letters o f  the 
forlI1 inte er ~ ) .  Now according to property 2, x '  is a substring of  wk and so of  any 

tk-- 1 y E Xk. So we see that for any y E Xk there is an m such that for - ~ _ !  < 1 < 2 

the/th coordinate o f x  is different f rom that o f  ffmy by less than 2 -k. But  this means 

(since tk-l >> k) that there exists an m such that d(x,  crmy) < 2 -k+2 - -  which is 

condition b. [] 

Since every Wn begins and ends with a wn-1, there is a one sided word (with 
l(wn)+l 

its first letter having index 1) woo, such that woo 1 = Wn for  every n, and 

another one sided word  (with its last letter having index 0) ~oo such that for every 

n, oo[-l(w,)+l = wn. 
We will say a word w is legal if  for every n, Wn �9 w �9 wn E W (X),  or since X 

is closed this is equivalent to ~ �9 w .  woo E X. This definition was chosen (in 

preference to the more  natural definition that w be in IV (X)) so that we would have 

an easy way to extend any legal word to an e lement  of  X. It is easy to see that a 

word w is legal iff  for every n 

(5.2.1) Wn ~_ ( w . . w .  Wn)ltt +t" for every 1 < t <_ l(w) + 2l(wn) - tn. 
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The fact, that for legal w equation (5.2.1) is satisfied for every n, is immediate f rom 

the definitions. But if (5.2.1) is satisfied then it is easy to see that ~ �9 w �9 w ~  

satisfies the conditions for being an element  of  X stated in (5.1.1). 

Notice that for  large enough n, tn > l(w) + 21(Wn) since by definition tn 

100l(wn), and so (5.2.1) is satisfied vacuously. It is easy to see that for every n the 

word Wn is legal; and every word in ~/V (X n L ~ )  is a substring of  Wn for some n, 

so that every such word is a substring of  a legal one. 

The following lemma supplies the necessary degrees of  f reedom we need to 

apply the methods of  Section 2, and is the important step in proving our system 

does not have any small non-trivial factors: 

L e m m a  (5.3)  I f  vo and Vl are both legal words of  common length l, then there 

exists a continuous path v(t), 0 < t < 1 between them consisting o f  legal words (a 

legal path). 

To prove this lemma we must look more closely at legal words. Say w is a legal 

word. Some of  its letters we can change at will without touching any substfing 
integer equal to a wk - -  indeed in general letters may even fail to be of  the form 2k and 

so by the definition of  X given in terms of  the tk and wk, (5.1.1), the changed words 

will all be legal. Other letters however  can be crucial and changing them will 

destroy an essential appearance of  a wk substring. Even those crucial letters have 

different roles: some appear as part of  an essential w0 (i.e. if they are changed, 
t+to~ there will be a t such that w0 7~ ~ �9 w �9 w~  t , ,  others as part of  an essential wl, 

etc. Notice that if the word w is shorter than tk there will be no essential wk+l 'S. 

Changing an essential letter (which is a thing we might need to  do to pass from the 

word vl to v2) involves constructing alternative copies of  the relevant wk which is 

harder for larger k's. To designate such a pattern of  words with some of  their letters 

fixed, a~d some ranging over~all values, independently of  one another, we will use 

a word in the extended alphabet [0, 1] t3 {.}, where a ' . '  should be interpreted as 

a letter that can be replaced with any value. To each pattern p of  length l, we will 

designate the set of  words that fit it by (p). The intersection of  two such sets for 

two patterns pl  and P2 of  common length l is either an empty set or a set associated 

to another pattern of  the same length; if  this pattern is p we will say that p = pl  ApE. 

Thus the following definition, which will play an important role in proving Lemma 

(5.3), is natural: 

D e f i n i t i o n  (5.4)  A s t r u c t u r e  of  a word w is a sequence o f  patterns (Pi)i~=O (i.e. 

a sequence o f  words in the extended alphabet [0, 1] t3 {.}) such that." 

1. w is in (Pk) for  every k. 

