ON THE RIESZ BASISNESS OF THE ROOT FUNCTIONS OF THE NONSELF-ADJOINT STURM-LIOUVILLE OPERATOR

BY

NESE DERNEK

Department of Mathematics, Faculty of Arts and Science, Marmara University GSztepe Kampiisi~, 81040, KadikSy, Istanbul, Turkey e-mail: ndernek@marmara.edu.tr

AND

O. A. VELIEV

Departartment of Mathematics, Faculty of Arts and Science, Dogus University Acsbadem, 34722, KadikSy, Istanbul, Turkey e-mail: oveliev@dogus.edu.tr

ABSTRACT

In this article we obtain the asymptotic formulas for eigenfunctions and eigenvalues of the nonself-adjoint Sturm-Liouville operators with periodic and antiperiodic boundary conditions, when the potential is an arbitrary summable complex-valued function. Then using these asymptotic formulas, we find the conditions on Fourier coefficients of the potential for which the eigenfunctions and associated functions of these operators form a Riesz basis in $L_2(0, 1)$.

Let $L_t(q)$ be the operator generated in $L_2[0,1]$ by the expression

$$
(1) \t\t -y'' + q(x)y,
$$

and the boundary conditions

(2)
$$
y(1) = e^{it}y(0), \quad y'(1) = e^{it}y'(0),
$$

where $q(x)$ is a complex-valued summable function.

In this article we obtain asymptotic formulas of order $O(n^{-l})$ $(l = 1, 2, \ldots)$ for the *n*-th eigenvalue and corresponding eigenfunction of the operator $L_t(q)$

Received September 24, 2003 and in revised form June 7, 2004

with $q(x) \in L_1(0,1)$, for $t = 0, \pi$, that is, for periodic and antiperiodic boundary conditions. Note that in classical investigations, in order to obtain the asymptotic formulas of order $O(n^{-l})$ it is required that $q(x)$ be $(l-1)$ times differentiable (see $[2,3]$). Then using these asymptotic formulae, we find the conditions on Fourier coefficients $q_n = (q(x), e^{i2\pi nx})$ where $(.,.)$ denotes inner product in $L_2(0,1)$ of $q(x)$ for which the root functions (the eigenfunctions and associated functions) of $L_t(q)$, for $t = 0, \pi$, form a Riesz basis in $L_2(0, 1)$. Note that the periodic and antiperiodic boundary conditions are regular boundary conditions, but are not strongly regular boundary conditions. Therefore, in general, the eigenfunctions and associated functions of $L_0(q)$ and $L_\pi(q)$ do not form a Riesz basis; they form a basis with brackets in $L_2(0, 1)$ (see [4], [5]). In this paper we prove that if

(3)
$$
\lim_{n \to \infty} \frac{\ln |n|}{n q_{2n}} = 0, \quad q_{2n} \sim q_{-2n},
$$

then the eigenfunctions and associated functions of $L_0(q)$ form a Riesz basis in $L_2(0, 1)$, where $a_n \sim b_n$ means that $c_1 | b_n | < |a_n | < c_2 | b_n |$, for all $n = 1, 2, \ldots$. Here and in subsequent relations, we denote by c_m ($m = 1, 2, ...$) the positive constants whose exact values are inessential. Similarly, if

(4)
$$
\lim_{n \to \infty} \frac{\ln |n|}{n q_{2n+1}} = 0, \quad q_{2n+1} \sim q_{-2n-1},
$$

then the eigenfunctions and associated functions of $L_{\pi}(q)$ form a Riesz basis in $L_2(0,1)$.

It is well-known that (see formulas (47a), (47b) on page 65 of [3]) the eigenvalues of the operators $L_0(q)$ and $L_\pi(q)$ consist of the sequences $\{\lambda_{n,1}\}, \{\lambda_{n,2}\}\$ and $\{\mu_{n,1}\}, \{\mu_{n,2}\}\$ satisfying

(5)
$$
\lambda_{n,j} = (2n\pi)^2 + O(n^{1/2})
$$

and

(6)
$$
\mu_{n,j} = (2n\pi + \pi)^2 + O(n^{1/2}),
$$

for $j = 1, 2$. From these formulas one can easily obtain the following inequalities:

(7)
$$
|\lambda_{n,j} - (2\pi k)^2| > |2(n-k)\pi||2(n+k)\pi| - c_3 n^{1/2} > c_4 n,
$$

