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A b s t r a c t .  Given an orientation-preserving diffeomorphism of the interval 
[0; 1], consider the uniform norm of the differential of its n-th iteration. We get a 
function o f n  called the growth sequence. Its asymptotic behaviour is an interesting 
invariant, which naturally appears both in geometry of the diffeomorphism groups 
and in smooth dynamics. Our main result is the following Gap Theorem: the 
growth rate of this sequence is either exponential or at most quadratic with n. 
Further, we construct diffeomorphisms whose growth sequence has quite irregular 
behaviour. This construction easily extends to arbitrary manifolds. 

1 I n t r o d u c t i o n  and m a i n  results  

Denote by Diff0([0; 1]) the group of  all Cl-diffeomorphisms f of  the interval 

[0; 1] such that f(0) -- 0 and f(1) = 1. Given a diffeomorphism f E Diff0([0; 1]), 
define its growth sequence 

r , ( f )  = exp II log(fn)']loo = max (ll(f")'l[oo, II(f-")'lloo), n ~ N. 

Here [1. I[oo stands for the uniform norm, and fn, n E Z, denotes the n-th iterate of 

f .  Let us say that two sequences of positive real numbers are equivalent if their 

ratio is bounded away from 0 and +oo. The equivalence class of the sequence 

r,~(f) is called the growth type of f .  Clearly, it is invariant under conjugations in 
the group of  diffeomorphisms. 

From the viewpoint of dynamics, the growth type reflects asymptotic distortion 

of length under iterations of f .  Geometrically, the growth type of f is closely 

related to the distortion of the cyclic subgroup {f"} C Diff0([0; 1]) with respect 

to the mulfiplicative norm F1 (f) on Diff0([0; 1]). In [DG], D'Ambra and Gromov 

suggested studying the growth type for various classes of diffeomorphisms. 
The growth sequence is always submultiplicative: 

(1.1) Fn+m(f) ~ Fn(f)Fm(f); 
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therefore, the limit 

7(f) = lim F~/"(f) 
n-+oo 

always exists. Let Fix(f) be the set of fixed points of f .  Using standard arguments 

of ergodic theory, it is easy to check that 

(1.2) 7(f) = 1 if and only if f'(~) = 1 for every ( E Fix(f) 

(we provide details at the end of Section 2). Otherwise, 7(f) > 1, so Fn(f) grows 

exponentially fast. Loosely speaking, the exponent 7(f) distinguishes between 

the parabolic and hyperbolic behaviour of diffeomorphisms. Our main result 

establishes the growth gap between the parabolic and hyperbolic cases. 

T h e o r e m  1.3 (Growth gap). Let f E Diff0([0; 1]) be a C2-diffeomorphism with 

7(f) = 1. Then 

r . ( f )  < const, n 2 

for  every n E 1% 

As the proof shows, the C 2-condition can be relaxed by assuming that log f '  has 

bounded variation on [0; 1]. Probably it cannot be relaxed much further. Under the 

assumptions of the theorem, the estimate is sharp. For instance, if f E Diff0([0; 1]) 

is a C~-diffeomorphism such that Fix(f) = {0, 1}, f'(0) = f'(1) = 1 but if(O) # O, 
f"(1) # 0, then one can check that the growth type of f is n 2. 

The result can be considered in the following more general context. Let G 

be a group endowed with a multiplicative (pseudo)-norm p, that is, a function 

p : G --4 [0; +oo) satisfying p(l) = 1, p(f) = p(f-1) ,  and p(fg) <_ p(f)p(9). By 

a growth gap we mean a gap in the possible growth types of sequences p(9 '~) for 

g E G. Existence of growth gaps is known for finite-dimensional Lie groups. As 

a toy model, consider the group GL(m, ~) endowed with the operator norm. For 

instance, when m = 2 the possible growth types are given by er q where c >_ 0, 

q E {0, 1}. Other examples of growth gaps are given by certain discrete groups 

endowed with the norm e t(w), where l(w) is the word length of an element w with 

respect to a chosen set of generators. See [LMR] for the treatment of lattices. 

As far as we know, Theorem 1.3 gives the first example of a growth gap for an 

infinite-dimensional Lie group (though see [PSib] for some steps in this direction 

in the context of Hofer's metric on groups of area-preserving diffeomorphisms). 

Our second result starts with another observation: 

1 
(1.4) Z Fn(f"---) < oo 

n > l  

for every f E Diffo([O; 1]) \ {1}. 
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Indeed, take a point x0 6 [0; 1] \ Fix(f)  and assume, for example, that f ( x o )  > xo. 

Put Xn = f n x o ,  ~n =- Xn+l - xn. Note that [x0;xl] = f - " [Xn ;Xn+l ] ,  so 

(1.5) Fn(f)  > m a x ( f - n ) ' ( x )  > 6o1~,. 