2. Foreveryk ,  (p~) C (Pk+l)- 
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3. Sett ing 

X>n~-{ x E [O, 1]Z l Vt, k >_ n wk-<Xltt +'*} 

every word v in (Pn) satisfies Wk " V . Wk E W ( X>,~ ) f o r  every k (or, equivalently, 

fv~ �9 v . w ~  E X>_n; we will  call such words v legal words f o r  X>n). 

! O0 
The structure is m i n i m a l  i f  there is no other  structure o f  w, say  (Pi)i=o, such that 

f o r  every i, (p~) ~ (Pi). 

R e m a r k s  Not ice  that if we have a structure (Pi);=0 for a word w of  length 

< tk, then (Pi)i=0'  where p~ = Pi for i < k and p~ = �9 * - . .  �9 otherwise,  is also a 

structure. In particular, if  l(w) < tk then for any minimal  s t r u c t u r e  (Pi)iC~=O of  W, for 

every k' > k, Pk, = * *" "" *. Another  thing worth noting is that every legal word w 

has a structure. Indeed the sequence of  patterns Pi = w is a structure, for both the 

first and second conditions are trivial since all the p~s are the same, and the third 

follows for every n f rom the legality of  w. 

We will need the following lemma,  which shows that many  patterns satisfying 

condition 3 in (5.4) for some n can be comple ted  to form a structure. 

L e m m a  (5.5)  Let  p be a pat tern satisfying property  3 o f  Definit ion (5.4) f o r  

some n. Suppose  in addi t ion that f o r  every t such that the t th letter o f  p is not  ' , '  

there are t' and  t", t' < t < t" such that  (r . p . w~)ltt', ' = Wn, wi th  n' >_ n (fix the 

indexing o f  this infinite word by taking the last letter o f  fv~ as its 0 th coordinate).  

Then (p) contains  a legal word. 

P r o o f  By induction on n. For n = 0 Definition (5.4) says every word in (p) is 

legal so the l e m m a  obviously holds. 

I f  n > 0 we will show that there is a pattern p '  such that (p'} c (p) and p '  satisfies 

the conditions of  this l e m m a  for n - 1. 

We get the pattern p'  f rom p by taking any l ( w , - l )  consecutive ' , ' s  of  p and 

replacing them by w , - i  until there are no l (wn- l )  consecutive ' , ' s  in p ' .  This 

new pattern clearly satisfies the second condition of  this lemma,  namely  that every 

non ' , '  o f p '  is part  o f  a Wn, substring for n r > n - 1. We already know that for 

every w E (pr), the infinite word ~ �9 w �9 w ~  (again the last letter of  ~ is the 

0 th coordinate of  the infinite word) is in X>n, and wish to show that it is in X>n_ 1. 

Thus we only need to show that for every t, 

( 5 . 5 . 1 )  W~- l  -~ (~,~. w - w ~ )  '+'~ . 
- -  t 

Since # ~  ends with wn- l, and any finite substring of  it is a substring of  some w~,, 

(5.5.1) is true for t < - l ( w n _  1 ) and in the same way we can see that (5.5.1) is true for 

t >_ l(w) - tn- l + l (wn-  1 ). Suppose there is t', - l ( w n -  1 ) < t' < l(w) - tn--1 d- l(Wn- 1 ) 
that does not satisfy (5.5.1) for some word  w 6 (if). Changing the indexation we 
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see there is a t ' ,  0 < t' < l(w) - tn- 1 + 2l(Wn-1 ) and a w E (p'), such that W n _  1 is not 

a substring of  (w~-i �9 w .  wn_l)]tt i+t"-~. Such a w exists i ff  wn-a is not a substring 

of  the pattern ( w , - i  �9 p '  J+t ,_~ (patterns are s imply  words in an extended �9 W n _ l ) ] t ,  

alphabet, and so we can use the word  terminology for patterns as well). So we see 

that (5.5.1) is equivalent to having 

(5.5.2) W n - - I  ..< ( W n _  1 . p ,  . Wn-1 ) l t x ' t+ t " - |  

for every 1 < t <_ l(w) - tn-1 q- 2l(wn-1) .  

