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1. Introduction. Quasiconformal mappings, by their very name, ought to
be in some sense angle-preserving. One of the first problems which arises, how-
ever,in studying the behavior of angles under quasiconformal mappings, is the
non-differentiable character of these mappings, allowable on a set of measure
zero. An exceptional point P, may lie on a smooth curve which is mapped
onto a curve not possessing a tangent line at the image Pg:

For example, given k > 0, let the transformation T be defined in the (x, y)-
plane for x >0, by

u=x,
v = kxsin(logx) + .

T may be extended to be a homeomorphism of the plane by taking it to be
the identity mapping for x <0, but it is then non-differentiable on the axis
x=0. The ray y=¢, x 20 is mapped on the curve v = kusin(logu) + c,
which has no tangent line at (0,c¢). T may further be extended to any number
of dimensions by setting the other coordinates respectively equal to one another.

Such behavior is part of the price paid for compactness of various families
of quasiconformal mappings, which is essential for their use in extremal
problems. The compactness is obtained, for example, by adopting the definition
that a homeomorphism T is quasiconformal if the ratios
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(1.1) MA%?

are bounded above and below. Here, R is any doubly connected region in the
domain of T, R* its image, and M(R), M(R*) the respective moduli of R, R*.

Various measures of quasiconformality have been investigated: the inner
dilatation K,(T), which is the reciprocal of the infimum of the ratios in (1.1);
the outer dilatation Ky(T), which is the supremum; and the maximal dilat-
ation K(T), which is simply max{K,(T), Ko(T)}. For the general theory of
quasiconformal mappings in space, the reader is referred in particular to
Viisild, [8], and Gehring, [4].

A somewhat different looking dilatation is the linear dilatation K, (T),
defined by

K, (T) =esssup D(P,),

where

. max{[T(P) — T(Po)[: [P — Po| =7}
=1 '
D(Pg) = lim sup min{| T(Q) — T(Po)[: @ ~ Po| =1}

It will prove to be K;(T) which is most intimately connected with angles.
Our results can easily be rephrased in terms of K(T) through the sharp
estimates for n-dimensional mappings,

K(MY"Y < K(T) £ K(T)*",

Our example is quasiconformal, with K;(T) =1 + k* + k\/2 + k2, irrespective
of the number of dimensions.

The problem of defining angle measure for curves, possibly without tangent
lines at the vertex, has been studied extensively in the plane by F. W. Gehring
and the present author, [1], and by O. Taari, [7]. The definition proposed in the
former could have been formally adapted to any number of dimensions, al-
though it was not immediately clear how it could be applied to obtain analogous
theorems. It now appears that the key lies in the inner angles of homeomorphic
images of cones. For clarity of exposition, we present the theory of angles
and quasiconformal mappings in three dimensions, treating first necessary,
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then sufficient, and finally necessary and sufficient conditions for quasiconfor-
mality. The article closes with the few remarks necessary to recover the theory
in higher dimensions.

2. Notation and elementary observations. We consider the 3-dim-
ensional Euclidean space of points P = (x,y,z). If, for i = 1,2, P, = (x,, ¥;, 2)),
we denote as usual by P, P, the real number x,x, + y,y, + z,z,, and by
IPI the nonnegative square root of P-P. The point (0,0,0) will be 0.

Central in our work will be homzomorphisms of domains in space. We
will generally use the symbol T for such a mapping, and conversely, any
transformation labelled T will always be a homzomorphism. Occasionally
we write (u,v,w) = T(x, y,2z). Given T and any set E, point P, or topological
angle o, the symbol E*, P*,a* will denote the image of E, P, or « under T.
T~ ! will denote the inverse transformation, 0E will denote the boundary of E,
and p(P,E) will denote the distance from P to the set E.

2.1. Topological angles and their measure. By a topological angle
a at a point Py, will be understood a pair of simple curves (y;,7,), withcommon
initial point Py, known as the vertex. It will not be necessary to consider para-
metrizations of these curves, as our subsequent definitions depend only on
their traces. If we wish to indicate the curves explicitly, we will write a = (y,, 7,).
For the measure 4 of the topological angle a = (y,, y,) at Py, we define

o . -1 ‘P1-P2|
.1) Al@) = lim inf2sin (, Py — Po|+ [P, = Py )
P 4%

It is clear from the triangle inequality that A4 is well-defined, with 0 £ 4 < =.
We also note that if T is a similarity mapping, then A is invariant, which in
our terminology we write briefly as A(«*) = A(a). Constant use will be made
of this observation without further mention. We will say that a is non-zero
if A(x) >0,

2.2, Ordinary angles. It is essential to know that the definition (2.1)
coincides with the usual in the event that the curves y; and y, have unique
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tangent lines at the vertex. Such angles will be known as ordinary angles,
and the following theorem shows that A provides the ‘“‘ordinary’’ measure
for an ordinary angle.