Obviously, ~ , ~ z  ~,~ < 1; thus (1.4) follows. In particular, we see that 

(1.6) Fn(f)  >__ const,  n 

for "most" indices n 6 N. In many cases, (1.6) holds for all n 6 N; see the brief 

discussion below. However, the next theorem shows that there are non-trivial G '~-  

diffeomorphisms with arbitrarily slow growth of F , ( f )  along a rare subsequence 

of indices n. 

Denote by s the set of all strictly increasing sequences {u(n)}, n 6 N, of 

positive real numbers with u(n)  ~ + ~  as n ~ +co. 

T h e o r e m  1.7. For every  s equence  u 6 s there exists  a d i f f eomorph i sm f in 

Diff0([0; 1])\{1} such  that 

lira inf ~ < i, 
n-+oo u[n)  

The diffeomorphism we construct in Theorem 1.7 must osci l late  near the end 

points. Consider the function v(x )  = f ( x )  - x.  Assume for a moment that v is 

monotone near x = 1. After an appropriate choice of  x0, we can think that v 

is non-increasing on [x0; 1]. Then the sequence ~,~ = f n + l x o  - f "Xo ,  n _> 1, is 

monotone as well. Thus ~,~ _< l / n ,  since ~ n  _< 1. Therefore, by (1.5), f satisfies 

(1.6) for all indices n 6 N. Let us say that a diffeomorphism f i s f la t  at the end 

points i f f ' ( p )  = 1, f( i}(p) = 0 fo rp  6 {0; 1} and all integers i _> 2. I f f  is not flat 

near 1, then the Taylor expansion of  f at the point x = 1 shows that the function 

v(x )  is monotonic for x sufficiently close to 1, and therefore the growth of  the 

sequence r.(f) is at least linear. Hence the diffeomorphism from Theorem 1.7 

must be flat. In what follows, we design an oscillating function v which forces f to 

satisfy r , ,  (f) = o(ni), {ni} C N. Of  course, these oscillations are rare and small 

since ~6,~ converges. An additional difficulty is that they have to be not too steep 

since we wish f to be C~-smooth.  Let us mention that flat diffeomorphisms of  

[0; 1] with oscillating v were considered in a different context in the papers [Se], 

[K]. 

Theorem 1.7 has a straightforward corollary pertaining to diffeomorphisms 

of  arbitrary compact  manifolds M. Let Diff0(M) be the group of  all Ct-smooth 

diffeomorphisms isotopic to the identity map 1. Given a diffeomorphism f 6 

Diff0(M), define its growth  s equence  by 

d n F . ( f )  -- max(maxxEM II xf  II, ma~ IId~f-"ll), n 6 N. 
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Here [[dxfl[ stands for the operator norm of the differential d , f  calculated with 

respect to a Riemannian metric on M. 

C o r o l l a r y  1.8. Let B be a closed Euclidean ball o f  dimension > 1. For 

every u �9 s there exists a C~176 g E Diff0(B)\{l} which equals the 

identity near the boundary and whose growth sequence satisfies 

(1.9) lim inf Fn (g) oo 1 
,~-,+oo ~ ( n )  <- 1 and ~ Fn(g---~ < oo. 

P r o o f .  Let f be a diffeomorphism of [�89 ]] which is flat at the end points and 
satisfies 

lim inf Fn(f) , ~ + ~  u---~ - g l .  

The existence of such a diffeomorphism follows from Theorem 1.7 and the dis- 

cussion above. Extend f by the identity map to the whole interval [0; 1]. We get a 

smooth diffeomorphism h of [0; 1] which satisfies (1.9). Define a diffeomorphism 

g of the ball B = {ix I < 1} by g(x) = xh(Ix{)/Ixl. Clearly, g equals the identity 

outside the spherical annulus A = {�89 < Ixl < ~}. We claim that g also satisfies 

conditions (1.9). Indeed, gn(x) = xhn(lxl)/Ixl for every n E Z. Take a tangent 

vector v C T~I~ '~ and decompose it as v = ~ + ~/, where ~ is parallel to x and ~/is 

orthogonal to x. One readily calculates that 

dxg(v) -- (h")'(Ixl)s + h"(lxl)~ 
Ixl 

fo rx  �9 B \ {0}. Note that Ixl-Xh~(Ixl) �9 [�89 foraU x E A. This yields 

r.(h) _< r.(g) < max(2, r.(h)). 