NOW assume again that there is a t '  that does not satisfy (5.5.2)�9 Since i n p '  there 

are no more  than l(wn-1 ) - 1 consecutive ' , ' s ,  there is a non ' , '  letter in the (smaller) 
t I q-in- 1 - - l ( w n -  1 ) 

substfing (Wn-1 "p' �9 Wn-1) t'+l(w,_~) which is the subs t r i ngp '  t,t'+t"-~-2t(w"-l) 

We know it is part  o f  a Wn, substring of  fi:o~ �9 p '  �9 woo for  n '  > n - 1. I f  it is part  o f  

a Wn-1 then we get a contradiction to t '  being 'bad ' .  Suppose,  then, that this letter 

is a part  o f  a wn, for n'  > n. I f  this Wn, contains all the letters o f  wn-1 �9 p '  �9 w,,-1 

in the range t '  to t '  + &_ 1 - 1, then since Wn, E W (X) these letter must  contain a 

wn-1 substring - -  a contradiction. So this Wn, substring must  have either its end 

or its beginning in this range of  letters. Assume  that its end is in this range - -  the 

other case is exact ly the same. We know that a letter in the range t' + l (w~- l )  to 

t' + tn-i  - 1 - l (wn-1)  is part  o f  this wn,, so the last l (wn-1)  letters o f  this w~, are 

a substring o f  (Wn-1 "p' J+t ._~  �9 wn-1t r t, . Since wn, ends with a wn-1, we again get a 

contradiction. 

Thus the pattern p '  satisfies the conditions o f  this l e m m a  for  n - 1. By  the 

induction hypothesis  we know that (p') must  contain a legal word; and since 

(p> D (p') so does (p). [] 

Corollary (5.6) A n y  pat tern  p sat is fying the condi t ions  o f  L e m m a  (5 .5 ) for  some 

n, can be comple ted  to f o r m  a structure whose  n th e lement  is p. 

P r o o f  Let  w be a legal word in (p); then 

w, i f i < n  
P i = p ,  otherwise 

is a structure for  the word w. [] 

0 oo 1 oo 
We return to L e m m a  (5.3). Let  (Pi)i=0 and (Pi)i=0 be structures for the two 

legal words v0 and Vl respectively. Also  define k0 to be  the smallest  integer such 

that tk0 > l(vo). 

Now suppose  p0 ~ and p~ are the same. This means  that there is a pattern which 

both v0 and Vl satisfy, such that any word satisfying this pattern is legal. So s imply 

vary every letter different in v0 and Vl continuously f rom its value in v0 to that 



L O W E R I N G  T O P O L O G I C A L E N T R O P Y  259 

in v 1 and we get the required legal path. On the other hand, f rom the remark 
0 Do 1 Do 

following Definition (5.4), if (Pi)i=0 and (Pi)i=0 are minimal structures, P~0 and 
P~o are always the same, namely the trivial pattern ' ,  , . . .  , ' .  

We will prove by induction on r the following lemma. 

L e m m a  (5.3) '  Suppose vo and vl are both legal words o f  common length L 
o C ~  1DO 

with structures (Pi )i=0 and (Pi )i=0 respectively. I f  p ~ = pl r for  some r, then there 
exists a legal path between them. 

R e m a r k  Since we can choose any structures we like for v0 and Vl, we can 

choose minimal structures, which we know satisfy p0 = pl  for r large enough. So 

(5.3)' does imply (5.3). 

P r o o f  o f  t h e  L e m m a  Note that we have proved the case r = 0. So suppose 

it is true for r' = r - 1; we must show the lemma is true also for r. Let  k0 be the 

smallest k such that l < tko. 

