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ABSTRACT
We study the space of Iwahori subalgebras containing a given element of a
semisimple Lie algebra over C((¢)). We also define and study a map from
nilpotent orbits in a semisimple Lie algebra over C to conjugacy classes in the

Weyl group.
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§0. Introduction

Let G be a semisimple, simply connected algebraic group over C with Lie
algebra g. We denote by # the variety of Borel subalgebras of g. For any
nilpotent element N, € g, we consider the closed subvariety 48y, of % consisting
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of all Borel subalgebras containing N,. The geometry of the varieties 8y, has
been investigated by Springer, Steinberg, Spaltenstein and others; it has
interesting applications to representation theory.

In this paper we shall begin the study of the affine analogue of this situation.
Let F =C((¢)) be the field of formal power series, A = C[[¢]] the ring of
integers of F, G = G(F), gr = a& F, # the set of Iwahori subalgebras of g. It
is known that 48 is an infinite dimensional algebraic variety over C; more
precisely, it is an increasing union of ordinary projective algebraic varieties
over C.

For any N €g, we consider the subset 8, of # consisting of all Iwahori
subalgebras containing N. We shall restrict ourselves to the case where N is
topologically nilpotent in the sense that ad(N)" — 0 in End g for r — o0. (We
then say that N is a nil-element.) This condition implies in particular that 9 is
non-empty. We show that %, is infinite dimensional unless N is regular
semisimple (Lemma 2.5). If N is regular semisimple, then %y is a locally finite
union of ordinary irreducible projective algebraic varieties over C, all of the
same dimension; moreover, there is a free abelian group Ay of finite rank
which acts on 4, without fixed points and Ay \ 4y is an algebraic variety
(83, §4). We say that N is elliptic if its centralizer in G is an anisotropic torus;
when N is elliptic we have Ay = {e}, so that 48\ is an algebraic variety (it has
finitely many irreducible components).

Let X be the set of all G-conjugates of g, = g®4 C g. This is just like 2 an
increasing union of projective algebraic varieties over C and there is a
canonical G-invariant map p : 8 — X. We denote by Xy the set of subalgebras
in X which contain N. Then p maps %4, onto Xy. In §4 we show that if N is a
regular semisimple nil-element of g then there exists some irreducible compo-
nent of 98, which has the same dimension (over C) as its image under p. It
follows that dim &, = dim Xy. This implies that N is G-conjugate to an
element of g, whose image in g,/gg, is regular nilpotent.

Let b, be the unique Cartan subalgebra of g containing N. The G-conjugacy
classes of Cartan subalgebras of g are parameterized by conjugacy classes in
the Weyl group (see §1) hence to by corresponds an element g(/N) in the Weyl
group of b, well defined up to conjugacy. It is known that the field F =
U =1 C((¢"™)) is an algebraic closure of F. Let v: F — @ U oo be the valuation
defined by v(a,e™™ + higher powers of ¢) = m/n, for a,€C* and v(0) = c0. We
conjecture that for any regular semisimple nil element N € g, we have

2dim By = detg(ad N: gr/by — ar/hy)) — rank(a(N) — 1 : hy — by).
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The analysis in §5 reduces the verification of this conjecture to the case where
N is elliptic.,

Now let N, be a nilpotent element in g. If YEg,, then N=N,+¢eY is a
nil-element of g and we show that for “almost all” choices of Y, N is a regular
semisimple nil-element of gr, the conjugacy class of ¢(N) in the Weyl group is
independent of Y, and that dim 8y =dim 8y, (In fact %, is naturally
imbedded in 28 as a union of irreducible components of #y.) This gives a
map N,— o(N) from the set of nilpotent orbits in g to the set of conjugacy
classes in the Weyl group. We show that this map takes “distinguished” ([BC])
nilpotent orbits to Weyl group elements without eigenvalue 1. We also
compute explicitly this map in a number of cases and show that it restricts to a
map defined in {CE] on a certain subset of the set of nilpotent orbits. Our map
is bijective in type A and seems to be injective (but not bijective) for other
types.

We hope that the study of 8y will be useful in the character theory of
semisimple groups over p-adic fields; in §10 we state some results in this
direction.

We wish to thank N. Spaltenstein for some very useful comments.

§1. Conjugacy classes of Cartan subalgebras and conjugacy classes in the
Weyl group

Let F = C((¢)) be the field of formal power series, and F its algebraic closure.
It is well known that F is the union of the subfields F, = F(¢'"). In particular,
(1) the Galois group I' = Gal(F/F) is (non-canonically) isomorphic to the
profinite completion Z of Z, and (2) dim F =1, namely F is a field of
cohomological dimension 1. Therefore (see [S1], p. 170), for any torus T over F
we have HY(I', T(F)) =0. Let N be an algebraic F-group such that its con-
nected component is a torus 7. Denote by W the quotient group.

LEMMA L. The map H\(T, N(F)) = H\T, W) is an isomorphism.
Proor. Since dim F = 1, it follows from Corollary to Proposition 1.41 in

[S2] that p s surjective. Fix 8 € H'(T, W), and denote by 7% a form of T over F
which corresponds to the action of I' on T'(F) given by

yit—=BB(y)~"  fory€ETL, tET(F).
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It follows from [S2], 1.5.5, that p~!(B) is a quotient of H'(T', T#(F)). As noted
above, the last group is trivial. Hence Lemma 1 is proved.

LEMMA 2. Let G be a reductive algebraic group over C, g the Lie algebra of
G, G = G(F), gr = a&: F. Then the set of conjugacy classes of Cartan subalge-
bras in g is in one-to-one correspondence with the set of conjugacy classes in the
Weyl group W of g.

PrROOF. Let C C gbe a(split) Cartan subalgebra, and N the normalizer of C
in G. It is well known that the set of conjugacy classes of maximal tori in G is in
one-to-one correspondence with the set H'(I, N(F)). By Lemma 1, the
map p: H'(T, N(F))— H'(T, W) is an isomorphism. Now choose an isomor-
phism ¢ : ' > Z. Since I acts trivially on W, H'(I', W) is isomorphic to the
quotient of Hom(Z, W) under conjugation by W. Since Hom(Z, W) = W this
quotient is the set of conjugacy classes of W. It is well known [(Sp 3]) that for
any win W and integer n prime to the order of W, the element w" is conjugate
to w in W. Therefore the isomorphism between HYI', W) and the set of
conjugacy classes of W does not depend on a choice of an isomorphism
¢:T > Z.Lemma 2 is proved.

DEerINITION. A Cartan subalgebra which corresponds to a conjugacy class
y in W by the correspondence of the proof of Lemma 2 is said to be of
type y.

For any conjugacy class y in W, we denote by g} the subset of regular
semisimple elements N in g, such that the centralizer Zy of N in gy is a Cartan
subalgebra of type ».

Let T be a torus over F. Put X,(T)=Homg(G,,T) and X (T)=
Homg(G,,, T), where G,, is the multiplicative group. It is clear that (1) X (T) is
isomorphic to Z¢, where d = dim, T; (2) T acts on X (T), and X(T) is the
subgroup of invariant elements. We say that T is elliptic if X (T)= (e). We
denote by Ay (or A) the subgroup consisting of all x(¢) in 7 where x ranges
over X (7).

§2. G/K as a union of algebraic varieties

Let F be the field C((¢)), 4 the ring C[[e]] of integers in F, and v: F*—~Z
the valuation with (¢)=1. Let G be a reductive C-group, g its Lie
algebra, G =G(F), K=G(A4), ¢r =& F, 9, =0& A4 and p:g,—g the
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natural projection. We say that an element N&€g, is nil if (ad N)"'—0
for r = o0.

LEMMA 1. (a) The element N € i is nil ifand only if there exists g € G such
that Ad(g)N €q, and p(Ad(g)N) is nilpotent.
(b) If N is nil and Ad(g)N C g, for some g €, then p(Ad(g)N) is nilpotent.

ProoF. Suppose that Ad(g)N €g, and p(Ad(g)N) is nilpotent. To show
that N is nil it suffices to show that N, 4 Ad(g)Nis nil. Since p(N,) is nilpotent
there exists a positive integer r such that [ad p(N,)]” =0. Then we have
(ad N,)"g, C ¢q,. It is clear now that (ad N,)" — 0 for r — w0.

Suppose that N is nil. Then there exists / €EZ* such that (ad N)'g, C eg,.
Let L = U,I o (@d N)'L,. Then L is a lattice in g and (ad N)'L C ¢L. There-
fore the series for

pN & 2 (ad NY'

r=0 r!

is convergent, and Ad(exp N)L = L. By [BT] there exists g in G such that
g(exp N)g~'€K. Then Ad(g)N €g, and it is clear that p(Ad(g)N) is nilpotent.
Lemma 1 is proved.

The quotient space X = G/K has a natural structure of an infinite-dimensio-
nal algebraic variety. More precisely, X is an increasing union of finite-
dimensional projective varieties X, C X; C X, C --- C X, C - - -, where the
variety X, can be described as follows (see [L]). As a set, X, is the set of x in G/K
such that Ad x(g,) C ¢ "g,. Let Gr, be the Grassmanian of the subspaces in
£~ "g,/e"g, whose dimension is equal to the dimension of g,/g"g,. Consider the
map ¢ : X, — Gr, given by

P(x) = Ad(x)g,/e"a, C e "g,/e"g,.

It is clear that ¢ is an imbedding. It is shown in [L] that the image ¢(X,) of X, is
an algebraic subvariety in Gr,. It is easy to see that the induced algebraic
structures on X, are compatible with the imbeddings X, — X, for n <m.

The group G acts naturally on X. Analogously, any N in gr defines a vector
field on X and we denote by Xy C X the set of zeroes of this vector field. It is
clear that Xy is the set of x in G/K with N € Ad(x)g,.

Let p: K — G(C) be the natural projection, U C G(C) a maximal unipotent
subgroup with Lie algebra u C g, R = p~(U)C K, t = p~'(u) C g,. The quo-
tient space X’ = G/R has the structure of an infinite-dimensional algebraic
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G-variety over C such that the natural map n: X’— X is an algebraic mor-
phism with fibers isomorphic to G(CYU. (Namely, the mapn: X} o
n~Y(X,)— X, is algebraic for all n.) Let F be a finite extension of F, I'=
Gal(F/F)(=2/dZ,d = [F: F]), G = G(F), and R C K be the subgroups of G
analogous to R, K. As before, we define infinite-dimensional algebraic varie-
ties X, X’ over C such that X = G/K, X’ = G/R. The Galois group I" acts
naturally on X, X".

LEMMA 2. We have (X'(C))' = X*(C).

ProoF. Fix % in (G/R)F. Let g be a representative in G. Consider the
map c: I"— Ugiven by c(y) = g6 ~". It is clear that c is a one-cocycle on I" with
values in R. Since R is a pro-unipotent group, c is a coboundary. Lemma 2 is
proved.

REMARK. (X(O))f # X(C).

Now G acts on X’, and any N in g, defines a vector field on X’. We denote by
X/ the subvariety of zeroes of this vector field. It is clear that as a set, X is the
set of x’ in G/R with N in Ad(x")r.