Since Fn(h) ~ oo in view of (1.4), we see that rn(g) = F,~(h) for large n. Hence g 

also satisfies conditions (1.9). [] 

R e m a r k .  Corollary 1.8 immediately extends to an arbitrary compact mani- 

fold. Indeed, fix a closed ball inside the manifold and extend the diffeomorphism 

g constructed in the theorem by the identity map. We get a diffeomorphism from 

Diff0(M) \ {1) which satisfies (1.9). 

It is interesting to compare this remark with restrictions on the growth type 

of symplectic maps which were obtained recently in [P1], [PS]. For instance, let 

f be an area-preserving C~176 of the 2-dimensional torus which is 

isotopic to the identity map 1. Assume that f ~ 1 and that f has a fixed point. 
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Then according to [PSI, the growth type of f is at least linear, that is, (1.6) holds for 

all indices n E N. We refer to [P1] for extensions to other symplectic manifolds, 

including all closed surfaces of higher genus, 1 and for further discussion. Clearly, 

the fixed point condition is crucial there. Indeed, i f f  is a translation of the torus, the 

sequence r,~(f) is bounded (see [P2] and [B2] for more sophisticated examples). 

On the other hand, as we have seen above, there exists a C~-diffeomorphism 

which has fixed points but violates inequality (1.6) for a subsequence. 

An Outlook 

Flat fixed points form a major difficulty in the study of the growth for C ~ 

diffeomorphisms of the interval. One can speculate that further understanding of 

their influence on the growth sequence will lead to a rather satisfactorydescription 

of the "spectrum" of possible growth types. The Gap Theorem and the examples 

provided by Theorem 1.7 correspond to the opposite ends of this spectrum. To be 

more precise, recall that if a diffeomorphism f has a non-degenerate fixed point 

(that is, f '(~) r 1), then its growth is exponential. Assume now that all fixed 

points of f are degenerate but non-flat. We say that ~ E Fix(f) has order p E N if 

f(3)(~) = 0 for all j = 2, . . .  ,p, but f(p+l)(~) r 0. In this case, one should be able 

to show (using, e.g., the Takens normal form [T]) that 

(1.10) Fn(f) "~ n (p+I)/p, 

where p is the minimal order of the fixed points of f .  Therefore, in the general 

case, we arrive at the following problem. What is the contribution of flat fixed 
points to the growth type o f f ?  Warning: setting p = ~ in formula (1.10) leads to 

the answer rn -,~ n, which is obviously wrong since it contradicts (1.4). In fact, 

Theorem 1.7 shows that fiat fixed points sometimes yield an irregular behavior of 

the growth sequence. Nevertheless, an optimistic scenario is that the contribution 

of flat fixed points does not exceed nx+'for every c > 0. Note that the Gap Theorem 

confirms this for ~ = 1. If this is indeed true, we get an infinite sequence of new 

gaps formed by the growth types 

{nC'+l)/v} , pEN.  

This picture, though quite enticing, seems to be out of reach at the moment. Our 

proof of the Gap Theorem proceeds in another direction and ignores completely 

higher derivatives at the fixed points (as a compensation, we work in the C 2- 

category). Let us conclude this discussion with the following test. 

tR LeCalvez informed us that he can prove this result for surfaces by a different method. 
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Q u e s t i o n  1.11. Suppose that f is a sufficiently smooth diffeomorphism o f  

[0; 1] with Fix(f)  = {0; 1}. Assume that f ' (0)  = f ' (1)  = 1 and f " (0)  = f " (1 )  = 0. 

Is it true that Fn(f)  = o(n 2) as n --r oo? 

Added  in March, 2003. In a recent preprint [B 1 ], A. Borichev confirms for- 

mula (1.10) and gives an affirmative answer to Question 1.11. At the same time, 

according to IB 1 ] our "optimistic scenario" appears to be wrong. 

Added  in December, 2003. Later on, we received a preprint from N. Watanabe 

[W] which also contains answers to our questions. 

2 E x i s t e n c e  o f  t h e  g r o w t h  g a p  

In this section, we prove Theorem 1.3 and check relation (1.2). 

Let f be a C2-diffeomorphism of  [0; 1] with 7 ( f )  = 1. Let  v( f )  be the variation 

of  log f '  on the interval [0; 1]. We shall use a classical 

L e m m a  2.1 (Denjoy). /f J C [0; 1] i s  a closed interval such that f J fq J = 0,  

then f o r  every n E N and every z, y E J, 

e-V(f) < ( fn) ' (x)  < e v(f) . 
- ( fn),(y)  - 

For n _ 0, put 

a,~(f) = maxlog( fn) ' (x)  and an( f  -1) = maxlog(f - '~) ' (z ) .  
[0;1] [o;11 

Note that ao( f  +) = 0. These two sequences appear to be "almost convex": 

L e m m a  2.2.  The sequences an = an( f )  (resp., an = a~( f -1 ) )  satisfy the 

inequality 

2an - an-1 - an+l <_ C( f )e  -a",  n E N, 

with C ( f )  = L(f)e~(I), where L ( f )  is the Lipschitz constant o f  the function log f .  