0 ~ 1DO (5.8)  We proceed to show that the structures (Pk) k=0 and (Pk) k=0 can be assumed 

to be minimal. As we have already seen we can assume that for k > k0, p0 and p l  

are ' ,  , . . -  , ' .  Also we can assume that for  k _> r we havep  ~ = p~ - -  in fact we can 

take both of  these equal to p0. Now we can start at k = k0 and find a pattern p~ that 

satisfies all the properties it needs to in Definition (5.4), and in addition (p0) c (P~/, 

such that for every other pattern q satisfying these conditions, (p~) ~ (q). (There 

is such a pattern, because ( P ~ / c  (q) simply means that some of  the letters E [0, 1] 

in p~ were replaced by ' , ' s .  So after afinite number of  stages we must find the 

pattern p~ we wanted.) After we have defined p~, we can define in the same way, 

but for k' = k - 1, a pattern p~_l and continue inductively. The resulting sequence 

o f  patterns together with the all ' , '  patterns for  large k form a minimal structure 

for v0. 

Performing the same process for vl we can construct a minimal structure p~' for 

vl satisfyingp~' -- p~, for k > r, for in findingp~ for k > r we only u s e d p  ~ for k >_ r 

and these are the same asp~ for these ks. In particularp'r' - ' - Pr, which is exactly the 

condition imposed on the original structures by the assumptions of  Lem m a  (5.3)'. 
0 c ~  l O O  

From now on we will assume that (Pk)k---0 and (Pk)k=O are minimal. 

(5.9)  Now suppose we find a pattern ~, such that 

(i) ~ satisfies property 3 of  Definition (5.4) for  n = r - 1, 

(ii) any non ' . '  letter of  ~ is part of  a Wk substring of  ~,~ �9 ~. woo (k > r - 1), 

(iii) (~) n (D0_I) ~ 0 and (~)N (P~-l) ~ 0, 

(iv) c (pO) (= 
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Assume further that we can find legal words v~ in (~ 0 A P r _ l )  and v] in (~ A p ~ _ l  ).  
0 oo t We can easily find structures (s and (~1)~ 0 for v~ and v I respectively, such 

that ~ 0 1 = = ~r-1 (simply take ~o v6 for k < r - 1 ~r -1  = -- 1 and ~o = ~ for k > r 

and the same also applies to ~1). So according to the induction hypothesis v~ and 

v~ can be connected with a legal path. From exactly the same reasons, completing 
0 t Pr-1 to structures for v0 and v 0 we see they can be connected,  and the same is true 

for vl and v~. Combining these three legal paths we get a legal path from v0 to vl. 

We can see that there is a legal word in (~ Ap0_l) using Lemma (5.5). For 

assumption (i) on ~ says any word in (~) is legal for X>r- I  and so the same is true 

for the smaller set (~/X p~ 1 ), which is the first part of  the conditions of  Lem m a  

(5.5). In addition p~ 1 as the r - 1 th element of  a minimal structure also satisfies 
0 assumption (ii), and so every non ' , '  letter of  ~/x Pr-1 being a non ' , '  letter in 

0 either ~ or Pr- 1 is part of  a Wk substring in the concatenation of  this pattern with 

r and woo and so is part of  a wk in the concatenation of  ~ Apr_ 10 with these two 

one sided infinite words, which is the second part of  the conditions of  that lemma. 

The same is of  course true for the pattern ~/x p~_ 1, so we see that the existence of  

' is a consequence of  the conditions set on ~. v~) and V 1 

~ i  clef 0 (5 .10)  We will now construct ~ by starting with ~b=pr, and modifying it until 

at last we get a pattern that will satisfy the conditions on ~, in a way very similar 

to the way we got the pattern p '  f rom the pattern p in the proof  of  Lemma (5.5). 

Suppose we have defined already ~,. There are two cases: 

A: There is a 1 < t < l - l(Wr-l) + 1 such that 

t-~l( Wr-1 ) 0 t•l(Wr-I) l ]ttq-l(wr-l) 
~tk t = P r - 1  t - = * * ' ' "  * = P r - 1  , 

in which case we get ~k+l by replacing the l(wr-1 ) '*'S starting at place t with 

W r - - 1 .  