Theorem 2.2. Suppose that o= (y,7,) is a topological angle at O,
and suppose that

P.
lim —h=0,; i=12
Piey; |Pl|

P;—0

Then cosA(x)= Q4 - Q,.

Proof. Let ¢ be the true angle between P, and P,, which is to say
0<¢p<m P, Py=|P,||P,[cos¢, and let

¢ = zsm—l(mlll’fll;l};’zzll) .

The law of cosines gives

2 ¢ a® |P,—P,|\?
cos? 7= 1 —sin ) 1—(l—m-l)

|P, >+ |P,|* + 2| P, || P,] ~ | Py — P, |?

(lP1|+|P2l)2
_ 2|Pi|P,] ) L2V 1 L NP
B R G EA R
and therefore,
29’ : @

cOos —— =< cos?
2’

with equality if [P, | =|P,|. Hence for P,ey;, P;~0,

2.2 cosz%@- = limcos

2<i> ¢

< limcos? <-
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However, if in addition IPll = |P2|, (2.2) takes the form

2 A(®) 9’

> 2y
(2.3) cos > = limcos 3

i eac? &
= lim cos 5

The inequalities (2.2) and (2.3) yield cosA(x) =limcos¢d = Q; * Q,.

2.3. Cones. By a regular cone C with vertex P, and central angle B,
0<B< —271, will be understood any similarity transform E* of the graph E

of the equation
z =[x + y2cot B,

with 0* = P,. The axis y, of the cone C will be the image of the positive z-axis.

More generally, a topological cone will be the image C* of a regular cone C
under a homeomorphism of a neighborhood of the vertex. By analogy, we
define the inner angle A’ of the topological cone C* by

* __ O*
A’(C*)=liminf2sin"1( “: 0| )
Pec |P*— P3| +|0* - By
Q e 7yo
P,Q-Pg

We note that A'(C*) depends on the image y¢ of the axis of C, as well as on the
surface C*. However, there will be no need to display this dependence.

A topological angle a* = (y*,73) will be said to lie on C*, providing y lies
on C and forms a topological angle o = (y,y,) with the axis y, at the vertex P.
We next prove a useful result relating A’(C*) to the measure of the angles

lying on C*.

Theorem 2.3. A'(C*) is the minimum value of A(x*), where o is any

ordinary angle lying on C.

Proof. It is clear that for any « lying on C, A'(C*) £ A(a*). On the other
hand, select P, e C, Q, .v,, with

A’(C*)=11m2sm‘1( - )
n- o0 ‘;P:_P*l+lQn*-P0l
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By the compactness of the unit sphere, we may also assume {P,/|P,|} con-
verges. It is then a simple matter to run a smooth curve y on C, through each
P,, and because of the convergence of {P,/ | P,|}, forming an ordinary angle a,
with the vertex y,. But then «, lies on C, and it is clear that A(«}) < 4'(C*).

The theorem is proved.

Corollary 2.4. Let C be a regular cone of central angle B. Then
(a) A(x) = B for every ordinary angle a lying on C,
(@) 4(C)=8.

Proof, The assertion (a) follows from Theorem 2.2, and (a") follows from
Theorem 2.3, together with part (a).

2.4. An example. From a certain standpoint, it would be desirable in
Theorem 2.4 to use in place of ordinary angles on C, segmental angles on
C, which would require that y be a generator of the cone. We give a brief
description of an example which shows that this is not possible.

For0=y 1,05z 1,let f=f( ;y¥) be the piecewise linear function

¥ l//).

of z, with successive vertices at (z,f) equal respectively to (0,0); (T’ )

2
(%, %), W, ¥); (1,1). Define f( ;y) for 1<y <2 by the relation
SO s =f(C ;2—~¥y). Let [r,0,z] denote cylindrical coordinates in
(x,y,2)-space, and [p,¢,w] denote cylindrical coordinates in (u,v, w)-space.

Define the mapping [p,$,w] = T[r,0,z] as follows:

$=0

w= 2z
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The behavior of the mapping T in the half-plane determined by 8 = constant
= my may be observed on the following sketch.

