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Introduction.

In this paper we shall deal with Monge-Ampére equations of the
following kind:

(1) F=A@,y,2.0,97r+2B(x,y,2,0,9)s+C(x,5,2,p,9)¢
+t—=s)—E(®,y,2,p,9) =0
(Pp=12,, q=12y; =124, S=24, t=2,).
We assume that the equation is elliptic for the given solution z =z (x, ¥);
i.e., the inequality
(2) A=AC —-B*+ E >0
holds.

Equations of this type frequently occur in problems of differential
geometry in the large. In this connection the problems of Minkowski and
Weyl () deserve particular attention, since they stimulated many researches
on this subject. They lead to the following Monge-Ampere equations which

in terms of local parameters (%, v) take the form:

) " s = fu,0) >0,
@ (0w — 117} 0w — {127} 00) (000 — 17} 0w — {727} 00)

— (0w — {'7] pu — {127} 0 = K (4, 0) [EG — F*— (Gp2 — 2F pupy + EpD)] .
In the last equation, which is due to Darboux [7], {!:!}, ..., %%} are the
Christoffel symbols with respect to the line element
(5) ds? = E(u , v)du® 4 2F (v, v)dudv + G (u , v) dv?
Furthermore K (u,v) is the Gauss curvature of ds?, which is assumed to

be positive, and ©(%,v) stands for any component of the position vector

1. For a detailed account on the history of these problems see Nirenberg [25].
A. D. Alexandrow’s work on Weyl’s embedding problem is described by Efimow {9]
and Pogorelow [27]. For a discussion of Weyl's problem see also Wintner {32].
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(6) X(u,v) = (x(,0),y(,0),2(u,v))
of the surface under consideration.

In solving the problems of Minkowski and Weyl by a continuity
method @ one is confronted with the problem of obtaining suitable bounds
for the second and higher order derivatives of the solutions of (3) and (4)
in any compact subset of the parameter domain (so-called a priori estimates).
In order to get a precise formulation of this question let us impose the
following conditions on the coefficients of the Monge-Ampére equation (1)
and the solution z=z2(x,y):

(i) The function z(x,y) is of class C3** (0<%< 1) in a domain Q
of the xy-plane and satisfies (1), where the coefficients

A=A@x,y,2,0,9,...,E=E(x,v,2,p,9)
are of class C? in an open set of the S-dimensional space containing the

hypersurface :

(7) X=,y,2(x,0), P, q(x,y), (x,3)€Q.
(ii) The coefficients A, .., E satisfy for (x,y,2,p,9) €2 the

inequalities :

(8) |4], ..., |E] £ a,

) A=AC —B*+E = o',
(10) | 4], s |Eq] £ w,

(11) lexl’--wIEwléaz,

where @y, 01 , @2 are finite positive constants.

(iii) For the solution z(¥,¥) of (1) we have the estimates :
(12) |2, 0| < 7o,
(13) [pG, 0], lea@E, Nl <7,
where (x,y)€Q and 7o, 1 are finite positive numbers.

Now let 4 be a positive number and €, the set of all points in
whose distance from the boundary of & exceeds d. Then the main problem,
with which we are concerned in the present paper, consists in establishing

inequalities of the form
(14) lrl’lsl’lllékU((x())al)uZ’TO’Tlad)<o°:

and

2. See Weyl [31], Nirenberg [25], and Lewy [18], [19].
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(15) [72]s s [ty S kilao, 00, 00,70, 71,8)< o0,
valid for (x,)€Q:.®

The first decisive approach to this problem was made by H. Lewy
[16], [17] in the case of analytic Monge-Ampére equations. In [16] he
studies the analogous problem for the more general Monge-Ampére equation
(16) Ar + 2Bs + Ct + D(#t —s*) = E
under the additional assumption that the coefficients 4, ..., E are analytic
in a complex neighborhood of Z, and a bound for the moduli of the second
order derivatives of the solution is known, say y2. From these data he
derives estimates for the third and higher order derivatives of z(x, ¥).

In [17] he carries the analysis still further by removing the condition
(17) 71 Isls e <7y (2, )€,

and thus proves a general theorem of compactness for a certain class of
Monge-Ampére equations under the assumption that the first derivatives of
the solutions ate uniformly bounded. However he does not give an explicit
estimate for their second derivatives. As a principal tool for establishing
his results he makes extensive use of the characteristic equations associated
with (1) and (16), which futnish the analytic continuation of the original
solutions into the complex domain. He also observes in [17] that an a
priori limitation of the second derivatives is impossible for the general
Monge-Ampére equation (1). &

Applying his results to the equation (3) and an equation of the
Darboux Type (4)® he solves the problem of Minkowski and Weyl in the
case of analytic data (see [18] and [19]).

Since the papers of H. Lewy much effort has been concentrated on
the question of whether the condition of analyticity in the equations (1)

and (16) can be dropped. The first decisive step in this direction was made

3. No assumptions are made regarding the boundary values of z. Estimates
for the derivatives of 2{x,¥), which are valid in the closure of € and depend on the
smoothness of boundary values and the boundary curve of @, were given by Bernstein
[3]. Leray [15], and Pogorelow [28)

4. See the example on p. 35 of this paper. This phenomenon is remarkable
in view of the fact that the characteristic equations of (1) do not involve the second
derivatives of the solution z(x,y).

5. See the remark at the end of this paper.
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by Nirenberg [24] and Pogorelow [27], [28]® who considered the general

elliptic equation in two variables:
. 1 ..
(18) F(x,y,Z,P,q,",S,t)‘—‘"O, fth—“ZI'§>O

So far as the estimation of the third derivatives is concerned, the
sharpest result is due to Nirenberg, and is as follows: Let z = z(x, y)
be of class C? and a solution of (18), where the function F has continuous
first derivatives in an open set of the 8-dimensional space containing the
hypersurface
(19) T={(xy,2(x,9), p(x,¥), ¢(x ), 7(x,5), s(x,5), (%), (x,y)€Q
and satisfies for (x,y,%,9,q,7,5,8)€T the inequalities

(20) |Fx|,...,lFt|___§__(X<OO,
(21) FFy = F2 2 B>0.

Furthermore, let the estimates (13) and (17) hold. Then the second derivatives
of z(x,y) satisfy for (¥,y)€; a Holder condition whose coefficient and
exponent depend only on @,f,71,72, and 4. @

This theotem immediately gives us a partial answer to our main
problem, for on applying the well-known Schauder estimates for linear
equations ® it follows that under the hypotheses (i)—(iii) an inequality of
the type (15) is established once we can prove (14).® Furthermore on
account of a differentiability theorem of E. Hopf [13] the assumption that
z(x,y) be of class C3t* (0<x#<1) is implied by the fact that z(x, )
has continuous first and second derivatives. !9

The methods of Nirenberg and Pogorelow are essentially different in
character. Nirenberg’s results, which are based on the eatlier work of

Morrey [23], can be regarded as theorems on linear elliptic equations with

6. For an English summary of part of Pogorelow’s results see [26].

7. See Nirenberg [24], Theorem L

8. See [29], Theorem 1. Simplified proofs have been given by Miranda [22]
Chapter V, and Douglis-Nirenberg [8].

9. The corresponding result of Pogorelow (see [27], Appendix 2) is somewhat
weaker in the sense that it furnishes estimates for the third order derivatives of the

solutions of (18) depending also on the bounds for the third order derivatives of
Fon T.

10. See Nirenberg [24], Theorem 3.
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bounded coefficients and thus yield information concerning the differentiability
of the solutions of (18). On the other hand Pogorelow makes strong use
of the non-linear character of the equations under consideration and thus
derives even bounds for the second derivatives of the Monge-Ampére
equations (3) and (4). Completing the earlier work of A. D. Alexandrow
on the Weyl embedding problem he considers in [27], Chapter IV, §4,
a convex cap with a one-to-one projection on the plane z=0 and a planar
boundary; i.e., a vector X (u,v)=(x(u,v),y(u,v),z(u,v)) defined for
(,v)€Q such that 2(%,v)F#0, %Yy — % Y470 for (#,v)€Q and z2=0
on the boundary of Q. Applying his specific method of auxiliary functions
to the Darboux equation (4) he derives appropriate estimates for the
quantities | Xus|, ..., | Xoo| in terms of the line element ds® of the surface
X =X (u,v). His result is contained in Theorem 5 of the present paper.
Furthermore, with the aid of a geometrical theorem on convex surfaces,
due to A. D. Alexandrow [2], he proves in [28], §2, the existence of a
finite positive number & =% (a0, a1, @z, Yo, ) such that the second derivatives
of the solution of (3) satisfy the inequality

(22) [7[o0s]s [H S k(oo 0, 0z, 70, d)

for (#,v)€8;. In this connection mention should be made of the well-
known inequalities of Weyl [31] and Miranda [21].(') However, since
they are established for the solutions of the cosresponding differential
equations defined on the closed unit sphere, they do not yield interior
estimates for the associated Monge-Ampere equations (3) and (4) in the
sense desctibed above.

The method adopted in the present paper for estimating the solutions
of the Monge-Ampére equation (1) can be regarded as a further development
of the ideas of H. Lewy and is thus different from the methods of Nirenberg
and Pogorelow. Now since the equation (1) ceases to be analytic, we can
no longer set up the corresponding characteristic equations in the complex
domain, as Lewy has done, but must restrict ourselves to real variables.

Let z=2z(x,y) be a solution of (1) and let the hypothesis (i)—(iii) be

11. For a proof of these inequalities see also Nirenberg [25] §10 and § 16.
An estimate analogous to that of Miranda has been derived by Pogorelow [28] in §5
of this paper. A thorough treatment of the inequalities of Weyl and Miranda and their
corresponding identities has recently been given by Wintner [33].
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satisfied. Then on account of the uniformization theorem we can introduce
real parameters (%,v) in the large, such that the equation
(23) W= F,dv* — Fgdxdy + F,dy* = A(du® + dv*)
holds identically in dx,dy. More precisely, we can determine two real-
valued functions x(u,v) and y(#, ), such that the following conditions
are satisfied:

(i) x=x(u,v) and y=y(%u,v) map the unit disc #* 4+ v? <1
homeomorphically onto the disc
(24) I ={x—%)+(—y)<R}eQ
such that % (0,0)= %, and ¥(0,0) =1y,.