(8)
$$
|\mu_{n,j} - (2\pi k + \pi)^2| > |2(n-k)\pi||2(n+k+1)\pi| - c_5 n^{1/2} > c_6 n
$$

for $j = 1, 2; k \neq n; k = 0, 1, \ldots;$ and $n \geq N$, where we denote by N a sufficiently large positive integer, that is, $N \gg 1$. To obtain the asymptotic formula for eigenvalues $\lambda_{n,j}$ and corresponding normalized eigenfunctions $\Psi_{n,j}(x)$ of $L_0(q)$, we use (7) and the well-known relation

(9)
$$
(\lambda_{N,j} - (2\pi n)^2)(\Psi_{N,j}(x), e^{i2\pi nx}) = (q(x)\Psi_{N,j}(x), e^{i2\pi nx}).
$$

Moreover, we use the following relations:

(10)
$$
(q(x)\Psi_{N,j}(x),e^{i2\pi nx})=\sum_{m=-\infty}^{\infty}q_{-m}(\Psi_{N,j}(x),e^{i2\pi(n+m)x}),
$$

(11)
$$
|(q(x)\Psi_{N,j}(x),e^{i2\pi nx})|<4M,
$$

for $n \in \mathbb{Z}$ and $N \gg 1$, where $M = \sup_{n \in \mathbb{Z}} |q_n|$. These relations are obvious for $q(x) \in L_2(0,1)$. For $q(x) \in L_1(0,1)$, see Lemma 1 of [6]. Note that $q_n \to 0$ as $|n| \rightarrow \infty$ and, without loss of generality, we assume that $q_0 = 0$.

Using (10) in (9) we get

(12)
$$
(\lambda_{n,j} - (2\pi n)^2)(\Psi_{n,j}, e^{i2\pi nx}) = \sum_{\substack{n_1 = -\infty \\ n_1 \neq 0}}^{\infty} q_{n_1}(\Psi_{n,j}, e^{i2\pi (n-n_1)x}).
$$

Now isolating the term in the right-hand side of (12) containing the multiplicant $(\Psi_{n,j}(x), e^{-i2\pi nx})$ (i.e., case $n_1 = 2n$), replacing

$$
(\Psi_{n,j}(x), e^{i2\pi(n-n_1)x})
$$
 by $\frac{(q(x)\Psi_{n,j}(x), e^{i2\pi(n-n_1)x})}{\lambda_{n,j} - (2\pi(n-n_1))^2}$ for $n_1 \neq 2n$

(this replacement can be obtained from (9) by taking n and $n - n_1$ instead of N and n) and using (10) for the numerator of the last fraction, we obtain

(13)
$$
\begin{aligned} (\lambda_{n,j} - (2\pi n)^2) (\Psi_{n,j}(x), e^{i2\pi nx}) - q_{2n} (\Psi_{n,j}(x), e^{-i2\pi nx}) \\ = \sum_{\substack{n_1, n_2 = -\infty \\ n_1 \neq 2n}}^{\infty} \frac{q_{n_1} q_{n_2} (\Psi_{n,j}(x), e^{i2\pi (n - n_1 - n_2)x})}{\lambda_{n,j} - (2\pi (n - n_1))^2} .\end{aligned}
$$

Note that, since $q_0 = 0$, here and in the subsequent relations the sums are taken under conditions $n_1, n_2, \ldots \neq 0$. Now isolating the terms on the right-hand side of (13) containing one of the multiplicants $(\Psi_{n,j}(x), e^{i2\pi nx})$, $(\Psi_{n,j}(x), e^{-i2\pi nx})$ (i.e., cases $n_1 + n_2 = 0, 2n$) and replacing

$$
(\Psi_{n,j}(x), e^{i2\pi(n-n_1-n_2)x}) \quad \text{by } \frac{(q(x)\Psi_{n,j}(x), e^{i2\pi(n-n_1-n_2)x})}{\lambda_{n,j} - (2\pi(n-n_1-n_2))^2} \quad \text{for } n_1+n_2 \neq 0, 2n
$$

we obtain

$$
(\lambda_{n,j} - (2\pi n)^2)(\Psi_{n,j}(x), e^{i2\pi nx}) - q_{2n}(\Psi_{n,j}(x), e^{-i2\pi nx})
$$

$$
- \sum_{\substack{n_1 = -\infty \ n_1 \neq 2n}}^{\infty} \frac{q_{n_1}q_{-n_1}(\Psi_{n,j}(x), e^{i2\pi nx})}{\lambda_{n,j} - (2\pi(n - n_1))^2} - \sum_{\substack{n_1 = -\infty \ n_1 \neq 2n}}^{\infty} \frac{q_{n_1}q_{2n - n_1}(\Psi_{n,j}(x), e^{-i2\pi nx})}{\lambda_{n,j} - (2\pi(n - n_1))^2}
$$

$$
(14) = \sum_{\substack{n_1, n_2 = -\infty \ n_1 \neq 2n, n_1 + n_2 \neq 0, 2n}}^{\infty} \frac{q_{n_1}q_{n_2}(q(x)\Psi_{n,j}(x), e^{i2\pi(n - n_1 - n_2)x})}{(\lambda_{n,j} - (2\pi(n - n_1))^2)(\lambda_{n,j} - (2\pi(n - n_1 - n_2))^2)}.
$$