LEMMA 3. For any nil element N in gz, the mapm: Xy— Xy is sur-
Jective.

ProoF. This follows from Lemma 1.

We assume from now on (except in Lemma 6) that N is a regular semisimple
nil element in gr. Let Ty be the centralizer of N in G. It is clear that Ty is a
maximal torus in G and Ty acts naturally on Xy. Let Ay be the subgroup of T
defined at the end of §1.

ProposITION 1. There exists a positive integer n such that
XN = AN(XN N Xn) and X}Iv = AN(XIIV N X,’,).

ProoF. First we consider the case when N is a split element. In this case Ty
is a split torus and we can assume that it is defined over C. We denote this torus
by 7. It is clear that T(F)= AT(4) and T(4) C K. Fix a Borel subgroup
B =TUin G. Define Vy = {u €U(F) | Ad(u)N €g,} and Yy = VaK/K C Xy.
It is clear that T(4) normalizes V' and stabilizes Yy.

Let Ad:G—Autg, be the adjoint representation of G and p=
Adims—rankg(Ad) jts exterior power, dp the corresponding representation of g.
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Define the functions A:g,—F and d:g,—~Z U —o0 by A(N)=trdp(N),
O(N) = (A(N)). It is clear that A(N) # 0 if and only if Nis a regular semisimple
element. For any 6 EZ* put ¢ = {NEg, | (V) = 6}.

LEMMA 4. For any 6 €EZ* there exists n(6)EZ™ such that Yy C X, for all
NeEg.

Proor. Let «,...,a, be the set of positive roots of (G, B). We can
consider «; as functions «;: C— F on the split Cartan subalgebra C C g
corresponding to T C G. Define &; = voa;: C —Z. It is clear that &(N)= 0
and X/_, a,(N)=24. Therefore &;(N) < 26 forall i, 1 =i = M.Itis clear then
that Yy C X, for n = 6™. Lemma 4 is proved.

LEMMA 5. For any x in Xy there exists A in Ay such that Ax lies in Yy.

ProoF. Fix x in Xy. Since G is equal to T(F)U(F)K, we can choose a
representative of x in G of the form tu, t € T(F), u € U(F). Since x € Xy we
have Ad(tu)N €g,. But Ad(tu)N = Ad(u)N. Therefore u € V. Choose A EAy
such that At € T(4). Then we have Ax € Yy. Lemma 5 is proved.

By Lemma 4, there exists n €Z* such that Yy C X,. Therefore Xy =
Ay(Xy N X,). Tt follows from Lemma 3 that X} = Ay(Xy N X2).

Now let N be any regular semisimple element. Let F = F(¢'4) be an
extension over which the torus T splits. Put G = G(F). Let X be defined as
above. Then Ay =(A,)" and X} =(X;)". Let A=Ay, A=A,. We have
Xy =AY, Taken = 6(N)”.Then ¥y C X,.LetS = {A€A|1¥y N Py # &}
It is clear that the set S is finite. Let yEI be a generator and § =
{1€A|171-1€S). Since A” = A there exists a finite set D C A such that
S =AD. Let A€EZ* be such that DX, C X,. Now it is easy to show that
X4 € A(X4 N X3). Indeed, fix x €EXy. We can find /€A and y € ¥y C X such
that x = Ay. But then (1y)” = 1y. That is, 1~'A?p” = y. Therefore 1~'1’€S
and 41 €S. Therefore we can find AEA such that A='A€D. Then A~ 'x =
(A~ EX, N X = X;. Therefore Xy = A(Xy N X;). It is clear that X} =
A(X} N X},). Proposition 1 is proved.

PROPOSITION 1”. For any § EZ* there exists n(6)EZ* such that for any
N €g% we have

v =An(X} N X7

Proor. The proof is the same as that of Proposition 1.



136 D. KAZHDAN AND G. LUSZTIG Isr. J. Math.
COROLLARY. Let N be a regular semisimple nil element in g,. Then
dim X N << 0.
The converse statement is also true. Indeed, we have:

LEMMA 6. Let NE€q, be a nil element which is not regular semisimple.
Then dim Xy = oo.

ProoOF. Since N is not a regular semisimple element, the centralizer Zy of
N in G contains a nontrivial one-parameter unipotent subgroup V(t) C G,
t EF. Let x,€ X(C) be the point corresponding to K/K € G/K. Then x, € Xy.
Therefore V(t)x,€E XyforalltEF.Let Y, = {C(t)x, I t€e¢~"4}. Itisclear that
Y, is an algebraic subvariety in X and dim Y, — oo for n — . Lemma 6 is
proved.

For any [ EZ* we denote by K; C K the congruence subgroup mod ¢&'.

PROPOSITION 2. For any 6 EZ there exists [, n €Z* such that for any
NE€Eg, and any N'EN + ¢'g,, we have

X4 = Ap (X4 0 X2).
Proor. We start with a series of simple lemmas.

LEMMA 7. Forany n€Z" there exists (n)EZ™* such that K, acts trivially
onX,.

ProoOF. Clear.

LEMMA 8. Forany 6EZ* there exists [(8)EZ™ such that for any N €g}
and any N'E(N + €'9g,) N Zy, we have Xy = X}; here Zy is the centralizer of
Nin gg.

PROOF. As follows from the proof of Lemma 4 there exists [(J)EZ*
such that for any split NEg and N'EW +¢&¥)N Zy, we have
Vy = Vy. Then Yy =Yy. Define Yy =n"'(Yy)N Xy and Yy =7n"'(Yy) N
X} We have

Xy = AN(Y;V’) = AN( YN) = Xy.

If N is not split we proceed as in the proof of Proposition 1. We find that for
any NEg5 and N'E(N + ¢9q,) N Z, we have

Xip = (X5)F = (X3)" = X}
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Lemma 8 is proved.

LEMMA 9. Forany é and any [EZ™ there exists [,(6, NEZL™ such that for
any N €¢ and any N'EN + ey, there exists k € K, such that Ad(k)N’ € Z,.

Proor. Clear.

Now we can prove Proposition 2. By Proposition 1’ there exists n €Z* such
that for any N €¢%, X} = Ay(Xy N X.). Let | = 1,(6, max(I/(n), /,(6))). By the
definition of [,(d, /), for any N €g} and N'EN + ¢/, we can find k €K, such
that N* & Ad(k)N'E€ Zy. 1t is clear that N”E(N + £'®g,) N Z,. Therefore
Xy-= X}y and

Xip = k™ Xpyo = k™' Xy = k™' Ay(X 0 X3) = Apdk™(X} 0 X3)
= Ay(Xy N X).

Proposition 2 is proved.

§3. Finite dimensionality of 8y

From now on we assume that G is simply connected.

Let 48 be the variety of Borel subalgebras in g. Fix b, € #8(C) and denote by b,
the preimage of by under the natural projection g, — g. By an Iwahori subalge-
bra we mean a subalgebra of g which is conjugate to b,. Let B C G be the
subgroup corresponding to b, and B, C KX be the preimage of B C G under the
projection p : K — G. It is well known that the set 48 of all Iwahori subalgebras
of g is isomorphic to G/B,. The inclusion 98, — K induces the map p: #— X
with fiber K/B,= . It is easy to define a structure of an infinite-dimensional
algebraic G-variety on % such that forany n 20in Z, X, & p—(X,) is an
algebraic subvariety of 4, and the map X, —> X, is an algebraic morphism with
fibers isomorphic to 4. It is known that X, is a projective variety.

Let X (resp. £) be the set of vertices of the Dynkin diagram (resp. extended
Dynkin diagram) for G. We identify £ with the set of simple reflections S in the
affine Weyl group W of G, by a— s, (see [B]). We denote by /(w) the length of
wE W, and by < the standard partial order on W.

LEMMA 1.

(a) For any w E W there exists a constructible subvariety #, < # such that
R, = Bywb,C % = G/B,.

(b) 4B, is isomorphic to the affine I(w)-dimensional space A'™.
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(c) Let B, be the closure of #B,,in B. Then B, = JB,,, where the union is
over all w' in W withw’ = w.
(d) We have B = UB,,, where the union ranges over all w in W.

ProoF. Follows from [Ka).

COROLLARY. For any pair of Iwahori subalgebras % and 5" in 98 there exists
gin G and w € W such that g% = b, and gb” = wb,. The element W is uniquely
determined.

We say in this case that & and 6” are in the relative position W and write
Y

For any o€ the subset Py, = B, U Bys.B, C G is a subgroup and fo. =
by + s, - by is a subalgebra of gr. A conjugate of fi, is said to be a parabolic
subalgebra of type «. The set P, of parabolic subalgebras of type o may
be identified naturally with G/P,; it has a natural structure of complex
algebraic G-variety such that the natural map x,: 8 — 2, is a P'-fibration.
The fibers of n, are called /ines of type . We denote by &, the line bundle on
28 such that &,(b) is the cotangent space to the fiber of 7, through b, for every
bin #.

For any regular semisimple N in g, we denote by 98 the subvariety in b of
zeros of the corresponding vector field.

PROPOSITION 1.

(a) By is a locally finite union of finite-dimensional algebraic subuvarieties
in .

(b) Ay acts without fixed points on B.

Let Cy, be the set of irreducible components of B ).

(c) For any Z in Cy, the stationary subgroup of Z in Ay, is trivial.

(d) Cy is a finite union of Ay-orbits.

Proor. Follows from the proof of Proposition 2.1.

COROLLARY 1. There exists an algebraic variety By and a map By — By
such that the fibers are Ay-orbits.

Proor. Follows from Theorem 3.2 in [DG].

COROLLARY 2. If N is elliptic then &y is an algebraic variety .
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§4. Irreducible components of By

Fix a€3$. Let &Y be the restriction to 4, of the line bundle &, on # defined
in §3. For any b € 4y let PL(b) be the fiber of 7, through b. Since exp N preserves
B it maps PL(b) into itself. Therefore N defines a vector field 1¥(b) on P.()
which is zero at the point B of P1(b). Since Nis nil, A" has a zero of second order
at b. Therefore A¥(b) defines an element s(b) in the cotangent space to P.(b) at
b. This defines a section s of &". It is clear that s¥(5) =0 if and only if
A¥(b)=0; in this case P)(b) lies in %,

REMARK. We could define the line bundle &, by &,(b) = n/n,, where §, is
the unique parabolic subgroup of type a containing b, and n, n, are the
nilradicals of b and §,. Then s¥(b) is the image of N in w/n,.

ProOPOSITION 1. Let N €gr be a regular semisimple nil element. Then all
irreducible components of B, have the same dimension.

REMARK. This Proposition is due to Spaltenstein [Spa} in finite dimen-
sions; our proof is inspired by Spaltenstein’s.

PrOOF. Let d be the maximum possible dimension of an irreducible
component of &y. (See Proposition 3.1(a).)

LEMMA 1. Let Y be an irreducible component of dimension d of #, and let
L C Rbealineoftypeasuchthat L C Byand L N'Y # & . Then there exists
an irreducible component Y' of By such that £ C Y’ and dim Y’ =d.