(i) Por #* + <1 the functions % (%,v) and ¥ (%, v) belong to C2.

d(x,) o
Furthermore, we have —(m-?)" # 0 and the representations:
sy A AT Bes st Chbr g4

l/‘li Xu)v — XoVu I//A Xy =— XpYu )

Obviously y=wu-+14v and y*=u—iv are characteristic parameters

]/A xu,\'v e x;yu

with respect to the equation (1), and our method corresponds to that of
solving the Cauchy problem for non-linear hyperbolic equations. ' By some
formal computations one can derive from (25) the following differential
equations :
(26)  Huwt xw="I(%,y,2,0,9) (¥, +2) +h(*,5,2,0,9) (¥u)u + %))
tha(x,y,2,0,9) (L +5) + b2,y 2,0, 9) (%uYo—%u Yu),
(26) YtV =1(,5,2,0,9) 2+ + 1 (2,5,7,7,9) Fudu + %0 3)
i (,9,7.0,0) 2+ 9D+ ha(x,,2, 0, 9) (uyo — xu3),
whete ki, .., by can be expressed in terms of the coefficients of (1) and
their first derivatives (see Lemma 3). Furthermore, on account of (i') and
(ii’) it is easy to establish the following inequality for the Dirichlet integral

of the mapping functions (see Lemma 4):

(27) ﬂ x4+ 2242+ v dudo SN (%, 71, R)< oo,
w v <1
Suppose now that we wish to estimate the second and higher otdet

12. See Courant-Hilbert [6], Chapter V, especially pp. 344—345, also Hadamard
[10], Appendix IIL
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derivatives of the solution at the point (%o, ¥). Then from the represen-
tations (25) it follows that this can be done provided that we succeed in
determining uppet bounds for the derivatives of the functions x(u, v)
and y(#,v) and a positive lower bound for the modulus of the Jacobian
of the mapping (%#,v) > (x,y). Now since the mapping functions are
solutions of the system (26), (26") and satisfy hypothesis (i) together with
the inequality (27) we can apply our earlier results [12] and thus establish
the following propositions :

Theorem 1. Let the hypotheses (i), (ii) and (iii) together
with the inequality (17) be satisfied. Furthermore, let v
be a real number in the interval 0<v<1. Then we can
determine three finite positive numbers

Jo = 190((10 M, 71, 72, d, vy,
= 31(00, a4y, 0,7, ‘fz,d),
o= (o, o0, 02, 71,72,4,V)

such that the following estimates hold:

‘1’(%1 , Vi) — ?’(xo N yo)l o (xx —xo)2 + (yx — ¥ )2]1”

(28)

|, yl) — (%0, y0) | £ o [(%1 — x0)? + (V1 — y0)*]/2
for (%0,%)€Q: and (%,y1)€Qq,
(29) [7+], s ] S & for (x,¥)eQ,
and

[7e (%1, ¥1) — 72(%0, ¥0) | < P (21 — %) + (Vi — 30)?]*?
(30)

[y (%1, yl) — ty (%0, ¥o) | < B [(vr —20)* + (33 — 30)22
for (%0,y) €, (¥1,y)€%.
Theorem 2. Let the hypotheses (i)—(ii) be satisfied.

Furthermore, let the coefficients 4,B,C be independent

of p and g. Then we have for (x,y)€Q; estimates of the form:

31 (7], 0s], |t £ O, a1, y1,d)<co.
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Theorem 3. Let the hypotheses (i)—(iii) be satisfied.
Furthermore, let the coefficients #A,...,h occuring in
the characteristic equations (26), (26") be independent of

z, p and ¢ and satisfy for (x,y)€Q the inequalities

(32) \hl(x,y)],...,{714(~x,y)]§ﬁo,
oy oh,
(33) dx s ...,] 0_’)’ g Bly

where o and Py are finite positive constants. Then we
have for (x,v)€€; the estimates

(34) 7 sl 1S Ao, Bo, By, d),

where A is a finite positive constant.

As mentioned above, the estimates (29) and (30) of Theorem 1 are
also consequences of Nirenberg’s results. Regarding the a priori limitation
of the second derivatives carried out in Theorem 2, it is remarkable that
the bound o: for the moduli of the second derivatives of the coefficients
A, .., E does not enter into the inequality (31), in contrast to the estimates
of Pogorelow [28] and Miranda [21]. This fact enables us to weaken the
differentiability conditions in certain existence theorems (for instance, in
Theorem 4 of Nirenberg [25]). Theorem 3 constitutes a generalization of
one of Lewy's principal resulis (see [17], p. 373) to the case where the
coefficients 4,..,E; k1, ..., 714 are no longer assumed to be analytic. If we
apply Theorem 1 and 3 to the Darboux equation (4) we obtain the following
esimates for a convex surface in terms of its metric ds®:

Theorem 5. Hypotheses:

(i) The vector X(u,v)=(x(w,v), y(u,v), z(u,v)) is of
class C*** (0<%<1)in a domain Q of the uv-plane and satis-
fies the equations
(35) X=FE, X,X,=F, X’=G.

(ii) The functions E(u,v), F(u,v) and G(u,v) are of
class C* and satisfy for (#,v)€Q the inequalities

E],... |G| a,
\Eul, s [Go] S,
(36) | Ewily s |G| S @,

iEuuuuiy ey !vavv1 La,

| Eun| s s | Gono | < @,
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(37) EG—F' 2z o™,
and
(38) K(u,v)za™,

where K(#,v) is the Gauss curvature of the line element
ds? =E du® + 2Fdudv + Gdv?, and o is a fixed positive constant.
(iii) There exists a fixed unit vector Z, such that the
inequality
(39) (Z.X)|zr>0
holds for (#,v)€Q, where X represents the unit normal of
the surface X = X(u,v).
Conclusion: Let v be a real number in the interval
0<v<1l. Then there exist three positive numbers
w="T(,7,d), u=1(r,7,4) and wu=r1@,y,d,v)

such thatthe following estimates hold:

(40) Py ooy | X | S 70 } for (u,v)eQy,
(41) {Xumﬂly ey vauxgrl
and

i quu (Ml > 'Ux) - quu (uO s UO) J é T2 [(“1 - uO)z + (‘U1 - vo)z]v/z
(42) :
| Xowo (40, 01) — Xowo (0, v0) | < 72 [(1 — a)? + (vi — wo)? P2

for (#o,v)€Qy and (#,v,)€Q,. M
In the case where the line element ds? is invériantly defined on the
unit sphere, we can eliminate the condition (39) and thus obtain the
estimates which are required for an analytical treatment of Weyl’s embedding
problem (see Theorem 6). Apart from some occasional modifications the
procedure for establishing the inequalities in quesion corresponds to that
of H. Lewy [18]. Since no detailed presentation of Lewy’s method is avail-
able, it has been felt desirable to give a thorough treatment of the charac-
teristic equations associated with (1) and especially with the Darboux
equation (4). Incidentally we thus re-establish a classical result of Darboux [7].
This is done in sections 2.1 and 3.1. Furthermore, for the sake of comple-
12a. In the corresponding theorem of Pogorelow quoted above Q, is replaced by the

subset of poiats in (3 where {(Z, X){ >4, and it is assumed that (Z, X) vanishes for
(u,v)€Q
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teness, a proof of the fundamental theorem of conformal mapping with
respect to a Riemannian metric is given in §1, which makes the paper
independent of others. The principal results, part of which have already been

published in [11], are contained in Sections 2.2 and 3.2.

§ 1. CONFORMAL MAPPING WITH RESPECT TO A RIEMANNIAN METRIC

1.1. The Beltrami Equations.
Consider a pair of functions % (x,y) and v(x,y), which are of class
C’ in a domain Q of the xy-plane and satisfy the Beltrami system
—bv, + av,
Uy = —F——
Vac—#
— vt by
V ac — b2

Here a(x,v), b(x,%), ¢(x,y) denote three continuous functions in €

(1.1.1)

Uy =

such that ac — b*>0. 1f we furthermore assume that
2
(1.1.2) v+ v; >0

holds, then we have
(113) a (ux Uy — %y Ux) = a — \**‘T::"*viv— >0 ,

and

—
(1.1.4) ¢ = adx? + 2bdxdy + cdy’ = lﬂf—‘ (du? + dv?)

Uy By~ Uy Uy

identically in dx , dy.
From (1.1.3) and (1.1.4) it follows that to each point (%, Yo)€Q
there exists a- neighborhood which is mapped conformally with respect to
the metric ¢ onto a domain of the #v-plane. If #*(x,y) and v*(x,y) is

another pair of functions satisfying the above conditions, then we have

(1.1.5) (du*)? + (dv*)? = A(du® + dv?),
and
. o(u*, v%)
(1.1.59) 'W > 0,
hence
(1.1.6) u* vt = P (u + ),

where ¢ is an ordinary analytic function with non-vanishing derivative.
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For later purposes it is necessary to consider the inverse functions
x(u,v) and ¥y(#,v). In contrast to #(x,y) and v(x,y) they satisfy a
simple non-linear system of differential equations of the type considered
in {12}. In order to derive these equations we first observe that (1.1.1)

can also be written in the form:

bu, — au,
Uy = — :
]/ac — b2
(1.1.7) e o, —bu,
i’ Vac — b2
Now we have
(1.1.8) Wy = 8y, uy= —dx,; v, = —dv., v,=0x,,
' d(u
where 5:0_((;7,%‘ Inserting this into (1.1.1) and (1.1.7) we obtain
v, = bx, + +eyy
Vac— b2
g
(1.1.9) bxu+03u
Xy = — -
V ac — b?
and
[y _ o ety
¢ ac — b?
(1.1.9) Va
‘ ax, + by“
/\vv R i
I/uc —b?

To proceed further we make the additional assumption that the
coefficients @ (x ,v), b(x,y) and c(x,y) are of class C' and the mapping
functions % (% ,v) and y(u,v) belong to C%. Differentiating (1.1.9) and
(1.1.9) with respect to # and v we obtain the following differential

equations :

0 J
(1.1.10) Ax = [% (‘V—a{———b—*z) — -——( Vs )|(xuyv Xy Vu),

S R - e - l(x — X, V)
[0,\’ ( ]/ch—:?ﬁ) ox ( l/;ctgi) Yo o Vu) -

Furthermore, from (1.1.9) we derive the representations:

l

(1.1.10") Ay
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a yi+y?
Vae—0 2o — %0y’
b XuYu + %o Yy
(1.1.11) __l—/_;c;:ﬁ = —;uyv——x;
c X+ 4
Vac—b5  %ulo— %o’

which are in fact equivalent to (1.1.1).

1.2. Existence Proof.

We shall now show that it is possible to map a circular disc, whose
closure is contained in €, conformally with respect to the metric ¢ onto
the unit disc. In the case of an analytic metric ¢ this is an immediate
consequence of the theorem of Cauchy-Kowalewski and the uniformization
theorem. In order to extend this result to the case of a non-analytic
metric ¢, we shall approximate ¢ by a sequence of analytic metrics ¢, and
then apply the results obtained in [12]. ¥ It is thus possible to avoid the
classical theorems of Korn [14] and Lichtenstein [20] on the existence of
isothermal parameters in the small. Another proof, based on a different
method, is due to Ahlfors [1].

Lemma 1. Let the functions a(x,y), b(x,¥) and c(x,y)
be analytic in Q (i.e, regular power series in the vicinity of each
pointin Q) and satisfy the inequality ac—b">0. Then to each
point (%0,%)€Q there exists a pair of functions #=u(x,y)
and v=v(x,y) which are analytic in aneighborhood of
(*o,%) and satisfy the equations (1.1.1). Furthermore,
we have

a (%o, ¥o) (UyVy — Uy V)z=sz, > 0.
y=9,

Proof. Let #(x,y) and v(x,y) be a pair of analytic solutions of
(1.1.1). Then by elimination of % we obtain the following differential
equation for v:

13. In the case of a metric ¢ with bounded coefficients a similar approximation

process has been carried out by Morrey using his results on quasi-conformal mappings
(see [23], Theorem 3).
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(1.2.1) d ( cvy — by, ) _()_(——bvx+avy) — 0

o \Va—w )t 5 (Vaeew
Conversely, if v(x,y) is an analytic solution of (1.2.1) ina neighbot-
hood of (%o, o), such that (v2+ v));=, >0, and if we set

=3,
(x,9) b 5
Uy — Ay cv, — by,
1.2.2 u(x,y)z—f( - = dx + =—dy],
¢ ) = V ac — b? Vac— ¥ 4
*0- %

where the path of integration is the straight segment joining the points
(%0 ,%0) and (%, ), then the function #(x,Y) is uniquely defined in a
neighborbood of (%o, %), and the equations (1.1.1) are satisfied. Further-

more, according to (1.1.3), we have

a(xo , Yo) (#x vy — Uy Vy)y=y > 0.
=1,
If we write (1.2.1) in the form

2b a
(1.2.3) v = — Yw T 7”3'3'

