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1. I a t r o d u e t i o n .  Quasiconformal mappings, by their very name, ought to 

be in some sense angle-preserving. One of the first problems which arises, how- 

ever, in studying the behavior of angles under quasiconformal mappings, is the 

non-differentiable character of these mappings, allowable on a set of  measure 

zero. An exceptional point Po may lie on a smooth curve which is mapped 

onto a curve not possessing a tangent line at the image P*. 

For  example, given k > 0, let the transformation T be defined in the (x, y)- 

plane for x > 0, by 

U -~ X, 

v = k x sin(log x) + y. 

T may be extended to be a homeomorphism of the plane by taking it to be 

the identity mapping for x < 0, but it is then non-differentiable on the axis 

x = 0. The ray y = c, x > 0 is mapped on the curve o = kusin(logu)+ c, 

which has no tangent line at (0, c). T may further be extended to any number 

of  dimensions by setting the other coordinates respectively equal to one another. 

Such behavior is part of  the price paid for compactness of various families 

of  quasiconformal mappings, which is essential for their use in extremal 

problems. The compactness is obtained, for example, by adopting the definition 

that a homeomorphism T is quasiconformal if the ratios 
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(1.1) M(R*) 
M(R) 

are bounded above and below. Here, R is any doubly connected region in the 

domain of T, R* its image, and M(R), M(R*) the respective moduli of R, R*. 

Various measures of quasiconformality have been investigated: the inner 

dilatation K~(T), which is the reciprocal of the infimum of the ratios in (1.1), 

the outer dilatation Ko(T), which is the supremum; and the maximal dilat- 

ation K(T), which is simply max{K~(T), Ko(T)}. For the general theory of 

quasiconformal mappings in space, the reader is referred in particular to 

Vtiis/il/i, [8], and Gehring, [4]. 

A somewhat different looking dilatation is the linear dilatation KdT),  

defined by 

where 

KL(T ) = ess sup D(Po), 

D(Po) = lim sup 
~'~0 

max([ T(P)- T(Po)[ : [ P -  Po[ = r} 
m i n (  I T(Q) - Z(Po)  l : I Q - eo I = r} " 

It will prove to be KL(T) which is most intimately connected with angles. 

Our results can easily be rephrased in terms of K(T) through the sharp 

estimates for n-dimensional mappings, 

K(T) t/tn-1) <= KL(T) < K(T) 21" �9 

Our example is quasiconformal, with K L ( T  ) = 1 + k 2 + kff2 + k 2, irrespective 
of the number of dimensions. 

The problem of defining angle measure for curves, possibly without tangent 

lines at the vertex, has been studied extensively in the plane by F. W. Gehring 

and the present author, [1], and by O. Taari, 17]. The definition proposed in the 

former could have been formally adapted to any number of dimensions, al- 

though it was not immediately clear how it could be applied to obtain analogous 

theorems. It now appears that the key lies in the inner angles of homeomorphic 

images of cones. For clarity of exposition, we present the theory of angles 

and quasiconformal mappings in three dimensions, treating first necessary, 
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then sufficient, and finally necessary and sufficient conditions for quasiconfor- 
reality. The article closes with the few remarks necessary to recover the theory 
in higher dimensions. 

2. Notation and elementary observations. We consider the 3-dim- 

ensional Euclidean space of points P = (x, y, z). If, for i = 1, 2, Pi = (x~, y~, zi), 

we denote as usual by PI"P2 the real number xlx 2 + YlY2 + zlz2, and by 

] P ] the nonnegative square root of P" P. The point (0, 0, 0) will be 0. 

Central in our work will be homeomorphisms of domains in space. We 

will generally use the symbol T for such a mapping, and conversely, any 

transformation labelled T will always be a homeomorphism. Occasionally 

we write (u,v,w) = T(x,y,z).  Given T and any set E, point P, or topological 

angle ~, the symbol E*,P*,~* will denote the image of E, P, or ~ under T. 

T-  1 will denote the inverse transformation, aE will denote the boundary of E, 

and p(P,E) will denote the distance from P to the set E. 

2.1. Topological angles and their measure. By a topological angle 

at a point Po, will be understood a pair of simple curves (~1,72), with common 

initial point Po, known as the vertex. It will not be necessary to consider para- 

metrizations of these curves, as our subsequent definitions depend only on 

their traces. If we wish to indicate the curves explicitly, we will write ~ = (71, 72). 

For the measure A of the topological angle ~ = (71, 72) at Po, we define 

(2.1) A ( ~ ) = l i m i n f 2 s i n - 1  ( I P1-P21  ) lel-Poiu 
P2 r ~2 

PI,P2"~PO 

It is clear from the triangle inequality that A is well-defined, with 0 < A < ~. 

We also note that if T is a similarity mapping, then A is invariant, which in 

our terminology we write briefly as A(~*) = A(~). Constant use will be made 

of this observation without further mention. We will say that ~ is non-zero 

if A(~) > O. 