Proor oF LEMMA. If & C Y, there is nothing to prove, so we can assume
that ¢ Y. Let Z C Y be the set of zeroes of the restriction of s¥ to Y. Then,
clearly

Z={bEY | n; \(n(b)) C By}

By Krull’s theorem, we have either Z=YorZ=27,U Z,U .- . U Z,, where
the Z, are irreducible subvarieties of Y of dimension d — 1.

Assume first that Z = Y. Then ¥ =z, !(n,Y) is contained in 98y, and it is
irreducible. Moreover, it strictly contains Y, since ZC Y, £ NY # &, and
£ ¢ Y. Hence dim Y > d. This contradicts the definition of d. Assume next
that Z # Y.Let ¥, = n,(n,Y;) (1 =i < n). For some i, we have & C ¥;. Then
again Y, is contained in 48, it is irreducible, and it strictly contains Z;. Hence
dim ¥, >dim Z, = d — 1 and dim Y, = d. From the definition of 4, it follows
that ¥, is an irreducible component of 4#,. It contains £, hence the lemma is
proved.
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LEMMA 2. Ifband ¥ lie in By, then there exist lines L., L, ..., L, of
type o, ,a,, . .., o, in B, such that

EEQ,, E/Egn, g]ﬂgz#g, gzﬂfg%@, "ty Qn_lﬂg,ﬁég.
In particular, Ry is connected.

(This is due to Tits in finite dimensions, the proof in our case is the same as
that of Tits.)

PROOF. Let win W be the relative position of b and &. Let w = SuiSay® * *Sa,
be a reduced expression for w, where the «; are simple affine roots. There is a
unique sequence by, b,, . . ., b, in %, such that b, =5, 5, =¥, and b,_,, b, are in
relative position s, for 1=<i=n. Let x =expN. Then the sequence
*by, *By, . . ., *b, has the same properties, hence it coincides with by, b,, . . . , b,
Thus*b, = b,(0 < i = n). Let £, be the line of type a; such that &, contains b, _,
and b;. Clearly &,_, N &; # & for | =i = n.Itis easy to see that for any line
& of type a we have either & C #yor £ N Ry =point,or L N By = empty.
For &,, the intersection #; N 98 contains at least two points b,_, and b;; it
follows that &; C 4. The lemma is proved.

PROOF OF PROPOSITION. Let Y be an irreducible component of &y, ¥EYa
point of Y not contained in any other irreducible component of 8y, and Y, an
irreducible component of %8, of dimension d. Fix bin ¥,. Let &,, ..., £ybe
as in Lemma 3.

Applying Lemma 1 to Y, and &,, we see that &, C Y|, where Y, is an
irreducible component of dimension d of 4. Applying Lemma ! to Y,
and &, we see that &, C Y, where Y, is an irreducible component of
dimension d of #y. '

Continuing in this way we find a sequence Y, . . ., Y, of irreducible compo-
nents of dimension d of 8, such that &, C Y, for 1 <i < n. Since b’ lies in &,
we have that ¥ lies in Y,. From the definition of ¥ it follows that Y, =Y.
Hence dim Y =d, as required.

REMARK. The same proof shows that for N € g, nil, not necessarily regular
semisimple, the following holds: if 2, contains some irrreducible projective
variety of dimension 7z, then for any bE 4, there exists an irreducible
projective variety of dimension 1, contained in 2y and containing b.

Let N be a regular semisimple nil element in § and Y an irreducible



Vol. 62,1988  FIXED POINT VARIETIES ON AFFINE FLAG MANIFOLDS 141

component of #y. We denote by 7(Y) the set of all « in £ such that
Y =n;\(m(Y)).

LemMMA 3. IfdimY >0, then 1(Y)+ &.

PrOOF. Suppose that 7(Y) = & . Then we can find y in Y such that y does
not lie in the closure of 8y — Y and 7, '(n,(»)) N By = {y} for all @ in £. If
dim Y > 0 then we can find y, in 2y with y, # y. By Lemma 2, there exists an a
in £ and a line & of type a through y in #,. Since y is not in the closure of
B, — Y, we have & C Y. This contradiction proves Lemma 3.

(An analogous result holds for the varieties %y in finite dimensions
(Spaltenstein).)

THEOREM 1. Let N be a nil element in gy such that dim %, > 0. Then
there exists an irreducible component Y of By such that ©(Y) = a,, where
{ag) =S—%.

Proor. We start the proof with a study of the action of the affine Weyl
group on the homology of #y.

It is well known (see [Ka]) that W acts naturally on the homology and
cohomology groups of 2. We describe in detail the action of W on H,(#, C).
Fix a Cartan subalgebra ) in g. Let §’ be the dual space. Let M, be the space of
affine functions on §'. Then the group W acts naturally on the space M,.

LEMMA 4. The action of W on H@, C) is isomorphic to the action on M,.

Proor. See [Ka] p. 206.

LEMMA 5. Let V C Sym*(M,) be a W-invariant subspace, and k a positive
integer. Then V¥ +# {0}.

PROOF. Let A C W be the translation part of W (see [B]). We may identify
Sym* M, (as a W-module) with the space of polynomials of degree < kon . It
is clear that any A-invariant nontrivial subspace in Sym* M, contains the
function 1 of Sym* M,, which is W-invariant. Lemma 5 is proved.

Let pi: Hyu(%, C)— Sym* H,(4, C) be the projection y — p,(y) defined
by the condition (u*, p.(y)) = (u*,y) for all u in HY®,C) (= dual of
Hy(#, C)).

LEMMA 6. Let Y be an irreducible algebraic variety of dimension k in 8.
Let yy be the corresponding homology class in Hy(8). Then p,(yy) # 0.
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ProOF. We can find a positive integer n such that Y is contained in X, (see
the beginning of §3). It follows from the Bruhat decomposition (Lemma 3.1)
that the map H*(4, C)— HX(X,) is an isomorphism (if » is sufficiently large).
Since X, is projective we can imbed X, in a projective space. Let ji be the class
of a hyperplane section in H*X,,C), and u the corresponding class in
HX#, C). It is clear that (u*, yy) # 0. Therefore py(yy) # 0. Lemma 6 is
proved.

Let N C g, be a regular semisimple nil element. Put dy & dim By. We

denote by Vy the image of Hy, (By) in H,, (B).
LEMMA 7. Vyis a W-invariant subspace in Hy,(®).
Proor. Follows from [K-L, 2.2].

LEMMA 8. We have Vi + {0).

PrROOF. Let Vybe the image of Vyin Sym®%(H,(48, C)) under the projection
Pa,- It follows from Lemma 6 that Vy # {0} and therefore (by Lemma 5) that
V¥ + {0}. Since W is a finite group we conclude that V' = (0}.

Let p: W— Aut H,, (%) be the natural action of W on H,,(%). Put
T, E1d+ p(s,) for any « in £. For any irreducible component Y of 48y we
denote by [Y] C HMN(Q?) the homology class represented by Y.

LEMMA 9. For any a in ©(Y), we have T [Y] = 0.
Proor. Follows from [Ka], p. 206.

Let T denote the sum of p(w) over all win W,

For any a in X let W be the set of w in W such that /(ws,) > /(w). Put
Q,=Z.ewop(w). Itisclearthat T = Q,-T,.

Now we can prove Theorem 1. Assume that for any irreducible component
Y of %, we have 1(Y) # {ao}. Since t(Y) # { &} there exists ayin X N 7(Y).
Then T[Y]= Q, T, [Y]=0 for any irreducible component Y of 4. Hence
TV, = 0. But this contradicts Lemma 8. Theorem 1 is proved.

COROLLARY 1. For any regular semisimple nil element N in g there exists
g in G such that Ad(g)N lies in g, and its reduction mod ¢ is a regular nilpotent
element in g.

PROOF. Let Y C 4, be a component such that t(Y) = {a,}. Then there
exist y in Y(C) such that 7] ' (m(y)) N By = {y} for all a in Z. Let N, =
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Ad(y)N. Then N, lies in g,. Let n, = n(N,) be the reduction of N, mod ¢. It is
an element of g. Let 4, be the set of points in & fixed by exp n,. We have
1(AB,,) C 1(By) N L= . Therefore B, = {point} and n, is a regular nilpo-
tent element in g. Corollary 1 is proved.

COROLLARY 2. For any regular semisimple nil element N we have
dlm 'QN = dlm XN'
PrOOF. We have a natural surjective map %y R Xy. Let Y be a compo-
nent of 4, such that 7(Y) = {a,}. It follows from Corollary 1 that for generic y
in Y, we have p~!(p(y)) = {y}. Therefore dim Y < dim Xy. On the other

hand, it follows from Proposition 1 that dim 2y = dim Y. Since dim Xy <
dim %y, we see that dim %, = dim X,. Corollary 2 is proved.

§5. %) for Nin a Levi subalgebra

Let p =m + n C g be a parabolic subalgebra, P = MU C G the correspond-
ing parabolic subgroup, P = P(F), M = M(F), U = U(F). Let X" be the
algebraic subvariety of X such that X = M/M(A4) C G/G(A) = X. For any
regular semisimple nil element N in m C g we put X¥ = X* N X,,. It is clear
that XY is the set of m in M/M(A) with Ad(m)N in m,. Fix x €X. Since
G = PG(4) we can find p = mrin P, where m lies in M and r in U, such that
x = pG(A). Denote the element mM(A4)/M(A) of XM by g(x).

LEMMA 1. (a) The element q(x) is well-defined.
) g(x)EXY for xE X,

Proor. (a) is clear. To prove (b) we note that Ad(p~')N Cg,. But
Ad(p " )N = Ad(r""MAd(m~")N). Since Ad(m )N Cmy, we have
Ad(r~'YAd(m ~")N)=Ad(m~")N + V, where V lies in n;. Therefore
Ad(m "N lies in (g, + np) N mp = m,. In other words, g(x) is in X¥. Lemma
1 is proved.

Denote by gy the restriction of g to Xj.

For any regular semisimple nil element N in the subalgebra m; of gr we
denote by dy the determinant in F of the restriction of ad N on n.. Let v be the
valuation of dy; it is a non-negative integer.

DEFINITION. An algebraic variety Z is called “almost an affine space” if
either Z is an affine space or there exists a fibration of Z over an affine space
such that all fibers are almost affine spaces of smaller dimension.
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ExAMPLE. A two-dimensional algebraic variety Z is an almost affine
space if and only if there exists a fibration Z — A! with fibers isomorphic
to Al,

PROPOSITION 1. The fibers of qy are almost affine spaces of dimension vy,.

Proor. Let®* be the set of positive roots of P with respect to the center of
M, and X the set of roots in @ * which are not sums of two or more roots in ®*.
For any positive integer k we denote by ®;' the subset of roots in ®* which are
sums of at least k roots in X. Let A", ¥', C A& be the spans of the root
subspaces corresponding to the roots in ®; and ®; — &/, |, respectively. It is
clear that 4", is a normal subalgebra in 4", and that ¥", = A", /A", . Let
U, = exp A, be the corresponding normal subgroup in U. Fix y in X¥(C), and
a representative m of y in M. Put N,, = Ad(m)N; it is an element of .#(A).
Consider the map ¢, : ¥"(F)— ¥ (F) defined by ¢} (v)={[v, N, ]. Put Z, =
(v (AL (¥ (4)). Itis clear that Z, has a natural structure of an affine space.
Put Z = g5 !(y). Forany zin Z C X,(C) we can find a representative of z of the
form mr,, where r, lies in U = U(F) and is uniquely determined up to a right
multiplication by elements in U(A4). Let 7, be the image of r, in ¥", = U,/U,.
Then ¢, (7,)E ¥ ,(4). Let g,(z) be the image of ¢}, (,) in Z,.