P r o o f  o f  L e m m a  2.2. We prove the statement for  the sequence an = a,~ (f) ;  

the proof  for the second sequence is the same (note that v ( f )  = v ( f -1 ) ) .  Choose 

x0 such that an = log(fn)'(xo).  In view of  (1.2), x0 does not belong to Fix(f) .  Put 

xj  = f~zo, j E Z. Then we have 

n--1 
an+l >_ l o g ( f n + l ) ' ( X - 1 ) =  Z l o g f ' ( z j ) ,  

j = - I  
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and 

Therefore, 

n - 1  

an-1 > l o g ( f n - 1 ) ' ( x l )  = Z log f ' ( z j ) ,  
j = l  

n- -1  

a,,  = log 
j=O 

2 a n  - -  a n - 1  - -  a n + l  ~ log f ' (xo) - log f ' (x -1 )  

Iz. h X - - 1 ]  
_< L( f ) l xo  - x_,  I < L ( f ) ,  - --.l~--~----x,~-~(I 

L ( f )  
-- (y  E ( X - - I , X 0 ) )  

(f")'(v) 

< L ( f )  e~(I) _ C ( f ) e - a . .  
- ( / n ) ' ( X o )  

In the last inequality, we apply Lemma 2.1 to the interval [y; x0]. We are done. [] 

The next lemma is crucial. 

L e m m a  2.3 (Growth lemma). 

such that ao = 0 and  f o r  each n >_ 1 

Le t  {an}~>_l be a s e q u e n c e  o f  real number s  

(2.4) 2an - an-x - an+l ~ C e - " " ,  C > O. 

Then  ei ther  

(2.5) 

f o r  all n o r  

(2.6) 

a,,<_21og n + 1  

lim inf a--E > 0 .  
n--}oo /7, 

P r o o f  o f  T h e o r e m  1.3. Since F~(f) = exp (max(am(f), a n ( f - i ) ) ,  Lemmas 

2.2 and 2.3 yield Theorem 1.3. [] 

P r o o f  o f  L e m m a  2.3. Introduce the second difference operator 

Li p  = 2pj - Pj-1 - Pj+I, j > 1, 

acting on sequences {pj }, j _> 0. Set D = x/C~2 and observe that the sequence 

hj = 2 log(j v/-C-/2 + 1) is a super-solution of  the non-linear second order difference 

equation 

(2.7) L j p  = Ce -p~. 
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Indeed, 
(Dj  + 1) 2 O 2 

Ljh  2log 
(Dj  + 1) 2 - D 2 > 2 ( D j  + 1) 2 

Ce-h,  . 

Here we have used inequality log(A/B)  > (A - B ) / A ,  valid for A > B > 0. On 

the other hand, condition (2.4) says that the sequence {as} is a sub-solution of  the 

same equation (2 .7)wi th  ao = h0 = 0. Our first claim is that for any e > 0, the 

sequence bj = aj - (1 + e)h s has no positive local maxima. This is a version of  

the maximum principle for equation (2.7). Indeed, suppose that i > 1 is a local 

maximum of  {bj}. Then Lib > 0, and 

Ce -a' >__ Lia = Lib + (1 + e)Lih >__ Lih  > Ce -h ' .  

Hence ai ~ hi, and so bi _< 0. The claim follows. 

Introduce the difference operator Ojp = pj - PS-1, J _> 1. We show that if (2.5) 

fails, then lira in fs~+~ Osa is strictly positive, which clearly yields (2.6). 

If  (2.5) fails, there exist m E N and e > 0 such that am > (1 + e)h,~. Fix e and 

assume that m is the minimal positive integer which satisfies this inequality. This 

means that a s < (1 + e)h s for  0 <_ j <_ m - 1. 

Consider  again the sequence bi = a s - (1 + e)hj. By our assumption bm > O, 

and bi < 0 for 0 <_ j <_ re - 1. Since, as shown above, this sequence cannot  have 

positive local maxima, we have b,~ >_ b,~-i for all n > re. Take any n > re. Then 

(2.8) cg,~a = O,,b + (1 + e)O,~h > Onh. 

Furthermore,  since 

an = bn + (1 +e )h n  > ( 1 +  e)hn, 

we get 

(2.9) cOna - COn+la = Lna < Ce -a" < Ce -(l+dh" . 