Vac—b 0 ¢ J b
+ -~ — - EEun Ty T ——— x
¢ [ dx(]/ac——bz>+‘)y( Vac — b )]”

+ l/ac — b [ d ( b ) a ( a )]v
¢ 0% \ Vac—¥? 0 \ Vac—0p '
and prescribe the initial conditions

(1.2.4) v(%,)) =0, v(%,y)=1,

then the assertion of the lemma follows from the theorem of Cauchy-

Kowalewski. !9
Lemma 2. Let the functions a(x, %), b(x,¥y) and c(x,%)
be of class C'** (0<%<1)! in a domain @ and satisfy the
inequality ac—5>>0. Furthermore let the disc
D= {(x — %) + (y — 3)* £ R?}
be contained in Q.
Then there exists apair of functions x(#,v) and y(%,v)

with the following properties:

14. See, for instance, Hadamard [10], pp. 14—19.

15. A function is said to be of class Ck+v in Q, (k=0,1,...; 0 v << 1) if it
has continuous derivatives up to the kth order, which satisfy Holder conditions of
exponent v in any compact subset of .
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() x=x(,v) and y=y(u ,v) map the unit disc #*+2°<1
homeomorphically onto the disc D, such that x(0,0)= %

and (0, 0)=y,.
(ii) For #*+9"<1 the functions x(#,v) and y(u,v) are

of class C? and satisfy the differential equations:

d ¢ a b

, d a d b
(1.2.5) Ay = [7)7 (V—ai—b;—) ~ ox T/ﬁ“ﬁ‘)] (%u Yo — %o Vi) -

(iii) For #*+v’<1 we have % ¥, — %, Y470, and

a Yty
V ac — b Xu Yy — %o Vi
(1 2 6) ,,,7,75777,, — .x“ y“ "{;_x‘v_y—vv
< V ac — b° XYy — %o
X+

c
Vac—02 T — Y
Proof. (I) We first prove the assertion under the additional assumption
that the functions «(x, %), b(x,¥) and c(x, y) are analytic in the disc D.
According to Lemma 1 we can determine to each point (**, y*)€D
a positive number € and a pair of functions u*(x,y), v*(x¥,y) with
the following properties :
(i) The functions #* = u*(x, y), v* = v*(x, ¥) map the disc
K= {x=x)+(—y)Y<e
topologically onto a domain in the #*v*-plane.
(ii') (¥ ,y) and v(x,y) are analytic in K and satisfy the Beltrami
system (1.1.1).
d(u* ,v*)
o(x, )
Furthermore, if (x¥*—x)* + (vV*—3,)* = R?, we can choose the

functions # (x , %), v(x, ¥) such that

(iii") For (x, ¥)€ K we have a(x,y) - >0.

(i") the circular arc
0 = K N {(x—%0)* + (¥ —0)* = K
is mapped onto a segment of the real axis v*=0.

Introducing the system of local parameters (#*,v*) the disc D thus
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becomes a simply connected finite Riemann surface S. From the uniformi-
zation principle for finite Riemann surfaces ® it follows that S can be
mapped conformally onto the unit disc #* - ¥2< 1. The mapping functions
w=u(x,y) and v=v(x,y) are analytic for (x,y)€D and satisfy the
conditions (1.1.3) and (1.1.4). Furthermore, we have % (%0, ¥o) = v (X0, Yo) = 0.
Hence they are solutions of the Beltrami system (1.1.1). The statements
(ii) and (iii) of the lemma then follow from (1.1.10), (1.1.10°) and (1.1.11).

(11} We shall now remove the restriction that the functions a(x , ¥),
b(x,y) and ¢(x,y) be analytic in D. According to the Weierstrass
approximation theorem there exist sequences of polynomials

(6, 1, (e, )], lea(®, 9,
such that the relations
ay(x,¥) >a(x,y), ...,cn(x,y)—w(x,y);'

(1.2.7) oa, da de, dc n > oo
T Ty [

hold uniformly in D. Consequently there exist two finite positive constants
¢; and ¢, such that for (¥,y)€D and # =, the inequalities

1 ‘ ‘ | da,, | , dc,
(1.2.8) ja.(x, 9|+ ..+ a6,y + ! ()x—] + ...+ \WN < 6,

and

(1.2.9) an(x, ¥)eun(x,y) —bu(x,y) Z ¢

are satisfied. Let #,(x, ) and v,(x, y) be the mapping functions defined
in (I) and x,(%,v), y.(#,v) be the inverse functions satisfying the
conditions (i), (ii) and (iii), where the functions @, b, ¢ have to be replaced

by a,, b, ,¢c,. From (1.2.6) we conclude

[ 0%, \? dx, \? Iy, \? dy, \?

a, + ¢, (du)—f—(dv)_i—(dj;)-{_(i%)u)
N ot S
o(x, )

du,\* [ 0ug\? [ du,\? . [ dv, \?

(5] (%) () + (5]

= o(u,,v,) ’ '
C0(x,y)

16.  See, for instance, Schiffer-Spencer {30], § 2.10.
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Hence by (1.2.8) and (1.2.9) we have for 7 = #, the estimates :

0x,, 2 dx,, 2 0y” 2 0yn z ¢ a(xn,y") I
(1.2.11) (0u)+(dv)+(du)+(0v)§l/0_2 d(u,v) |’
and
, ()un 2 du” 2 ()‘U” 2 dv,, 2 [ d (un > vn)

On integrating (1.2.11) and (1.2.11") we obtain the inequalities

(1.2.12) ﬂ [(ddxu )2+((z," )2+((3)}:: )2‘*‘(03: )Z]dudv

P+ <1
. 2
° [[I 9 (tn , ¥n) dudy = dxdy:’w‘i2 ,
l/Cz o d(u ’ 'U) V Cy .4 C2
W+t b
and
. dun 2 dv,\? 01),,
(1.2.12") ” dy ) +( 0x) 4+ ]dxdy

1 d(un’vn) 21 T _ (2%
_gl/abm s \d dy == [ awae= o

B2+t <1
According to [12], Theorem 9, (i) and (ii) together with the
inequalities (1.2.8), (1.2.9) and (1.2.12) imply estimates of the following kind :

9x 9y,
(1.2.13) ”E:"I“oy;‘ <R, o)< =,
i |
W+ <pP<1, n2n),
and

(1.2.14) | %o (81, 1) — % (42, 22) | S € (R, 0, V) [(01—12)? + (v:1—02)]*"

iyrw (u1 ) 1)1) — Yo (“2 5 'UZ) | g [ (R » 0, V) [(7’{’1—1'{’2)2 + (‘vl._lvz)z]vl2 H
where 04(R;10,V) < o, ngno, and
w4+ <<, u§+v§§p’< 1, o<<v<1.
Furthermore, from [12], Theorem 7, we conclude that an estimate of the

form

(1.2.15) (dx” )2+ (dx” )2 -+ (dy" )2 + ‘03;” Yg cs(R.p)>0

du dv ou
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holds for #*+v?< <1, and n=m,. Using (1.2.11) we obtain the

inequality

{ 0,3 | S Vares®0) o0 (o,

a(u,v) = 21
From (1.2.7), (1.2.13) and (1.2.14) we infer that there exists a

(1.2.16)

subsequence {#:} of positive integers such that the relations

xnk(“,v)->x(u,v)} X
1.2.17 > o,
(1-2.17) a4, 0) > 3 (1, 1)
0%y, ox
w T ou
(1.2.18) : k> oo,
Y, N ady
dv dv
and
0 c d
et et
k ox — b2 — b?
(1.2.19) l/ac b ]/ac b? B> oo

Ay, ->[i(—?‘f_T)— d( )](ruyv—xvyu
k dy l/ac — ]/ac —b?
hold uniformly in every closed disc #?+v? < ©*<1. Since by (1.2.14) the
functions % (%, v) and ¥ (# , v) are of class C'** (0<Vv<1) for #* + v?< 1,

the limit functions kh—f;oAxnk and khm Ay,, belong to C°**; hence by [12]

Lemma 2, x(%, v) and y(%,v) are of class Crx (0<x%<1) for ul4v?<1
and satisy (1.2.5) and (1.2.5°). Furthermore, from (1.2.16) we conclude
that for #? + v < p’<1 the inequality

(1.2.20) ' gg 2)’; } Ve - Ccsl(R 0

holds, hence the functions *(%,v) and ¥ (x,v) satsfy the equations
(1.2.6). According to a classical result of Lebesgue (see [12], Lemma 16)
statement (i) together with the inequalities (1.2.12) and (1.2.12") implies
that the functions %, (% , v), ¥, (% , v) and their inverses #,(x, ), v,(x,),
(n 2 no) are equicontinuous for #?4v2< 1 and (¥ — x0)? + (¥ — o) < R?,
respectively. Therefore the functions x(#,v) and ¥ (%, v) are continuous

for 4>+ 92 <1 and map the disc #*+v*< 1 in a one-to-one way onto the
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disc (x— %) + (¥ —¥0)* < R? such that ¥(0,0)=x, and y(0,0) = .

This completes the proof of Lemma 2.

§ 2. ELLIPTIC MONGE-AMPERE EQUATIONS

2.1. Characteristic Parameters.

Let z=2z(x,y) be a real-valued function, which is of class C? in a
domain € of the xy-plane and satisfies the partial differential equation
(2.1.1) F(x,y,z,p,9,7,s,)=0

(p=2:, q=2y; ¥ =124y, S =281y, t=2y).
In order that (2.1.1) has a meaning we assume that F is a real-valued
function of class C' in an open set of the 8-dimensional space
(x,y,2,p,9,7,5,1)
containing the hypersurface
T={(x,y, 2(x,9), p(x,), ¢(x,5), r(x,y), s(x,9), t(x,9), (x,y)€Q}.

Now the equation F = 0 is called elliptic, if for

x,y,2,p,q9,r,s,)eT

the inequality

(2.1.2) D=F,Ft——%F§>o

holds. (2.1.2) implies that the characteristic differential form

(2.1.3) ¢ = F,dx* — Fodxdy + F,dy?

is (positive or negative) definite. If we furthermore assume that the functions
z(x,y) and F be sufficiently regular the results of § 1 show that we can
introduce new independent variables u=u(x,y) and v=v(x,y) in the

large such that

(2.1.4) ¢ = A(x, ) (du?+ dv?),
and
(2.1.4") Fyo (v, —uyv,) >0

hold. In accordance with the general theoty of hyperbolic equations in
two variables ) the quantities x,Vv,2,p,¢,7,s,f, considered as functions
of # and v, satisfy certain non-linear elliptic systems of the type considered

in [12], §3. Although not strictly logical, we shall call the parameters (%, )

17. See Courant-Hilbert [6], Chapter V, also Hadamard [10], Appendix 1Il.
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introduced by (2.1.4) and (2.1.4"), characteristic with respect to the equation
F=o.
In the following investigations we shall be concerned with the
Monge-Ampére equation
(2.1.5) F=Ar+2Bs 4+ (Ct4 7 —s*—~E =0
Ad=4x,y,2,0,9, ..., E=E(x,y,2,0,9).

For any solution of (2.1.5) we have
(2.1.6) D= F,F,-——i—Ff:(A-H) (€ +7)— (B—s)

= AC — B* + Ar + 2Bs + Ct + rt — s?

= AC— B2 + E,
Ellipticity of the equation (2.1.5) therefore means that AC—B*4 E>0.
The main object of this section consists in setting up the differential
equations satisfied by the functions % (# , v) and y(u ,v), where (%, v) are
characteristic parameters with respect to the equation (2.1.5). This procedure
will be carried out in the next lemma, which is derived from Lemma 2
by formal computations.

