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Abst rac t .  We deduce the Ahlfors five islands theorem from a corresponding 
result of Nevanlinna concerning perfectly branched values, a rescaling lemma for 
non-normal families and' an existence theorem for quasiconformal mappings. We 
also give a proof of Nevanlinna's result based on the rescaling lemma and a version 
of Schwarz's lemma. 

1 Results  o f  Ahlfors,  Nevanl inna and Z a l cm an  

Let D j, j = 1 , . . . ,  5, be simply-connected domains on the Riemann sphere 

with piecewise analytic boundary and pairwise disjoint closures. Let D C C be a 

domain and denote by 3rA(D) = f a  (D, {Dj}~=I) the family of  all meromorphic 

functions f : D ~ C with the property that no subdomain of D is mapped con- 

formally onto one of  the domains Dj by f .  (If there is such a subdomain, then it 

is called a simple island over D s.) The Ahlfors five islands theorem can now be 
stated as follows. 

T h e o r e m  A.1. -~A (D, {Ds}~=I) is normal. 

Closely related is the following result. 

5 T h e o r e m  A.2. 3VA (C, {Dj }S=I) contains only the constant functions. 

These results come from the Ahlfors theory of covering surfaces; see [5], 

[22, Chapter 5], [28, Chapter XIII] or [34, Chapter VII. 

In order to state two similar results associated with Nevanlinna's theory on the 

distribution of values, let a s E C, j = 1, . . . ,  5, be distinct and denote for a domain 
D c C by 3rN(D) = 3rN (D, {aj}~=~) the family of all meromorphic functions 

f : D ~ C with the property that there does not exist j E {1, . . . ,  5} such that f 

has a simple a s-point. (The value a s is then called perfectly branched or totally 
ramified.) 

337 
JOURNAL D'ANALYSE MATHI~MATIQUE, Vol. 76 (1998) 



338 w. BERGWEILER 

T h e o r e m  N.1. 5rg (D, {aj}~__l) is normal. 

T h e o r e m  N.2. bVN (C, {aj }5=1) contains only the constant functions. 

Nevanlinna himself([27, p. 102], [28, w was concerned more with Theorem 

N.2, while Theorem N.1 appears in the work of  Bloch [15, Theorem XLIV] and 

Valiron [35, Theorem XXVI] (with proofs being based on Nevanlinna's theory). 

Among further accounts of  Nevanlinna theory we mention [22, Chapters 1-4] and 

[34, Chapter V]; for a proof of  Theorems N. 1 and N.2 using different methods we 

refer to Robinson [29]. 

Theorem N.1 follows from Theorem A.1 and Theorem N.2 follows from 

Theorem A.2 because if aj E Dj for j E {1, . . . ,5},  then ~ n  (D,{aj}~=l) C 
�9 5 . UA (D, {D3}j=I), and, given five distinct values aj, one can always find five 

domains Dj with the required properties such that a~ E D~ for j E {1, . . . ,  5} (for 

example, one can choose D3 to be a sufficiently small disk around a3). 

Also, Theorem A.2 follows from Theorem A.1 and Theorem N.2 follows from 

Theorem N.1 because if f : C ~ C is non-constant, then ~" = {f(nz)}n~N is not 

normal at 0, but b r c A'x(C) i f f  E Yx(C), for X E {A, N}. 

It is less obvious (and perhaps less well-known) that in turn Theorem X.1 

may also be deduced from Theorem X.2 for X=A or X=N. This follows from the 

following 

ReseaHng  L e m m a .  Let D C C be a domain and let ~ be a family offunctions 

meromorphic in D. l f  f is not normal, then there exist a sequence (zk) in D, a 

sequence (Pk) o f  positive real numbers, a sequence (fk ) in :F, a point zo E D and 

a non-constant meromorphic function f : C ~ C whose spherical derivative is 

bounded such that zk ~ Zo, Pk ~ 0 and f~ (Zk + pkz) ~ f ( z )  locally uniformly in C. 

This lemma is due to Zalcman [36]. The corresponding result for normal 

functions had been proved earlier by Lohwater and Pommerenke [25]. The proof 

of  the rescaling lemma is fairly short and elementary; it uses only Marty's criterion. 

We remark that the statement that f has bounded spherical derivative does not 

appear in [36] but follows immediately from the proof; see also [37, p. 216f]. For 

completeness, we include a proof of  the rescaling lemma in w 

To deduce Theorem X.1 from Theorem X.2, we have only to note that if 

~ x ( D )  were not normal, then we could find sequences (zk), (Pk) and (fk) as 
in the rescaling lemma and would obtain a non-constant function f E ~x(C),  
contradicting Theorem X.2. 