2.2. Ordinary angles. It is essential to know that the definition (2.1) 

coincides with the usual in the event that the curves 71 and 72 have unique 
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tangent lines at the vertex. Such angles will be known as ordinary angles, 

and the following theorem shows that A provides the "ordinary"  measure 

for an ordinary angle. 

T h e o r e m  2.2. Suppose that ~ = (71,72) is a topological angle at O, 
and suppose that 

lira P~ = Qi; i = 1,2. 
P~ ~ ~t 
pt,-*O 

Then cosA(a) = Q1 " Q2. 

P r o o f .  Let q5 be the true angle between Px and P2, which is to say 
O<qb<n, Pl" e~ = [Pl l lP2lcos~,  and let 

The law of cosines gives 

qb' ~' { I P t - P 2 1 )  2 
cos 2 -~-= 1 -- sin2-~- = 1 -  kip11 + iP~l 

IPll ~ + IP21~ + 2 1 P l l l P 2 1 - l P 1 - P ~ l  ~ 
( I P l l + l P ~ l )  2 

21PlllP21 ( l + c o s ~ ) =  41PllIP21 
= (IPll + IP~I) 2 qP l l  + IP~I) 2 c~ ~ '  

and therefore, 

COS 2 . <  C O S 2 _ _  
= 2 '  

with equality if [P1 [ = I P2 [" Hence for P , e  ~,, P i-+ 0, 

cos 2A ~- -~ (2.2) (a) = iim cos 2 < lim cos 2 
2 ~--- " 
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However, if in addition I P1 I= I/'2], (2.2) takes the form 

2 A(~) ~_ ~_ 
(2.3) cos T > limc~ = limc~ " 

The inequalities (2.2) and (2.3) yield cosA(~)=limcosq5 = QI'Q2. 

2.3. Cones.  By a regular cone C with vertex Po and central angle fl, 

n 
0 < fl < ~-,  will be understood any similarity transform E* of the graph E 

of the equation 

z = x/x 2 + y 2 c o t f l ,  

with 0* = Po. The axis 70 of the cone C will be the image of the positive z-axis. 

More generally, a topological cone will be the image C* of a regular cone C 

under a homeomorphism of a neighborhood of the vertex. By analogy, we 

define the inner angle A' of the topological cone C* by 

6 ) " 

P + C  0 
Q ~ o  

P, Q-'*Po 

We note that A'(C*) depends on the image V* of the axis of C, as well as on the 

surface C*. However, there will be no need to display this dependence. 

A topological angle ~* = (V*,V*) will be said to lie on C*, providing ~ lies 

on C and forms a topological angle ~ = (V, ~0) with the axis Vo at the vertex Po. 

We next prove a useful result relating A'(C*) to the measure of the angles 

lying on C*. 

T he o r e m 2.3. A'(C*) is the m i n i m u m  value of A(~*), where ~ is any 
o r d i n a r y  angle lying on C. 

Proof .  It is clear that for any ~ lying on C, A'(C*) < A(~*). On the other 

hand, select Pn ~ C, Qn,  ;~o, with 

A,(C,) = lira 2 s in_l(  IP*-Q*[ ) 
.-oo [P.*- P* I + IQ*- Po I 
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By the compactness of the unit sphere, we may also assume (P./lP.[} con- 

verges. It is then a simple matter to run a smooth curve ~ on C, through each 

P,, and because of the convergence of (P,!I P, I}, forming an ordinary angle ~o 

with the vertex ~o. But then ~o lies on C, and it is clear that A(~') < A'(C*). 
The theorem is proved. 

C o r o l l a r y  2.4. Let C be a regular cone of central angle ft. 

(a) A(ct) = fl for every ordinary angle o~ lying on C, 

(a') A'(C) = ft. 

Then 

P r o o f .  The assertion (a) follows from Theorem 2.2, and (a') follows from 

Theorem 2.3, together with part (a). 

2.4. An example .  From a certain standpoint, it would be desirable in 

Theorem 2.4 to use in place of ordinary angles on C, segmental angles on 

C, which would require that ~ be a generator of the cone. We give a brief 

description of an example which shows that this is not possible. 

For 0 < ~ < 1, 0 < z < 1, let f = f (  ; ~k) be the piecewise linear function 

of z, with successive vertices at (z , f)  equal respectively to (O,O); ( ~ , - ~ ) ;  

, ' - 4 -  ; (0 ,0) ;  (1,1). Define f ( ; 0 )  for 1__<0__<2 by the relation 

f (  ; 0) = f (  ; 2 - ~). Let [r, 0, z] denote cylindrical coordinates in 

(x, y, z)-space, and [p, 4, w] denote cylindrical coordinates in (u, v, w)-space. 