Lemma 3. Let z=2(x,y) belong to C*** (0<x<1) and
satisfy the elliptic Monge-Ampeére equation
(2.1.7) Ar +2Bs + Ct + 7t — s2 = E,
D=AC—B*+ E >0

in a domain Q of the %y-plane. Furthermore, let the
coefficients A =A(x,v,2,p,9), ..., E=E(x,y,2,p,9) be of
class C? in an open set of the 5S-dimensional (x,¥,2,9,9-

space containing the hypersurface

2=l y.2(x,9), p(x,9), 9(x,3), x,)€Q,
and let the circular disc (x—%)2+ (¥ —%0)’<R?* belong to €.
Then there exists a pair of functions x(#,v) and y(u,v)
with the following properties:

(i) x=x(u,v) and y=y(u,v) map the unit disc #* +v2<1
homeomorphically onto the disc (¥— %)+ (y—3)’<R such
that 2(0,0)=2% and ¥(0,0)=%0.

(ii) For #* +v°<1 the functions x(#,v) and ¥(#,v) are of

class C?* and satisfy the differential equations
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(2.1.8)  Ax = Ay (82422 + I (%4 Yut %o 0} + h3 (V2 + ¥2) + s (o Yo— %o V),
(2.1.8) Ay =1, (22422 + By (% Yt %o Y0) + I3 Wity + Fs (% Yo—2%0 V),
where the functions h,,...,lL; are defined by the

expressions

1
hy = By — ) (D:+ D,p — D,C + D,B)

1
hy = —Aq—Bp - —Zf(Dy“}‘qu‘l'DPB—DqA)

(2.1.9)
h3 = Aj,
1
he = 1—}5 (AskByt Aup+Bg—AyC-+(4o+By) B—B,d——Dy)
and
b= C,

1
hy = ‘—'Bq — CP — E—(D5+D5P_DPC -+ DqB)

(21.9) L
- 1 1
h4 = "VE‘ (Cy+Bx+Czq+BzP_BpC+(Bq+ CP) B -_ CqA - '5* Dq) .

(iii) For #?+v"<1 we have %% — %Y. 5% 0 and the
representations
A4t x§+xz B —s XuYu + %o Vo
VD xvi—ny. VD tuye—tuya
C+r yi+y;
VD muyy— v
Proof. The characteristic form associated with the equation (2.1.7) is
(2.1.11) @ =(C+r)ds* — 2(B—s)ydxvdy + (4 +1t)dy*,
and by (2.1.6) we have
(2.1.12) CH+nnA+)—~(B—sy=D>0

for (x,y)€€Q. Since by hypothesis the coefficients of @ are of class C'+*

(2.1.10)

(0<%<1) in Q, the statements (i) and (iii) are immediate consequences of
Lemma 2, (i) and (iii). Furthermore, from (1.2.5) and (1.2.5") we obtain

the differential equations
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0 —
(2.1.13)  Ax = [—007 (%) + Ty (%)](xuyv—xvyu),

and
, Jd (C+ ¢ (B —
(2.1.13) Ay = [’()_T (~l/—l;) ( V5

We shall now transform the right-hand sides of (2.1.13) and (2.1.13")

)] (%u Vo — 20 V) .

into expressions which contain the quantities *,y,2,$,4; %u, ..., ¥» only.

First of all, we have
Jd (A +¢ d [B—3s
. D — = + e y—
(2:1.14) dx(VD) f’y(VD)
- _V‘T (A + Aup+ Ay + Ags+ By + Big+ Bys + Byt

B —
AT (Dt DDy D)~

Dl/ 2DV D
- VI:) [(As+A:p~+By+B.g—A,C+B (4,+By) — By A) + 4, (C+r)

> (Dy+Dug+Dys + D)

- (A4+Bp)(B—S) + B, (A'H)]

# 2/;)“;‘ [(Ds+4 D.p—D,C+D,B) + Dy (C+7) — Dy (B—3)
_ BDV’ [(Dy+Dig+-DyB—D,A) — D, (B—s) + D, (A-+1)]
= VB[Ax+Azp+By+qu—ApC + (4,+B;) B—B, 4]
+ % (B, — 555 (Ds+D:p—DsC+D,B)]
+ EV;S_ [~(4y+Bp) — 5 (Dy+Dug+D,B—D; )]

C +7

Vf N ?1%75[(‘“!) (C+7)— (B—s)?].

Using 2.1.12) we obutain

0 [A+t Jd [(B—s _ ALt C+r
(2.1.15) W(ﬁ_) ——( VD) h1 l/_— +hz V-_ +h3 l/__ +h4,

where the coefficients %, ..., hs are defined by the equations (2.1.9).

In the same way we derive the equations
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¢ [C+ 0 [{B—
(2.1.16) 7}7(7}3{) + W(Vbﬁ)

- ffl: (C+-Cag+-Cps+C -+ B+ Bup+Byr-+B,s)
€4
V~

— (Cp+Bp)(B—s) + € (A+1) + B (C+r)]
C + 7

(Dy+Dug+Dps+Dgt) —

V_

B—

y+C2q+Bx+BzP+(Cp+Bq) B""'CqA - BPC)

(D +D,p+Dyr+-Dys)

n/“ © 27 {(Dy+Dig+ DyB—D,A) — Dy(B~s) + Dy (A+1)]

— 270 (D4 Dp—DyC+DyB) + Dy (C-+r) — Dy (B—s))

DV

= ]—75 [(Cy+Cog+B,+Bp + (Cpt B)) B—CoAd—B4C)]

A4t B—s
rpe C TR """C -
Vo Tty G

c+
+ Vf [B,— 35 (Dy+-Dsg-+D,B—D,y )]

-+

V_ —~sy7].

With the aid of (2.1.12) it follows that

C+r 0 (B—s\ - A4t - B— s
(2117) 0 (V-D) B;(Vg)vh‘ ]/D+h2 ]/D

B,— g5 (De+D.p—DiC+D,B))

C+r
VW

+];4,

where the coefficients i, s hs are given by the formulas (2.1.97). If we

now insers the expressions (2.1.15) and (2.1.17) into the equations (2.1.13)

and (2.1.13") and use (2.1.10) we arrive at the differential equations (2.1.8)

and {2.1.8"). Lemma 3 is thus proved.

2.2. Interior Estimates.

The essential feature of the preceding lemma lies in the fact that

the second order derivatives of the solutions of (2.1.7) are given by the

simple formulas (2.1.10), whereas they do not enter into the differential

equations (2.1.8) and (2.1.8"). This enables us to establish a priori estimates



ELLIPTIC MONGE-AMPERE EQUATIONS 23

for the second and higher order derivatives of the solutions of certain
Monge-Ampére equations in terms of bounds for the first order derivatives.
The proofs of these statements will depend on the results obtained in [12], § 3.
In order to apply these we shall first derive from Lemma 3 a simple
inequality satisfied by the functions % (% ,v) and y(%,v):

Lemma 4. Let the function z(x¥,y) satisfy the hypo-

theses of Lemma 3. Furthermore, let the inequalities

Al < a, ., [E|Sa; )

(2.2.1) DeAC—B' 1+ E > a I(x,y,z,i’,Q)eE, 0< < oo,

and

(2.2.2) P,y (g, )] Sy<oes, (x,9)€Q,

be satisfied. Then we have the estimare

(2.2.3) !T (L +x? + 52 -{—yf}) dudy < 20 3 R? + 45 /2 vR,
Pt <1

where x(u,v) and y(#,v) are defined by Lemma 3.

Proof. Let 0 be a real number in the interval 0<0<1. Then from
(1), Lemma 3, it follows that there exists a real number R, satisfying the
inequality 0< Ro<R such that the image domain K* of the circular disc

K = {(x — x0)* + (y—30)* < R}

under the mapping (x,%) > (u,v) covers the disc #’+v*< p*. For
abbreviation let K’ denote the circle K" = {(x—%0)* 4+ (y—0)? = R?|. Now
on account of (2.1.10), we have
A+CHr+t 2+ 22+y24 57
7 l/_D - xuyv-"‘ Xy Yu 7
for #?+ v?<<1. Hence with the aid of (2.2.1) and (2.2.2) we obtain

the estimate
@23) [ et deds < [ Gitatyityduas
142+1/,2§‘02 K*
- [f 1A+ CHr+i
V' D

_ w/Z! ﬂ(A-{»C)dx ay + § (—gdx + pdy).
‘% K 1
< a2 (2m aR? + 41 yRy) < 2n0¥?R? 4+ 4na'l? yR .

(2.2.4) # 0

_ dx dy :<= al/l

]] (A+CAr-t)dudy {
‘K
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If we now let o tend to 1, we arrive at the desired inequality (2.2.3).

Theorem 1.

Hypotheses:

(i) The function z=2(%,y) is of class C3** (0<%<1) in a
domain Q of the xy-plane and satisfies the Monge-Ampétre
equation
(2.2.6) Ar +2Bs + Ct + 7t — s* = E,
where the coefficients A=A(x,y,2,0,9), .. E=E(x,y,2z,9,9)
areof class C* in an open set of the 5-dimensional space

containing the hypersurface

2:{(x’y’z(x7y), p(x’y) q(x’y))’ (x’y)eQ}‘
(ii) The coefficients A4,..,E satisfy for (¥,¥,2,p,9)€2

the inequalities

(2.2.7) A, L E] L o,

(2.2.8) D=AC—B +E2a,
(2.2.9) | Azl ooy | Eq| €
(2.2.10) | Ausl, ooy [Eqq] £ 02,

where 0o,y and 0; are finite positive constants.

(iii) For the function 2(¥,¥) we have the estimates

(2.2.11) PN, 9,9 <
and
(2212) 7@ S, [sEN[ S, [tEY)] ST,

where (#,9)€Q and 71,72 are finite positive constants.
Conclusion:
Let Q, denote the set of all points of Q whose
distance from the boundary exceeds a positive number 4.
Furthermore, let v be a real number in the interval

0<v<1. Then the function z(¥,Y) satisfies the inequalities

(2.2.13)
‘r(xl ,yl)—y(xo,yo)lélgo(ao,a1, rl > rz,d,\') [(xl*x0)2+(yl'—'y0)2]v/z

E(x, ) — (%o, ¥o) | < So(do, aa, 71, 72,4, V) [(20— %0)? + (v — yo)* ]
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for (x,v)eQ, (%,%)€Q,

(2.2.14) e ly s |8y S B0, 1,02, 71, 72, 4)

for (x,y)€Q;, and

(2.2.15)

|7 (x1,5) =72 (%0, y0) | £ F2(ao, 01,02, 71, 72,4, V) [(51—%0) + (11— 30)°]""*

[ty (21, 91) —ty (%0, Yo} | £ th (oo, 01,02, 71, 72,4, V) [(51—%0)" + (¥1—30)2]"?
for (%1,5)€Q, (%,%)€Q:, where %, and % are finite
positive constants.