Take N > n and observe that, in view of  (2.8) and (2.9), 

N - 1  

Onh < Ona <_ Ce -('+~)h" + On+la <_ "'" <_ ~ Ce -(l+')h~ + 01va. 
j=n 

Since the sequence {hi} is increasing, the first term on the right hand side does not 

exceed 

N - I  N-1 

< L j h  = - 01 h) <_ 
j=n j=n 



A GROWTH GAP FOR D I F F E O M O R P H I S M S  OF THE INTERVAL 199 

This yields (9Na >_ (1 -- e-'hn)tOnh. Fix n so large that 1 - e -'h~ > 1/2. Letting 

N ~ +oo, we obtain 
1 

lim inf ONa > =Onh > O, 
N--++oo 2 

which yields (2.6). [] 

We complete this section with the 

P r o o f  o f  r e l a t i o n ( 1 . 2 )  Suppose that f ' (~)  = 1 f o r e a c h ~  E Fix(f) .  W eh av e  

to show that 7 ( f )  = 1, which means that 

lim a,~(f)/n = lim an( f -1 ) /n  = O. 
n-- 'k  OO n--q '  OO 

Put F(x)  = log f ' ( x )  and assume on the contrary that 

lim max F ( f i ( x  = lim an - - = c > 0 .  
n--~oo zE[0;1] i=0  n---~.oo n 

Using the Kry lov-Bogo lyubov  argument, we choose N sufficiently large and a 

point y(/v) such that 
N - 1  1 c 

i=0  

and consider the sequence of  probability measures on [0; 1] 

1 N - I  

aN = -~ E 6I'~(N)' 
i=O 

where 6x is the Dirac measure at x. There  is a subsequence Nj -~ c~ such that 

ant ~ aoo (in the weak-* topology), and aoo is an invariant measure of  f such that 

Fdaoo lim ! F  O. 
f 

daNj > 
Nj~oo J 

Note that for  each interval J C [0; 1] \ F ix(f ) ,  there exists k0 such that f k j  fq j = 

for every k with I kl > k0. Hence the support of  every invariant measure a of  f must 

be contained in the set Fix(f) .  Thus f F daoo = 0, since F vanishes on F ix( f )  by 

our assumption. This contradiction proves that '7(f) --- 1. [] 

3 Di f f eomorphi sms  with irregular  growth  sequences  

In this section, we prove Theorem 1.7. Fix a sequence {u(n)} E/~ of  positive 

real numbers, u(n) /~ +oo as n ~ +oo. For a C~176 A : II~ -+ (0; +oo), 
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definc recursively a sequence of  functions 

go(t) -- A(t  + 1) 9~m(t) 
A(t-------)-- ' gm+l(t) : "A(t) " 

T h e o r e m  3.1. There exists an even C~-function A : R --+ (0; +oc) such that 

(3.2) f A(t)dt < oo; 
- -  0 0  

(3.3) there is a sequence o f  positive integers ri / z  +oc such that 

sup A(t + U__) _< U(Ti); 
+eR a(t )  

(3.4) go(t) -~ 1 and gin(t) ~ 0 as t -~ oc for  all integers m >_ 1. 

First, we deduce Theorem 1.7. Without loss of  generality, assume that 

f + ~  A(t)dt  = 1. Put a(r/) = f "  A(s)ds, and define f :  [0; 1] -~ [0; 1] by 

f(x)  = 

I 0, x = O, 

1, x = 1, 

a(a-~(z)  + 1), z e (0; 1). 

P r o o f  o f  T h e o r e m  1.7. Let us verify that f satisfies all the requirements of  

Theorem 1.7. 

I) We claim that f is a C~-dif feomorphism of  the closed interval [0; 1], and 

moreover f is flat at the end points. Indeed, f is continuous on [0; 1] and smooth on 

(0; 1). Thus it suffices to check that f ' ( z )  --+ 1 and f(m)(x) -~ 0, m > 2, as x ~ 0 

and x -+ 1. Put rl = a-a(x). Then f ' (x)  = g0(r/) and 

f ( ~ ) ( x )  - 9~(r / )  - g ~ ( , 7 ) , . . . ,  f ( , , + l ) ( x )  _ g ' - i  ('7) _ g , , ( r / )  
: ' ( ,~ )  :'(,7) 

for all m _> 2. Here we use the fact that dr//dx = 1/A(r/). The claim follows from 

Property (3.4) of A. 

2) Note that fn(x)  = a (a - l (x )  + n) for all n E Z. Hence 

d(a  -1 (x) + n) a'(a -1 (x) - n)~ A(r/+ n) 
Fn(f)  = max mxax a,(a_l(x)) , max ~ x ' ~  ] = sup 

+ .eR A(V) 

since A is even. Property (3.3) guarantees that F~, (f)  _< u(T,). This completes the 

proof. [] 
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It remains to prove Theorem 3.1, that is, to construct an even C ~176 with 

properties (3.2)--(3.4). 