In this note we show that the rescaling lemma, together with an existence 

theorem for quasiconformal mappings, can also be used to deduce Theorem A.2 
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from Theorem N.2. We also show that the rescaling lemma and a generalization 

of  Schwarz's Lemma give a proof of Theorems N. 1 and N.2. We thus provide an 

alternative approach to the Ahlfors five islands theorem. 

For a generalization of  the above results, a discussion of  applications of  the 

Ahlfors five islands theorem in complex dynamics, and some further comments, 

see w below. 
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2 The proof  that Theorem N.2 implies Theorem A.2 

Besides the rescaling lemma, we shall need the following existence theorem 

for quasiconformal mappings (see [7, Chapter V] or [24, Chapter V]). 

E x i s t e n c e  T h e o r e m .  Let # : C ~ C be measurable with I[#lloo < 1. Then 

there exists a quasiconformal homeomorphism 4) : C ~ C whose complex dilatation 

agrees with # almost everywhere. 

This existence theorem is rather deep. It will be apparent from the arguments 

below, however, that for our purposes it suffices to know that the conclusion holds 

for smooth #. In this case the proof is easier. For a discussion of  the existence 

theorem and its history we refer to [23, p. 140]. 

The following result is a simple consequence of  the existence theorem 

(cf. [24, Chapter VII). 

Coro l l a ry .  Let  q : C ~ (~ be quasiregular. Then there exists a quasiconformal 

homeomorphism 4) : C ~ C and a meromorphic function g : C --~ (2 such that 

q = 9 o r  

To deduce the corollary from the existence theorem, we denote the complex 

dilatation ofq by #, choose ~ according to the existence theorem, define 9 = qo r 

and observe that the complex dilatation of  9 vanishes almost everywhere, which 

implies that g is meromorphic. 

To deduce Theorem A.2 from Theorem N.2, we assume that Theorem N.2 

holds, but that there are domains Dj as in w such that ~A (C, {Dj}~__I) contains 
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a non-constant function f .  We may assume that oo is not in the closure o f  the 

domains Dj, because otherwise we can replace f by T o f and Dj by T(Dj)  for 

a suitable M6bius transformation T. Fix five distinct values a l , . . . ,  a5 E C. For 

1 �9 [, the closures of  the disks D(aj, e) = {z E C : [ z -a j [  < e} O < e < 7 mmjr [a 3-ak  
are pairwise disjoint. It is not difficult to see that there exists a quasiconformal 

homeomorphism r  : C ~ C such that r C D(aj,~) for all j �9 {1, . . .  ,5}. 

Now r o f is quasiregular, and thus the corollary to the existence theorem implies 

that there exist a quasiconformal homeomorphism r : C ---, C and a meromorphic 

function ge : C --~ C such that r  o f = ge o ee. Since f �9 -~A (C,{Dj}5=I) and 

r C D(aj, e) for j �9 {1 , . . . ,  5}, we have g, �9 r (C, {D(aj, e)}~=l). 

Fix a sequence (ek) tending to zero. We may assume that {g~k } is not normal, 

because otherwise we can replace gek (z) by g,k (Mkz) with Mk large. Now apply 

the rescaling lemma to the family {g~ } to obtain a subsequence of  (g~,), which 

we again denote by (g~k), and sequences (zk) and (pk) as in the rescaling lemma, 

such that g,~ (zk + pkz) --~ g(z) locally uniformly in C for a non-constant mero- 

morphic function g. Since ek ~ 0, we have g �9 Ne>o.~A (C, {D(aj,e)}~=l) = 
r (C, {aj }3---1)" This contradicts Theorem N.2. 

3 A proof  of  Theorems  N.1 and N.2 

Besides the rescaling lemma, we shall require an extension of  Schwarz's 

Lemma. The natural generalization of  Schwarz's Lemma to multivalued func- 

tions is due to Nehari [26]. For our purposes, a special case o f  Nehari 's  result 

suffices. 

S c h w a r z  L e m m a  for Square  Roots.  Let F be holomorphic in the unit 

disk. Suppose that F has only multiple zeros and that IF(z)[ < 1 for  [z[ < 1. 

Then IF'(0)[ 2 _< 41F(0)l. 