B: There is no such t, in which case we take ( to be ~' k" 

Case A can be applied only a finite number of  times. So eventually we do get 

to case B and thus ~ is defined. ~ clearly satisfies the assumptions (iii) and (iv). 

Also, since we started with p0 which is an r th element of  a minimal structure and 

replaced ' ,  �9 . . .  , '  substrings with Wr-1, assumption (ii) also holds. 

To show that assumption (i) holds, we need to show that for every word w in (~), 

~Voo " W " Woo E X > r - 1 .  

Since we know that (~) c (p0), a set of  legal words for X>_r, then exactly as in the 

proof  of  condition (5.5.2) in Lemma  (5.5) it remains to be shown that for every 
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1 < t < 1 + 21(Wr- 1 ) - -  t r -1 ,  

(5.10.1) W r - 1  ~ ( W r - 1  " ~ ' W r - - l )  t+tr-1 
--  t " 

I f  there is a t in the range 0 < t < l + 2l(Wr- 1 ) - -  tr-  1 that does not satisfy (5.10.1) 

then (Wr-1 " ~" W~-l) t+tr--I is a pattern with t~-l letters but no W~_l substrings. We 
t 

want to show that this contradicts the fact that ~ satisfies case B, and we start by 

showing (using arguments  very similar to those in the proof  of  (5.5)) that 

(5.10.2) I t+ t r - I - - l (Wr- l )  
(Wr_ 1 .pO.  W r _ l ) .  tq-l(Wr-l)  = * * ' ' "  * "  

Since (p0)k_0 is minimal  every non ' , '  letter in p0 must  be part  o f  awl,  substring 

for  k > r. I f  all the letters between t and  t + tr -  1 are part of  this Wk then, since Wk E 

W (X), there is in this range of  letters a wr- i  substring, which is a contradiction. 

We know Wk begins and ends with Wr-1,  so if  the letters t . . . . .  t + tr-1 - 1 of  

(Wr-1 .pO.  Wr--1) are not part o f  the w~, the first or last letters o f  this wk are in this 

range of  letters; in order not to get a wk-l  substring (and a contradiction to the 

existence of  a ' bad '  t) we see that the letters o f  p0, in the range that interests us, 

that can appear  as part  o f  any wk for k > r are at most  the first and last l(wk-1) - 1 

letters. Thus the central letters between t + / ( w r - 1 )  and t + tr - I  - -  1 - l (Wr-1)  are 

' * ' S .  

Both 0 1 Pr-1 and Pr-1 can be derived f rom p0 by replacing ' , ' s  with letters in 

[0, 1]. I f  we look at the letters f rom t + l (Wr-1)  to t + tr--1 -- l(Wr--1) in pr-O 1 we 

cla im that they cannot  contain more than two complete  appearances  of  Wr-1. For 

if  they contain three appearances of  Wr-  1 the middle  one is redundant  - -  any t~_ 1 

consecutive letters that contain the middle  Wr-1 contains either the first or last 

Wr-1 - -  and so we can replace by ' , '  all the letters that compose  the middle Wr-1 

and are not part  o f  the other two W r - l S  contradicting minimality. So the letters 

t q- 2 l ( w r - 1 )  to t + tr--1 -- 21(Wr--1) cannot  contain more  than two blocks of  non 

' , '  letters, each of  length < l (wr -1 )  (the two blocks can merge together  to fo rm a 

larger block but no bigger  than twice this size). The same is true for p l_  1, and so 

since t r -  1 > l OOl( Wr_ 1 ) there must  be in the range t + 2l( w r -  1 ) to t + tr-- 1 -- 21( W~_ 1 ) 

a subrange f rom t' to t '  + 3l(wr_l) such that in both p~ and J Pr-1 the letters in 

this range are only ' , ' .  We know however  that the letters o f  ~ in this range do not 

have a Wr-  1 substring. Recall  that ~ was derived f rom p0 by changing substrings 

o f  l (W r - ! )  '*'S by Wr-1.  Since the letters t' to t' + 31(Wr-1) do not contain any full 

copy of  Wr-1,  and since they were in p0 all ' , ' ,  we see that the middle  third of  

these letters must  remain  all ' , ' s .  Thus at last we see that ~ has an a l l ,  substring 

satisfying the conditions of  case A - -  a contradiction. 
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Since we have seen in the previous subsection that the existence o f  a ~ satisfying 

assumptions (i)-(iv) implies the existence of  a legal path between v0 and vl we are 

done. [] 