Define the mapping [p, 4~, w] = r[r, O, z] as follows: 

r  

W ~ Z  

p = 

.(o) 
z f  z; : O<_r<_z<_l 

(l r)( ( 
1 -  ~ 1 - f  z;  : O _< z _< r _< l ,  

r : - l _ < z _ < O .  
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The behavior of  the mapping T in the half-plane determined by 0 = constant 
= ~ k  may be observed on the following sketch. 

v Tv ~ 1 O Vz~ ~ 1 - -~P  
4 z 4 ~- 

We take C to be the vertical cone with vertex O and central angle 

7t 
--~-. The axis ~o, is mapped on itself. For  any fixed 0, the generator 

go, parametrized by go(t)= [t, 0, t], is mapped onto g*, parametrized 

~ ,  ,:r _- / , ( 4 _ ) , 0 , , / ,  For 0 = 0 ,  f(t;O)=t, and for 0 <  0<2re ,  

{ 0 , 2 ~ - 0  } imp l i e s f ( t ;O)=t .  Henceeachgeneratorismapped t < rain 4~ 4re 

onto itself for sufficiently small t, and letting ~0 = (go,Yo), it follows that 

A(~*) = -~- for each 0. On the other hand, the curve ~, on C, parametrized by 

~(t) = [t,2ra, t] is tangent to the generator go, and is mapped on ~*, para- 

metrized by ~*(t) = [ f ( t ;  2t), 27~t, t] = [t 2, 2rot, t], tangent to Yo* at O. Setting 

% = (Y, Yo), it follows from Theorems 2.3 and 2.2 that 0 < A'(C*) < A(~*) = O, 

while min A ( ~ )  = ---~ 
0 4 "  

3. The  d i s t o r t i o n  o f  a n g l e  m e a s u r e  under  t r a n s f o r m a t i o n s .  In the 

plane, a theorem of Teichmiiller made possible the calculation of  the sharp 

lower bound for A(ct*) in terms of  A(ct) and K(T). The methods available 

in space are not yet so refined, but we can nevertheless obtain a satisfactory 

estimate. At the points of  differentiability a substantially better bound is ob- 
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tained. We discuss these bounds in their natural setting, returning in Section 

3.3 to a discussion of quasiconformal mappings. 

3.1. Affine and loca l ly  affine transformations.  We will discuss the 

distortion of angles with vertex O, for homeomorphisms T which can be written 

in the form 

T(P) = To(P) + o(1 P I), 

where To is one of the following affine transformations: 

TI: Tl(X,Y,Z) = (x, Cy, Dz), I < C < D ;  

(3.1) T2 : T2(x, y, z) (0, Cy, z), 0 < C < 1 ; 

7"3: Ta(x,Y,Z) (0, 0, 0). 

Theorem 3.1. With T as above, for  each fl, O < fl < n, 

(a) In case To is T 1, then for ordinary angles o~ at O, with A(a) = fl, we 

have the sharp bound 

(3.2) A(o~*) > 2 tan-  1 tan . 

(b) In case To is T2, there exists a segmental angle a o at O, with A(o:o) = fl, 

but with A ( ~ )  = O. 

Proof.  Since Lemma 1 of [1] and its proof remain correct in higher 

dimensions, we may at once assume the error o(IPI) is identically zero. 

Since the ordinary angle is determined by the tangent lines, we need only 

consider segmental angles. Part (b) is obvious, since the segments joining O 

respectively to (sin-~-, 0, cos-~),  ( - s i n f l ,  0, cos ~-) are both mapped onto 

the z-axis. For part (a), we may assume A(a*) = fl*, 0 < fl* < It. Then with 

suitable choice of coordinates (4, r/) in the plane determined by the segments 

forming 0q and in the plane determined by the segments forming a*, we find 

T takes the form T(~, r/) = (4, B~/), 1 < B < D. For some 0, ~ is formed by 
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the segments joining (0, O) respectively to 

(COS(0- f l ) ,  sin(0-2fl---)), SO that 

COS fl* = 

(cos(o+ t, 
185 

cos(0 + f l )cos(0  - f l )  +B2sin(O+@)sin(O-'~fl2) 

~cos2(O+ fl)+B2sin2(O+ fl)~cos2(O-fl)+B2sin2(O - f l )  

The procedure is now elementary: one differentiates cos fl* with respect to 0, 

rc 3z~ 
and finds the only extremal cases to be 0 = 0, ~---, re, -~-, of which the first and 

third yield equal minima, and the second and fourth equal maxima. Since 

fl* is decreasing in fl*, one may evaluate rain fl* at 0 --- 2 '  obtaining (3.2) c o s  

with B in place of D. One need only take the (x, z)-plane initially to obtain 

B--D.  

3.2. O-mappings. For the class of Q-mappings introduced by Gehring, 

[2, Section 8], a particularly simple estimate of angle distortion can be found. 