Proof: Let (%o, ¥0) be an arbitraty point in Q;. According to Lemma 3
there exists a homeomorphism % = x(%,v), ¥ = y(u,v) of the disc
>+ 92 < 1 onto the disc (¥—%0)> + (¥ —¥0)* < d* such that x(0,0)=1x,,
¥(0,0)==9,, and the equations (2.1.8), (2.1.8"), (2.1.10) are satisfied.
Now let

(216)  X@.v) = HODTH iy gy o JD=
and
(2.2.17) H(X,Y)=adh, .., H(X,Y) = dh,

where the quantities &, ..., hy are defined by the formulas (2.1.9) and
(2.1.9"). Then the functions X(#,v) and Y (#,v) are of class C? for
#*+v?<1 and map the disc #*+v?< 1 homeomorphically onto the disc
X?24+Y?2<1 such that X(0,0)=Y (0,0)= 0 and the differential equations
(2.218) AX=H,(X,Y)(X?+X)+ H(X,Y)(XuYu+X,7Y))
+Hy (X, Y) (Y24 Y2 + H (X, V) (%Y~ X, Y.),
(2218) AY = H (X, Y)(X2+X) + H(X, V) (X Yu+ X, Y2)
+ Hy (X, Y) (V24 YY) + Hy (X, V) (Xu Yo X, V)
hold. Furthermore, the coefficients H;(X,Y), ..., H, (X,Y) are of class
CM for X2 4 Y?<1 and satisfy inequalities of the form
(2.2.19) |Hi(X,Y)| £ dpo(ao, a1, 74),

|H (X, V)| < dpolao, a1, 11),
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and
oH
(2.2.20) ; 0X1 | < d* (oo, 01,02, 71, 72)
oH
t0Y4||gdzl‘-l((lo,(ll,az,rl,rz) for X2+Y2<1,

where 1o and |, are finite positive constants. As to the mapping functions

X (u,v) and Y (#,v), we derive from Lemma 4 the estimate

(2.2.21) [f (XCHAN2HY2LY?) dudv < 2702 + 4l 1 d— |
”2_{'_'1}'z< 1
Furthermore, we have _(iiuX,_vl)/) =
Now applying Theorem 9 and Lemma 1 of [12], we obtain inequalities
of the form:
(2.2.22) Xl Y S a0, 00 71,4, 0) < oo
(u* + 02 < p’< 1),

(2.2.23)

Xy, v1) — X (o, v0) | < ps (o, o, 71,4, 0,v) [(01—10)? + (v, —v0)?]*?

Y (u,v) = Yo (o,v0) | £ s (o, @, 1,4, 0,v) [(01—ue)? + (01— )2
(M +v3<0’<1, w+3<0’<1, 0<v<1, Wz o)
(2.2.24) | Xul|, oo, [ Yoo | S a(ao, 01,00, 71, 72,4, 0)< 0,
(#? + 97 < 07< 1)
and
(2.2.25)
X (w1, 1) — X0, ) < as(@o, 1,02, 11, 72,4, 0,7) [(#01=100)? + (:1—20)?]"7,

’}fv‘u(ul ) 7)1) — va(uo s vO)i é MS (a(),al ) aZy Tl s TZ,d,pav) [(’Ml-—uo)z + (vl—v0)2]1'l2’
(W +0]< <1, w49 <0<, 0<v<1, us<oo).
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Furthermore, from [12], Theorem 7, we derive an estimate of the following
kind:
(2.2.26) X2+ X2+ Y+ Y2 ps(ao, a0, 71,4,0)>0,
(* + v <0< 1),
and by (2.2.4) we have

Xi-}—Xj-{—Y;‘-{—Yz |[A+C+r+t|
(2.2.27) XY, XL %)
_ LA (Sl ]+t

Combining (2.2.26) and (2.2.27) we obtain

< 208 (a0 + 72) < oo .

. e (cto, @1, 71,4, 0)
2. XuY, — X, Y. = )
(2.2.28) | Xu | 2 207 (00 + 12) >0

where #2402 <0< 1. Now let (x1,%) be a point in Q such that
(% — %6)* + (1 — ¥0)* < +d?, and put

(2.2.29) X, = ¥?‘T_.___ﬁ,’ Y, = _&;_yo
If (#;,v1) is the image point of (X1, Y1) under the mapping (X ,Y) > (u,v),

then we have

(Xltyl)
du on
(2.2.30) Uy, = f ((TX_ dX + -‘d*ij— dY) N
(0,0)
(Xy,Yy)
, dv duv
(2.2.30) Uy = k{‘ (—d'k—"dX‘}' —deY),
10, 0)

where the path of integration is the straight segment joining the points
(0,0) and (X,Y). From (2.2.30) and (2.2.30°) we conclude

(2 2 31) (’LLZ + .UZ)I/Z < (Xz + Y2)1/2 Ma (X,2‘+X:+Y,24'+Y3)1l2
2. = X -
1 i = 1 1 XY s ]Xqu-—Xqu;

Now since X =X (#,v), Y=Y (»,v) is 2 homeomorphism of the
disc #?4v? <1 onto the disc X24-Y? < 1, such that X(0,0)=Y (0,0)=0,
and (2.2.21) holds, it follows from [12], Lemma 16, that we can determine
a positive number 0= p(%, 71,4)<1 such that the image domain of the
disc X2+ Y?< < under the mapping (X,Y) > (u,v) is contained in the
disc #®+9v2<p". Hence by combining (2.2.22), (2.2.28), (2.2.29) and
(2.2.31) we obtain the estimates
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(2.2.32) W+ )" < p(ao, 11,d4)<1,
and
(2.2.32) (8 +0)"2 < pr (0o, O, 71, 72, 4) [(1—20)2 + (11 —50)?] /2,
where W denotes a finite positive constant.
The proof of the lemma is completed by using the equations (2.1.10)

(see Lemma 3). First of all we get
Y24 Y2

(2.233) r = —C + VD . ma,
— XuY,+ XY
=B —|D.2¥ v Cvv
s B l b XuY —Xv Yu,
. X!+ X?
1= —AFVD gy xy
Differentiating these equations with respect to ¥ and ¥ we obtain
(2.2.34) 7, = —(Co+ Cop + Cpr + Cps)
D,+D D D Yt X
V“‘ tDp D+ D) - oy XY
V Dyo Y4 Y2 Y, P Yz4-Yy? Y.
+T['a; (X,,Y,,—X,,Y;) XY= XV, o (X7 XY,,) X.V,— XV,

and similar representations for the functions 7y, ..., %. From the equations
(2.2.33) and (2.2.34) the inequalities (2.2.13)-=(2.2.15) are derived suc-
cessively by making use of the estimates (2.2.22)—(2.2.25), (2.2.28),
(2.2.32) and (2.2.32°). The theorem is thus proved.

Our next object consists in exhibiting certain classes of Monge-Ampére
equations for which interior estimates of the second order derivatives can
be obtained.. Two cases of such equations will be considered. Both of them
allow applications to problems of differential geometry in the large.

Theorem 2.

Hypotheses:

() The function z=2z(x,y) is of class C¥** (0<x<1) in a
domain Q of the xy-plane and satisfies the Monge-Ampeére
equation
(2.2.35) A@,y,2)r+2B(x,y,2)s + C(x,y,2)t + (rt—s?)

=E@,5,2,$,9),
where the coefficients A,B,C,E are of class C® in an
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open set of the 5-dimensional space containing the
hypersurface
Z=|(,y,2(x,9), p(x,9). 9(*,), (x,y)€Q}.
(ii) The coefficients A4, .., E satisfy for (¥,y,2,p,9)€X

the inequalities

(2.2.36) |4, .., | E| £ o,
(2.2.37) D=AC — B* 4+ E 2 a7,
and

(2.2.38) Al B £ g,

where 0o and o, are finite positive constants.

(iii) For the solution of (2.2.35) we have the estimates

(2.2.39) FICRIINNICRI I or
where (%,9)€Q, and 71 is a finite positive constant.

Conclusion:

Let ©; denote the set of all points of €, whose dis-
tance from the boundary exceeds a positive number 4.
Then the second derivatives of the function 2z(x,%)
satisfy for (*,)€Q; the inequalities
(2.2.40) 7], 1s], [t <O, a1, 71,4),
where ©O(ao, a,71,d) is a finite positive constant.

Proof: Since the coefficients 4, B, C of the equation (2.2.35) do not
depend on p and ¢, the associated functions h;,.‘.,iu, defined by the
formulas (2.1.9) and (2.1.9") fulfill the relations
(2.2.41) Bi=hy, hy=1h; and hs=h =o0:

Retaining the notations introduced in the proof of the preceding theotem
it follows that the mapping (#,v)> (X,Y) satisfies all the hypotheses
of [12], Theotem 10 with

(2.2.42) M = duo (00, 1, 11),
and
(2.2.43) N = 2nad2 4 4nallt yid—".

Hence we conclude that the inequality
(2-244) (] Xu Yy _Xqu ’)u:y:O z li (M,N, 0)>0
holds, where A, (M ,N, o) is defined in [12], Theorem 10.
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Applying now (2.2.22) and (2.2.44) we derive from (2.2.33) the

following estimates :

r (%o, Yo) | 2p2 (g, 41, 71,4,0)°
_— 2 0y Y1, /1,¢%,
(2245)  [s(xo, 50| { < %+ Val+a - (M, N, 0)
»t(x(),yo)[

If we now set

2}12('10,(11,‘/1,(1,0)2
}‘Q(M’N:O) ’

and remember that (%o,Yo) is an arbitrary point in Q;, we arrive at the

(2.2.46)  Ofug, 1, 71,8) = a0 + V2 +a -

conclusion of the theorem.

Theorem 3.0®
Hypotheses:

(i) The function 2z(x,%) is of class C** (0<x<1) in a
domain Q of the #y-plane and satisfiesthe Monge-Ampére

equation
(2.2.47) Ar +2Bs + Ct + 1t — s = E |
where the coefficients A=A, v,2,9,9, ...E=EX,y,2,p,9

belong to C* in an open set of the 5-dimensional space
containing the hypersurface
Y= {(x,y,2(x,5), p(x,5), 9(x,3), (x,y)€Q.
(i) The coefficients A, ..., E satisfy for (x,y,2,p,9)€X

the inequalities

(2.2.48) [Aj, ..., |1E| £ ao,
and
(2.2.49) D=AC —B*+ E = a7,

where ¢ is a finite positive constant.
(iii) The functions %(#,v) and ¥(%,v) defined in Lemma 3

satisfy the partial differential equations
(2.2.50) Ax = by (2,5) (24 22 + B (%,9) (BuYu + %0 V0)

a(x,y)

+ A (x, ) (¥, +52) 4 ha(x,5) IR

18. See Theorem 4 of [11], where an analogous result is proved.
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(2.2.50) Ay = b (x,9) (32 + 32) + ha (%, 9) (u Yu + %o Vo)

i . J
+ ha(x, 9) (2 +92) + ha(x, ) ag%

Here the coefficients h[(x,y),...,iu(x,y) belong to C' for

(%,9)€Q, and we have the inequalities:

(2.2.51) (i@, 9) ], o, [Ba(x, )] < Bo,
(2.2 52) j PPl B = P,

whete o and f; are fixed positive constants.
(iv) For the solution 2z of (2.2.47) we have the ine-
qualities
(2.2.53) FICR) I {CO) Ty O
where (¥,7)€Q and 71 denotes a finite positive number.
Conclusion:
For (x,y)€Q; the estimates
(2.2.54) 7 IshL [ S Adao, Bo, Bry 71, d)
hold, where A is a finite positive constant.
Proof: We again use the same notations as in the proof of Theorem 1.
Let the functions X (#,v), Y(u,v); H(X,Y), .., H4(X,Y) be defined
by the equations (2.2.16) and (2.2.17), respectively, where now A, ..., hs
are the coefficients occutring in the equations (2.2.50) and (2.2.50),
Then from the inequalities (2.2.21), (2.2.51) and (2.2.52) it follows
that the mapping (#,9) > (X ,Y) satisfies all the hypotheses of [12],

Theorem 11 with

(2.2.55) Mo=dBy, M,=d*f,,
and
(2.2.56) N = 2ma3? 4+ 4ol yrd—".