It is clear that the element g,(z) is well defined. g, : Z — Z, is an algebraic
fibration. Let ¢ : ¥+ ,(F)— ¥ )(F) be the map given by ¢2 (v) = [v, N,,]. Put
Z,= V" (A) gL (¥ {A)). Fix z, in Z,(C), and an element r in U(F), such that
Ad(r)N,,—N,, is contained in #"(4), and ¢}, (F) = z,. For any z in ¢ !(z,) we
can find a representative of the form mrr®, where r® is in Uy(F), and r® is
uniquely determined up to a right multiplication by an element in Uy(4).
Define the map ¢, from Z® =4 am (Z,)) to Z, by letting ¢,(z) be the image
of 72 in A ,(A)@L{N A)) + N (4), where 72 is the image of r® in Uy Uy =
¥, It is clear that g, is a fibration. Repeating these arguments we obtain
Proposition 1.

§6. Constructible subsets of g,

Given a subset Y of g, we say that Y is constructible if there exists a positive
integer / = /(Y) and a subvariety Y C g,/¢'g, which is constructible in the
Zariski topology, such that ¥ = p;'(Y) where p, is the natural projection
D184 —a4/¢'a,. We say that Y is irreducible if Y is irreducible. We denote by
ph, 1, > I the natural projection p} : g,/e"q, — 0,/€ a4-

We say that the subset ¥, of Y is open if there exists a positive integer
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l,,1,>1, and an open subset ¥, of (pi)~(Y), such that ¥, = o '(Y)). Let
A:gr—F,d:9,—Z"% U o be the functions defined in §2.

For any constructible subset ¥ in g, we define 8(¥) = min,cyd(y). Itis clear
that §(¥) is finite if ¥ is not empty. Put Yy = {y € YZd(y) = §(Y)}.

LEMMA 1. The set Yyis openin Y.

ProOF. Put [ = max(/(Y), 8(Y)+ 1). It is clear that ¥, = p;'(Y;), where
Y, = p/(Y,) is an open subset in

(D)) ™'Y Caulelay.
Lemma | is proved.

COROLLARY. For any constructible nonempty set Y there exists a nonempty
open subset Y, of Y which consists of regular semisimple elements.

Let .#" C g be the subvariety of nilpotent elements and 4" its preimage in g,.
Define a function d on A" by d(N) = dim 48,. For any subset Y C .# we define
d(Y) = minyey d(N).

LEMMA 2. Forany constructible subset Y of A" ther exists a nonempty open
subset Y, of Y such that d(y) = d(Y) for any y in Y,.

PrOOF. By Lemma 1 we may assume that d(y)=4(Y) for all y in ¥. By
Propositions 2.1’ and 2.2 there exist positive integers n and / such that for any
N in Y we have dim @y =dim(®#y N X,), where X, =zn"'(X,) and
(ByNX,)=RBy,,NX,forall zin &'g,. We may assume that ¥ = p;1(Y),
where Y is a constructible subset of g,/¢'g,. Define a function D: Y —Z by
D(y)=dim Q?Ny N X,, where N, is in p,! (). Since D is constructible, Lemma
2 is proved.

Let W_ be the set of conjugacy classes in W. For any ¢ in W_. denote
by g% C gr, the subset of regular semisimple elements y such that the centra-
lizer T, of y in G is of type ¢ (see Lemma 1.2). Fix a Cartain subalgebra b, of g
of type c.

PROPOSITION 1. For any constructible subset Y of o, there exists a
nonempty open subset Y, of Y and c in W_ such that Y, is contained in g.

ProOOF. By Lemma 1 we may assume that (y) = d( = 6(¥)) forall yin Y.
In particular, any element y in Y is regular semisimple. We can assume that
I(Y)> 4. For any | EZ* we define K, = {(k €K | k=1 mod ¢&'}.
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LEMMA 3. Forany y in Y and z in &®y,, there exist k in K, such that
k='(y + 2)k lies in F,,, where F, is the centralizer of y in g.

Proor. Clear.

For any positive integer n we denote by G, the preimage of X, in G (see §2),
and choose a positive integer /, such that g~'K; g is contained in Ky, for all
ginG,. The set G, /K; has a natural structure of an algebraic variety. We define
a subvariety Z, _ of (5, N e~ "q,/e!Mq,) X G/K, by Z, . = {(h, x)| [x, A]EY}.
Let Y, be the image of Z,, in Y under the morphism (4, g)—[x, A]. It
follows from a theorem of Chevalley that Y, . is a constructible subset in Y.
Since

Y= LJ y;;s

cEW
nezt

it follows from Baire’s theorem that there exists a conjugacy class cin W_ and
a positive integer n, such that Y, . contains an open subset in Y. Proposition 1
is proved.

COROLLARY. For any irreducible constructible subset Y C g, there exists a
unique conjugacy class ¢ = c(Y) in W. such that ¢ N'Y contains an open
subset of Y.

§7. Thesets Z,

7.1. We fix byE4 with nil-radical n,. For each weEW, let %, =
{bERB | by —— b}. (Here by —— b means: by, b are in relative position w.) For
any k€N, let 8% = (€A | b D e*ny}. Then 28* is a projective subvariety of
48; it is a union of finitely many Q(w,. Conversely, it is clear that any Q?(W, is
contained in some %#* for sufficiently large k.

Let Z, = {(x, b)Eny X %, | x Eb).

If K EN is such that 4,,, C #* we define

k nO = .
Zk =1(x,0)E—= X B, | xED
8kn0 )

where X is a representative for x in n,. (The condition X €5 is independent of
the choice of representative X since &“n, C b).
Then ZX is an irreducible algebraic variety over C of dimension equal to
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dim(ny/e*ng). (Indeed, the second projection ZX — 4,,, is a vector bundle
whose fibre at bE Q?(w) is (ny N B)/e*n,, a vector space of dimension

. Ty . n . o
dim - dim —— = dim - = I(w),
- Ty Nb &gy

moreover %, = C/™,)
Note that Z, is the inverse image of ZX under the natural map

T Ny X Q(W)_’k— X '%(w)'
& 1y

We shall denote by 7f*!: Zk+! — Zk the map induced by the natural map

o
e+,

X Q(w)_’k_ X Q(w).
&' Ny

Let Z be the Zariski closure of Z¥ in (ny/g*ng) X %, We define Z, to be the
inverse image of ZX under the natural map

x ny x
Ny X @(W)‘“’k— X .@(W).
g*n,
Then Z, is independent of the choice of k. Indeed, ZX*! is the inverse image of
Z* under the natural map
n

= 0 =
1 X '%(w)—) X X .@(W).
€ g &€ g

Ty

We have Z, C Z, C {(x, ))Eny X # | x E1}.

7.2. PROPOSITION. Given wEW, the set Z, —[U,ep. yuu Z,] is non-
empty.

ProoF. Ifkissuchthat B,,,C &% weset Y(k)=(yEW |y # w, B, C #*};
this is a finite set. For each y € Y(k), Z¥ (and ZF) is an irreducible subvariety of
(ny/e*ng) X # of the same dimension ( = dim(ny/e*n,) as Z%. It follows that
Zk 0 [U,eyq) ZF] is a closed subvariety of Z¥, distinct from Z¥; hence its
complement ®¥ in ZX is non-empty in ZX.

It is clear that zf *'(®L*') C ®X. Note that the maps nf*!: Zk+! — Zk are
open (they are vector bundle maps). We now fix k, such that Q?(W, C 98%. For
each k = ko, motio ... omf =} omé_,(®%) is a non-empty open subset of Z%,
hence it is open dense; the intersection of this countable family of open dense
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subsets of Z% is non-empty by Baire’s theorem applied to Z% with the standard
locally compact topology. Let «,, be a point in this intersection.

We shall construct a sequence of points a, EPX (k = k) such that
it oy y) = oy for all k =k, Assume that «, is already defined for all
k, ky = k < k, where k, = k;, and it has the required property as far as it makes
sense.

Consider the subset R = (nf*!) ~!(a,) of Z5+!. This set is an algebraic
variety isomorphic to ny/en,.

The sets 7fif2e -+« em&Ting_ (®X) N R (k' Z k, + 1) are non-empty, open
subsets of R (by the properties of oy, . . ., «;); the intersection of this count-
able family of open dense subsets of R is non-empty by Baire’s theorem. Let
oy, +1 be a point in this intersection. Thus, we have an inductive construction of
the sequence oy (k = k) with the required properties.

Since Z, = lim, zZk, there‘exists a€ Z, such that 7,0 = o, for all k = ko, We
now show that forany yE W, y # w, we have a &€ Z,. Assume thata €Z,. We
can choose some k =k, such that 8, C #*. Then ma€EZ¥ But ma=
a, E®X, hence m,a is not contained in Z, by the definition of ®%. This is a
contradiction. The proposition is proved.

7.3. ProposITION. If (x,B)EZ, — (U,ewZ,), then x is a regular semi-
simple nil-element and dim 8, < [(w).

Proor. Consider an irreducible component X of the algebraic variety
B, N -é(w') (w'E€ W, w’ = w) such that b€ X. There is a unique y € W such that
#,,, N X is open dense in X. We can find a sequence b, (i Z 1) in 4, N X such
that lim,_ b, =b in X. Then lim,_, (x, b)) =(x,b), hence (x,b)EZ,. By
our assumption on (x, b), we must then have y = w. Thus .@(W, N X is open
dense in X. Hence X C .@(w), and dim X =< /(w). Since w’ was an arbitrary
element of W such that w’ = w, the proposition follows from Lemma 2.5 and
the remark preceding Lemma 4.3.

For any simple reflection s € W, let ny, = by N b where bE 2 is such that
by —— b. (Then ny, is independent of the choice of b.) The following proposi-
tions (7.4, 7.5, 7.6) correspond to the study of regular and subregular nilpotent
elements in semisimple Lie algebras.

7.4. PROPOSITION. The following conditions for x € n, are equivalent
(a) (x: IJ0)628 - Uy-ﬁe Zy’
(b) x Eny— ny, for any simple reflection s,

(C) '@x = {50}
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PROOF. Assume that x Eny, for some s. Then (x, by) is in Z, N Z,. Thus
(a)=(b). )

Assume that (x, by) € Z, for some y #* e. We can find a simple reflection such
that I(sy) <I(y). If (x’, ))E Z,, there is a unique b€ # such that b, —— ¥,
b —2— b and b’ automatically contains x’. Hence x’'E€ny N b’ = ny. It follows
that for any (x’, b)EZ, we have x’Eny,. In particular this holds for x’ = x.
Thus (b)= (a).