Note that the conclusion just says that [G'(0)] _< I for G = x/F. Nehari 's proof  o f  

the Schwarz Lemma for multivalued functions is based on Ahlfors 's [6] extension 

of  the Schwarz Lemma. This is also the main tool in Robinson's [29] proof  o f  

Theorems N. 1 and N.2, so the proof  below of  these theorems has something in 

common with Robinson's proof  (though there are also significant differences). For 

completeness we describe the method of  Ahlfors and Nehari. 

P r o o f  o f  the  S e h w a r z  L e m m a  for square  roots.  We may assume F is 

holomorphic in the closed unit disk and satisfies [F(z)l < i there, because otherwise 

we can consider F(rz) instead o f F ( z )  for r < 1, and then take the limit as r --, 1. 
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We put 

IF'(z)l and v(z) --- log 1 
u(z)  = log 2 ~  (1 - I F ( z ) l )  1 - Izl 

Then u(z) ---. - o o  i f z  tends to a zero o f F  of  multiplicity at least three, but u is finite 

and Coo at all other points of  the unit disk, including the double zeros o f  F.  We 

also have v(z) ~ oo as [z[ ---* 1. Thus the function w := u - v attains its maximum 

at some point z0 in the unit disk where it is C ~176 This implies that Aw(zo)  < O. 

Now 
Au = 4e 2u and Av  = 4e 2v, 

so that 

Thus 

Aw(zo) : 4 ( e  2u(z~ - e2v ( z~  

4(e2U(zo)-e2V(zo)) <_0, 

and hence U(Zo) <_ V(Zo). From the definition of  z0 we thus deduce that u(z) - v ( z )  = 

w(z)  <_ w(zo) = U(Zo) - V(Zo) <_ 0 for [z I < 1. This yields 

IF'(z)l < ___1____1 

e ~ ( 1  -IY(z)l) - 1 - I z l  2" 

T h e  conclusion follows from the special case z = 0. 

P r o o f  o f  T h e o r e m s  N.1 a n d  N.2.  We have already seen in w that each 

of  the two results can easily be deduced from the other one. Assume now that 

Theorem N. 1 is false, so that there exist a domain D and aj 6 C, j = 1 , . . . ,  5, such 

that ~'N (D, {aj}~=l) is not normal. An application o f  the rescaling lemma shows 

that t N  (C, {aj }5=1) contains a non-constant function f whose spherical derivative 

is bounded. We may assume that aj # oo for all j 6 {1 . . . .  ,5}. Consider the entire 

function 
f ' ( z )  ~ g(z) = - a j ) '  

clearly, g ~ O. Since f has bounded spherical derivative, g is small when f is large. 

Thus g is non-constant, and there exists a sequence (z,~) such that g(z,~) ~ oo; 

hence f(z,~) 74 oo. We consider h,~(z) = f ( z  +zn)  and, passing to a subsequence i f  

necessary, may assume that h,~ converges locally uniformly to some meromorphic 

function h : C ~ C. It follows that h(z) =- ak for some k E {1 , . . . ,  5}, because 

otherwise 
h'(z) 2 

g(z + zn) ~ r i5=l(h(z)  _ aj) • oo, 
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which contradicts 9(zn) ~ oo. 

For sufficiently large n, the function F = hn - ak satisfies the hypotheses of  

the Schwarz Lemma for square roots. Thus [f'(zn)] ~ = [F'(0)I 2 _< 4IF(0)I = 

4{f(zn) - all and hence 

4 
I9(z~)l < l-[j~k If(z~) - a~l' 

which is a contradiction since f ( zn )  --* ak and g(zn) --* oo. 

R e m a r k ,  We note that i f  all ak-points of  f have even multiplicity, and if  F is 

as in the above proof, then v/-ff can be defined as a single-valued function, and thus 

the classical Schwarz Lemma (applied to this function) suffices. (Alternatively, 

we observe that F ~ 0 as n ~ cc so that v/ff ~ 0 and hence F'/2vr-ff -~ O, which 

yields F'(O)2/F(O) ~ 0.) Hence we obtain a fairly easy proof of  the result that a 

non-constant meromorphic function in the plane cannot take f ive values with only 

even multiplicities, as well as o f  the corresponding normality criterion. 

4 A proof  of  the rescaling l e m m a  

By f #  we denote the spherical derivative o f  a meromorphic function f .  Recall 

that Marty 's  normality criterion says that a family .T o f  meromorphic functions is 

normal i f  and only if  the family { f#  }f~:r is locally bounded; see, e. g., [8, p. 218], 

[22, p. 158] or [30, p. 75]. 