Repeating this process m -times (i.e., using (10) in the numerator of the fractions on the right-hand side of (14) and isolating the terms containing one of the multiplicants $(\Psi_{n,j}(x), e^{i2\pi nx})$, $(\Psi_{n,j}(x), e^{-i2\pi nx})$ etc.), we get

(15)
$$
(\lambda_{n,j} - (2\pi n)^2 - A_m(\lambda_{n,j}))(\Psi_{n,j}(x), e^{i2\pi nx}) - (q_{2n} + B_m(\lambda_{n,j}))(\Psi_{n,j}(x), e^{-i2\pi nx}) = R_m,
$$

where $A_m(\lambda_{n,j}) = \sum_{k=1}^m a_k(\lambda_{n,j}), B_m(\lambda_{n,j}) = \sum_{k=1}^m b_k(\lambda_{n,j}),$

$$
a_{k}(\lambda_{n,j}) = \sum_{n_{1},n_{2},...,n_{k}} \frac{q_{n_{1}}q_{n_{2}}\cdots q_{n_{k}}q_{-n_{1}-n_{2}-\cdots-n_{k}}}{[\lambda_{n,j}-(2\pi(n-n_{1}))^{2}]\cdots[\lambda_{n,j}-(2\pi(n-n_{1}-\cdots-n_{k}))^{2}]},
$$

\n
$$
b_{k}(\lambda_{n,j}) = \sum_{n_{1},n_{2},...,n_{k}} \frac{q_{n_{1}}q_{n_{2}}\cdots q_{n_{k}}q_{2n-n_{1}-n_{2}-\cdots-n_{k}}}{[\lambda_{n,j}-(2\pi(n-n_{1}))^{2}]\cdots[\lambda_{n,j}-(2\pi(n-n_{1}-\cdots-n_{k}))^{2}]},
$$

\n
$$
R_{m} = \sum_{n_{1},n_{2},...,n_{m+1}} \frac{q_{n_{1}}q_{n_{2}}\cdots q_{n_{m}}q_{n_{m+1}}(q(x)\Psi_{n,j}(x),e^{i2\pi(n-n_{1}-\cdots-n_{m+1})x})}{[\lambda_{n,j}-(2\pi(n-n_{1}))^{2}]\cdots[\lambda_{n,j}-(2\pi(n-n_{1}-\cdots-n_{m+1}))^{2}]}.
$$

Here, the sums are taken under the conditions

$$
n_s\neq 0,\quad \sum_{j=1}^s n_j\neq 0,2n
$$

for $s = 1, 2, ..., m + 1$. Using (7) we get the estimations

(16)
$$
a_k = O\left(\left(\frac{\ln |n|}{n}\right)^k\right), \quad b_k = O\left(\left(\frac{\ln |n|}{n}\right)^k\right), \quad R_m = O\left(\left(\frac{\ln |n|}{n}\right)^{m+1}\right).
$$

In the same way, the relation

(17)
$$
(\lambda_{n,j} - (2\pi n)^2 - A'_m(\lambda_{n,j}))(\Psi_{n,j}(x), e^{-i2\pi nx}) - (q_{-2n} + B'_m(\lambda_{n,j}))(\Psi_{n,j}(x), e^{i2\pi nx}) = R'_m
$$

can be obtained, where $A'_{m}(\lambda_{n,j}) = \sum_{k=1}^{m} a'_{k}(\lambda_{n,j}), B'_{m}(\lambda_{n,j}) = \sum_{k=1}^{m} b'_{k}(\lambda_{n,j}),$

$$
a'_{k}(\lambda_{n,j})=\sum_{n_1,n_2,...,n_k}\frac{q_{n_1}q_{n_2}\cdots q_{n_k}q_{-n_1-n_2-\cdots-n_k}}{[\lambda_{n,j}-(2\pi(n+n_1))^2]\cdots[\lambda_{n,j}-(2\pi(n+n_1+\cdots+n_k))^2]},
$$

$$
b'_{k}(\lambda_{n,j}) = \sum_{n_1, n_2, \dots, n_k} \frac{q_{n_1} q_{n_2} \cdots q_{n_k} q_{-2n - n_1 - n_2 - \dots - n_k}}{[\lambda_{n,j} - (2\pi(n + n_1))^2] \cdots [\lambda_{n,j} - (2\pi(n + n_1 + \dots + n_k))^2]},
$$
\n(18)