If (a) holds, then x is a nil-clement and 2, is of dimension 0 (see Proposition
7.3); since 4, is connected, it is {bo}. Thus (a)=(c). If x €ny then clearly B,
contains a projective line ( = the set of bE 4 such that b D ny). Thus (c)= (b).
The proposition is proved.

7.5. PROPOSITION. Let s be a simple reflection in W, and let

(x,b)EZs—< U Zy).
yEW

Then x is a nil element and dim &, = 1.

PrOOF. We have dim 48, < 1 by 7.3; on the other hand %, clearly contains
the line of type s through b, hence dim &, = 1.

7.6. Now let x’ be any nil-element such that dim %, = 1. Then each
irreducible component of 4,. is a line of type s’ for some simple reflection s’.
(See Lemma 4.4.) The pattern of intersection of these lines can be described by
a graph I', whose vertices are in 1-1 correspondence with the irreducible
components of 4,.; two vertices are joined precisely when the corresponding
components of 5?,,, meet each other.

7.7. PROPOSITION. In the set up of 7.6, I is an extended Dynkin graph
of type:

(a) D, (resp. E,) if g is of type D, (resp. E,,).

(b} D,, (resp. D,.,) if g is of type B, (resp. C,).

(c) E,if g is of type F,.

(d) Es ifg is of type G,.
Ifgis of type A, (n > 2) thenT is the universal covering of the extended Dynkin
graph of type A,.

Proor. Consider for example the case where g if of type 4, (n = 3). The
simple reflections in W can be labelled s; (i € Z /(n + 1)) where 5; # 5; commute
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ifand only if i — j5= % 1 (mod n + 1). If X is a line of type s; contained in 2,
then X meets exactly one line X’ of type s, , , contained in 4, exactly one line
X” of type s,_, contained in 4, and no lines of types s, j3=i £ 1(modn + 1),
contained in 4,. This follows from the structure of the varieties B, for
subregular nilpotent elements in semisimple Lie algebras of type 4, and
A; X A,. Moreover X N X’ N X” is empty: two lines of type s, . ;, 5; _ contained
in 4, cannot intersect since (i + 1) — (i — 1)s=+ 1 (mod n + 1) for n = 3.

It follows that I' must be a covering of the extended Dynkin graph of
type 4,.

Now let £, %,, ..., &, be a sequence of lines of type s;.1, Sj42, .« -, S4m
respectively, each contained in 4, such that £, N L, # &,

LNL#ED, . L "L+ D

(Herej +1,j +2,...,j + mare taken modulo n + 1.) Then §;, 8,42« *Sj4m
has length m in W. Since this element describes the relative position of some
point in &, with some point in % ,,, it follows that &, # £ ,,. This shows thatI"
is the universal covering of the extended Dynkin graph of type 4,. Analogous
arguments apply for g of type D, or Ey; the argument is actually simpler, since
the Dynkin graph is already simply connected. The arguments in the other
cases are similar. (This proof is suggested by the analysis of subregular
nilpotent elements in semisimple Lie algebras, see [St, 3.10].)

7.8. Let x’ be as in 7.6. If g is of type 4, or 4, then I is

either the infinite graph -+ -—c—o—o—--. or the

finite graph e — o (for 4)) or /_\ (for 4,).

The infinite graph is realized by
e 0 0 01
x’=[0 }EQ[Z and x'=| 0 0 0| €3l,.
¢ e 0 0
The finite graphs are realized by
0 0 01
€
x’=[ ]Eélz and x'=| ¢ 0 0| €3l,.
e 0
0 ¢ 0

In the last case, 8, consists of three lines meeting in a single point.
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7.9. The discussion in 7.1 can be carried out also in the case of a finite-
dimensional reductive complex Lie algebra 'g. (See [St. 3].) We shall state
briefly the results which we need. Let ! 2 be the variety of Borel subalgebras of
lg. Let ' W be the Weyl group. We fix 'b,E '8, and let '8, (w € 'W) be the set
of all '6€ ' such that 'b,, 'b are in relative position w. Let 'n, be the nil-radical
of 'by. Let 'Z, = {(x, 'b)E 'ny X '@, | x €'b}. Let 'Z, be the closure of 'Z, in
'Z ={(x, "6)E "y X 'R | x €'b}. The 'Z, (wE 'W) are the irreducible com-
ponents of ' Z; note that 'Z, is isomorphic to !n,.

Let €, be the unique nilpotent orbit in 'g such that for any !b, '€ '# in
relative position w, the intersection 'b N B’ N €,, is open dense in the nilpo-
tent radical of '6 N '’

(a) w— %, is a surjective map from W to the set of nilpotent orbits in 'g.
(See [St], [BC].)

Since the Z, (w € 'W) are distinct, irreducible of the same dimension, we
have

®) Z, — [Uyew,swZ) # D WE'W).

Moreover:

(c) If (x, 'b) is in the set of (b), then xE €,,.

Let '#, be the variety of all Borel subalgebras of g containing x. Let X
(resp. X’) be an irreducible component of '4#, containing 'b, (resp. 'b). Let
y € 'W be such that a generic point of X and a generic point of x’ are in relative
position y. From [St] it follows that x € €,. It is clear that we can find a
sequence B; € X and a sequence f{E X’ (i =1, 2, ...) such that lim; ., §; = "By,
lim,_ , B! =5, and (;, B}) are in relative position y for all i. We fix p*€'%
opposed to 'b,, let U* be the unipotent radical of the corresponding Borel
subgroup. We can assume that f; is opposed to * for all i. Hence there is a
well-defined sequence u; € U* such that 8; = Ad(;) 'b,. We have lim;_. , () =
1 since  lim,._pB; ="'5. Consider the sequence (x;, !b;)=
(Ad(x;) "'x, Ad(¥,)~(B)) in 'Z (i =1). We have lim,_., (x;, '5;) = (x, 'b)
(since lim;_, /= 'b and lim;_, % = 1). Note that (x,, '6;)€'Z,. It follows
that (x, '6)€ 'Z,. From our assumption on (x, 'b) it now follows that y = w.
Since x € €,, we have x € €, as desired.

§8. Induction of nilpotent classes

8.1. We wish to extend to gr some results of [LS] on induced nilpotent
classes.
We fix a parahoric subalgebra p C g with nil-radical n. Let P be the
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corresponding parahoric subgroup of G. The quotient 'g = p/n is a finite-
dimensional, reductive complex Lie algebra. Let n:p—!g be the natural
projection. We shall use the notations of 7.9 for 'g. If x is a nilpotent element of
lg, then the variety !4, of Borel subalgebras of 'g containing x may be
identified, via 'b— z ~'('b), with the variety 3?;,‘, of all Iwahori subgroups b of
gr such that b C p and x En(b).

If % is any element of p such that 7(%) = x, then clearly 8, , C #,. We seek
nil-elements ¥ € ~}(x) C p such that dim 4, is as small as possible.

8.2. PROPOSITION. Given a nilpotent element x € 'g = p/n, there exists an
open subset U of n~'(x) such that any XE€U is a nil-element satisfying
dim &, = dim '@, (For such X, R, is a union of irreducible components of
B:.)

PrOOF. Let wE!W be such that x € €,,, relative to 'g (see 7.9(a)). We
imbed in a natural way ! W as a parabolic subgroup of W, hence we regard w as
an element of W.

Let b, be an Iwahori subalgebra of g such that b, C p and let 'b, = 7(b,) be the
corresponding Borel subalgebra of 'g.

Let (x’, b)be an element of Z,, — [ U, i, »w Z,] (see Proposition 7.2), where
Z,, Z, are defined relative to by. In particular, we have x’ €5, N band by—— b.
Let x = n(x’), !6 = m(b). Let X be an irreducible component of ! 8, containing
s and let X be the corresponding irreducible component of .@?,_ < We know
that x’ is a nil-element (see Proposition 7.3). Let X’ be an irreducible
component of 4, containing X. Let X, = (¢’ E X’ | b’ C p}. Then X C X; C X
Assume that X;G X’. Then X’ — X is an open dense subset of X” hence there is
a sequence b; EX’ — X] (i = 1) such that lim,_, b; = b. Passing to a subse-
quence, if necessary, we may assume that there exists y €W such that
(x’, 5,)EZ, for all i. It follows that (x’, )€ Z,. By the definition of (x, b), we
must have y = w, hence we have (x’, b,)€ Z,, for all i. But then b, —— b, so that
b; C p (since w € 'W). This is a contradiction. Hence we have X; = X’. Thus X’
is an irreducible component of .4?,,, . containing X, hence X’ = X. It follows
that dim 8, = dim '®,. From the inclusion (x’,8)€Z, —[U,cw,,sv 2]
it follows that

x, D)€ 'Z, —[ U z]
yYEW
y¥rw

Using now 7.9(c) it follows that x € €¢,. Hence X is conjugate to x under an
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element in the adjoint group 'G of 'g. Hence x’ is conjugate under an element
of P to a nil-element X €p such that z(X) = x. We have

dim &, = dim #,, = dim '®, = dim '4,.

Thus min,,-1, dim 8; = dim '4,. Using now Lemma 6.2, we see that there
exists an open subset % of 7~ '(x) such that for all X E# we have dim #; =
dim '4,. The proposition is proved.

8.3. ProPOSITION. Let x,p, U C n~\(x) be as in 8.2; we assume that p is a
maximal parahoric subalgebra and that x is not contained in any Levi
subalgebra of a proper parabolic subalgebra of ‘3. Then any element X €U is
elliptic.

Proor. We use notations from the proof of Proposition 8.2. From our
assumption it follows that 'g is a semisimple Lie algebra over C and the
centalizer Z, (x) has the property that the elements of finite order in it have
bounded order.

Assume that X E4 is not elliptic. Then there exists an injective homomor-
phism ¢: G,, — G of F-algebraic groups such that ¢(F*) centralizes X; hence
#(C*) ( C ¢(F*) C G(F)) centralizes %. Now ¢(C*) acts on 4, and it leaves
stable each irreducible component of #,. Now 4, has at least one irreducible
component X’ such that 6E X'=b C p; since ¢(C*) leaves X’ stable, it must
leave p stable. Hence ¢(C*) C P. Let h: P —'G be the canonical homomor-
phism. Its kernel contains no elements of finite order > 1; hence the compo-
sition h o ¢ : C* — G is injective at least on the group of roots of 1 in C*. The
image of 4 ¢ is contained in Z, (x). Thus Z, (x) contains elements of finite,
arbitrarily large order. This contradiction proves the proposition.

8.4. The converse to the previous proposition is false. It may happen for
(p = g,) that x is a nilpotent element contained in a Levi subalgebra of a proper
parabolic subalgebra of g, and that there is an open subset % C n~!(x) such
that any X €% is elliptic. An example is obtained by taking x to be a subregular
nilpotent element in 8p,. Another example, arising in 8p,, is given in the
Appendix.