We need one more simple lemma: 

L e m m a  (5 .11)  l f  vl . . . . .  Vn are all legal words o f  common length l < t~ -2 l (wk) ,  

and n(l + l(wk)) < tk+l -- 2l(wk+l), then 121 �9 Wk  " V 2 " ' "  Wk  " 12n is a legal word. 

The proof  o f  this lemma is very similar to the proof  of  Lemma (5.5) and the last 

subsection o f  the proof  of  Lemma  (5.3) I, and involves no new ideas, so it will be 

omitted. 

At last we are ready to prove: 

T h e o r e m  (5.12)  Every fac tor  o f  the system (X, crlx ) has infinite 
topological entropy. 

P r o o f  Recall  the notations and the definition of  entropy given at the beginning 

of  subsection (4.3). 

Again, as in Theorem (2.1), we may consider only factors of  the form (Y, crlr), 

Y a subset of  [0, 1] z, with a factor map q~ generated f rom a continuous function 

0 :X ~ [0, 1] (with both 0 and 1 in its image) as in (1.2.1). 

There is an No such that for any two points x , y  E X, i f  xlU_~ No = YI-N0 then 
10(x) - ~b(y)l < ~0. Since the points o f  X [7 L ~  are dense in X, we can find x ~ and 

x 1 E X (q L ~  such that O(x ~ < ~0, ~(xl) > 2~. 

Let  v~ = x0lN~vo , and in the same way define the word v] using x 1 . Both v~ and 

v] are o f  course in W (X n L~) ,  and so both of  them are substrings of  wn, for  an n' 

large enough. Suppose that v~ begins at letter si of  wn, for i = 0, 1. Set for i = 0, 1 

P i  = ~ " W n ' ' ~ . ~ . . ~ .  

Sl_ i times si times 

Both P0 and Pl satisfy the conditions of  Lemma (5.5) for  n = n I, and so there 
ef 

are legal words v0 E (P0) and Vl E (Pl) of  common length l~-~l(wn,) + so + Sl. 
These words satisfy vilso+s~ ~so+s~ +2so = vii for i = 0, 1 and so we see there is (an easily 

computable) s such that for any x E X, 

4)(x)< 1/10, if  i = 0 ,  
xl-~ +1-1 = vi ~ 4~(x) > 9/10,  if  i = 1. 

According to Lemma (5.3), there exists a legal path, which we will denote by v(t), 

0 < t < 1, such that v(0) --- v0 and v(1) = Vl. 
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Using Lemma (5.11), and since we know l < t , , -  2l(w,,), for every 

S1 . . . . .  Srl E [0, 1] with 

rl = l t n '+ l -  2l(wn'+l)Jtn' 

the word 

71(S1,''',Srl)d-~-dV(S1) " Wno" V(S2)'''Wno'V(Sr,) 

is legal. Let 7-1 . . . . .  7-r~ be the indices of the first letter of  V(Sl) . . . . .  V(Sr~) 
respectively. By definition of  legality, # ~  �9 7]1 ( S 1 , "  �9 �9 , Sr, ) " W o o  (the 0 th coordinate 

is the last letter of  ~ )  is in X. If  we take the projection of  

~( l~oo '71(S l , - . . ,S r l ) 'Woo)  

to the coordinates 7-1 + s  . . . . .  7-r, + s  we get a function from [0, 1] r' to [0, 1] rl satisfying 
the conditions of L e m m a  (2.2). Thus the whole cube [1, 3]rlaj is in its image. Since 

there are m r~ points that differ from each other in at least one coordinate by more 

that 1/2m in this cube, we see that s(Y; t , ,+l,  1/2m) > s(Y; 7-~ + s, 1/2m) > m rl. 
We can continue in this way one more step. Set 