(18)
$$
a'_k = O((\frac{\ln |n|}{n})^k), b'_k = O((\frac{\ln |n|}{n})^k), R'_m = O((\frac{\ln |n|}{n})^{m+1}).
$$

Here, the sums are taken under the conditions

$$
n_s \neq 0
$$
, $\sum_{j=1}^s n_j \neq 0, -2n$

for $s = 1, 2, ..., k$.

It follows from (7) , (9) and (11) that

$$
\sum_{k\in Z, k\neq n,-n} |(\Psi_{n,j}(x),e^{i2\pi k x})|^2=\sum_{k\in Z, k\neq n,-n}\frac{(4M)^2}{[\lambda_{n,j}-(2\pi k)^2]^2}=O\Big(\frac{1}{n^2}\Big).
$$

Therefore, $\Psi_{n,t}(x)$ has an expansion of the form

(19)
$$
\Psi_{n,j}(x) = u_{n,j}e^{i2\pi nx} + v_{n,j}e^{-i2\pi nx} + h(x),
$$

where $u_{n,j} = (\Psi_{n,j}(x), e^{i2\pi nx})$, $v_{n,j} = (\Psi_{n,j}(x), e^{-i2\pi nx})$, $||h(x)|| = O(1/n)$,

(20)
$$
|u_{n,j}|^2 + |v_{n,j}|^2 = 1 + O\left(\frac{1}{n^2}\right).
$$

Now using (16) , (18) , (20) in the system of equations (15) , (17) we find asymptotic formulas for eigenfunctions $\Psi_{n,j}(x)$ and eigenvalues $\lambda_{n,j}$ of the operator $L_0(q)$ with $q(x) \in L_1(0,1)$, and prove that if conditions (3) hold then the eigenfunctions and associated functions of this operator form a Riesz basis in $L_2(0,1)$.

THEOREM 1: *Let the conditions (3) hold. Then:*

(a) All sufficiently large eigenvalues of the operator $L_0(q)$ are simple. They *consists of two sequences* $\{\lambda_{n,1} : n > N\}$ *and* $\{\lambda_{n,2} : n > N\}$ *satisfying*

(21)
$$
\lambda_{n,j} = (2\pi n)^2 + (-1)^j p_n + O\Big(\frac{\ln |n|}{n}\Big),
$$

for j = 1, 2, where $p_n = (q_{2n}q_{-2n})^{1/2}$ *.*

The corresponding eigenfunction $\varphi_{n,j}(x)$ satisfies

(22)
$$
\varphi_{n,j}(x) = e^{i2\pi nx} + \alpha_{n,j}e^{-i2\pi nx} + O(1/n),
$$

where

$$
\alpha_{n,j} \sim 1,
$$

(24)
$$
\alpha_{n,j} = \frac{(-1)^j p_n}{q_{2n}} + O\Big(\frac{\ln |n|}{nq_{2n}}\Big),
$$

for $j = 1, 2$.

(b) The root functions of $L_0(q)$ form a Riesz basis in $L_2(0, 1)$.

Proof: First we prove that if conditions (3) hold, then

$$
(25) \t\t\t u_{n,j} \sim v_{n,j} \sim 1,
$$

(26)
$$
\lambda_{n,j} - (2\pi n)^2 = a_j p_n + O\left(\frac{\ln |n|}{n}\right),
$$

for $j = 1, 2$, where $a_j = \pm 1$ and $u_{n,j}$, $v_{n,j}$ are defined in (19). From (15)-(18) we obtain the system of equations

(27)
$$
(\lambda_{n,j} - (2\pi n)^2)u_{n,j} = q_{2n}v_{n,j} + O\Big(\frac{\ln |n|}{n}\Big),
$$

(28)
$$
(\lambda_{n,j} - (2\pi n)^2)v_{n,j} = q_{-2n}u_{n,j} + O\Big(\frac{\ln |n|}{n}\Big).
$$