—.,P

We take C to be the vertical cone with vertex O and central angle

—72— . The axis 7y, is mapped on itself. For any fixed 6, the generator

8o, parametrized by go(f) = [1, 0, f], is mapped onto gF, parametrized

by g’:(t)=[f(t;?t—),0,t], t=0. For 0=0, f(t;0)=t, and for 0 < 0 < 2=,

. [0 2m—-0) ., .. 0 .
t < min ‘E s T} implies f (t,?) = t, Hence each generator is mapped

onto itself for sufficiently small ¢, and letting oy = (g4,7,), it follows that
7
4
y(t) = [t,2=t,t] is tangent to the generator g,, and is mapped on y*, para-
metrized by y*(f) = [f(t;21), 2at,t] = [t*,2nt,¢], tangent to ys*at O. Setting
g = (7,70), it follows from Theorems 2.3 and 2.2 that 0 £ A’(C*) < A(ag) =0,

A(ag) = —- for each 6. On the other hand, the curve y on C, parametrized by

while min A@) = .
o 4

3. The distortion of angle measure under transformations. In the

plane, a theorem of Teichmiiller made possible the calculation of the sharp

lower bound for A(a*) in terms of A(x) and K(T). The methods available

in space are not yet so refined, but we can nevertheless obtain a satisfactory

estimate. At the points of differentiability a substantially better bound is ob-
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tained., We discuss these bounds in their natural setting, returning in Section
3.3 to a discussion of quasiconformal mappings.

3.1. Affine and locally affine transformations. We will discuss the
distortion of angles with vertex O, for homeomorphisms 7 which can be written
in the form

T(P) = T,(P) + o(| P|),

where T, is one of the following affine transformations:

TZ: T2(x9yaz)= (O,Cy,Z), 0§C§1;
LT3: T3(x’y’ Z) = (090’0)

"TI: T,(x,y,z) = (x,Cy,Dz), 1=CZ<D;
(3.1 j

Theorem 3.1. With T as above, for each f, 0< f <,
(@) In case T, is Ty, then for ordinary angles a at O, with A(x) = B, we
have the sharp bound

(3.2) A(x*) = 2tan™? (-Iljtan g)

(b) Incase T, is T, there exists a segmental angle ay at O, with A(ay) = B,
but with A(xd) =0.

Proof. Since Lemma 1 of [1] and its proof remain correct in higher
dimensions, we may at once assume the error o(IPI) is identically zero.
Since the ordinary angle is determined by the tangent lines, we need only
consider segmental angles. Part (b) is obvious, since the segments joining O

respectively to (sin%—, 0, cos %—), ( - sin%, 0, cos %) are both mapped onto

the z-axis. For part (a), we may assume A(x*) = f*, 0 < f* < n. Then with
suitable choice of coordinates (&, 1) in the plane determined by the segments
forming o, and in the plane determined by the segments forming a*, we find
T takes the form T(&, )= (& By), 1 £ B < D. For some 0, « is formed by
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the segments joining (0, 0) respectively to (cos(9+—ﬁ—), sin(0+£)),

2 2
(cos(@ - —26), sin(0 - ZE))’ so that

cos(@ + %)cos(ﬂ - g—) + B? sin(() + %—)sin(() - ~§)

\/cosz (0 + %) + stinz(ﬂ + —g—)\/cosz(f) - %) + stinz(g B %5

The procedure is now elementary: one differentiates cos * with respect to 6,

cos f* =

and finds the only extremal cases to be § = 0, z-, , —3;, of which the first and

third yield equal minima, and the second and fourth equal maxima. Since
cos B* is decreasing in B*, one may evaluate min f* at 6 = 373, obtaining (3.2)
with B in place of D. One need only take the (x,z)-plane initially to obtain
B =D.

3.2. ®-mappings. For the class of @-mappings introduced by Gehring,
[2, Section 8], a particularly simple estimate of angle distortion can be found.
We recall that given a continuous, increasing, unbounded function ® defined
for 0 £t <1 with @(0) =0, a transformation T is called a ®-mapping if for
every subdomain G, of the domain of T, the conditions