We recall that given a continuous, increasing, unbounded function O defined 

for 0 < t < 1 with O(0) = 0, a transformation T is called a Q-mapping if for 

every subdomain Go of the domain of T, the conditions 

Pl~Go, ]Px- e2[ < P(PI,0Go), 
imply 

[e~-P~l { I e 2 - e , [ ~  
p---~:To-ffo ~ <= o \p(e,,ozo)J" 

If T -1 is a O-mapping, then the starred and unstarred letters may be inter- 

changed, and applying O-1 we find 

(3.3) O-a[IP2---Pll~ < ]P* - P*I 
\p(P~, ago)] = p(P~', OG~) ' 

in this form holding whether or not I e~-  e?l < p(PF'Oa*)" 
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Given Po in G, the domain of T, we take G O to be the domain G - {Po}, and 

by continuity, for P1,P2 sufficiently close to Po we will have p(Pi, OGo) 

=[P,-Pol, P(P*,OG~)=IPT-P~[, i - -1 ,2 .  Then (3.3) may be applied 

with the roles of P1 and P2 interchanged, and we find for i = 1, 2, 

IPx-P2l )<=o-x ilPt-P2l'~ < lP'~-P*l 
(3.4) |165 I ~lp,_po[ ] = ip , -~,  f 

Taking reciprocals in (3.4), adding the cases i = 1, 2, and taking reciprocals 

again, we find 

I_Q_I IP,-e2l Ie:-e~l 
i ;  i �9 

Finally taking lower limits on both sides, we obtain the following theorem. 

Theorem 3.2. Let T be a transformation, such that T -x is a O- 

mapping. Then for every point Po in the domain of T, and every topological 

angle ~ at Po, 

A(g*) > 2 sin- t (~ O-  t {sin21-A(g)}). 

3.3. Quasiconformal mappings. For the present, we need two properties 

of quasiconformal mappings. First, by [4, Theorem 11], given K >- 1, there 

exists a distortion function OK such that each quasiconformal mapping T 

with K(T) < K is a | From (1.1) and the definition of the maximal 

dilatation it is evident that K(T) =< K if and only if K(T-1)  < K. Hence we 

may apply Theorem 3.2 with | = Og to quasiconformal mappings T with 

K(T)  g_ K. 

Next, from [4, Theorem 6] it follows that a quasiconformal mapping T 

is almost everywhere ditferentiable with non-zero Jacobian. To say that T is 

differentiable at P| is to assert the existence of a linear transformation 

DT(Po; ) with the property that 

T(P) - T(Po) = DT(Po;P - Po) + o(l P - P| [). 
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With proper choice of coordinates, DT(Po; ) becomes one of the trio T1, T2, 

or T3 of (3.1), but in case of non-zero Jacobian, DT(Po; ) becomes Tl with 

D = D(Po). Combining these observations, we derive 

Theorem 3.3. Let T be a quasiconformal mapping of a domain G. Then 

(a) For every point Po in G, and every topological angle �9 at Po, 

(~O~ {sinl A(a)}); K = K(T). A(~z*) > 2 sin- t 1 t 

(b) For every point Po of differentiability with non-zero Jacobian, 

we have the sharp lower bound for ordinary angles ~ at Po, 

x l  / \ 1 
A(~*) _>_ 2tan-  \v//~'tan~A(~)l; D -  D(Po). 

Theorem 2.3 enables us to convert these estimates into statements about 

cones. 

Corollary 3.4. Let T be a quasiconformal mapping of a domain G. 

Then 

(a') For every point Po in G, and every regular cone C at Po, 

A'(C*) _>- 2 sin- x 2 | sin A'(C) ; K = K(T). 

(b') For every point Po of differentiability with non-zero Jacobian, 

we have the sharp lower bound for regular cones C at Po, 

(3.5) A'(C*) > 2tan- 1 tan A'(C) ; D = D(Po). 

4. A criterion for absolute continuity on l ines.  This section will be 
substantially measure-theoretic. We will treat z as a real variable, and (x, y) 

as a point in the plane. We let ~', Se, .~' denote respectively the classes of 

Lebesgue measurable sets in 3-space, the (x,y)-plane, and the z-axis. The 

corresponding Lebesgue measures will be denoted by z, tr,/~, and we will use 
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the expressions z-a.e., tr-a.e., or #-a.e. to mean almost everywhere with respect 

to z, a, or #. For  E ~ S : ,  F~  d4, we will denote by E x F the set of  all (x ,y ,z) ,  

(x ,y)~E,  z~F .  

A transformation T is said to be ACL in z if for a-a.e. (x, y), T(x, y, z) is 

an absolutely continuous function of  z. Under such conditions, let us take 

a fixed, non-exceptional (x, y), and an interval I. Then [6, page 123] the curve 

traced out by T(x, y, z): z ~ I, is rectifiable with length A. The partial derivative 

Tz = ~--~, 0z '  ~ exists for #-a.e. z in I, and A = [ Tz(x, y, 0 ] d(. From 

! 

its expression as a limit of continuous difference quotients, and by Fubini's 

Theorem, T~ exists z-a.e., and is J-measurable.  

T is further said to be ACLp in z, 1 __< p, if T is ACL in z, and if [ Tzl is 

locally p-integrable with respect to z, and to be ACLp if it is ACLp in each 

of its variables. By a recent result due to V~isgl/i, [9], if T is ACL 3 then T is 

already totally differentiable z-a.e., and we can as before form DT(Po; ), 

with suitable choice of  coordinates either T1, T2, or T 3 of (3.1). The discussion 

on page 4 of [9] may now be rephrased as follows: A necessary and sufficient 

condition that T be quasiconformal is that T be ACL 3 with DT(Po; ) 

either T 1 or T a, and that at points of the former type, D(Po) be essentially 

bounded. Because DT(Po; ) is of type 7"3 only on the r-null set where the 

Jacobian J(Po) vanishes, KL(T ) is in fact ess sup{D(Po): J(Po)~  0}. 