To prove the rescaling lemma, suppose that ~" is not normal. By  Marty 's  

criterion, there exists a sequence (ffk) in D tending to a point if0 E D and a sequence 

(fk) in ~" such that fk#(r ~ co. Without loss o f  generality, we may  assume 

that ~o = 0 and that {z : [z I < 1} c D. Choose zk satisfying Izk[ < 1 such that 

Mk := f~(zk)(1 - Izk l )  -- maxlzl<l f~(z)(1 - I z l ) .  Then Mk > f~(r - Ir and 
hence Mk ~ oo. Define Pk = 1/ f f f ( zk) .  Then Pk <_ 1/Mk so that Pk --* 0. Since 

[zk + pkzl < 1 for Iz[ < (i  - iz~l)/pk = Mk, the function 9k(z) = fk(zk  + pkz) is 

defined for [z[ < Mk and satisfies 

1 - I z k l  1 - I z k l  1 
1 - Izk + pkzl  -< 1 - Izkl - pklz]  = x - Izl/M~ 

there. By Marty 's  criterion, the sequence (9~) is normal in C and thus has a 

subsequence which converges locally uniformly in C. Without loss o f  generality, 

we may assume that 9k ---' f for some f : C ~ ~1 and zk ~ z0 for some z0 ~ D. 

Since # 9k (0) = 1 for all k, we have f#(0)  = 1, so that f is non-constant. Clearly, 

we also have f # ( z )  < I for all z E C. 
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5 F u r t h e r  r e m a r k s  

1 Theorems A. 1, A.2, N. 1 and N,2 are actually special cases of  more general 

results. Here we only formulate a generalization of  Theorem N.2. 

T h e o r e m .  Let f : C --. s be a non-constant meromorphic function, q E N, 

and a l , . . . ,  aq E C. distinct. Suppose that all aj-points o f f  have multiplicity at 

least rnj. Then 

1 -  <2 .  
j = l  

If f does not take a value a~, then we can take rnj = oe and 1 - 1/rnj = 1. So 

this theorem contains Picard's theorem, and it also follows that an entire function 

has at most two finite perfectly branched values. 

The above theorem may also be proved using the methods of  w (Here we 

define g(z) f ' ( z )M / q = [ I j=l ( f ( z )  -- a~)(m~-l)M/m,, where M is the least common 

multiple of  the my, and later use a Schwarz lemma for m-th roots giving IF'(0) I " < 

mmlF(0)r  ~-1 i f F  has only zeros of multiplicity at least m. I f m j  = o0 for some 

j ,  we replace rnj by a large integer.) Again, the proof is particularly easy in the 

special case where the multiplicity of each aj-point is a multiple of  mj.  For q = 3 

this special case of  the theorem goes back to Carath6odory [ 18]. 

We leave it to the reader to state (or look up in the references given in w the 

analogous generalizations of  Theorems A. 1, A.2 and N. 1 and to check that they can 

be deduced from the result given above with the rescaling lemma and the methods 

of  w 

2 As already mentioned, the generalization of  Theorem N.2 given above con- 

tains Picard's theorem (and thus the corresponding generalization of  Theorem N. 1 

contains Montel's theorem). I consider the method used as a serious candidate 

in the competition for the simplest proof of  the theorems of  Picard and Montel 

(although I admit that the proof in [37, p. 218] is hard to beat). For completeness, 

we summarize the argument. 

Suppose that Montel's (or Picard's) theorem does not hold. An application 

of  the rescaling lemma shows that there then exists a non-constant function f 

which is meromorphic in the plane, omits three values al,a2,a3 E C and has 
f t z 4  3 bounded spherical derivative. The function g(z) = ( ) / I-I~__-x ( f (z )  - aj) 3 is 

then entire and close to zero where f ( z )  is large. Since g(z) ~ O, there exists 

a sequence (z,J such that g(z,~) --* ~ ;  hence f(z,~) 74 c~. By normality, we 

can assume that f ( z  + z~) ~ h(z) locally uniformly in C for some meromorphic 
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function h. We deduce that h(z )  = ak for some k E {1, 2, 3}, since otherwise 
h t z 4  3 3 g ( z  + z~)  ~ ( ) / I-[j=1 (h ( z )  - ay) 7~ ~o, contradicting g(z~)  --* c~. It follows 

that ( f ( z  + z~) - ak ) 1/4 --* O. This implies that 

y ' (z  + z~) --, o 
4(f(z + Zn) - ak) 3/4 

and thus f ' ( Z n ) 4 / ( f ( Z n )  --  a k )  3 ~ O, contradicting g(z~)  --* oc. 