Hence we have the estimate

(2.2.57) ( XuYo— X, Yo Dumo=o = 4s (Mo, M1, N, 0) >0,

where As (Mo, M,, N,0) is defined in [12], Theorem 11. Furthermore, from
[12], Theorem 9, we conclude that estimates of the form

(2.2.58) 1 X4 (0,0)], ..., | Y,(0,0)| < us (00, B0, 71,4)

hold, where us(to,fPo,71,4) is a finite positive number. If we now
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combine the inequalities (2.2.57) and (2.2.58) with the representations

(2.2.33) we obtain the estimates

|7 (o, 35 2445 (20, Bo, 71, 4
N 8 0, M0, f1,
(2.2.59) Is(xo ,yo)l S 0o+ Vag t % - As(Mo, My, N,0)
| 2 (%0, Y0) |

Putting

_—_ - d?
(2.2.60) A(ao,ﬁo,ﬁl,rl’d).—: ao-{-]/a(z)-}-ao . 2”’8((10’60:71: )

A’5(1‘40aM171\730) ’

and remembering that (%o,%0) is an arbitrary point of Q, we arrive at the

conclusion of our theorem.

As an application of the results hitherto obtained, we shall treat the
case where the coefficients of the equation (2.1.5) are independent of z, p,
and ¢. It then becomes possible to estimate |p| and lg in terms of bounds
for |2 and state:

Theorem 4.9 Hypotheses:

(i) The function z=2(x,y) belongs to C** (0<x<1) for
(%,7)€Q and satisfies the Monge-Ampére equation
(2.2.61) A@x,y)r+2Bx,y)s+ C(x,y)t+rt—s?=E(x,y),
where the coefficients A, ..,E are of class C? for (x,y)€Q.

(ii) For (x,y)€Q we have the inequalities

(2.2.62) (A, ..., |El < o,
(2.2.63) D=AC —-B*+E =z o,
(2.2.64) A, L Ey o,
(2.2.65) | Auly ooy [Eyy| £ 02,

where ag,0,0, are finite positive constants,
(iii) The function z(x,y) satisfies for (¥,y) € Q the

inequality

(2.2.66) 2@, y) | S0 < oo,
Conclusion: We have the estimates
(2.2.67) [Pl 191 £ m(o,70,4) for (x ,y)€Q,

(2.2.68)  Irl,ls|,lt] S m(o, a1, 70,d) for (¥,y)€Q,,®
19. This is an improvement of Theorem 4' of [11]. In the case where the
coefficients A(x,y), .., E(x,y) ate analytic, an analogous result was previously
established by H. Lewy (see [17], Theorem 2').
20. This contains the inequality (22) of Pogorelow [28].
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(2.2.69)
|7 (%1, 3 =7 (%0, 30) | £ 73(0, 01, 70,4, V) [(%1 — %) + (y1 — yoF]"?

|2 (1, 91) — £ (%0, 50) | £ M3 (@0, 01, 70,8, V) (%1 — %0)? + (¥1 — 3o)2]*
for (%0,%0)€Q, (%1,51)€Q, and 0<v<1,

(2.270) 7], oty (oo, 0y, 02, 70,d) for (x,y)€Q,

and

(2.2.71)
|72 (%1, 1) — 72 (%0, ¥0) | < ;s (0o, @2, 70, 4, v) [(31 — %0)2 + (y1 — 30)?]"?

|ty (xl,%)“'ty (xo.yo)!_S_ns(ao,ax,az,)’o,d,v) [(xl—xo)2+(y1 "}’0)2]1”2
for (x,y)€%, (*,7)€Q, and 0<v<1, where 7, ..,7%s ate

finite positive constants.

Proof: We shall first establish (2.2.67). First of all, from (2.1.6)
and (2.2.63) we conclude that the functions A +¢ and C+7 have the
same sign in Q. Performing the substitutions 4 » —4, B> —B, C > —C,

E>E, 2> —z we may suppose that the inequalities

(2.2.72) A+it>0, CH+r>0

hold throughout Q, without changing either hypotheses or conclusion of
the theorem. Now let (%o, ¥o) be an arbitrary point of €; and put

(2.2.73) Z(x,y)=2(x,9) +% [(x —x0)* + (¥ — y0)*].

On account of (2.2.62) and (2.2.72) we have Z,, 20 and Z,,=>0.
Consequently the functions Z, and Z, are monotonic in % and ¥, respectively.

There exist real numbers %°,%", ¥, y" satisfying the inequalities

(2.2.74) 2 —d < xS, %<2 <x+d,
and
(2.2.74") Yo—d <Y Sy, Y=y <y +d,

such that the equations
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Z (%0, y0) — Z (%0 —d , ¥0)

(2.2.75) 3 = Z;(x", yo),
A —
(2.2.75) (x°+‘i'y‘2 Z (%o, y0) _ Z,(x",%0).
(2.2.76) Z (%, y0) _dZ(xO’yo—d) = Z:(%.,Y),
and
VA _—
(2.2.76)) (xo’y°+‘2 2.9 _ 7 (37

hold. From the above facts we conclude

(2.2.77)  |2(%0, ¥0)| = | Z. (%0, ¥0) | £ Max {| Z.(x", ¥0)!, | Zo (%", ¥0) |}
gi»mxwummgi@+ﬂﬂ,
|x—xo|<d 2
and

(2.2.78) 2, (%0, 90) | =|Zy (%0, y0) | £ Max{ Zy(%0, )|, | Zy(%0,¥") ]}

éi-Muﬁszngﬁ«ﬂ+ﬂwy
a ly-yol<d a 2
Putting

2 a
(2.2.79) m = = (70‘[‘70‘12)

we arrive at the estimates (2.2.67).
Now consider the function z(x,y) in the disc
Q=lx—x) + (—y)< ;).
In virtue of (2.2.67) we have for (x,y)GQ the inequalities

(2.2.80) P9 14E D[S mlto. 10, 54) = 11
Now applying Theorem 2 we obtain
|7 (%0, ¥0) |
(2.2.81) (s (%, ¥ | < O(a0,ai,71,54).
it(xo ’ yO) J
If we set
(2.2.82) N2 (o, o1, 70, 4) = O(aw, ay, 71, , d)

and remember that (xo.%) is an arbitrary point in Q;, the inequalities
(2.2.68) are established.
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Let us now put
(2.2.83) 72 = n2(cto, @, Jo, 5 d)
and identify Q with Q. Then all the hypotheses of Theorem 1 are satisfied.

Hence from (2.2.13) we conclude that for
2

d
(%1 — %) + ()1 —¥0)® £ —
16
and 0<v<1 the inequalities
(2.2.84)

|7 (%1, y1) — 7 (%0, ¥o) |
d
g ﬂo (ao , Oy, Tl s 72 s _4— N V) [(xl ——xo)2 + (yl_yo)Z]—yIZ

[t (%1, ¥1) — ¢ (%0, Y0) |
hold. If we set
(2.2.85)

22 (%, @1, o, 4)
d v
4

Finally, by a repetition of the preceding arguments, we successively

derive the inequalities (2.2.70) and (2.2.71) from (2.2.14) and (2.2.15).

Theorem 4 is thus proved.

d
N3 (oo, @y, 79, d,v) = Max {'90(%’“1’71’7’2,‘4""),

we arrive at the estimates (2.2.69).

The following example, which is essentially due to H. Lewy [17],
shows that an a priori limitation of the second order derivatives of the
solutions of the Monge-Ampere equation (2.1.5) in terms of bounds for
the first order derivatives is in general impossible. Let f(x) be the real
solution of the ordinary differential equation
(2.2.86) fy+efx)=2%x, f(0)=0,
where € is a positive parameter. Obviously the function f (¥) thus defined
is analytic in the vicinity of each point of the real axis. Furthermore, for

|x/<1 we have

(2.2.87) )<,
and
(2.2.87) fx) = !

3//(®) +¢ "
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From this it follows that the function
2

(2.2.88) 2(x,y) = f(x) + yT

is a solution of the Monge-Ampére equation (2.1.5) with

(2.2.89) A=—1+3p*+¢e, B=C=0, E=1.

For $<1, ¢<1, and 0<e<1 we obviously have estimates of the form
(2.2.90) (A, ..., Eq S a,

and

(2.2.90%) D=AC—B*+E > a1,

where o is a fixed positive number. Furthermore, from (2.2.87) we conclude

that the inequalities
(2.2.91) [p(x. 9], le(x.»I<1
hold for x4+ ¥*<1. On the other hand, by (2.2.87") we have

(2.2.92) 7(0,0) = Tl

which tends to +oc for £ > 0.

§3. THE WEYL EMBEDDING PROBLEM.
3.1. Some Classical Results in Differential Geometry.
As an application of the results obtained in the preceding section we
shall treat the following non-linear system of differential equations:
(3.1.1) x4+ yl+22=E(u,v),
Xu Xy + Yu Yo + Zuly = F(M > ‘U),
xz+yz+z::G(u,v),
This system, which can also be written in the more compact form
(3.1.2) dx* + dy* + dz* = Edu® + 2Fdudv + Gdv*,
occurs in the problem of realizing a given line element
(3.1.3) ds’ = Edu® + 2Fdudv + Gdv?

by a surface x=x(%,v), y=y(#,v), 2=2z(u,v) in the three dimensional
space. Unless otherwise indicated we shall make the following assumptions

concerning the functions x,y,2;E,F . G.
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() x,v.2; E,F,G are real and of class C? in a domain Q of the
uv-plane,

(ii) The discriminant EG —F? of the differential form ds® is positive.

(iii) The Gauss curvature K(u,v) of the line element ds’ is every-
where positive.

Our main object consists in deriving certain a priori bounds for the
derivatives of the coordinate functions % (#,v), ¥ (#,v) and z(u,v), which
are relevant in the discussion of the Weyl embedding problem. This
procedure will be carried out in the next section. As a preliminary step we
shall first derive an equation of Monge-Ampére type satisfied by #(%,v),
y (#,v) and z(#,v) and then study its characteristic equations (see Lemma 5
and 6). All the results proved in this section are due to Darboux [7].

To proceed further we shall make use of some of the standard
notations and results in differential geometry. We shall denote vectors in
three-space by capital letters:

X=(xy,2, Y=(,5,2),
and put
(3.1.4) (X,Y)=xx 4+ 9y 4+ 22 (inner product),
(3.15) XY = (2 —y%z, 2" —2%, xy' —xy) (cross product).
Furthermore, we set | X |= (X, X)'?, and occasionally we shall write XY
and X? in place of (X ,Y) and (X, X). With these abbreviations the
unit normal X of the surface X = X (u,v) = (x(u,v), y(u,v), z(n,v))
is given by the formula

= Xu X X,

3.1.6 X = =0
(.1.6) VEG_F"

and the system (3.1.1) takes the form

(3.1.7) E=X! F=X,X, G=X].