I d e a  o f  t h e  c o n s t r u c t i o n .  As the first approximation to A, we start with an 

even C~~ h - 1~ --+ (0; +oo) satisfying conditions (3.2) and (3.4) and such 

that h(0) = 1, and h(t) decreases for t > 0. Consider the weighted average 

(Ar,uh) (t) = E #lJlh(t + jr) ,  
jEZ 

where 0 < # < 1. It is not difficult to check that 

(AT,,h) (t + r) 1 
< sup < -- ,  
-- tE~ (Ar,~h) (t) - # 

since the average produces "self-similar humps" of  relative magnitude #. Then, 

iterating this procedure  with properly chosen sequences ri -+ oo and #i --+ 0, we 

get an even function satisfying conditions (3.2) and (3.3). Unfortunately, we lose 

the smoothness property (3.4). 

To remedy this, we modify the operator  A by introducing an additional rescaling 

E #lJlh( c~j(t + jr ) ) ,  
jEZ 

where c~i are suitably chosen rescaling factors. The new average still produces 

self-similar humps,  this time without spoiling the behaviour  o f  the derivatives. 

Then an infinite repetition of  this process (with a careful choice of  values of  r ,  # 

and {a s } at each step) does the job. 

F o r m a l  c o n s t r u c t i o n .  Let h be an even C~ h : ~ -+ (0; +c~) such 

that h(O) = 1, is(t) decreases for t > 0, and h(t) = l i t  log 2 t for  t _> 3. Take a 

function r : N ~ N such that 

1 
(3.5) E logu(ri)  < oo; 

iEN 

we also assume that the value rl is sufficiently large. Define functions # : Y -~ (0; 1) 

and 7 : N x Z -+ (1; +oo) by 

Izi = u - 1 / l ( r i ) ,  

7i,t = min(llog#il,#i -l/v/Itl) fore # 0, 

and 7i,0 = I logp/t- 

Let  Z ~ be the space of  all functions k : N --+ Z with finitely many non-zero values 

ki. Define two functions on Z ~ as follows: 

~o(k) = I X / z l  k'l , O(k) = 11"FI" .rlk'l,,k, 
iEN iEN 
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(the products have only finitely many factors). Observe that the functions q0 and 

90 satisfy 
T-r Ik i l -  I X / ~  qo(k) <_ qo(k)O(k) <_ 11 #i <_ 1. 
iEN 

F u n d a m e n t a l  def init ion.  Put 

A(t) = E ~(k)h(~(k)O(k)(t - (k,r))) ,  
k E Z  oo 

where (k, r) = E i E N  kiri. 

The function A is well-defined since 

E I I E . l "  = 
1 + # i  

H 1  #i" 
iEN 

Since 
+oo 

i ( 1 )  ~-~'~,,7 < ~ + ~ = 0 ilo~- 12 , 
t>_l 1 

for # -+ O, the right-hand side of the previous expression is bounded by 

HieN { 1 + eonst[ log #i[ -1 }. But this product is finite in view of (3.5). [] 

i = 5in, where i, n E N. P r o o f  o f  (3.3). Denote by e i E Zoo the vector with % 

We have 

A(t + ri) = E ~(k)h(p(k)O(k)(t  - (k - ei, r))) 
kEZ oo 

= ~ ~o(k + ei)h(~,(k + ei)O(k + ei)(t - ( k , r ) ) ) .  
k E Z  oo 

kEZ oo /EN jEZ 

The latter product is convergent since 

E # i  = E u-l/4(ri)< o0, 
dEN iEN 

in view of (3.5). Since the function k ~ ~(k)8(k) is bounded on Z ~ and all 

derivatives h (m) are bounded, the same argument shows that A is a Coo-function 
with 

~x(m)(t) = ~ ~"+~(k)o'~(k)h~ ") (~ (k )0 (k ) ( t  - (k, r ) ) ) .  
kEZ oo 

Clearly, the function A is even. We have to show that it satisfies conditions 

(3.2)--(3.4). 

C o n v e r g e n c e  of  the  i n t eg ra l  (3.2). Since the function h is integrable, it 
suffices to check convergence of the series 

E <--II l + 2 E l l ~  �9 
iEN fEZ l i d  iEN l>l  l>1 
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Comparing this with the definition of  A(t), we get that 

A(t  + ri) ~o(k + e i) 
(3.6) _< sup 

/ x ( t )  k ~ z ~  ~ ( k )  

h ( s )  
�9 sup sup 

~ e z ~  8eR h(cks)  

where 

L e m m a  3.7. 

qa(k)O(k) 
Ck = qo(k + ei)O(k + e i) " 

~ ( k  + e ~) 1 
#i < < - -  a n d  #i < 

~ ( k )  - ~,~ 

O(k + e ~) 

O(k)  

1 < m  
#i 

f o r  all k E Z ~176 i E 1% 

Assume the lemma and note that 

sup h(s) 
8eR ~ -< 1 

i f O < c N  1, 

and 
sup h(s) ~eR ~ -< const �9 c(1 + log 2 c) if c > 1. 