We first set out to give conditions under which T will be ACLa. We select 

minimal hypotheses to emphasize only what is needed for our technique. 

Noting that for 0 < B < re, 

(1 
2 tan-  1 K- tan > ~- ,  

it is clear that our hypotheses are necessary conditions for T to be quasicon- 

formal with Kt.(T)< K. We let cd# denote the class of regular cones with 

axis parallel to one of  the coordinate axes and central angle ft. 

7"C 
T h e o r e m  4.4. Suppose 0 < fl < ~- and K > 1 are fixed numbers. 

Suppose that T is a homeomorphism of a domain G such that 
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(b')  

(4.1) 
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For each vertex Po in G, and each C in c~p at Po, 

A'(C*) > O. 

For z-a.e, vertex Po in G, and each C in c~ at Po, 

a'(C*)  > I~ =--~. 

189 

Then T is ACL3. 

Since the proof  is rather long, we break it into a number of lemmas. 

4.1. L i n e a r  measu re .  Given any set E, and tf > 0, we define 

A[ f ,E ]  = inf ~ d(E,), 
r i = l  

where q/is any covering of  E by sets El,E2, ...,En, each of which has diameter 

d(E~) < 6. AIr, E] is evidently non-increasing in 6, and accordingly we may set 

AlE] = lim A[(f, E)], 
~ 0  

which is termed the linear measure of E. A is a regular Caratheodory outer 

measure, and determines a class La of measurable sets, on which A is a measure. 

A simple curve 7 is .Sf-measurable, and 7 is rectifiable if and only if A[7] < ~ ,  

in which case A[-7] is the arc length. See [6, 1Iw 

Next, for a line segment L, and r > 0, we let L r denote the closed right 

circular cylinder with axis L and radius r. 

L e m m a  4.1. Let T be a transformation of a domain G. Let L be a 

segment in G, with 

(4.2) lim z[L*] _ M < ~ .  
r-*O ~:r2 

Let E be a compact subset of L, and suppose there exist integers p, q, such 

that for every regular cone C with central angle fl, axis 70 c L, and vertex 

Po ~ E, we have 
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(4.3) 

whenever 

(4.4) 

Then 

IP*-Q*] >J__ 
[P,-PgI+IQ,-P,I = 2p 

1, 1 
~,~c, IP- eol< u Q~ro, IQ- ~'ol < - .  q 

(4.5) {AlE*I} 2 __< 3p2Mtan z fl{A[E]} 2. 

Proof .  First we remark that all cones in the subsequent discussion will 

be assumed to have central angle fl and axis in the z-axis. We take L to be 

a segment in the z-axis. To any interval I,  I = [a, b] c L, we associate the set 

C(I), which is the region enclosed by the up-cone with vertex Po = (0,0, a) 

and the down-cone with vertex P~ = (0,0, b). I f  Pa ~ E, and Pb E E, b -  a 

sufficiently small, the estimate (4.3) may be applied to any P ~ OC(I), Q e I, 

and Po the appropriate endpoint of I.  

For such an interval I, we wish to estimate z[C(I)*], and we may assume 

P* is (0, 0, 0) and P* is (0, 0, d), d > 0. We first estimate the cross-section area 
g(wo) of C(/)* in the plane w = Wo, 0 < Wo < d. Let Q* = T(Q) be a point 

of intersection of I* with the plane w = Wo, and let q be the distance from 

Q* to the nearest point P* = T(P) of 0C(/)* in w = Wo. The alternative that 

P lies on the up-cone at P,  leads to the estimate 

I , , W o 

~ =lP*-Q*I ~ ~-<1"*- 'o  I + IQ*-P. I) > = p 

while the alternative that P lies on the down-cone at Pb leads to 

1 . = ] P*  - Q * [  => ~ - ( [  P* - e*[ + [Q* - P ' J ) ~  d -  Wo 
P 

Thus, for 0 < Wo < d, 

7C . 2 
g(wo) _~ ml 2 _-> ~-~mm {Wo,(d - WoY}, 

and 
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(4.6) 

d d/2  

�9 [C(/)*] -- g(w)dw >~ p2 w2dw 12p2 
0 0 

We next note that we may assume our set E is perfect, since unless countable 

itself, it differs from a perfect subset of  itself by a countable set. This will 

enable us to use the covering Lemma 7 of  [1], which asserts that for all suf- 

ficiently small t > 0, there exist N (N depending on t) non-overlapping inter- 

vals In with endpoints in E, lengths not exceeding t, g contained in their union, 

and Nt < AlE(t)], where E(t) is the set of  points of  L within distance t of  E. 

Given these intervals In, we note that for t sufficiently small, the estimate 

(4.6) can be applied to any subinterval 1 c ln, whose endpoints also lie in E, 

and since the associated set C(I) will be a subset of  C(In), we may draw from 

(4.6) the conclusion that if dn is the diameter of (In n E)* 

(4.7) rcda~ < 12p2x[C(In)*], n = 1,2, . . . ,N. 