Furthermore, the second fundamental quantities L, M , N of the

surface X = X (»,v) are defined by the equations

(318) L::Y—qu, M=7Xuv, N=—XXUU-
With these notations the Gauss and Weingarten equations take the form
(3.1.9) = {" 2 X+ LX,

' X,
= (17} X r”X+MY
Xm=‘.213X + % X, + NX,
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and

(3.1.10)
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—Xu=L' X, + X,

—X,=L1X, + L} X,,

1.1

where the quantities {1

{, .., L2 are given by the expressions

(3.1.11) = GE.+ FE,—2FF,
h 2EC—Fy
tyy = 2EEu—EE —FEu
tei 2(EG—F) >
) =GB = FGu
YT 2 EG—FY)
vy = Z(EG_FZ) ,
22 _ 26F,—GG,—FG,
try = 2(EG—F2) ,
2] = EG, —2FF, + FG,
T T EG=Fy
and
GL —-FM EM —FL
1 oL— b , _ EM—FL
(3.1.12) L= L MoIL
Ll = M L? — EAN_—_FJW_
* T TEG—F' * 7T TEG—F

The Gauss theorema egregium and the
integrability conditions for the combined

be written as follows:

Codazzi equations, which are the
system (3.1.9) and (3.1.10), can

LN — M?
(3.3.13) EG_FT K

‘ E, F, Fv'—'%Gu E, F, %Ev‘l
- JiFr ¢ G, —|F, G, iGJ

(EG_F2)2 1 ] ’ 1 2 ) . . \ 2 ] ’

leu,Fu—TEv, F“v—*{Ew—'TGuu ‘7E"’ TG“’ 0 l
(3.1.14) Ly — My={""|L + (P2} —{""PDM — '} N

M,— Nu= {32 L+ (W =DM — {1 N,

In deriving the Codazzi equations (3.1.14) we have to assume that X (#,9)

is of class C? for (u,v)eQ.
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With the aid of these results it is easy to establish the following
two lemmas :
Lemma 5.¢Y Let Z be a fixed unit vector such that
(Z, X)#0. Then the function p(®,v)=(Z,X) satisfies the
Monge-Ampére equation
(.115) T = (ow—{"j0u—{1'100) (000 — {7 0w — {27} 00)
— (0w — 4%} ou — {127} 00)?
—~ K (u,v)[EG—F"~(Gol—2Fp. 0.+ Eo)] = 0.
We have
(3.1.16) TpTow — 515, = K(,0)(EG—F)(Z, X).
Proof: From the Gauss equations (3.1.9) we conclude
(3.1.17) O — {4 0w — L' 0o = L(Z, X)
O — {12 0w~ "2} 00 = M (Z, X)
= o — Woe = Nz, X).
Hence with the aid of (3.1.13) we obtain '
(3.1.18) (ows— {14} 0w = {12} 90) (oo — {17} 0w — {72} )
—(ow— {1} ou— 1" 0.)" = K(u,v)(EG—F*)(Z, X)*.

Ovv

Now we have
(3.1.19)  (EG—F)(Z,X) =(Z, X, X X,)?
.z, ZX., ZX, | 1 o
= X.Z, X!, XX,

XZ, XX, X} |
= EG — Fz—(sz—szu‘ov—l—Epz).

o, F G

(3.1.18) together with (3.1.19) imply (3.1.15) and (3.1.16), which ptoves
the lemma.

Lemma 6. Let X(#,v) and the coefficients E(u,v),
F(u,v), G(u,v) belong to C** (0<x<1) and C* for (#,v)€Q,
respectively. Furthermore, let the independent variables
(#,v) be considered as functions of the parameters (u,f)
which are characteristic with respect to the Monge-

Ampére equation (3.1.15),, in the manner described in

21. See Darboux [7], §703, also Bianchi [4], p. 115.
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Lemma 3.2 Then the functions #=u(a,) and v=v(a,f)

satisfy the following system of partial differential

equations: @

Ky
(3.1.20) Au + ({’11} + ZXK ) (u}, + ug)

k]

2K

+ (2 i+ )(uavu+u3v3) + {47 (w20l =o,

u

2K

(3.1.20") Av+{121}(u;+u;)+<2{122} n

+({

Proof: From (3.1.17) we conclude that the characteristic form as-

) (e 0+ 4595

22
2

Kv 2 2y
} +‘27)(1)a+vﬁ)~— 0.

sociated with the Darboux equation (3.1.15) is
¢ =(Z,X)(Ldw + 2M dudv + Ndv?).

Hence on account of Lemma 2 and 3 it is evident that the functions

(3.1.21)

u(a,B) and v(a,) satisfy the equations

(3.1.22) Au==¢ J N. J M (e vp — Ug V)
.1, U = el S ——— R el Bt — v ,
[du (VLN—M’) o VLN—MZ).I “TPT TR Te
0 L 0 M
3.1.22") Av ’-:81— —_—— ) — —_:::] Ug Vg — Ug Vg) ,
( ) Jv (VLN—MZ) 0 (VLN—MZ) ( aVp [ (X)
and
el 2’ 4 o2
(3.1.23) = @ B
VIN --M?  #avg—ugv,
M HaVetupvp
l/LN—M2 U Vg — UB Vg
‘N 2 2
= = u"‘+u5 where e=-+1.
VIN —=M?  #avVp—Ugvq

The idea of the proof consists in eliminating the unknown quantities

L,M,N from the differential equations (3.1.22), (3.1.22°) by making use

22. On account of the differentiability hypotheses concerning X; E,F,G the
conditions of Lemma 3 are all satisfied.

23. See Darboux (7], § 725, also Bianchi {4}, § 112. The Darboux equations are
obtained from (3.1.20) and (3.1.20') by the formal substitutions :

y=a+iB, r=a—if.
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of the Gauss theorema egregium, the Codazzi equations, and the representations

(3.1.23). Let us put for abbreviation
ad N d M

3.1.24 P%,U =8[— e -———“t‘:—l,
( ) Plw) ou (VLN—MZ) v (]/LN——MZ)
and

rd L d M
3.1.24’ w,v) = |- [ ————___*_*]_
( ) o ) v (I/LN—MZ) oun (VLN—MZ)
Then on account of the Gauss formula (3.1.13) we have
Nuy—M, N (dlogK_l_dlog(EG F?)

(3.1.25) P (u,v) =

VIN —M* 2/ IN—M?\ Ou )
M (0logK dlog(EG F’)
S
2V IN—M?\ Ov
and
—M, L dlog K  dlog(EG— F?)
3.1.25) Q(u,v) = —— e +
¢ e, n) = VLN - M 2]/LN—M’( dv dv )
M (0logK dlog (EG— FZ))
b +
ZVLN—MZ o du
Using the Codazzi equations (3.1.14) we obtain
L
3.1.26) eP(u,v)=—1{*"
G120 P @D == ol
1 dlog(EG—F?) 1 dlogK M
12y 22 L 1 —
+('1’ ‘2}+2 dv 2 o )]/LN—MZ
+ (1 _Vldlog(EG-Fz)__l_ dlog K N
2 2 oun 2 ou VLZV—MZ
L K M
B 1 N BT BV E B S R Wi . S
e VIN = M? ( i ZK)VLN—M2
K, N
—
("} - zK)VLN—MZ’
and
_fan 1 0log(EG__WD___1_ dlog K L
(3 1. 26) &'Q (M ‘l)) ({ } 2 Jdv 2 dv VL—N—__MZ
1 dlog(EG —F?%) 1 dlogK M
f1.2) __ |1) —
+(”} e T T ou )l/mtyz

N

——5121} T
VLN - M?
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— , K, L 12 Ky M‘_va__ 1% NA_A
#_({222} +2K)I/—L—TV————?+(2{2 b+ ZK)ITL_TV_—-_MMZ 12 e

L M N
If we now express the functions , and —————
xpress the VIN—M? VIN —*  VIN-M

in terms of #%g,..,vs by means of the relations (3.1.23) and then
substitute the resulting expressions for P and @ into the equations (3.1.22)

and (3.1.22"), we arrive at the conclusion of the lemma.

3.2. A Priori Estiinates.

The preceding two lemmas show that the Darboux equation (3.1.15)
associated with the given line element ds’ belongs to the type of Monge-
Ampére equations considered in Theorem 3. This fact enables us to establish
a priori estimates for the second and higher order derivatives of the vector
X(u,v) in terms of the coefficients of the metric ds’. We shall first treat
the case where the surface S: X = X (%#,v) has a boundary (Theorem 5)
and then pass to the more special situation where S is closed (Theorem 6).
In the latter case, which occurs in the discussion of Weyl’s problem, the
line element is defined in terms of local parameters on the unit sphere.

Theorem 5.

Hypotheses:

(i) The vector X(u,v)=(x(u,v), y(u,v), z(#,v)) is of class

CH* (0<x<1) in a domain Q of the wv-plane and satisfies

the equations

(3.2.1) X!=E, XuX,=F, X!=6G.
(ii) The functions E(u,v), F(u,v) and G(u,v) are of
class C* and satisfy for (#,0)€Q the inequalities
(3.2.2) E|,|F],|G|La,
|Eul,y ., |Gy L @,
{Eusiy ooy |Guo| € a,

‘E“““I, cees Iva[ La,
‘ Euuuu | y eeey 1 GUUUU,' é (I.,
(3.2.3) EG — F?> o—1,

and

(3.2.4) K@m,v) = a !,
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where K(#,v) is the Gauss curvature of the line element
ds’ = Edu® + 2Fdudv + Gdv’, and o is a fixed positive constant.

(iii) There exists a fixed unit vector Z, such that the
inequality
(3.2.5) Z,X)lzy>0
holds for (u,v)eQ.

Conclusion:

Let Q¢ be the set of all points of Q whose distance
from the boundary of Q exceeds §>0, and vareal number
in the interval O<v<1. Then we have the estimates
(3.2.6) | Xuuls ooy [ Xuo| S t0(,7,8)< oo for (u,v)eQ,

(32.7) | Xuw|s ooy [ X | (e, 7.8)< 0 for (u,v)€Q,
and
(3.2.8)
| X (1, 01) — X (0, v0) | < 12, 7,8, V) [(00s — 140)? 4 (v — )]

| Xowo (U1, 01) — Xowo (0, 00) | < T2, 7,8, v) [(s — o) + (vi — vo)?]"?
for (uo,v9)€8 and (u,,71)€Q, where 2(a,7,e,v) is a fixed
positive number.
Proof : The Darboux equation (3.1.15) satisfied by the function
om,v)=(Z, X(u,v)) can be written in the form
(3.2.9) a0uu + 2b0us + €0 + (Ouw 00 — p2) = ¢,
where the coefficients @,b,¢, ¢ are given by the expressions

(3.2.10) a=—{"ou — %Y oo,
b= {""ou+ {2 oo,
=~ {""ow — {12 00,
e = ({1} ou + {127} po)?
= {1 ow A+ {2 00) (P17 ou + {727 00)
+K(u ,v)[EG —F* —(Gp}—2Fpu p, + EQ})] .

o

Furthermore, on account of (3.1.16) we have
(3.2.11) d=ac—b +e=K@u,v)(EG~F)(Z, 6 X).

Now since for (#,v)€€Q the estimates



44 ERHARD HEINZ

(3.2.12) Lou| S X! S all
and
(3.2.12") Lo | S 1X | S af?

hold, we conclude from the hypotheses of the theorem that the coefficients

a,b,c,e considered as functions of the variables #,v, 0,04, 0, satisfy for
(,v,0,00,000€2 = {(u,v,0(m,v), ou(u,v), 0,(u,v)), (u,v)e}

s M

the inequalities

(3.2.13) lal, ..,]el L ap(n)< oo,
(3.2.14) aul, L ep | S oa(a)< oo,
(3.2.15) |@uu s oy |€pyp, | S @2(@)< oo,
and

(3.2.16) d=ac—b +e>=a7>0.