It follows from (20) that at least one of the numbers $|v_{n,j}|$, $|v_{n,j}|$ is greater than $\frac{1}{2}$. Assume that $|v_{n,j}| > \frac{1}{2}$. Then from (28) and (3) we obtain $|\lambda_{n,j} - (2\pi n)^2|$ *c₇* $|q_{-2n}|$. Moreover, the inequalities $|u_{n,j}| < 2$ (see (20)), $|v_{n,j}| > \frac{1}{2}$, and (27) imply that $|\lambda_{n,j} - (2\pi n)^2| > c_8|q_{2n}|$. Hence using these inequalities and (3) we obtain

(29)
$$
\lambda_{n,j} - (2\pi n)^2 \sim q_{2n} \sim q_{-2n} \sim p_n, \quad \lim_{n \to \infty} \frac{\ln |n|}{np_n} = 0.
$$

This with (27) implies that $u_{n,j} \sim v_{n,j}$. Therefore (25) follows from (20). Now dividing both sides of (27) and (28) by $u_{n,j}$ q_{2n} and $(\lambda_{n,j} - (2\pi n)^2)u_{n,j}$, respectively, we get

(30)
$$
\frac{v_{n,j}}{u_{n,j}} = \frac{\lambda_{n,j} - (2\pi n)^2}{q_{2n}} + O\left(\frac{\ln |n|}{nq_{2n}}\right) = \frac{q_{-2n}}{\lambda_{n,j} - (2\pi n)^2} + O\left(\frac{\ln |n|}{nq_{2n}}\right).
$$

From here, using (29), we get (26).

The proof of (a). Suppose $\lambda_{n,j}$ (where $n > N \gg 1$) is multiple. There are two possible cases:

1. There is an associated function $\Psi^1_{n,j}(x)$ corresponding to the eigenfunction $\Psi_{n,j}(x)$, that is,

(31)
$$
(L_0 - \lambda_{n,j})\Psi_{n,j}^1(x) = \Psi_{n,j}(x).
$$

Since the boundary condition (2) for $t = 0$ is selfadjoint, $\overline{\lambda_{n,j}}$ and $\overline{\Psi_{n,j}}$ are an eigenvalue and an eigenfunction of the adjoint operator L_0^* . Therefore, multiplying both sides of (31) by $\overline{\Psi_{n,j}}$ we get $(\Psi_{n,j}(x), \overline{\Psi_{n,j}}) = 0$. This with (19) implies the equality $u_{n,j}v_{n,j} = O(1/n)$, which contradicts (25).

2. There are two eigenfunctions corresponding to $\lambda_{n,j}$. Then all solutions of the equation

$$
-y^{''}+q(x)y=\lambda_{n,j}y
$$

are eigenfunctions. In particular, the solution

$$
y(x, \lambda_{n,j}) = e^{\rho_{n,j}x} + O(1/n) = e^{2\pi nx} + O(1/n),
$$

where $\rho_{n,j} = (\lambda_{n,j})^{1/2} = 2\pi n + (1/n)$ (see page 52 of [3]), and (26)), is an eigenfunction. In (27), instead of using $\Psi_{n,j}$, taking this eigenfunction we get

$$
\lambda_{n,j} = (2\pi n)^2 + O\Big(\frac{\ln |n|}{n}\Big),\,
$$

which contradicts (29). Thus the eigenvalues $\lambda_{n,j}$ for $n > N$ are simple and satisfy (26). Now, in order to obtain (21) from (26) it remains to prove that $a_1 \neq a_2$, say $a_1 = -1, a_2 = 1$. Suppose $a_1 = a_2 = -1$. Then (26), (27) yield

(32)
$$
-p_n u_{n,1} = q_{2n} v_{n,1} + O\Big(\frac{\ln |n|}{n}\Big), -p_n u_{n,2} = q_{2n} v_{n,2} + O\Big(\frac{\ln |n|}{n}\Big).
$$

Multiplying both sides of the first and second equalities by $-v_{n,2}$ and $v_{n,1}$, respectively, and then summing the equalities, we get

(33)
$$
u_{n,1}v_{n,2} - u_{n,2}v_{n,1} = O\Big(\frac{\ln |n|}{np_n}\Big).
$$

On the other hand, since $\overline{\lambda_{n,j}}$ and $\overline{\Psi_{n,j}}$ are an eigenvalue and an eigenfunction of adjoint operator L_0^* and $\lambda_{n,1} \neq \lambda_{n,2}$, we have

(34)
$$
0 = (\Psi_{n,1}, \overline{\Psi_{n,2}}) = u_{n,1}v_{n,2} + u_{n,2}v_{n,1} + O(1/n)
$$