P; e Gy, |P1 "Pz[ < p(P4,0G,),
imply
[Pt P _ (IPZ—Pll)
p(PF,3G3) = \p(P1,0Gy))
If T ~'is a ©-mapping, then the starred and unstarred letters may be inter-

changed, and applying ©~! we find

of|Pa= P\ _ |PE=PY|
33 © l(l 536, )S 5K
(3.3) p(P1,0Go)) = p(BF,0G%)

in this form holding whether or not |P§ - Pf| < p(P0G}).
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Given P, in G, the domain of T, we take G, to be the domain G — {P,}, and
by continuity, for P,,P, sufficiently close to P, we will have p(P;dG,)
=|P, = P,|, p(P}0G¥) =|P* — P§|, i =1,2. Then (3.3) may be applied
with the roles of P, and P, interchanged, and we find for i =1, 2,

| Py~ Py )<®_1(IP1—P2|)<|P’:—P:I
l =

3.4 @"( = '
@4 [P, = Py| +| P — P, [P~ Po| ) = [PF =P}

Taking reciprocals in (3.4), adding the cases i = 1,2, and taking reciprocals

again, we find

19_1( | Py — Py )< | Pt - P3| _
2 |Py—Po|+|P,—Py|) = |PF —P%|+]|P; — P|

Finally taking lower limits on both sides, we obtain the following theorem.

Theorem 3.2. Let T be a transformation, such that T~ is a ©-
mapping. Then for every point P, in the domain of T, and every topological
angle a at P,,

A(a*) = 2sin~! (%@'1 {sin;—A(a)}).

3.3. Quasiconformal mappings. For the present, we need two properties
of quasiconformal mappings. First, by [4, Theorem 11], given K = 1, there
exists a distortion function @ such that each quasiconformal mapping T
with K(T) £ K is a ©x-mapping. From (1.1) and the definition of the maximal
dilatation it is evident that K(T) £ K if and only if K(T-') < K. Hence we
may apply Theorem 3.2 with ® = ©¢ to quasiconformal mappings T with
K(T)<Z K.

Next, from [4, Theorem 6] it follows that a quasiconformal mapping T
is almost everywhere differentiable with non-zero Jacobian. To say that T is
differentiable at P, is to assert the existence of a linear transformation
DT(Py; ) with the property that

T(P) — T(Po) = DT(Py; P — Pg) + o(| P — P, |).
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With proper choice of coordinates, DT(P,; ) becomes one of the trio Ty, T,
or T of (3.1), but in case of non-zero Jacobian, DT(P,; ) becomes T; with
D = D(P,). Combining these observations, we derive

Theorem 3.3. Let T be a quasiconformal mapping of a domain G. Then
(a) For every point P, in G, and every topological angle o at Py,

A 2 2si1;‘1(%®,;1 {sin %A(a)}) : K = K(T).

(b) For every point P, of differentiability with non-zero Jacobian,
we have the sharp lower bound for ordinary angles a at P,

A(*) = 2tan'1(10tan% A(oc)) ; D = D(P,).
Theorem 2.3 enables us to convert these estimates into statements about

cones.

Corollary 3.4. Let T be a quasiconformal mapping of a domain G.

Then
(@’) For every point P, in G, and every regular cone C at P,

A'(C*) = 2sin~! (%@g‘ {sin %A'(C)}); K = K(T).

(b’) For every point P, of differentiability with non-zero Jacobian,
we have the sharp lower bound for regular cones C at P,,

(3.5) A'(C*) = 2tan™? (%tan %A'(C)) ; D = D(P,).

4. A criterion for absolute continuity on lines. This section will be
substantially measure-theoretic. We will treat z as a real variable, and (x,y)

as a point in the plane, We let #, &, # denote respectively the classes of
Lebesgue measurable sets in 3-space, the (x,y)-plane, and the z-axis. The
corresponding Lebesgue measures will be denoted by z, a, p, and we will use
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the expressions 7-a.e., g-a.e., or y-a.e. to mean almost everywhere with respect
to 1, g, or u. For Ee %, Fe #, we will denote by E x F the set of all (x, y, z);
(x,y)eE, zeF.

A transformation T is said to be ACL in z if for o-a.e. (x,y), T(x,y,z) is
an absolutely continuous function of z. Under such conditions, let us take
a fixed, non-exceptional (x, y), and an interval I. Then [6, page 123] the curve
traced out by T(x, y,z): z € I, is rectifiable with length A. The partial derivative

T = (6u v Ow

5 32 —67) exists for y-a.e. z in I, and A = f | T, (x, y,C)IdC. From

1
its expression as a limit of continuous difference quotients, and by Fubini’s

Theorem, T, exists t-a.e., and is #-measurable.

T is further said to be ACL, in z, 1 £ p, if T is ACL in z, and if | T, | is
locally p-integrable with respect to 7, and to be ACL, if it is ACL, in each
of its variables. By a recent result due to Viisild, [9], if T is ACL; then T is
already totally differentiable 7-a.e., and we can as before form DT(P,; ),
with suitable choice of coordinates either T;, T,, or Ty of (3.1). The discussion
on page 4 of [9] may now be rephrased as follows: A4 necessary and sufficient
condition that T be quasiconformal is that T be ACL, with DT(P,; )
either T, or Tj, and that at points of the former type, D(P,) be essentially
bounded. Because DT(P,; ) is of type Ty only on the 7-null set where the
Jacobian J(P,) vanishes, K, (T) is in fact ess sup {D(P,): J(P,) # 0}.