From these facts and Lemma 6 it follows that the Darboux equation
(3.2.9) satisfies all the conditions of Theorem 3 with
(3.2.17) ap = ag(a) + a? =7,
o = Po()< 0,
Pr = Pi(0)< oo,
o=l
Hence from (2.2.54) we deduce estimates of the form
(3.2.18) [ Owe| o 10w | | oo | S To(a, 7, 8)< o0,
where (#,v) is an arbitrary point in Q¢ and 7To(a, y,¢) is a fixed positive
number. Now applying Theorem 1 we obtain the inequalities
(3.2.19) [ Ousse |y oy 1 00w | ST 0, 7, 8)< oo
for (u,v)€:, and
(3.2.20)
| Owe (4, 01) — Pu (o, v0) | £ T2 (0, 7, &, V) [(#1 — %0)* + (01 — 20)°]"”?

i,omm (ut s vl) - ‘Ouvv (”’0 > vO) ' g le (a ’ 7 €, V) [(u'l - MO)Z + ("U] - 1,0)2]1]/2

where (#o,v)€Q:, (#y,1)€Q:, 0<v<1, and t2(a,7,8,v) is a fixed
constant.
The proof of the theorem is now completed by taking account of the
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systems of equations:

ZXuwu = DOuu

(3.2.21) XuXu = 5 E,
X, Xuu = Fu—5E,,
ZXuww = Ow

(3.2.21") X, Xy = + E,
X, Xuo = 5 Gu,

and
ZXw = pw

(3.2.217) X X, = Fv__z‘_ Gu
X, Xy = 5 G,

and the fact that the determinant [(Z, Xu X X,)| is Z a='"*y>0.

We shall now apply the preceding theorem in order to establish the
a priori estimates required for an analytical treatment of the Weyl embedding
problem. @ To fix the ideas we consider two overlapping regions i and
2: on the unjt sphere X which are bounded by paraliels of latitude, such
that Z; contains the north pole and 2: contains the south pole, and
introduce a parameter system in each. The parameter system (%:,v:) for %
is obtained by stereographic projection of & from the south pole onto the
plane tangent to X at the north pole, and similarly the parameter system
(#2,v2) is constructed by stereographic projection of X from the north
pole onto the plane tangent to = at the south pole. Evidently the parameter
domains €; and €., which correspond to X, and Z,, are circular discs.
Every point of £ lying in the intersection of Z; and X, is represented by
two points {#i,?;) and (u2,v2) lying in i and Q., respectively. Furcher-
more, (#;,v;) and (#2,v2) are connected by an analytic transformation
having a non-vanishing jacobian. Consider now a vector-valued function
X=(x,y,2) on X. In each of the parameter domains Q;, X becomes an
ordinary function X;(#:,v;), (£=1, 2), and we have
(3.2.22) Xi (0, 0) = Xy (4, 02)
for any pairs (#1,v) and (#,,v,) representing the same point on =. X is
said to be of class C¥¥ (k=0,1,..; 0<v<1) on Z, if the functions

24. See Nirenberg [25], in particular § 10 and § 11.
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Xi(u;,v) (=1, 2) belong to C¥¥ in Q;. In the same way a quadratic
differential form (3.2.23):

Ei(ui,v))du? + 2F, (u,v,) dusdvy + Gy (1, v1) de?, (11,v1) €y,
E; (u2,v2) dul + 2F, (41, 0,) A1, dvy + Go(us, v2) dvl, (u2,v2) eQ,,

is said to be of class C¥V, if all the coefficients E;(u1,v1), ..., G2 (4, 73)

ds? =

belong to C*** in the respective parameter domains. In order that ds® be
invariantly defined on 2 we have to assume that the equation
(3.2.24) E, (uy,vy)du? 4+ 2F (uy,v1) duy dvy + Gy (%, ,0,) dv?

= E,(uz,v;) du} + 2F, (42, 2) dity dvy + Go2 (4, ,v2) dv?
holds for any pairs (u:,v;) and (%2,v,) representing the same point on X,
Furthermotre, we shall require that the differential form ds® be positive
definite throughout X. Our object consists in deriving a priori estimates
for the solutions of the equation
(3.2.25) @X)? = ds?,
where ds® is a given line element of positive Gauss curvature K, defined
on 2. Geometrically speaking, the equation (3.2.25) expresses the fact that
the line element ds® is realized by a closed convex surface in the three-
dimensional space (Weyl's embedding problem).

It is convenient to state the next theorem in the language of
functional analysis, as Nirenberg [25] has done. For this purpose we shall
introduce certain norms for functions X and quadratic differential forms ds®
defined on . Let us put
(3.2.26)  I1Xlsw= Llub [Xil+ Lub (X +..

(M1 . 'Ul)e Ql (uz R 7)2) € Qz
d* 0% X, |
+  lub. —5"% +..+ lLub. ljﬂ—i
(0,,0)€Q, | 9% | (ur,02)€Q, | 72
4

0% X, *X, ., |,
‘—0E(unvl)— du’l‘ (“1,7’1)’

l.u. b. i '
i (w0, 'll)ll) e, [(wy—u"1)* + (01 —v 1)2]1;/2

(Mll,'()'1)€ Ql
(uy,v1) # (W', v7y)

+ ...

1 dk XZ dk }{2 , i
e = T )
+ Lub v} vk |
(u2 ' vz) G Q, [(uz—“,2)2 + (7’2—1)'2)2]““/2
(M,Z’vIZ) € Qz

(42 ,02) # (w2, v'2)
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for XeC* (k=0,1,..; 0<v<1), and similarly

(3.2.26") ||ds* ||k = Lub. |Eil+..+ Lub |G|+ ..
(Ml s 7)1) 691 (Hz s '1)2) EQZ
O*E, | 0% G, |
+  Lub. l—MT‘;+...+ Lub. =ik
(#1,v1) € | ro (#2,v)€Q, | 2 |
| *E, *E, ,, .
T () = (0
+ lLub ‘ ! L

(u1, v) € [(#y—u'1)? + (v, —v" )]
(u’l ,'l)’,) (S5 Q1
(w1, v1) # (1, 0")

0
! Gz(z’ 7)) — 0" (uz,vz)‘
Lu.b. |
+ . ;}12) <0, [(uz—u )+ (v,—v'2)*)"2
(%'2 » 7"2) € Qz
(n2, v2) # (w5 ,0"))

for ds?€C**? (k=0,1; 0 <v<1). Then the following theorem holds:
Theorem 6. Let X be of class C3** (0<%<1) on 2 and

satisfy the equation

(3.2.27) @X) = ds?,

where ds? is a given line element of class C* on 2. Further-

more, let the following inequalities be satisfied:

(3.2.28) ||ds?{s £ a,
(3.2.29) EiGi—F! =z a™, (¢=1,2),
(3.2.30) Kz o™,

where K is the Gauss curvature of ds’ and a is a finite
positive constant. Then there exists a fixed vector Y
such that we have for 0<v<1 an estimate of the form:
(3.2.31) IX—YlwSw(@,v)< oo,

In order to prove the above theorem, use is made of the following
lemma on closed convex sutfaces, which is an immediate consequence of
the results established in Blaschke [5], §25 and §26.

Lemma 7. Let S be aclosed regular surface of class
C’. Furthermore, let the Gauss curvature K at each point

X of S satisfy the inequality
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(3.2.32) 0<Pi <K < Pa<<om.
Then there exists a fixed vector Y such that ateachpoint

XeS theestimates

(3.2.33) | X—Y]|<o(B)< oo,
and
(3.2.34) [(X—Y, X)| =0"(B:, B2)>0

hold, where X is the unitnormal on S.

Proof of Theorem 6.

From (3.2.28) and (3.2.29) it follows that the Gauss curvature K
at each point of the surface S realizing ds? satisfies an inequality of the form :
(3.2.35) K <B(e)<ece.

If we combine this witb (3.2.30) and then apply Lemma 7, we infer the
existence of a fixed vector Y such that at each point X €S the estimates
(3.2.36) [X—Y]|< ot (0)< oo,

and

(3.2.37) [(X—Y,X)| =0 (a)>0

hold with

(3.2.38) ot (a) = o(a™"),

and

(3.2.39) o= (a) = o*(«~", f(0)).

Now let Q be one of the parameter domains £; ({=1, 2), and write
u,v; X(u,v); E(u,v), F(u,v), G(»,v) in place of #;,v;; X;(ui,v5);
Ei(u;,v), Fi(u;,v;) and G;(u;,v;). Furthermore, let Q be any closed
subdomain of Q whose distance from the boundary of € exceeds a positive
number €. Then from (3.2.26) and the construction of the parameter systems
(#;,v;) it is evident that our theorem is proved once we can establish

estimates of the following kind:

(3.2.40) |qu|, e s |va| S oy (a,8)< oo,
(3.2.41) | X |, oo | Xow ] L 01 (0, €)< oo for (v,v)eQ,
and

(3.2.42) | Xuw (4, 0) = X (0", 0) | £ @2, &, v) [(u—2) + (v—0 )P

| Xow (%, ) — Xow (0", ') | < 02(av, €, V) [(0—2')? + (v—0")]""?
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for (u,v)eﬁ, (u',v’)eg, and 0<v<1, where w;(a,e,v)< oo,

In order to prove these inequalities, we first consider the disc
P = {(#—wu)? + (v—1vo)? < 8%, where (4, 0o) is an arbitrary point
in Q, and

(3.2.43) = d(a, £) = Min (s o (“)).

241

Obviously T is contained in Q and by (3.2.28) we have

(3.2.44) [ X (w,v) — X (#y,v0)| < 306~ (a) for (#,v)€F.
Combining this with (3.2.37) we obtain

(3.2.45) [(X (uo,v0) — Y, )?(u,v))[ = %o"‘ (1) for (n,v)er.

If we now put

X(uo,vo)—
.2.46 Z =
& ) [ X (u0,0)— Y]’

then from (3.2.45) and (3.2.36) we conclude that for (# , v)ET the

inequality

(3.2.47) z, 0z IW

= 20% (@)
holds. Hence Theorem 5 becores applicable and yields the. inequalities:
(3.2.48) iXu..(uo,vu)i,...-,1Xw<uo,vo>agro( o ‘(“)) (a,s));

(@
(@)’

>0

(3.2.49) Iquu(uo,vow,...,‘Xm(u(,,vo)‘grl( ; 3, e)),

and

(3.2.50) ’ quu (ul ’ 1'1) - quu (“‘0 ) "0)' § T2 ( 20 +(((;)) 71_6 (d' t‘) )

[ — 1) + (02 — 92,

o~ (a) 1
26% (@)’ 2

[(wy — )2+ ( 41— Ue)z]v/2

Xow (41, 1) — va’o,Uo)l<tz(a ~d(a, e),)

for
(g — 2g)? + (v, —~ Vo) < l d(a, )2,

If we set



50 ERHARD HEINZ

(3.2.51) mk(a,e)=rk(a,—:;%, 6((1,5)), (k=0,1),
and
(3.2.52)

2t1(a,%%,8(a,s))l
(3@

we arrive at the inequalities (3.2.40) — (3.2.42), which proves our theorem.

(o, e, v)=Max rz(a,%,%ﬁ(a,s),v),

Concluding Remarks.

The proof of Theorem 6 can be somewhat simplified by using the
auxiliaty function p (u,v):%(xz—i-y’ + 2%) instead of the coordinates, as
Lewy [18] and Nirenberg [25] have done. Since the characteristic form of
the corresponding Monge-Ampére equation 28 is proportional to the second
fundamental form of the surface X = X (#,v), Lemma 6, hence Theorem 3,
can be applied and yield a priori estimates of the type (3.2.31). Further-
more, it follows from the differentiability theorem of Nirenberg-Hopf,
mentioned in the introduction, that in hypothesis (i) of Theorems 1—6
the assumption

z2(x,y)€C3* (or X(»,v)eC?%)
can be replaced by the weaker requirement that the respective solutions
belong to C? in their domain of existence.
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(Added in proof)

In his recent note “On the regularity of convex surfaces with a regular
metric in spaces of constant curvature” (in Russian), Doklady Akad. Nauk,
SSSR (1958), vol. 122, No. 2, pp. 186187, A. V. Pogorelow extends
some of his previous results to the case where the embedding space of
the line element has constant curvature. Applying Lemma 3 it can be shown
that the Monge-Ampere equation, on which his considerations are based,

satisfies the hypotheses of Theorem 3 of the present paper.