(see (19)). It follows from (33) , (34) , (29) that

$$
u_{n,1}v_{n,2}=O\Big(\frac{\ln |n|}{np_n}\Big)=o(1),
$$

which contradicts (25). If we suppose that $a_1 = a_2 = 1$, then, in the same way, we obtain the same contradiction. Thus one of these numbers, say a_1 , is -1 and the other is 1. The formulas (21) are proved. Since $\lambda_{n,1}$ satisfies (21), for $j = 1$, the first equality in (32) holds. Therefore

(35)
$$
\frac{v_{n,1}}{u_{n,1}} = \frac{-p_n}{q_{2n}} + O\left(\frac{\ln |n|}{nq_{2n}}\right).
$$

Denoting $a_{n,j} = v_{n,j}/u_{n,j}$ and $\varphi_{n,j}(x) = \Psi_{n,j}(x)/u_{n,j}$, from (19), (25) and (35) we obtain (22), (23) and (24) for $j = 1$. Taking into account that $\lambda_{n,2}$ satisfies (21) for $j = 2$, in the same way we get the proof of (22) , (23) and (24) for $j = 2$.

The proof of (b). Now we prove that the eigenfunctions $\varphi_{n,j} \equiv \varphi_{n,j}^0$ and associated functions $\varphi_{n,j}^k$ (where $n = 1,2,...,$ and $k = 1,2,..., s(n,j)$) of $L_0(q)$ form a Riesz basis in $L_2(0,1)$. For every $f(x) \in L_2(0,1)$, the asymptotic formulas (22), (23) yield

(36)
$$
\sum_{n=1}^{N} \left(\sum_{k=0}^{s(n,j)} \sum_{j=1}^{2} |(f, \varphi_{n,j}^{k})|^2 \right) + \sum_{j=1}^{2} \sum_{n=N+1}^{\infty} |(f, \varphi_{n,j})|^2 < \infty.
$$

Let $\chi_{n,j} \equiv \chi_{n,j}^0$ and $\chi_{n,j}^k$, where $k = 1,2,\ldots,t(n,j)$ be the biorthonormal system of eigenfunctions and associated functions of L_0^* . Clearly $\chi_{n,j}(x)$ = $\overline{\varphi_{n,j}(x)}/(\varphi_{n,j},\overline{\varphi_{n,j}})$ for $n > N$. Therefore, using (22), (23) we get

(37)
$$
\sum_{n=1}^{N} \left(\sum_{k=0}^{t(n,j)} \sum_{j=1}^{2} |(f, \chi_{n,j}^{k})|^2 \right) + \sum_{j=1}^{2} \sum_{n=N+1}^{\infty} |(f, \chi_{n,j})|^2 < \infty.
$$

Since

$$
\{\varphi_{n,j}^k : k = 0, 1, 2, \ldots, s(n,j); j = 1, 2; n = 1, 2, \ldots\},\
$$

and the biorthonormal system

$$
\{\chi_{n,j}^k : k = 0, 1, 2, \ldots, t(n,j); j = 1, 2; n = 1, 2, \ldots\}
$$

are total (see chap. 1, sec. 3 of [2]), by the well-known theorem of Bari (see [1], chap. 6), the inequalities (36) and (37) imply that the system of the eigenfunctions and associated functions of $L_0(q)$ forms a Riesz basis in $L_2(0, 1)$. The theorem is proved.

If instead of (3) , (7) , and (9) we use (4) , (8) and

$$
(38) \qquad (\mu_{N,j} - (2\pi n + \pi)^2)(\Phi_{N,j}(x), e^{i\pi (2n+1)x}) = (q(x)\Phi_{N,j}(x), e^{i\pi (2n+1)x}),
$$

where $\Phi_{N,j}(x)$ is a normalized eigenfunction of $L_{\pi}(q)$, and arguing as in the proof of Theorem 1, we obtain

THEOREM 2: *Let conditions (4) hold. Then:*

(a) All sufficiently large eigenvalues of the operator L_{π} are simple. They *consist of two sequences* $\{\mu_{n,1} : n > N\}$ and $\{\mu_{n,2} : n > N\}$ *satisfying*

(39)
$$
\mu_{n,j} = (2\pi n + \pi)^2 + (-1)^j p'_n + O\left(\frac{\ln |n|}{n}\right)
$$

for $j = 1, 2$, where $p'_n = (q_{2n+1}q_{-2n-1})^{1/2}$. The corresponding eigenfunction $\phi_{n,j}(x)$ satisfies

(40)
$$
\phi_{n,j}(x) = e^{i(2\pi n + \pi)x} + \alpha'_{n,j} e^{-i(2\pi n + \pi)x} + O(1/n)
$$

for $j = 1, 2$ *, where*

$$
\alpha'_{n,j} \sim 1, \quad \alpha'_{n,j} = \frac{(-1)^j p'_n}{q_{2n+1}} + O\Big(\frac{\ln |n|}{n q_{2n+1}}\Big).
$$

(b) The root functions of $L_{\pi}(q)$ form a Riesz basis in $L_2(0,1)$.