It follows from Lemma 3.7 that ck _< #~-2, and hence 

1) 
~c~ ~ -< const �9 1 + 4 log 2 . 

Since p i t  = u(r i ) l /4  >__ U(T1)I/4, we conclude that 

h(s)  1 
sup < - -  
,~R h(cks)  - ~ '  

provided rl is sufficiently large. Applying again Lemma 3.7 and substituting the 

last inequality into (3.6), we conclude that 

A ( t  + ri) 1 1 

/ x ( t )  <_ - -  . - ~  = u(~ i )  , #i #i 

which proves (3.3) modulo the lemma. [] 

P r o o f  o f  L e m m a  3.7. The first inequality follows from the fact that 

q0(k + e i) . Ik,+ll-lkil = p~x 
~o(k) = ~'~ ' " 

For the second, put ai,t  = ] log#il lel and r = p~-x/~ and observe that 

(3.8) O(k + e i) _ min(ai,k,+l, fli,k,+l) 
O(k) min (ai,k,, fii,k, ) 
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Further, 

(3.9) ~ - ll~ E [#i' l ]  

/~i,t+____~l _< sup ( 1 )  vTu v~ 1 
(3.1 O) /3i,t ,>o #i 

and 

fl*,t + l > inf #/~v'7~-,/~ = #i. (3.1 1) /3i,t - ~>0 

Now for every quadruple of positive numbers a, b, e, d, one has 

(__a b )  min(c,d~min(a'b) (ac, b )  man c '  < -< max q 

Applying this to (3.8) and using (3.9)-(3.11), we conclude that 

O(k + e ~) 1 ~<_ - - < - - .  
O ( k )  - m 

This proves the lemma. [] 

It remains to check that the function A satisfies the asymptotic regularity 
condition (3.4). We start with 

P r e l i m i n a r y  es t imates .  The function A(t) satisfies conditions 

A(t + s) 
(3.12) sup sup - -  < cx~ 

1,1_<1 teR A(t) 

and 

(3.13) lira A(t) = 0. 
t---~ cx) 

Estimate (3.12) holds for h and therefore for A, since the function k ~ ~o(k)O(k) is 

bounded on Z ~. Then (3.13) follows from the intcgrability of A (scc (3.2)) and 

(3.12). f-q 

The next lemma shows that we did not lose much in the asymptotic regularity 
of A compared with that of h. 

L e m m a  3.14. For every m E N and every c E [0; 1), 

lira rnaxIt;t+1] IA(m)I = 0. 
t-~oo Am+c(t) 
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P r oo f .  We show that, for every m E N and every c E [0; 1), 

A(m) 
(3.15) t~oolim ~--&--~ (t) = 0. 

Together with (3.12), this yields the lemma. 

In view of  (3.13), it suffices to show that the function A(m)/A m+c is bounded 

on ]i for every m E N and c E [0; 1). Fix such m and c. It is easy to see by induction 

in m that 

----{1----~(m) - (-1)mm! +Am(t) ,  m > 0 ,  
~, t log 2 t ] tm+l log2 t 

where Am is a linear combination of  the functions 1/t m+l log k t with 3 < k < m + 2 .  

Therefore, 
h(m)(t ) = (-1)ram!(1 + o(1)) t --~ +oo, 

t m+l log 2 t ' 

for each m > 0, and the function t ~ h(m)(t)/hm+C(t) is bounded. Then we have 

[A(m)(t)l < n Z qom+X(k)Om(k)hm+C(Sk), 
kEZ oo 

where Sk = qo(k)O(k)(t - (k,r)),  and 

[h(m)(t)[ 
: tCm,c : sup 

t E R  hm+*(t) 

We claim that 

(3.16) Vm,c := sup ~pl-c(k)Om(k) < oo. 
kEZ oo 

Combining the claim with the elementary inequality 

. . . .  Z x ~ <  xi r > l ,  0 < x i < l ,  
i i 

we readily complete the proof of (3.12): 

IA(m)(t)l < ~Vm,c ~ qom+c(k)hm+C(Sk) 
kEZ o= 

< ~vm,c( Z ~~ m+c=rwm,eA(t)m+c" 
k E Z  oo 

To prove (3.16), we set 

K(m,c)  = {k E Z~176 9i-C(k)Om(k) < 1} 
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and check that the complement  Z~176  is a finite set. Indeed, if k E 