= Itn,+2 - 2l(Wn,+2) 
r2 

I tn'+l J ' 

and let 

def 
72(S1,S2,-- . ,Sr2rl) :71(S1, . . . ,Sr  l) 'Wn'+l "71(Sr l+ l , . . . ,S2r l ) ' ' "  

�9 Wnt+l " 71(S(r2--1)rl+l,..., Sr2rl). 

And in the same way as before show that s(Y; tn'+2, 1 ~  > mr2rl. We can proceed 

ftLrther in this way to show that if  

tn,+i ~ 2l(Wn,+i) J 
ri---- L tn,+i-1 

then 

Now since 

1 
s(Y; tn,+i , ~m ) > m r'ri-''''rl. 

tn'+i 
tn'+i-1 <_ l(Wn'+i) -- 50" 2 n'+i' 

( 2 ) tn'+i 
ri _> 1 50 .-~n' +i tn' +i-1 

> ( 1  2n~+i) tn'+i 
- -  t n ' + i - 1  
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and so we have 

1 ) r ir i -1. . .r l  
1 logs Y ; t n , + i , ~  m > logm 

tn' +i -- tn' +i 

(5.12.1) > __1 logmi -  I 1 2 +i 
- -  t n '  i=1  

_> c l o g m  

for a positive constant c > 0 that does not depend on i and m, and c > 0 since the 

product above converges. But (5.12.1) exactly says that hi~era(Y) >_ c l o g m  and 

thus htop(Y) = ~ -  [] 

6. T w o  m i n i m a l  s y s t e m s  w i t h  a c o m m o n  a l m o s t  1-1  e x t e n s i o n  b u t  n o  

c o m m o n  f a c t o r s  

In this section we present an application, due to S. Glasner, of the results of  the 

previous section. 

We will say a map ~b:X --, Y is almost 1-1 if the set Y0 c Y of  points y such that 

the set ~b-1 (y) consists of exactly one point is dense. It is a well known result of 

elementary topology that the set Y0 so defined is a G~ set for any map ~b, and so if 

~b is almost 1-1 then [~b-l(y)l = 1 on a dense G6 subset of  Y. We will say (Z,R) 
is an almost 1-1 extension of  (X, T) if (X, T) is a factor of  (Z,R) and the factor 

transformation Z -~ X is almost 1-1. 

Let (X, T) denote the minimal system we have constructed in the previous section 

(or any other minimal system with no finite entropy factors). We wish to find an 

almost 1-1, zero dimensional extension of  X. The existence of  such an extension 

is part of  the folklore on almost 1-1 extensions (see [2]). However, there does not 

appear to be any published proof of  this fact. 

L e m m a  (6.1) Let (X, T) be a minimal system, and assume X is infinite. Then 
X has a minimal, almost 1-1, zero dimensional extension (Z, R). 

P r o o f  X is, by assumption, a compact metric space. Thus, since (X, T) is 

minimal and infinite, X has no isolated points. It is well known that under these 

circumstances there exists an almost 1-1 map ~b from the cantor set C = {0, 1} N 

onto X. Let X0 be the set of  points where [~b-l(x)l -- 1. Recall that X0 is a dense 
G~ subset of  X, by definition of  ~b. 

The system Z we will construct will be a subsystem of  C z with the shift operation 

a. We first define 

Z t = { ( . . .  , C _ l , C O , C l , . . .  ) �9 c Z :  Vi �9 Z ~)(Ci) = T i ~ ) ( c o ) } .  
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The map 0 : Z' ~ X, defined by 

is a factor transformation Z' ---, X. 

Now, any dynamical system (and in particular Z') has a minimal subsystem. 