Now to derive the asymptotic formulas of arbitrary order for eigenfunctions and eigenvalues of the operators $L_0(q)$, $L_\pi(q)$ with $q(x) \in L_1(0, 1)$, we define successively the following functions:

$$
F_{0,j} = 0, \quad G_{0,j} = p_n, \quad E_{n,m,j} = (2\pi n)^2 + F_{m,j} + (-1)^j G_{m,j},
$$

$$
F_{k,j} = \frac{1}{2} (A_k (E_{n,k-1,j}) + A'_k (E_{n,k-1,j})),
$$

$$
G_{k,j} = \left[\frac{1}{4} (A_k (E_{n,k-1,j}) - A'_k (E_{n,k-1,j}))^2 + (B_k (E_{n,k-1,j}) + q_{2n}) (B'_k (E_{n,k-1,j}) + q_{-2n}) \right]^{\frac{1}{2}}
$$

for $m = 0, 1, 2, \ldots$, and $k = 1, 2, \ldots$, where $j = 1, 2$ and the functions A'_k , A_k are defined in (15), (17). Moreover, we use the functions A_m^* , B_m^* which are obtained from A_m , B_m respectively by replacing q_{n_1} with $e^{i2\pi(n-n_1)x}$.

THEOREM 3: If conditions (3) hold, then the eigenvalue $\lambda_{n,j}$ and the eigenfunc*tion* $\varphi_{n,j}(x)$ *of* $L_0(q)$ *satisfy the following formulas:*

(41)
$$
\lambda_{n,j} = E_{n,m,j} + O\Big(\Big(\frac{\ln |n|}{n}\Big)^{m+1}\Big),
$$

$$
\varphi_{n,i}(x) =
$$

(42)
$$
e^{i2\pi nx} + \alpha_{n,j}e^{-i2\pi nx} + A_m^*(E_{n,m,j}) + \alpha_{n,j}B_m^*(E_{n,m,j}) + O\left(\left(\frac{\ln n}{n}\right)^{m+1}\right)
$$

for $j = 1, 2$ *and* $m = 1, 2, ...,$ *where*

$$
\alpha_{n,j} = \frac{v_{n,j}}{u_{n,j}} = \frac{F_{m,j} + (-1)^j G_{m,j} - A_m(E_{n,m,j})}{q_{2n} + B_m(E_{n,m,j})} + O\Big(\frac{1}{q_{2n}} \Big(\frac{\ln |n|}{n}\Big)^{m+1}\Big).
$$

If conditions (4) hold, then the eigenvalue $\mu_{n,j}$ and the eigenfunction $\phi_{n,j}(x)$ *of* $L_{\pi}(q)$ satisfy formulas which are similar to (41) and (42).

Proof: Arguing as in the proof of (30), using (15), (17) instead of (27), (28), and denoting $\lambda = \lambda_{n,j} - (2\pi n)^2$, we get

(43)
$$
\frac{v_{n,j}}{u_{n,j}} = \frac{\lambda - A_m(\lambda_{n,j})}{(q_{2n} + B_m(\lambda_{n,j}))} + O\left(\frac{1}{q_{2n}}\left(\frac{\ln |n|}{n}\right)^{m+1}\right)
$$

$$
= \frac{(q_{-2n} + B'_m(\lambda_{n,j}))}{\lambda - A'_m(\lambda_{n,j})} + O\left(\frac{1}{q_{2n}}\left(\frac{\ln |n|}{n}\right)^{m+1}\right).
$$

Solving this square equation with respect to λ we obtain

$$
\lambda_{n,j} - (2\pi n)^2 = \frac{1}{2} (A_m(\lambda_{n,j}) + A'_m(\lambda_{n,j})) \mp \left[\frac{1}{4} (A_m(\lambda_{n,j}) - A'_m(\lambda_{n,j}))^2 + (B_m(\lambda_{n,j}) + q_{2n}) (B'_m(\lambda_{n,j}) + q_{-2n})) + O\left(q_{2n} \left(\frac{\ln |n|}{n}\right)^{m+1}\right) \right]^{1/2}.
$$