We first set out to give conditions under which T will be ACL;. We select
minimal hypotheses to emphasize only what is needed for our technique.
Noting that for 0 < B < =,

1 B B
—1 — pu—— e
2tan (Ktan 2)>K’

it is clear that our hypotheses are necessary conditions for T to be quasicon-
formal with K;(T) £ K. We let %, denote the class of regular cones with
axis parallel to one of the coordinate axes and central angle B.

Theorem 4.4. Suppose 0<ﬁ<%— and K=1 are fixed numbers.

Suppose that T is a homeomorphism of a domain G such that
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(@") For each vertex P, in G, and each C in €4 at P,
A'(C*) > 0.
(b’) For t-a.e. vertex Py in G, and each C in €, at P,

B

4.1) (M z &

Then T is ACL,.
Since the proof is rather long, we break it into a number of lemmas.

4.1. Linear measure. Given any set E, and 6 >0, we define

A[S,E] = inf X d(E),
@ i=1
where % is any covering of E by sets E,, E,, --+, E,,, each of which has diameter
d(E;) < 6. A[S, E] is evidently non-increasing in 8, and accordingly we may set

A[E] =lim A[6,E)],
40

which is termed the linear measure of E. A is a regular Caratheodory outer
measure, and determines a class .Z of measurable sets, on which A is a measure.
A simple curve y is #-measurable, and y is rectifiable if and onlyif A[y] < oo,
in which case A[y] is the arc length. See [6, II§8].

Next, for a line segment L, and r > 0, we let L, denote the closed right
circular cylinder with axis L and radius r.

Lemma 4.1. Let T be a transformation of a domain G. Let L be a

segment in G, with

=M < 0.

1

. lim 4
(4.2) roo TFZ
Let E be a compact subset of L, and suppose there exist integers p, q, such
that for every regular cone C with central angle B, axis yo L, and vertex

P,eE, we have
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* _ %
@3 |P*—1')§|+|%*I—P:| 25
whenever

(4.4) Pec, lP—Pol<7§-,Qeyo,|Q—Po|<é—.
Then

(4.5) {A[E*]}* < 3p*M tan® B{A[E]}>.

Proof. First we remark that all cones in the subsequent discussion will
be assumed to have central angle f and axis in the z-axis. We take L to be
asegment in the z-axis. To any interval I, I = [a,b] < L, we associate the set
C(I), which is the region enclosed by the up-cone with vertex P, =(0,0,q)
and the down-cone with vertex P, =(0,0,b). If P,cE, and P,eE, b—a
sufficiently small, the estimate (4.3) may be applied to any PedC(l), Qel,
and P, the appropriate endpoint of I,

For such an interval I, we wish to estimate [ C(I)*], and we may assume
P}is (0,0,0) and Py is (0,0,d), d > 0. We first estimate the cross-section area
g(wy) of C(I)* in the plane w =wy, 0 < wy < d. Let Q* = T(Q) be a point
of intersection of I* with the plane w = wy, and let 5 be the distance from
Q* to the nearest point P* = T(P) of dC(I)* in w = w,. The alternative that
P lies on the up-cone at P, leads to the estimate

1 w
=|p* - 0*| > — (| P* - P* *~PhHz==2,
n=|P Ql_zp(l P +]0 Pal)_p
while the alternative that P lies on the down-cone at P, leads to
_Ip*_Q*l>_1_(|p*_.p*|+|Q*_p*|)>f1__—_w2
"— = 2p b b = p .

Thus, for 0 <w, <d,
T .
gwo) 2 mn* = J7min {wo,(d — wo)*},

and
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4 d/2

@.6) [CW)*] = f gW)dw = % f wldw =

]

nd?
12p2

We next note that we may assume our set E is perfect, since unless countable
itself, it differs from a perfect subset of itself by a countable set. This will
enable us to use the covering Lemma 7 of [1], which asserts that for all suf-
ficiently small ¢ > 0, there exist N (N depending on f) non-overlapping inter-
vals I, with endpoints in E, lengths not exceeding ¢, E contained in their union,
and Nt < A[E(1)], where E(t) is the set of points of L within distance ¢t of E.
Given these intervals I,, we note that for ¢ sufficiently small, the estimate
(4.6) can be applied to any subinterval I < I,, whose endpoints also lie in E,
and since the associated set C(I) will be a subset of C(I,), we may draw from
(4.6) the conclusion that if d, is the diameter of (I, N E)*

@7 nd? £ 12p*<[CI)*], n=1,2,-,N.