Indeed, any subsystem of  Z ~ with no subsystems is minimal, and such subsystems 

exist by Zom's  Lemma.  Let  (Z, crlz ) be a minimal subsystem of  Z p. 

O(Z) is a nonempty, closed and T invariant subset of  X. Thus, since X is minimal 

O(Z) = X and Z is an extension of  X. Clearly Z is zero dimensional, so we only 

need to prove that ~b is almost 1-1. 

[0-a(x0)[ = 1 for some point x0 E X. 

Let  

x0 C 

Since X is minimal, we only need to prove 

oo 

N 
i : - - o o  

This set is nonempty since it is the intersection of  a countable number  of  dense G~ 

sets. Suppose c and d are two distinct points of  Z' such that 

0(c) = ~(d) =x0 .  

Then for some i, 

so that 

Ci 7 ~ di but q~(c0) = q~(d0) = x0 

r = TiC(co) = Ti(xo) = TiC(do) = r 

and so Ti(xo) ~ X0 - -  a contradiction. [] 

Let  (Z, R) be a minimal,  almost 1-1, zero dimensional extension of  i~. It is 

not hard to modify slightly the proof  of  Theorem (4.10) and show that any finite 

dimensional dynamical system has a factor with any positive entropy we wish 

(smaller than the entropy of  the original system) such that the factor transformation 

is almost 1-1. For the very special case of  a zero dimensional minimal systems we 

can give a direct proof  o f  this fact, due to B. Weiss: 

T h e o r e m  (6.2)  Any zero dimensional dynamical system (Z, R) has, for  any 
~7 > O, a factor (Y, S) with entropy htop(Y) < 77 such that the factor transformation 

is almost 1-1. 

P r o o f  Take any z E Z. Since Z is minimal it suffices to show that the factor 

transformation Z ~ Y is 1-1 at z. Let d be the metric on Z. 
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Pick some large integer N. Let  

(6.2.1) 6' = �89 min d(z, Tiz). 
i=I,...,N 

Choose any 6 > 0 small enough so that for any xl and x2, and any - N  < n < N, if 

d(x1 ,x2) < 6 then d(TnXl, Tnx2) < 6 t. 
Since Z is zero dimensional, there is some clopen set U such that 

z E U c B(z,6). 

Notice that for  any 0 < k < N, 

U n Tk(U) = O. 

For assume u E U n Tk(U). Then d(u, z) < 6 and d(T-ku, z) < 6. Thus we see that 

d(u, Tkz) < 6' and so 

d(z, Tkz) < 26', 

in contradiction to (6.2.1). 

Define the map ~b : Z ~ {0, 1 }z by 

(O:Z ~-+ (...  1u(T-lz) ,  1U(Z), 1u(Tz). . .) .  

Since U is clopen, ~b is continuous. Any infinite word of  O's and l ' s  in ~b(X) must  

have at least N zero's  between every two occurrences of  1 's, and so it is immediate 

that by taking N large enough the entropy of  the factor ~b(Z) can be made as small 

as we wish. Notice also that if  d(x, z) > 6 then q~(x) ~ 4~(z). 

To summarize,  we have so far seen that for every e, 6 > 0, there exists a factor 

Y,,6 of  Z such that htop (Y,,e) < e, and such that if d(x, z) > 6 then x and z are mapped 

into distinct points of  Y,,~. 

For every n > 0, let Yn = Y2-,,7,,-', and let q~, be the associated factor transfor- 

mations. Define q ~ : Z  --. 1-L~1 Y, by 

and set Y = 4 ~  (Z). 

Clearly, 
OO 

htop(Y) < Z htop(Yn) < ~, 
n=l 

and if  x r z then, for every n large enough, On(X) r On(Z) and so 
# [] 
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Thus Z has a finite entropy factor (Y, S) with an almost 1-1 factor transformation. 
Every factor of (~', 1") has infinite entropy, every factor of  (Y, S) finite entropy. So 
these two minimal systems have a common almost 1-1 extension but no common 
factors, answering the question posed by H. Furstenberg. 
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