Setting 6=max{dDd2,...,dN}, it follows from the uniform continuity 

of  T in a compact neighborhood of  L that ~ tends to zero with t. Since E is 

1 
compact, we also know A[E(t)]-~A[E]. Setting r=-~ttanfl assures that 

C(In) c L,, n = 1 ,2 , . . . ,N.  Using Htilder's inequality, we find from (4.7), 

=< =< N d 
n 1 =2 

N 

[z[L*, ]~ 
= 3(Nt)2p2 tan2fl k nr* ] 

=< 3 p 2 ( ~ ) t a n 2 f l { A [ E ( t ) ] }  2, 

from which (4.5) follows upon letting t ~  0. 
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4.2. D i f f e r e n t i a t i o n  of measu res .  Regrettably, we must introduce still 

more notation. R will be a fixed rectangle in the (x, y)-plane, and L a fixed 

segment in the z-axis, such that R x L lies in the domain of T. In the (x, y)- 

plane, Br(x , y) will denote the disk of radius r, centered at (x, y). L(x, y) will 

denote the vertical segment {(x, y)} x L. We introduce the set function $, 

defined for E ~ 9 ' ,  F E ~ ,  by 

CE~, f - I  = ,E (~  x F)*-I.  

It is clear that for fixed E, q~EE, ] is a measure on all, and that for fixed F, 

q~[ ,F] is a measure on 5p. Lebesgue's theorem on differentiation, [6], 

asserts that for our fixed segment L, the 5~ function ~b'( ;L), 

defined for (x, y) in R by 

, . dp [Br(x,  y) ,  L ]  
q~ (x, y,  L) = lira 

r~0 7cr2 

exists and is finite a-a.e., and for E ~ ,  E c R, 

E 

L e m m a  4.2. Under the hypotheses of Theorem 4.4, there exists a posi- 

tive constant ~, depending only on K and fl, such that for a-a.e. (x,y), the 

Inequality 

(4.8) {AEE*]} 3 < ~ck'(x, y;L) {rEEl} 2, 

holds for every compact linear subset E ~ L(x,y). 

Proof .  We set Hv~ equal to the set of all vertices Po in R x L for which 

(4.3) holds whenever (4.4) holds. Hypothesis (a') assures us that R x L = UHvq. 
P,q 

Moreover, the continuity of T assures us that Hvq is compact for large enough q. 

�9 /~ 1 
Fix an integer Po so that sln~-- R- >2-~- ~ . By hypothesis (b') and Fubini's 

theorem, we know that for a-a.e. (x,y), 
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I~[L( x, Y) - U H,oq] = 0. 
q 

Let us fix a non-exceptional (x,y) and one for which also c~'(x,y;L) < or. 
We may as well assume (x, y) is (0, 0), so that L(x, y) becomes L, and write 

M for (o'(x,y;L). Since # = A for linear sets, we will be done if we can re- 

establish (4.5) with p = Po. 

If Fp~ is a compact #-null set in L n Hpq, then Lemma 4.1 implies 

A[F*~] = 0. If  Fa is a compact/ t-null  subset of L, the preceding case applies 

to Fpq = F 1 n np~, hence A[F*] < ]~ A[F*q] = 0. If F 2 is a #-null Go-Borel 
p q  

set in L, then since L n Hpq is compact, A[(F2 n Hpq)*] < A[(L n Hpq)*] < m, 

which shows F* is a countable union of  sets of finite linear measure, and 

by [3, Lemma 2] and the preceding case, A[F~] = sup {A[F*]: F 1 compact, 

F1 c F2} = 0. Generally, if Fa is any #-null subset of L, there exists a Gn- 

Borel set F2, F3 c F2, /~[F2] = /~[Fa] = 0, so by the preceding case 

A[F*] < A[F~] = 0. 

Finally, given our compact set E in L, we write 

e = N U U,,o,} U {e -  
q q 

The latter, as a subset of  L - UHpo q, is #-null, and by the preceding argument, 
q 

its image under T is A-null. Since the H~oq are expanding as q ~ 0% Lemma 

4.1 gives 

{AlE*I) 3 = lim {A[(E n H%~)*]} 3 
q"-+ oo 

=< lim 3pgMtan2fl{A[E n H%q]}2 
q-.* o0 

= 3p~Mtan2fl{A[E]} z, 

and Lemma 4.2 is proved. 

4.3. The cube- in tegrab i l i ty  of  [T~[, and the proof  of  Theorem 4.4. 

We are now in a position to prove the final lemma. 
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L e m m a  4.3. Let T satisfy the conclusion of Lemma 4.2 for 

segment L in a fixed segment I. Then 

(4.9) f f f  lT=l d    ER, q. 
R x l  

Proof.  
of (x,y) in a a-null set F, we have 

every 

Indeed, (4.8) already shows that T is ACLin z. With the exception 

A [ L ( x , y ) * ] = f  
L 

holding for all subintervals L c I. 