§9. A map from nilpotent orbits in g to conjugacy classes in W

9.1. Let g, gz, g, be as in §2. We shall denote n = gg,,, so that g, = g®n. For
any nilpotent element N €g, we consider the subset N 4+ n of g,. By the last
Corollary in §6, there exists a non-empty open subset % of N +n and a
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conjugacy class (¢) in W such that for any x E%, x is regular semisimple in a
Cartan subalgebra of g of type (¢). Since any two non-empty open sets in
N + n have non-empty intersection, it follows that (¢) is an invariant of V. It
clearly depends only on the G-orbit of N. Thus, we have defined a map

(a) N—(6)={(ox)

from the set of nilpotent orbits in g to the set of conjugacy classes in the Weyl
group.

This section will be concerned with the study of the map (a). Note that a map
like (a) has been defined earlier (in quite different ways) on certain subsets of
the set of nilpotent orbits by Carter-Elkington [CE] and Springer [Sp 1].

9.2. ProrosiTiON. IfN is a nilpotent element of g not contained in any Levi
subalgebra of a proper parabolic subalgebra of g, then ay, is not contained in any
proper parabolic subgroup of the Weyl group.

PrROOF. Let % C N + nbe asin 9.1. By 8.2 there exists a non-empty open
subset %’ of N + n such that dim %y = dim !4, for all N €%’ (notation of 7.9
with 'g = g). The intersection % N %’ must be a non-empty open subset of
N +n; by 8.3 any NE# N4’ is elliptic. Since N is contained in a Cartan
subalgebra of type (o)), the proposition follows.

9.3. PROPOSITION. Assume that g = 3l(V,), where V. is a vector space of
dimension n = 2 over C. Let N €gq be a nilpotent element with Jordan blocks of
sizes nyZny, =z --- Z2n,>0 (2 n; =n). Then the conjugacy class (oy) in the
symmetric group ®, is represented by a product of disjoint cycles of lengths
ny, Ry, ..., N,

We first prove the following.

9.4. LEMMA. With the notations in the previous proposition, let X €n, and
letA,,...,A, EF bethe eigenvalues of N =N + X: Ve = Vi (Vy = V.QF). Let
s=m+n+---+n_,+j (1=2a=sr, 0<j=n,). Then, for any
1= <ip<:--<i;=n, wehave

U(A‘illiz' . 'j.,“);a - 1 +;]~.

a

PrOOF. If is enough to show that AS(N") : A*(V;)— AS(Vy) maps A*(V,)
into @DV (V, = VQA).
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We have N% = N + ¢Y, y Eg,. Note also that the image of N"%: Ve— V.
has dimension
d=(m—n)+(m—n)+ - +(n,_y—n,).
Lete,...,e,€V,. We have
N(N"YeA- - -Ae,) = (N"e, +eYe)A- - - A(N™e, + eYe,)
=Y (e )N A-.-AN"¢,AYe,A---AYe, ,

sum over all subsets j, < - - - <j,of [1,s]; A, < - - - <h,_,is the complemen-
tary subset. We may restrict this sum to those terms for which k =< d (the other
terms are clearly zero). For such terms we have

s—kzs—d=n+--+tn_+j—(m—n)— - —(n,_,—n,)
=n,a —1)+J;
hence these terms are in %@~ Y+, The lemma is proved.

9.5. LEMMA. Consider the n X n matrix (a;) (n = 2) with a;; ,,€EC* for
l=i=n—1,a, €¢-C* a; =0 for all other (i, ). Then the eigenvalues of
this matrix are ale"" where a € C* is fixed and { runs through the n-th roots of 1.

PrOOF. It is clear that the n-th power of our matrix is o’ times identity
where o = a,,d,3° * *a, - M, The lemma follows.

9.6. We recall that A : gz — F is the map A(x) = Tr(A%((ad)x)) where 2v is
the number of roots and A% denotes exterior power. If x Eg, is regular
semisimple then A(x) is the product of non-zero eigenvalues of ad(x) : gr ~ gr;
if x Eg, is not regular semisimple then A(x) = 0. Recall (Lemma 6.1) that for
any constructible set X in g, and any integer i, the subset

{XEX |v(A(x) =i}
is open in X.

9.7. PROOF OF ProrosiTIoON 9.3. Let N=N+XEN+n and let
A, Ay ..., A, be the eigenvalues of N arranged so that v(,) S v(A,) < --- <
v(4,). We have

vAN) =2 T vk —4)Z2 T o) =200~ - 4,y

i<j i<j
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Moreover, if v(A; — 4;) > v(4;) for some i <j, then the same argument shows
that (A(N)) > 20(A7 = A2 "2« <A, _)).

We take a direct sum of blocks of sizes ny, n,, . . ., n,, asin Lemma 9.5, when
n;> 1, and of form (ag), a,€C, when n, =1 (Z a; =0). We obtain a nil-
element N + X,EN + n; we can assume that it is regular semisimple. We
arrange its eigenvalues u,, i, . . . , 4, 50 that v(u) S v(w) = - - - = v(y,), we
then have v(u ;- - -u,) =a — 1 + j/n, where s, a, j are as in Lemma 9.4 and
s =n — 1. From Lemma 9.4, it follows that v(4,4,- - - 4,) = v(uu,- - - 4,) for
s=1,2,...,n— 1. Adding these inequalities term by term, we get

VAT TIAS TR A ) Z o T T ),

hence v(A(N)) = (A(N + X,)) with strict inequality unless v(4; — 4;) = v(4;)
for all i <j, and

v(Ady - o A) = v(ppty - -p) fors=1,2,...,n—1

(which implies v(A,)=v(y) for 1 =i =n-1).
It follows that the set

¥ ={NEN +n|v(N) = AN + X))

is open in N + n. It is non-empty since it contains N + X,. Let N € &. As we
have seen above, the eigenvalues 4,,..., 4, of N satisfy v(4;) = v(y,) for
1=i=n-1.Hence

v(d) =" =v(d,) = l/n,
) W)= ++ = D sm) = U, el
except that, when n, = 1, v(4,) is an integer (or co) not necessarily equal to
v(u,). We have also seen that v(4; — 4;) = v(4;) for all i <j. Let 4, be such that
v(4;) = 1/m and assume that 4, € C[[¢"™]]. Let ac" (a € C*) be the first term in
the Puiseux series of A4; such that r/¢ is an irreducible fraction with ¢ not
divisible by m. Since v(4;) = 1/m we have 1/m <r/t. We can find y € Gal(F/F)
such that y(¢"™) = ¢&"™, y(¢"*) = {¢"" where { # 1 is a root of 1. Then clearly
A; —y(A) = o1 — {)e"" + higher powers, hence A, —y(A)=r/t>1/m=
v(A,); this is a contradiction since y(4;) = A, for some j. Thus we must have

v(A) = UUm=1,€C[[e"™]].

This and (*) imply that N is contained in a Cartan subalgebra of gz whose type
is a permutation of 1, 2, ..., n which is a product of disjoint cycles of lengths
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ny, n, ..., n,. Since this holds for all N in the non-empty open set &, the
proposition follows.

9.8. PROPOSITION. Assume that g = 3p(V) where V¢ is a vector space of
dimension 2n over C with a non-singular symplectic form. Let NEg be a
nilpotent element with Jordan blocks of even distinct sizes 2n, >2n, > - - - >
2n, (Z n; = n). Then the conjugacy class (oy) in W (imbedded naturally in the
symmetric group ®,,) is represented by a product of disjoint cycles of lengths
2ny,2n,, ..., 2n,.

ProoF. LetN =N+ XEN +unandletd, A, ..., 4,,bethe eigenvalues of
N arranged so that v(4,)) < v(4) < - -+ < v(4,,). We can assume that A, =
"‘A.l, ).4= - 13, ey AZn = "‘).2,,_1. We have

U(A(N)) =2 Y v(dy- '121) +2 Y v+ '12j)

1si<jsn 1sisjsn
Z 20(A3" 1A - Ag).

Moreover, if the last inequality is equality then v(4y — 4,;) = v(4,;) for all
1 2i<j=nand v(dy + 4y) =v(dy) forall 1 =i =j = n; hence v(4;, — 4) =
v(A)forall 1 =i <j=<2n.

Taking a direct sum of blocks as in Lemma 9.5, of sizes 2n,,...,2n,
(representing nil-elements in symplectic Lie algebras), we obtain a nil-element
N + X,EN + n which can be assumed to be regular semisimple and whose
eigenvalues u,, . . . , i,, satisfy

M= =W, Hs= — U3, ***, U= — Hon-1,
_ 1 1
()= =v(lp) =7, V(lhgn+) ="+ =V(lams2m) =7, €IC.
2n1 2n2

From Lemma 9.4, it follows that v(A; A« Ay) = vty « < ip,) for s=
1,...,n. It follows that »(A(N)) = v(A(N + Xy)). It follows that the set & =
{NEN + n|v(AV)) = v(N + X,)} is non-empty, open in N + 1. As in 9.7, we
see that for NE %, the inequalities v(A,A; - « - Adp) = v(fifty - + - fp) must be
equalities for s = 1, ..., n. It follows that v(4;) = v(y;) fori =1,...,n. Asin
9.7, we see that for N € &, we have:

o) = —— = 1, EC[[""]].
2m

The proposition follows.
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9.9. PROPOSITION. Assume that g = 80(V¢) where V¢ is a vector space of
dimension 2n over C with a non-singular symmetric bilinear form { , ). Let
N €Eqg be a nilpotent element with two Jordan blocks of odd sizes 2p + 1>
2q — 1 (p + q = n). Then the conjugacy class (6y) in W (imbedded naturally in
the symmetric group ®,,) is represented by a product of two disjoint cycles of
lengths 2p, 2q.

PrOOF. Let f;: g — F (i = 1, 2) be the polynomials which attach to x Eg
the trace of A*?x on AV (for i = 1) and the determinant of x on V(for i = 2).

For any NEN + n, we have v(f;(N)) = 1, v(£,(N)) = 2. (The second inequa-
lity follows directly from Lemma 9.4 applied to 81(V). Using Lemma 9.4 we
see also that v(f,(N)) = 2p/(2p + 1), hence v(£(N)) = 1 since v(f;(NV)) is an
integer or oo.)

It follows that the set

U =(NEN +n|v(f(N) =1, v(fN)) =2}

1s an open subset of N + n.
We now show that % is non-empty. Consider a basis

feli=si=2p+Nn{f|1=j=s29-1)

of V¢ such that
1 ifi+i’=2p+2, 1 ifj+j =2q,
(e, ¢e)= (fp f;) =

0 otherwise, 0 otherwise,

and (g, f;) =0 for all i, j. We may assume that
Ne;=e¢,,(1=i=p), Ne=—¢., (p<i=2p), Ney, =0,

Nﬁ=ﬁ+l(1 =j=q-—1), N]?:"‘ —fj+1(q_ 1<j=2¢-2), NeZq—l=0'

Let M : V.~ V, be defined by Me,, = ae,, Me,, | = — ae, — bf;, Mf,_, = be,
(a, bEC*) and M is zero on all other basis elements. Then N + eM EN +n
and a simple computation shows that fi(N + eM)Ee-C* f,(N + eM)E*C*.
Thus, N + eM €% so that % is non-empty.