Setting 6 = max {dy,d,, -, dy}, it follows from the uniform continuity
of T in a compact neighborhood of L that J tends to zero with ¢. Since E is

compact, we also know A[E(f)] » A[E]. Setting r =12ttan B assures that

c(I)<L, n=1,2,---,N. Using Holder’s inequality, we find from (4.7),

{A[6,E*]}® < {é d,.r sN? {g di}

A

LNy {2 o] |

T =1

12N?p*[I2]
P4

IIA

I

3(Nt)®p*tan’p (%l)

IIA

(L) nrpiareony,

from which (4.5) follows upon letting ¢t 0,
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4.2. Differentiation of measures. Regrettably, we must introduce still
more notation. R will be a fixed rectangle in the (x, y)-plane, and L a fixed
segment in the z-axis, such that R x L lies in the domain of T. In the (x, y)-
plane, B,(x,y) will denote the disk of radius r, centered at (x, y). L(x, y) will
denote the vertical segment {(x,y)} x L. We introduce the set function ¢,
defined for Ee#, Fe.#, by

¢[E, F] = 1[(E x F)*].

It is clear that for fixed E, ¢[E, ]is a measure on .#, and that for fixed F,
¢[ ,F] is a measure on . Lebesgue’s theorem on differentiation, [6],
asserts that for our fixed segment L, the “#-measurable function ¢'( ;L),
defined for (x,y) in R by

#'(x,y;L) = lim w

exists and is finite ¢-a.e., and for Ee ¥, Ec R,

” ¢'( ;L)de < ¢[E,L].

o'

E

Lemma 4.2. Under the hypotheses of Theorem 4.4, there exists a posi-
tive constant &, depending only on K and f, such that for s-a.e. (x,y), the
inequality

(4.8) {ALE*]}Y < &¢'(x, y; L) {u[ET}?,
holds for every compact linear subset E < L(x,y).

Proof. We set H,, equal to the set of all vertices P, in R x L for which
(4.3) holds whenever (4.4) holds. Hypothesis (a”) assures us that Rx L = UH .

P
Moreover, the continuity of T assures us that H ,, is compact for large enoughg.

1 N -
ﬁ(—> T By hypothesis (b") and Fubini’s

theorem, we know that for s-a.e. (x,y),

Fix an integer p, so that sin
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ulL(x, y) — UHpoq] =0.

Let us fix a non-exceptional (x,y) and one for which also ¢'(x,y;L) < oo.
We may as well assume (x,y) is (0,0), so that L(x,y) becomes L, and write
M for ¢'(x,y;L). Since u = A for linear sets, we will be done if we can re-
establish (4.5) with p = p,.

If F,, is a compact pnull set in L N H,,, then Lemma 4.1 implies
A[F};,]=0.If F, is a compact p-null subset of L, the preceding case applies
to F,,=F; N H,,, hence A[F¥]< X A[F},]1=0.If F, is a g-null G,-Borel

ra

pa’
set in L, then since L N H,,, is compact, A[(F; N H)*] < A[(L N Hp)*] < 0,
which shows F% is a countable union of sets of finite linear measure, and
by [3, Lemma 2] and the preceding case, A[F3] = sup {A[FT]: F; compact,
F, c F,} =0. Generally, if F; is any p-null subset of L, there exists a G,-
Borel set F,, F3 < F,, u[F,] = p[F3] =0, so by the preceding case
A[F3] < A[F3]=0.
Finally, given our compact set E in L, we write

E= {EﬂLqJ Hpoq}U{E—Lq_JH,,oq}.

The latter, as a subset of L — UHI,o o is p-null, and by the preceding argument,
q

its image under T is A-null. Since the H, , are expanding as g - o0, Lemma

4.1 gives

(ALE*)® = lim {ALE N Hy )*TF

g+ ®

A

lim 3piM tan®B{A[E N H, ]}

q-®

3pZMtan®B{A[E]}?,
and Lemma 4.2 is proved.