[ T~(x,y, ~)l d( 

Define the J-measurable  functions g,, n = 1, 2, ... by 

. f  g.(x, y, z) = T . ] rz(x, y, O] d~, 
l~(z) 

f 
where I,(z) denotes the interval [~:z - 

it follows that for #-a.e. z, 

1} 
in  < ( < z + --ff . For  (x, y) not in F, 

lim g.(x, y,  z) = I Tz(x, y, z)[,  
t l " *  O0 

and hence by Fubini's theorem, z-a.e, we have [ T , [ =  g, where 

g = lira infg , .  
/1"* O0 

Now let us fix z and n, and denote by E,(x, y, z) the segment {(x, y)} x 1,(z). 
By Lemma 4.2 with E = L = I,(z), we have for a-a.e. (x, y), 

= {AEE.(x,Y,Z)*]) 3 < 
gn(X, y, z) 3 \ I.t[E,,(x, y, z)] = 

! ~ 4r (x, y,/.(z)) 
p[E,(x,y,z)] 

Integrating over R, we find 
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f gn(x,y,z)3da(x,y) <= n.~2 r , 
R 

and letting n ~ o% by Fatou's lemma, we conclude 

f g(x, y, z) 3 da(x, y) < lira i n f n ~  q~ JR, L,(z)]. 

R 

But with another application of Lebesgue's theorem, we know that for #-a.e. z, 

n 
lim -3- q~ER' In(z)] = dp"(z) 

where qS" is e/g-measurable, and f qb"d/~ < qS[R,I]. Hence for p.-ae, z, 

I 

f g(x, y, z)Sda(x, y) < ~q~"(z), 
R 

and (4.9) follows by Fubini's theorem. 

Regarding Theorem 4.4, it is now clear that T is ACL 3 in z. But by the 

symmetry of the hypotheses of Theorem 4.4, T is ACL v The proof is com- 

pleted. 

5. Characterizations of quasiconformality. Suppose that T satisfies 

the hypotheses of Theorem 4.4, not only for cones in cg~, but for all regular 

cones of central angle/3. By Theorem 4.4 and the above mentioned differen- 

tiation theorem of V/iis/il~i, T is almost everywhere diflerentiable, and we may 

compute DT(Po; ) ~ of type Tt, 7"2, or T 3 of (3.1). Hypothesis (a') together 

with Theorems 3.1 (b) and 2.3 rules out the possibility T2. Further, almost 

everywhere that DT(Po; ) is of type T 1, we may compare the bound (4.1) 

with the sharp bound (3.5). It follows that 

2tan ( tan = g  J 
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and hence 
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KL(T) esssup{D(Po):J(Po)#O } < ' a n  fl o" fl 
= = t -s t-2K. 

Next, we may wish to require that T satisfy (4.1) for all cones and all fl, in 

which case it follows that 

KL(T)<= inf tan 2fl---cot ~ K  = K. 
0<p<n/2 

We thus have the following characterizations: 

Theo re m 5.1. A homeomorphism T is quasiconformal in a domain G, 

with KL(T ) < K, if and only if 

(a') For every vertex Po in G, and every non-zero regular cone at Po, 

A'(C*) > O. 

(b') For almost every vertex Po in G, and every regular cone C at Po, 

A'(C*) >= 1 A'(C). 

T h e o r e m  5.2. A homeomorphism T of a domain G is quasiconformal, 

with KL(T) <= K, if and only if 

(a) For every vertex Po in G, and every non-zero ordinary angle ~ at Po, 

A(~*) > 0, 

(b) For almost every vertex Po in G, and every ordinary angle a at Po, 

1 
A(a*) > -~A(a). 

From a methodological standpoint, Theorem 5.1 is the extension of 

Theorem 4 of [1]. We note that only regular cones are needed, and they are 

used as were the segments in the latter theorem. From a formal standpoint, 
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the analogue to Theorem 4 of [1] would be the alternative Theorem 5.2, but 

requiring only that (a) and (b) apply to segmental angles. Unfortunately, 

the example in Section 2.4 will not allow us to use these methods to obtain a 

theorem using only segmental angles. On the other hand, although the example 

is not quasiconformal, neither does it satisfy the hypothesis (b) of Theorem 5.2 

for segmental angles, and hence it casts no light on the possible truth or falsity 

of such a strengthened theorem. 

One result in this direction is due to Kopylov, I-5]: A mapping which pre- 

serves angles between rays is conformal. The hypothesis means that every 

segmental angle is mapped on an ordinary angle of equal measure. The methods 

are quite different, apparently using Baire Category and Rademacher-Stepanov 

Theorems. For contrast, we close this section with the best result obtainable 

by our methods in the conformal case. An oriented ordinary angle is an ordinary 

angle, one of whose sides is a segment parallel to a coordinate axis. 