3 The deduction of  Theorem X. 1 from Theorem X.2 and vice versa is an exam- 

ple of  Bloch's Principle, which says that the family of  all functions meromorphic 

in some domain which have a certain property there is likely to be normal if  there 

is no non-constant meromorphic function in the plane which has this property. 

Zalcman introduced the rescaling lemma in order to make this heuristic principle 

rigorous and to prove it for certain properties. 

The paper [14] to which this principle is usually traced actually contains two 

principles. Bloch states the first of  these as "Nihil est in infinito quod non prius 

fuerit in finito" and it is this that seems to have been interpreted later as explained 

above. (I could not, however, find this explicit formulation in Bloch's paper.) Bloch 

calls the second principle "le principe de continuit6 topologique" To illustrate it, 

he quotes the result that the family of  holomorphic functions having three fixed 

finite values as perfectly branched values is normal and contrasts it with the result 

that the family of  all holomorphic functions having no simple island over three 

given disks with pairwise disjoint closures is normal. (Bloch notes that "three" has 

to be replaced by "five" for meromorphic functions.) The arguments in w can be 

considered as a confirmation of  Bloch's belief that the results mentioned should be 

equivalent in the sense that either one can easily be deduced from the other one. 

So Bloch actually "knew" the five islands theorem in the special case that the 

domains Dj are disks, although his arguments for it did not constitute a rigorous 

proof. We note that, in the early versions of  his theory, Ahlfors [1, 2, 4] also 

considered only the case where the Dj  are disks. Ahlfors gives an interesting 

discussion of  Bloch's second principle in [3, pp. 202-203]. 

For a thorough discussion of  Bloch's first principle, see the book by Schiff 

[30, Chapter 4] or the survey by Zalcman [37]. The latter paper also contains 

various other applications of  the rescaling lemma. Recently, Eremenko [21 ] has 

given a simple proof of  the celebrated covering theorem of  Bloch (and, in fact, a 

generalization of  this result to quasiregular mappings in higher dimensions) using 

the rescaling lemma. Here a shrinking of  disks to points similar to that in w is 

used. 
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The fact that the function f occurring in the rescaling lemma has bounded 
spherical derivative is not used in w but it is essential in w This fact has proved 

useful in other instances as well: instead of considering arbitrary meromorphic 

functions, it suffices for certain problems to consider functions with bounded 

spherical derivative. For a discussion of  this aspect of  the rescaling lemma, see 

[37, p. 226t]. This argument has also been used in [17]. 

4 Quasiconformal mappings, and in particular the existence theorem men- 

tioned in w have become an indispensable tool in the modem treatment of complex 
dynamics (see, e.g., [12, 19, 33]). The Ahlfors five islands theorem has also found 

applications in complex dynamics. The first such application is due to Baker [9], 

who used Theorem A. 1 to prove that repelling periodic points are dense in the Julia 

set of  an entire function. Later, Schwick [31 ] gave a different and more elementary 

proof of  this fact, using Theorem N.2 and the rescaling lemma instead. (It was 

this paper of  Schwick which led me to ask whether one could also obtain Theorem 

A.2 from Theorem N.2 and the rescaling lemma. Meanwhile, however, there is 

an even more elementary proof of Baker's result by Bargmann [11], where only 

the rescaling lemma and a few simple facts from complex dynamics are needed.) 
Schwick's proof has been extended by Bolsch [ 16] to meromorphic functions with 

countably many essential singularities. For transcendental meromorphic functions 

in the plane, the density of repelling periodic points in the Julia set had been proved 

earlier by Baker, Kotus and LiJ [10], using a version of the five islands theorem. 

There are further applications of Theorem A. 1 in complex dynamics, e.g., it 

has been used to estimate the Hausdorff dimension of Julia sets [32], to study 

connectedness properties of Julia sets [20] and to prove the existence of periodic 

points of  given periods [ 13]. 

The proofs of  Theorems A. 1 and A.2 given here may thus be of particular 

interest for people working in complex dynamics. They have the existence theorem 

for quasiconformal mappings in their toolbox anyway, and everything else that is 

needed is fairly simple and elementary. 
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