Now let NE% and let 4,, . . ., A, be its eigenvalues on V. We may assume
that A, = — A, As=—12;,...,4, = —4,,_; and that v(4)=v(A)=--- =
v(4,,). We will show that:
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1
v(A)=— forl=i=2p,
2p

(*) |
v(Ai)=2— for2p+1=i=2p+2.
q

Since N E#, we have v(4,4,- - -Ay,) = 1. Tt follows that v(4,) = 1/2p. Using
9.4, we have v(A,) = 1/2p + 1). If v(4,) = 1/(2p + 1) then multiplying 4, with
the various (2p + 1)-th roots of 1 and with * 1 will yield 2(2p + 1) distinct
eigenvalues for N; this is impossible since 2(2p + 1) > 2n. Thus, we have
1/2p + D<v(A) =1/2p. If v(A,)<1/2p, then v(4;) would be a rational
number with denominator = 4p + 1; this would imply again that there are at
least 4p + 1 distinct eigenvalues for N, which is impossible since 4p + 1 > 2n.
Thus, we must have v(4,) = 1/2p. It follows that there are at least 2 p distinct
eigenvalues A for N with v(1) = 1/2p, hence

V(i) = ) = -+ = vllay) = =,

2p

and 4,, ..., A,, are distinct and contained in a single orbit of Gal(F/F).
Since N E%, we have v(A,4;- - - 4y,) =2 hence v(dy, 4 1Asp+2° * *Aapszg) = L.

It follows tht v(4,,,,) = 1/2q. If v(4,,,,) < 1/2q, then the orbit of 4,, ,, under

Gal(F/F) would contain at least 2q + 1 elements, hence this orbit must meet

the set {4,, ..., 4, }. Hence the Galois orbit of 4; contains strictly more than

2p elements; its cardinal is a multiple of 2 p since v(4,) = 1/2p, hence it is at

least 4 p. This implies that p = g and v(4,,,,) = v(4;) = 1/2p, in contradiction

with v(4,, ,,) < 1/2q. Thus, we have v(4,,,,) = 1/24. Since

V(/lzqﬂ) == v(/12p+2q) and v(AZq+l) + e+ V(12p+2q)= 1,

it follows that v(4y,4,) = + - = v(4,+2,) = 1/2q and () follows.

If p>gq, then {A;,...,43,}, {A2g+1,..-,42,} must be two orbits of the
Galois group and the desired description of (ay) follows. If p = g, then there
are three possible cases:

@ {An ..., 42.) {Ap+1r .-+ 4sp} form two distinct orbits of the Galois

group,

®) {4 A} ={Ap+1-- s dep )}

(©) {Ay, ..., A4} is a single orbit of the Galois group;
we must exclude the cases (b), (c).

The case (c) cannot arise since the Weyl group of type D,, does not contain a
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4p-cycle of the symmetric group &,,. The case (b) can be excluded by
shrinking % to a non-empty open subset of % in which all elements are regular
semisimple. The proposition follows.

More generally we have the following result.

9.10. PROPOSITION. Let N be a nilpotent element in g = 30(V¢), with Jordan
blocks of odd, distinct sizes

2p1+1>2q1‘—1>2p2+1>2q2—1>"‘>2P2,+1>2£12,"1

(Zp; + Xq; = n). Then the conjugacy class (oy) in W C 8,, is represented by a
product of disjoint cycles of lengths 2p,, 2q,, 2D, 243, . . . , 2Dy 245,.

We shall omit the proof, we only note that the proof involves considering a
direct sum of blocks M as in the previous proposition.

9.11. ProPOSITION. Let N be a nilpotent element of g which is not con-
tained in any Levi subalgebra of a proper parabolic subalgebra of g. Let
g = Bz gx: be the grading provided by the Jacobson-Morozov theorem for N.
(See [BC).) Let a be the largest integer such that g, # 0. Let M, €Ag,;,
M=3IM,Eq,;then N+ eMEN +n.

(a) Any eigenvalue A of ad(N + eM) : gr — g satisfies v(1) = 1/(a + 1).

(b) If MEq_,, — {0}, then N + eM is not nilpotent [Sp 1, 9.3(1)] and any
non-zero eigenvalue A of ad(N +eM):gr—gr is of form agVe*V
(aEC*).

(c) There exists a non-empty open subset % C N + n such that for anyNEU,
ad N: g — g has some eigenvalue A with v(3) = 1/(a + 1).

(d) Assume that N satisfies Springer’s condition dim g, = dim(g,) — 1, [Sp 1,
9.6(d)]. If M_,, €edg_,, then N + eM is regular semisimple and any
non-zero eigenvalue A of ad(N + eM) : g — g5 satisfies 1) = 1/(a + 1);
moreover, we have v(A(N + eM)) = 2v/(a + 1), where 2v is the number
of roots of g. On the other hand, if M _,, EeAg _,,, then v(AN + eM)) >
2v/(a +1).

PROOF. Let Vo=go, Vi = 0@ty -2 (1 Si = a), V=@V Cg,. Let
V,=A-V, ¥V =A4-V=@B¢,¥,;Cq,. If N=N + &M then

(e) ad(N)y; = Zosis; 05 (1) + Z<i5a $0(v) for all €Y7,
where ¢ : ¥, — ¥, are A-linear maps (0 < i,j < a); moreover, if M*Eg_,,is
defined by M_,, — M°Eedg_,,, we have:
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@ — ) C e
" O=j=a-1).

(880 — o)V ) C e

From (e) we deduce that

(8) ad(N)**!(¥";) C e for all j, hence ad(N)**'(¥") C e¥".

Let N° = N + eM®. Using also (f), we see that

(h) ad(ﬁ)“lvj = ad(No)aHUj +eZiv(v)+ & 2;p:,;(v), (,EY),
where y;;, p;; are A-linear maps ¥';— ¥";. From (g) it follows that any
non-zero eigenvalue A of ad(N)?*! satisfies (1) = 1 and (a) follows.

Next, we note that ad(N°)(V;) C ¥;,, for 0 =j <a and ad(NO)V, C &V,. It
follows that ad(N%)2+! V; CeV; for all j. Hence there exists a C-linear
map ¢: ¥ — V such that ad(N°)?*' = ¢ on V. It follows that the eigenvalues
of ad(N°)**':g.—gr are e where AEC are the various eigenvalues of
¢: V—V; from this, (b) follows.

We have

e~ lad(N)* ! = g~ Y@d(NV)**' + T) + T

as endomorphisms of ¥"; here T'€End,(¥") and ¢~ '(ad(N°)**! + T) is an
upper triangular endomorphism of ¥ (with respect to the block decompo-
sition @v";) with ¢~'ad(N)*' representing the diagonal blocks. Hence if P
(resp. P©) is the characteristic polynomial of the endomorphism ¢ "'Ad(N)**!
resp. £ 'Ad(N®)?*! of g, then:

(i) PEA[X], PO€C[X] and the difference P — P© is a polynomial of lower

degree with coefficients in e4.

Assume now that N is as in (d) and that M_,, ¢ edg_,,. Then, according to
[Sp 1, 9.5, 9.6], N'is regular semisimple. Hence P is divisible by X’ but not by
X'*! where ! is the rank of g. From (i) it follows that P is not divisible by X’*!.
Hence ad(V)2*! has at most / eigenvalues equal to zero. The same must hold
for ad(N). Hence ad(N) has exactly / zero eigenvalues hence N is regular
semisimple. From (i) we see also that the product 4,4,- - - 4,, of the non-zero
eigenvalues of ¢~'ad(N)**! is an element of A whose constant term is the
product of the non-zero eigenvalues of ¢~ 'ad(N?)%*!, an element of C*. In
particular, this constant term is non-zero so that v(4,4;- - - 4,,) = 0. Hence if
His- ..y, are the non-zero eigenvalues of ad(N) then v(uy: - - thy,) =
2v/(a + 1). Using now (a) it follows that v(y) = - - - = v(up,) = 1/(a + 1).

Assume now that M_,, Eedg_,, and that N is regular semisimple. Then N°
is nilpotent, hence P©© = X%ms From (i), it follows that the coefficient of X’ in P
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is in e4. This coefficient must be (up to sign) the product of the 2v non-zero
eigenvalues of ¢ 'ad(NV)?*!. Thus, if 4, . . . , Ay, are the non-zero eigenvalues of
ad(N) then 2, (¢'A¢*')Eed. It follows that v(4,- - - Ap) > 20/(a + 1); in
other words, we have v(A(N)) > 2v/(a + 1).

The last inequality holds trivially when N is not regular semisimple; we then
have {A(N)) = . Thus, (d) is proved.

We now prove (c). We fix M@Eg_,, — {0} and let s be the number of
non-zero eigenvalues of ad(N + eM,) (including repetitions). Let R : g — F be
the polynomial which attaches to an element x €g, the s-th elementary
symmetric function in the eigenvalues of ad(x).

By (a) we have (R(V)) = s/(a + 1) for any NEN + n. Hence the set

U= {NEN+n | vR () =— }
a-+1
is open in N + n. It is non-empty since v(R(N + eM®)) = s/(a + 1), by (b).
Let N €4%. Assume that all eigenvalues A of ad(N) satisfy (4)> 1/(a + 1).
From the definition of R, it follows that v(R(N)) > s/(a + 1), a contradiction.
Thus, at least one eigenvalue A of ad(N) satisfies v(1) < 1/(a + 1). It then
satisfies v(4) = 1/(a + 1), by (a). This completes the proof.

9.12. We now consider a nilpotent element N in g such that the centralizer of
N in the adjoint group of g is a unipotent group. The classification of such N is
due to Dynkin. We shall describe in each case the conjugacy class (oy) in W.

(a) Assume that Nis regularing. From 9.11(d) it follows that oy is a Coxeter
element of W.

(b) Assume that N is subregular in g of type Eq, E; or E;. From 9.11(d) it
follows that (gy) is the class of a regular element in W (in the sense of [Sp 1]) of
order 9, 14, 24 respectively.

(c) Assume that N is sub-subregular in g of type E;. From 9.11(d) it follows

that gy is the class of a regular element in W of order 20.

(d) Assume that N is sub-subregular in g of type E,. From 9.11(c) it follows
that oy is the class of an element of W with characteristic polynomial
D, (X)D(X)D,(X) (P, = d-th cyclotomic polynomial).

(e) Assume that Nisasin 9.9 in g of type D,. Then (oy) is as described in 9.9.

This exhausts all cases. We find that the restriction of our map N — (o) to N
as above coincides with the map defined by Carter-Elkington [CE]. (See also
[Sp 1, 9.13].) The connection between regular nilpotent elements and Coxeter
elements has been first pointed out by Kostant [Ko].
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9.13. It is likely that our map N — (ay) is an injection of the set of nilpotent
orbits in g to conjugacy classes in W. It is a bijection for 3[,, but not in the
general case. Note however that our map extends naturally to a map i,
{nilpotent orbits in !p} — conjugacy classes in W where p runs over the classes
of maximal parahoric subalgebras of gr and 'p is the finite-dimensional
reductive quotient of p. It is likely that this extended map is surjective.