T h e o r e m  5.3. I f  T is a homeomorphism, and if there 
7Z 

0 < fl < ~-,  such that for oriented ordinary angles ct of size fl, 

(a) A(ct*)> 0 at every vertex, 

(b) A(~*) > fl at almost every vertex, 

then T is conformal. 

exists fl, 

Proof .  Our hypotheses, together with Theorem 2.3 and Corollary 2.4, 

assure that the hypotheses of Theorem 4.4 are satisfied with K = 1. Hence 

T is ACL3, and totally dil~brentiable almost everywhere. It is then an exercise 

in elementary trigonometry, not unlike the proof of Theorem 3.1, to show 

that the partial derivatives Tx, Ty, T, are mutually orthogonal and of equal 

length almost everywhere, from which the result follows. 

6. E x t e n s i o n  o f  t h e  t h e o r y  to  n + 1 d i m e n s i o n s ,  n >= 3. The 

preceding sections have been designed as much as possible to permit immediate 

extension to higher dimensions. Many of the remarks remain formally correct, 

given the new interpretations for the symbols. For example, we will denote 

the points by P = ( X , z ) ,  where X =(Xl,X2, '" ,Xn).  The scalar product is 

defined as usual, and 1 ~ 1 2 = 1 x l 2 §  z 2, where IXI~-- Section 2 
j = l  
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needs only the remark that a regular cone is a similarity transform of the 

graph of the equation z = I x [ cot/  to remain in force. The idea of the example 
in Section 2.4 is easy to visualize, though it becomes tedious to write down 

and we will not do so. 

In Section 3, the trio of affine mappings becomes 

Tl (X , z  ) = (xl,C2x2,...,CnXn, Dz): 1 <_ C2 < "'" <= C. < D, 

(3.1') T2(X,z) = (O, C2x2,"',  C.x. ,z):  0 < C 2 < ' " < C . < 1 ,  

T3(X,z) = ( 0 , 0 , . . . , 0 , 0 ) ,  

and Theorem 3.1, because of its essentially 2-dimensional character, still 

applies. The distortion theory of Section 3.2 is known to be true in n + 1 

dimensions, although no references are as yet available. Theorem 3.3 and its 

Corollary 3.4 are thus verified conditionally. 

For Section 4, we need to interpret z as (n + 1)-measure, a as n-measure, 

and p as 1-measure. We let ~ .  be the n-measure of the unit ball in n-space, 

and by a right circular cylinder with axis L and radius r, we understand the 

image under a rigid motion of the set {(X, z): [ X ] < r, 0 < z < length L} 

in which the z-axis is carried onto L. Lemma 4.1 requires the hypothesis 

(4.2') lim z[L*]__ = M < 0% 
�9 -~o rn~n 

in order to draw the conclusion 

{ARE*]} "+' < (n + 1)p"Mtan"fl{A[E]}". 

Indeed, the "p lane"  w = Wo is now an n-dimensional hyperplane, and the 

inequality above (4.6) reads 

g(wo) >= rl"f~. >- ~ .p -"  rain {w"o, (d - Wo)"}. 

Inequality (4.6) and the long chain following (4.7) condense respectively to 

~,,d n + 1 
(4.6') z[C(I)*] > (n + 1)(2p)" 
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and 

{A[8, E*]} "+ ~ < (n + 1)p"Mtan"fl{AEe(t)]}",  

f rom which L e m m a  4.1 is recovered.  

For  L e m m a  4.2, we let Br(X ) denote the n-ball  in n-space, centered at X 

with radius r. Then sett ing 

~b'(X; L) = l im ~[B , (X) ,  L] 
r ~ O  rn~'~n ' 

L e m m a  4.2 goes through,  with the conclusion 

(4.8 ')  {AEE*]} "+~ __< r  L) {#[E]}". 

In  Section 4.3 we now obta in  the (n + 1)-integrabili ty of  1 7'_. [. This  is essential  

since ACL,+ 1 is now needed in place of  ACL3,  and indeed the differentiabili ty 
follows as before f r o m  [9],  which is a l ready phrased for  n d imensions .  The 

character izat ions  o f  Sect ion 5 hold verbat im.  
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Note added in proof: During the preceding year the following additional references have 
come to my attention: 

[A] P. Caraman, On the Equivalence of the Definitions of the n-Dimensional Quasicon- 
formal Homeomorphisms, Rev. Roum. Math. Pures et Appl. XII, No. 7 (1967), 889-943. 

[B] P. Caraman and M. Corduneanu, Charact6risation des Hom6omorphisms Quasi- 
conformes de R" par la D6formation des Angles, An. StL Univ. "AI. L Cuza" Iasi, 
Sect. Ia Mat., 14 (1968), 1-16. 

[C] O. Taari, Raumwinkel und Quasikonformit~t, Ann. Acad. Sci. Fenn A. L, 426 (1968), 
1-16. 

The theory of |  mappings in n-dimensions is discussed extensively in 
[A, Section 9]. In [B], the authors announce the following theorem: If  the 
conditions (a) and (b) of the present Theorem 5.2 are fulfilled for segmental 
angles, and if (c) T is totally differentiable a.e., then T is quasiconformal. The 
first author has noted in correspondence that there is an oversight in the proof 
of this theorem, and so its status remains in doubt. 
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