Z ~ 1 7 6  (m, c), then 

1-1 > 1; 
iEN 

therefore, at least one of  the factors on the left-hand side is greater than one. Hence 

there exists i E N such that 
l--c m 

#i  7i,k, -> 1, 

which is equivalent to the inequalities 

/z~- c I log Izil m > 1 and 

The first inequality shows that 

I log/~il < 
log I log #d - 

1-c--rn/[V~ 
I~ i >_ 1. 

m 

1 - c  

therefore, there exists a number j (m,  c) such that i < j ( m ,  c). The second inequality 
tells us that 

Hence 
( ( ) 2  m 

# ( Z ~ k K ( m , c ) )  < 2 

and (3.16) follows. The lemma is proved. 

+ 1)  j (m ,c ) ,  

[] 

9 o ( t )  - 

First, note that 

V e r i f i c a t i o n  o f  c o n d i t i o n  (3.4).  For a function v : ~ ~ ]L denote (wv)(t) = 

v(t + 1) - v (t). Recall that we are proving Property (3.4), which deals with functions 

gin, where 

+ I) (. ,A)(t) 
A ( t ~  - A ( t ~  + 1 and gm+l(t) = g~(t)  A(t) " 

go(t) - 1 = A( t  + 1 ) -  A(t) _ A'(xt) 
A(t) A(t) 

for some xt E [t,t + 1]. Then Lemma 3.14 yields go(t) -+ 1 as t ~ oo. It remains 
to show that g,n(t) ~ 0 as t -+ +oo for every m > 1. 

L e m m a  3,17.  The funct ion gm is a finite linear combination o f  funct ions o f  
the fo rm 

R = wA(P)(A')t '  "'" (A('~-l))t '~- '  
At 

where p, gl,. .. ,gm_l >_ 0 and 

(3.18),, 2gl + . - .  +m&n-1  + p +  2 > g. 
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P r o o f .  We use induct ion in m. For  m = 0 we  have p = 0, g = 1, gl . . . . .  

era-1 = 0. Inequa l i ty  (3.18)0 reads 2 > 1. A s s u m e  the s ta tement  o f  the l e m m a  for  

m, and prove  it fo r  m + 1. Note  that gm+~ is a finite l inear comb ina t i on  o f  funct ions  

o f  the f o r m  R' /A .  In turn, R ' / A  is a l inear combina t ion  o f  the express ions  

w A ( P + I )  ( A ' ) t a  . . .  ( A ( m - 1 ) ) t , , ~ - a  

mg+l  

0./A(P)(A') l' ... (A(i-1))ti-' (m(i))ti-l(A(iq-1))ti+l-4-1(A(i+2))li+2... (A(m-1))l,n-, 
Al+1 

where  i = 1 . . . .  , m - 1, and 

w~(p) (A,)t, +1 (A(2))t2. . .  (A(,,,-1))tin_, 
At+2 

Let  us check  (3.18)m+1 in each o f  these 3 cases  using (3 .18) , , :  

�9 g + l < p + l + 2 + 2 g l + - - - + m g , - , , _ l ;  

�9 g + l < p + 2 + g l + . . . + i g i _ l + ( i + l ) ( g i - 1 )  

+( i  + 2)(gi+1 + 1) + (i + 3)ei+2 -I- �9 �9 �9 q- rag,n-l; 

�9 e + 2 < p + 2 + 2 (e l  + 1) + 3e~ + . . .  + mere-1. 

This comple tes  the proof.  []  

N o w  we are r eady  to finish the p r o o f  o f  (3.4). It suffices to s h o w  that R(t) -+ 0 

as t ~  c~, where  R is def ined in L e m m a  3.17. Wri te  

2e l  q - ' "  q-m~m-1  q - p +  2 = ~.'1- 1 + r 

with r > O. C h o o s e  number s  ~0 , . . . ,  6m-1 so that 6i E [0; 1) and 

(1 - 60) + e l ( i  - 61) + - - .  + em- l (1  - 6 m - i )  = 1. 

Then  

t = (19+ 1 + 60) + el(1 + 61) + e2(2 + 62) + ' "  + em- l (m - 1 + 6 r n _ l )  - -  r. 

R : Ap+l+6------ ~ �9 ~ ~ A r n _ l + 6 . _  ' �9 A r . 

Then  by  L e m m a  3.14 and by  (3.13), R( t )  - r  0 as t ~ oo. This  comple t e s  the p r o o f  

o f  (3.4), and therefore  finishes of f  the p r o o f  o f  T h e o r e m  3.1. [] 

Rewri te  R as fo l lows:  
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