§10. Remarks on characters

In this section we shall change our notations: G will denote a split semi-
simple simply connected algebraic group over a finite field k = F,, G = G(k),
T C G amaximal torus defined over F,, T = T(k). To any character §: T —C*
in general position one can associate an irreducible representation 774 of G
(see [DL]). Fix a unipotent element « in G. The character value tr 7y 4(u) does
not depend on the choice of §. We denote it a, (1), where w is the conjugacy
class in the Weyl group W of G corresponding to T. In large characteristic one
has the following algebro-geometric interpretation for a, (u) (see [Sp 3], [K]).
Let 2 be the variety of Borel subgroups in G, 8, C # the variety of Borel
subgroups containing #. The group W acts naturally on H*(2,) = H*(#,, Q)
(see [Sp 3]) where / is a prime, (/, g) = 1. We have

2dim @,

a,w)=(—-1"" ¥ (—1)Tr(w - Fr, H(#.))

i=0

where r = k-rank of G, r(T) = k-rank of T and Fr denotes the Frobenius map.
In other words the computation of a,,(1) is reduced to the study of the action of
W X FrZ on H*(®#,). It is known that H*%4&,) = 0 (see for example [CLP])
and that the eigenvalues of Fr on H*(4,,) are integral powers of g times roots of
1. This gives us some fairly explicit formulas for a,,(u).

We now consider the local field F = k((¢)) with residue field k and with ring
of integers A = k[[e]]. Let G = G(F), K = G(4); let p: K — G be the natural
projection. To any representation x of G we associate the representation Il(x)
of G defined by I(r) = Ind(x o p). Let 75 =Il(mze). If T is a k-anisotropic
torus in G, then Iy 4 is a finite sum of irreducible cuspidal representations of G
(see [H-Ch]). Therefore its character xr,is well defined and is a locally constant
function on the set of regular semisimple elements in G. Let % C K be the set
of regular semisimple elements « in X such that p(«) is unipotent. It is clear
that the restriction of xr 4 to % does not depend on §. We denote it by yx,, where
as before w is the conjugacy class in W corresponding to 7. An element u €G is
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said to be elliptic if its centralizer is a torus anisotropic over the maximal
unramified extension of F. (This is stronger than the usual notion of ellipti-
city.) Let u be an elliptic element in %. We denote by 28,(k) the set of Iwahori
subgroups in G containing #. One can show as in §3, Corollary 2, that 8, (k) is
the set of k-points of a natural projective k-variety ,. The group W acts
naturally on H*(#,) and
2dim @,
=% T (—1)Tr(woFr, H(A,)).
i=0

For G = GL,, x,(u) is given by an explicit elementary formula [BDKV],
[CH] (in large characteristic); this suggests that H*{4,) =0 and that the
eigenvalues of Fr on H*(4,) are powers of ¢'.

In the Appendix it will be seen that for G = Sp, there exists a family u, E%,
A Ek, of elliptic elements such that the motive.of 48, contains the motive of an
elliptic curve E; with j-invariant 4. Therefore x,(1;) has the form x,(w;) =
A(q) + B(q)|E,(k)] where A(q), B(g) are non-zero polynomials in ¢. In
particular, we see that there is no “elementary” formula for x,(u).

APPENDIX
An example of a non-rational variety By, for G = Sp(6)

BY
J. BERNSTEIN AND D. KAZHDAN

Let L be a 6-dimensional C-vector space with symplectic scalar product
(, ), G(=Sp(6)) the corresponding symplectic group Aut(L, ( , )), g its
Lie algebra. Weput L, =A®. L, L = FQL, G = G(F)=Au(L, ( , )), K=
G(A).

Consider the nilpotent conjugacy class in g, which consists of elements S
such that Ker S = Im S'is a Lagrangian subspace in L. We fix one such element
S and denote by N an induced element in g,. By definition N = S + &Y, where
Y €g, is an element in the general position (see the end of the introduction
and §8).

We claim that the variety 8y is not rational. More precisely, we will prove
that one of its components admits a dominant morphism onto an elliptic

curve.
First of all, let us describe the curve. Put V=KerS=ImS, V'=L/V.
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Since V is Lagrangian, dim ¥ = dim V’ = 3 and V" is canonically isomorphic
to the dual of the space V.

Operators S and Y define morphisms S: V' =V, v'>Sv'EV C L and
Y: V=V, v—>Yv(mod V+eL)YELNV +elL,)=~V". Since S, Y Eq, these
morphisms are symmetric, i.€., they define quadratic forms Bg and By on V*
and V respectively, namely, Bg(v') = (Sv/, v’), By(v) = {Yv, v) (mod e4). We
denote by @ C P(V) and @’ C P(V’) quadrics, defined by these forms and
consider a curve E = {(/, ) CQ X Q’| (I, I") = 0}.

It is easy to see that E is connected and the natural projection E — Q = P! is
a 2-fold covering ramified at 4 points, which are points of intersection of the
quadric Q with the quadric Q¥ dual to the quadric Q’. This shows that E is an
elliptic curve and allows us to compute the Jacobi invariant j(E). Namely, let
A1, Ay, A5 be eigenvalues of the operator SY: V —V; since Y is generic, we
assume that they are nonzero and distinct. Then in some coordinate systems
on V and V’ we can write By =3 x?, Bg=Z2 Ay?, ( ) =2 x;y;.. The dual
quadric is given by B¥ =2 ux? with g, =4,'. Using this it is easy to
check that

3 2
J(E)=32 <2 (u; _ﬂj)z) /( IT (u _ﬂj)> .
i<j i<j

PROPOSITION 1. There exists an irreducible component Z of &y and a
fibration ¢ : Z — E, with fibers isomorphic to P! X P,

COROLLARY 1. Variety By is not rational. Moreover, its birational type
essentially depends on N, i.e., on (4, Ay, 4;).

REMARKS. (1) One can show that #,\Z is a rational variety, so the
birational type of #y completely determines the curve E.

(2) Our proof depends on the fact that dim &, = 3, which we easily deduce
from §8 for generic Y. In fact, one can prove by direct calculations (similar to
ones in §9) that dim @, = 3 for any Y such that A, are nonzero and distinct.

PrOOF oF ProposITION.  First of all, let us give a more geometric descrip-
tion of varieties X = G/K and # = G/,

DEFINITION. A lattice is a finitely generated 4- submodule A C L, such that
F.A=L.

A chain is a sequence of lattices C = {C(i)}, i €Z, such that for all i,
C@i+1)S C@i)and C(i + 6)=eC(i).
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It is easy to see that in a chain dim¢ C(i)/C(j) =j — iforj = i. We define the
dual lattice A* by A*={xEL |(x,A)EA)} and the dual chain C* by
C*(i)=C(—i)*.

LEMMA 1. X and # as G-sets are naturally isomorphic to the sets of selfdual
lattices and selfdual chains, respectively.

ProoF. Denote by A, the selfdual lattice Ay = L, = AQL. Its stabilizer in
G coincides with K. It is known that G acts transitively on the set of selfdual
lattices, so this set is isomorphic to G/K. Now let C = {C(i)} be a selfdual
chain. Replacing C by gC for some gEG we can assume that C(0) = A,.
Consider the flag # = {L =FyD F| D -+« D Fg=0} in L = Ay/eA, given by
F; = C(i)/e Ay Since eAy = C(6), this flag is a complete flag in L, dim F; =
6 — i. Moreover, the condition C = C* implies that the flag # is selfdual, i.e.,
F} = F,_;. Conversely, any selfdual flag # in L determines a selfdual chain C
by C(i)=F,+eA,for i =0,1,...,6. Since K acts transitively on selfdual
flags and the stationary subgroup of one of them coincides with Iwahori
subgroup B,, the set of selfdual chains is isomorphic to G/B, = %.

Henceforth we will identify 4, with the variety of selfdual N-invariant
chains. Note that since N is nil and dim(C({)/C(i + 1)) =1 the condition
NC(i) € C(i) in fact is equivalent to NC(i) C C(i + 1).

Fix lattices Ag=L,=A®L and A’=V +¢A, Clearly Af =A, and
(A)* =e~'A’ = ¢~ 'V + A,. We define a subvariety Z C &y by

Z ={C={C()}| A D C(1)D C(2)D> N, NC(— 1) C C(1), NC(2) C C(4)}.

LEMMA 2. There is a natural fibration ¢ : Z — E with fibers isomorphic to
P! X P\. In particular, Z is irreducible nonsingular of dimension S.

LEMMA 3. All irreducible components of By have dimension 3.
Clearly, these two lemmas imply the proposition.

ProoF OF LEMMA 2. Let C = {C(i)}€Z. We have A ;D C(1)DA' =
V+eAgs0 €7V + Ay D C(—1)D A, Since dim C(— 1)/C(1) =2 we have
dim C(— 1)/Ay=1, i.e., C(— 1)=¢"'1 + Ay, where /EP(V). Note that / is
completely determined by C(— 1) as ! =eC(— 1)/eAy C A/eAy= V.

Choose a nonzero element a €/ and consider b =& 'a€C(— 1). Then
(Nb, b)=¢"*Sa, a)+ &~ '(Ya, a) =& 'By(a) (mod A4). Since bEC(— 1) and
Nb e (1) by definition of Z this implies that By(a) =0, i.e., /€Q.

Similarly C(2) = I’©A’ where I’€ Q’. The line I’ is determined by C(2) as
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I'=C(2)mod A’ C AyA’= V. Since (C(— 1), C(2)) C A, wesee that (/,[") =0,
ie., (/,I"EE.

Thus we have described a morphism ¢: Z —E. Let us describe the fiber
9~ '(l, I). By definition, it consists of selfdual chains C = {C(i)} € Z such that
C(—D=¢N+A, CH)=C(—1*, CQ=I'+AN, C@=¢eC(-2)=
eC(2)*. Hence such a chain is completely determined by lattices C(0) and
C(3). Since C(— 1) & C(0)SC(1) the lattice C(0) is determined by a line in the
2-plane C(— 1)/C(1). Similarly C(3) is determined by a line in the 2-plane
C(2)/C(4). We claim that any choice of these two lines gives a chain C =
{C(i)} € Z, which shows that ¢ ~'(/, ) =< P' X P".

Let us check that any lattice C(0) between C(— 1) and C(1) satisfies all
conditions for a chain in Z. Since NC(— 1) C C(1) we automatically have
NC(0) C C(1). So we only have to check that C(0) is selfdual.

Clearly C(0)* also lies strictly in-between C(— 1) and C(1). So it is enough
to show that C(0)* D C(0), i.e., that for each a, b€ C(0) we have (a, b) EA.
Since ( ) is skew symmetric and dim C(0)/C(1) = 1, we can always assume
that b € C(1). But then (a, b)E A since a EC(— 1) = C(1)*.

Similarly one checks that any choice of C(3) between C(2) and C(4) satisfies
all conditions.

PROOF OF LEMMA 3. As was shown in §4 all components of 4, have the
same dimension. Since N is induced by a nilpotent element S E€gq, dim &,
equals dim %, where &, is the variety of S-invariant flags in the flag variety of
g. It is easy to check that dim % = 3, which proves the lemma.
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