4.3. The cube-integrability of ITZI, and the proof of Theorem 4.4.

We are now in a position to prove the final lemma.
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Lemma 4.3. Let T satisfy the conclusion of Lemma 4.2 for every
segment L in a fixed segment 1. Then

49) [[[ 1z2a: = otz

Proof. Indeed, (4.8) already shows that T is ACLin z. With the exception
of (x,y) in a g-null set F, we have

ATLG )] = [ [Tl
L

holding for all subintervals L < I,
Define the £-measurable functions g,, n=1,2,-.- by

ssn =7 [ |Ter0ld,

In(z)

where I,(z) denotes the interval {C 1z — _:z— Stz + %} For (x,y) not in F,

it follows that for p-a.e. z,

lim g,(x,y,2) = | T,(x,,2)|,

n—> 0
and hence by Fubini’s theorem, 7-a.e. we have ITZI = g, where

g =liminfg,.

n—w

Now let us fix z and n, and denote by E,(x, y, z) the segment {(x, y)} x I(2).
By Lemma 4.2 with E = L = I,(z), we have for g-a.e. (x, y),

A[E(x,y,2)*] )3 < §0'(%,y;1.(2))

3 _
g,,(x,y,z) = (M[En(x’y,z)] = u[E,,(x,y,Z)] '

Integrating over R, we find
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[ i adeein s B o 1R 1o,

and letting n— oo, by Fatou’s lemma, we conclude

[[ #6032 dotx,) < tim ine 52 9 R, 123

R

But with another application of Lebesgue’s theorem, we know that for y-a.e. z,

lim —'21—¢[R,I,,(Z)] = ¢"(2)

n—o0

where ¢" is .#-measurable, andf ¢"dy < ¢[R,I]. Hence for u.-ae. z,
I

U £(x,,2)do(x, y) < E0'(2),

and (4.9) follows by Fubini’s theorem.
Regarding Theorem 4.4, it is now clear that T is ACL; in z. But by the
symmetry of the hypotheses of Theorem 4.4, T is ACL,. The proof is com-

pleted.

5. Characterizations of quasiconformality. Suppose that T satisfies
the hypotheses of Theorem 4.4, not only for cones in %, but for all regular
cones of central angle f. By Theorem 4.4 and the above mentioned differen-
tiation theorem of Viisild, T is almost everywhere differentiable, and we may
compute DT(Py; )— of type Ty, T,, or T3 of (3.1). Hypothesis (a’) together
with Theorems 3.1 (b) and 2.3 rules out the possibility T,. Further, almost
everywhere that DT(P,; ) is of type T;, we may compare the bound (4.1)
with the sharp bound (3.5). It follows that

a1 B B
2tan (mtan E) g 1?’
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and hence

K, (T) =esssup{D(P,):J(Py) # 0} < tangcot% .

Next, we may wish to require that T satisfy (4.1) for all cones and all g, in
which case it follows that

. B B
K,(THh £ inf tan-cot ==K,
D= o<p<njz 2 2K

We thus have the following characterizations:

Theorem 5.1. A homeomorphism T is quasiconformal in a domain G,
with K,(T) £ K, if and only if
(@") For every vertex P, in G, and every non-zero regular cone at P,,

A'(C*) > 0.
(b") For almost every vertex P, in G, and every regular cone C at P,,

10k 1 ’
4/(C*) 2 £ 4'(C).

Theorem 5.2. A homeomorphism T of a domain G is quasiconformal,
with K;(T) £ K, if and only if
(2) For every vertex P, in G, and every non-zero ordinary angle o at Py,

A(e*) >0,

(b) For almost every vertex P, in G, and every ordinary angle o at P,
A(a*) = 1—A(cx).
=K

From a methodological standpoint, Theorem 5.1 is the extension of
Theorem 4 of [1]. We note that only regular cones are needed, and they are
used as were the segments in the latter theorem. From a formal standpoint,
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the analogue to Theorem 4 of [1] would be the alternative Theorem 5.2, but
requiring only that (a) and (b) apply to segmental angles. Unfortunately,
the example in Section 2.4 will not allow us to use these methods to obtain a
theorem using only segmental angles. On the other hand, although the example
is not quasiconformal, neither does it satisfy the hypothesis (b) of Theorem 5.2
for segmental angles, and hence it casts no light on the possible truth or falsity
of such a strengthened theorem.

One result in this direction is due to Kopylov, [5]: A mapping which pre-
serves angles between rays is conformal. The hypothesis means that every
segmental angle is mapped on an ordinary angle of equal measure. The methods
are quite different, apparently using Baire Category and Rademacher-Stepanov
Theorems. For contrast, we close this section with the best result obtainable
by our methods in the conformal case. An oriented ordinary angle is an ordinary
angle, one of whose sides is a segment parallel to a coordinate axis.

Theorem 5.3. If T is a homeomorphism, and if there exists P,
O0<p< 21, such that for oriented ordinary angles a of size J3,

(a) A(a*) >0 at every vertex,
(b) A(a*) = B at almost every vertex,
then T is conformal.

Proof. Our hypotheses, together with Theorem 2.3 and Corollary 2.4,
assure that the hypotheses of Theorem 4.4 are satisfied with K = 1. Hence
T is ACL;, and totally differentiable almost everywhere, It is then an exercise
in elementary trigonometry, not unlike the proof of Theorem 3.1, to show
that the partial derivatives T, T,, T, are mutually orthogonal and of equal
length almost everywhere, from which the result follows.

6. Extension of the theory to n + 1 dimensions, n = 3. The
preceding sections have been designed as much as possible to permit immediate
extension to higher dimensions. Many of the remarks remain formally correct,
given the new interpretations for the symbols. For example, we will denote
the points by P =(X,z), where X =(x,,X,,-,x,). The scalar product is

defined as usual, and |P|2= [X|2+zz, where |X|2= i x?. Section 2
j=t
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needs only the remark that a regular cone is a similarity transform of the

graph of the equation z = | X l cot § to remain in force. The idea of the example
in Section 2.4 is easy to visualize, though it becomes tedious to write down

and we will not do so.
In Section 3, the trio of affine mappings becomes

T,(X,z) = (x,,Cy%3,*,CpX%s D2): 12 C, £--£C, =D,

[y

(3'1’) Tz(X,Z) = (09 szz,"',Can,Z): 0 =< C2 <. é Cn é

T3(X,Z) = (0,0,"',0,0),

and Theorem 3.1, because of its essentially 2-dimensional character, still
applies. The distortion theory of Section 3.2 is known to be true in n + 1
dimensions, although no references are as yet available. Theorem 3.3 and its
Corollary 3.4 are thus verified conditionally.

For Section 4, we need to interpret T as (n + 1)-measure, ¢ as n-measure,
and p as 1-measure. We let Q, be the n-measure of the unit ball in n-space,
and by a right circular cylinder with axis L and radius r, we understand the
image under a rigid motion of the set {(X,z): IX | <r, 0=z < length L}
in which the z-axis is carried onto L. Lemma 4.1 requires the hypothesis
L]

4.2 lim o~ =M <,

in order to draw the conclusion
(ALEFTY™ < (n + p"Mtan"B{AE])".

Indeed, the ‘‘plane’’ w = w, is now an n-dimensional hyperplane, and the
inequality above (4.6) reads

g(WO) z ann g an-" min {w'(;’(d - Wo)n}-
Inequality (4.6) and the long chain following (4.7) condense respectively to

, Q,,dn+1
(4.6") T[C(I)*] = (n—_l_w
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and
{A[3,EX]}"™** £ (n + Dp"M tan"B{A[E()]}",

from which Lemma 4.1 is recovered.
For Lemma 4.2, we let B(X) denote the n-ball in n-space, centered at X

with radius r. Then setting

¢'(X;L) =lim ¢[B(X),L]

r—0 r”Q" ’
Lemma 4.2 goes through, with the conclusion
(4.8) {A[E*]}"*! < £¢'(X; L) {p[ET}".

In Section 4.3 we now obtain the (n + 1)-integrability of l T, | This is essential
since ACL, . , is now needed in place of ACL;, and indeed the differentiability
follows as before from [9], which is already phrased for n dimensions. The

characterizations of Section 5 hold verbatim.
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Note added in proof: During the preceding year the following additional references have
come to my attention:

[A] P. Caraman, On the Equivalence of the Definitions of the n-Dimensional Quasicon-

formal Homeomorphisms, Rev. Roum. Math. Pures et Appl. X11, No. 7 (1967), 889-943.

[B] P. Caraman and M. Corduneanu, Charactérisation des Homéomorphisms Quasi-

conformes de R” par la Déformation des Angles, An. Sti. Univ. “Al. I. Cuza” lasi,

Sect. Ia Mat., 14 (1968), 1-16.
[C] O. Taari, Raumwinkel und Quasikonformitit, Ann. Acad. Sci. Fenn A. I., 426 (1968),

1-16.

The theory of ® — mappings in n-dimensions is discussed extensively in
[A, Section 9]. In [B], the authors announce the following theorem: If the
conditions (a) and (b) of the present Theorem 5.2 are fulfilled for segmental
angles, and if (c) T is totally differentiable a.e., then T is quasiconformal. The
first author has noted in correspondence that there is an oversight in the proof
of this theorem, and so its status remains in doubt,
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