Here, the upper and lower sign is taken for $j = 1$ and $j = 2$, respectively, since the expression in the square brackets is

$$
q_{2n}q_{-2n} + O\Big(q_{2n}\frac{\ln |n|}{n}\Big) = q_{2n}q_{-2n}(1+o(1))
$$

(see (3), (16), (18)), and (21) holds. Thus in (44) the \mp can be replaced by $(-1)^j$. Now we prove (41) by induction. It is proved for $m = 1$ (see (21)). Assume that it is true for $m = k - 1$. Substituting the value of $\lambda_{n,j}$, given by this formula for $m = k - 1$, in the right-hand side of (44) for $m = k$ and using the relations

$$
A_{k}(E_{n,k-1,j} + O\left(\left(\frac{\ln |n|}{n}\right)^{k}\right)) = A_{k}(E_{n,k-1,j}) + O\left(\left(\frac{\ln |n|}{n}\right)^{k+1}\right),
$$

(45)
$$
A'_{k}(E_{n,k-1,j} + O\left(\left(\frac{\ln |n|}{n}\right)^{k}\right)) = A'_{k}(E_{n,k-1,j}) + O\left(\left(\frac{\ln |n|}{n}\right)^{k+1}\right),
$$

$$
B_{k}(E_{n,k-1,j} + O\left(\left(\frac{\ln |n|}{n}\right)^{k}\right)) = B_{k}(E_{n,k-1,j}) + O\left(\left(\frac{\ln |n|}{n}\right)^{k+1}\right),
$$

$$
B'_{k}(E_{n,k-1,j}) + O\left(\left(\frac{\ln |n|}{n}\right)^{k}\right)) = B'_{k}(E_{n,k-1,j}) + O\left(\left(\frac{\ln |n|}{n}\right)^{k+1}\right),
$$

we get the proof of (41) for $m = k$. Note that the validity of these relations can be easily verified by using the obvious equality

$$
\sum_{\substack{n_1 = -\infty, \\ n_1 \neq 0, 2n}}^{\infty} \left| \frac{1}{E_{n,k-1,j} + O((\frac{\ln |n|}{n})^k) - (2\pi(n-n_1))^2} - \frac{1}{E_{n,k-1,j} - (2\pi(n-n_1))^2} \right|
$$

=
$$
O\left(\left(\frac{\ln |n|}{n}\right)^{k+1}\right).
$$

Now we prove (42). Writing the decomposition of $\Psi_{n,j}(x)$ as

$$
\{e^{i2\pi(n-n_1)x}:n_1\in Z\},\
$$

we obtain

(46)
$$
\Psi_{n,j}(x) - u_{n,j}e^{i2\pi nx} = \sum_{\substack{n_1 = -\infty \\ n_1 \neq 0}}^{\infty} (\Psi_{n,j}(x), e^{i2\pi (n-n_1)x})e^{i2\pi (n-n_1)x}.
$$

The right-hand side of (46) can be obtained from the right-hand side of (12) by replacing q_{n_1} with $e^{i2\pi(n-n_1)x}$. Since we obtained (15) from (12) by iteration, by doing the same iteration we obtain

(47)
$$
\Psi_{n,j}(x) = u_{n,j}e^{i2\pi nx} + v_{n,j}e^{-i2\pi nx} + u_{n,j}A_m^*(\lambda_{n,j}) + v_{n,j}B_m^*(\lambda_{n,j}) + O\left(\left(\frac{\ln |n|}{n}\right)^{m+1}\right)
$$

from (46). Dividing both sides of (47) by $u_{n,j}$ and using (43), (41), (45) we get **(42).**

To obtain the asymptotic formulas for the eigenvalue $\mu_{n,j}$ and the eigenfunction $\phi_{n,j}(x)$ of $L_{\pi}(q)$, we use (4), (8), (38) and Theorem 2 instead of (3), (7) , (9) and Theorem 1 and repeat the proof of (41) and (42) .

References

- [1] I. T. Goghberg and M. G. Krein, *Introduction to Theory of Linear Nonselfadjoint Operators in Hilbert Space,* Nauka, Moscow, 1965.
- [2] V. A. Marchenko, *Sturm-Liouville Operators and Applications*, Birkhäuser Verlag, Basel, 1986.
- [3] M. A. Naimark, *Linear Differential Operators,* George G. Harap & Company, London, 1967.
- [4] A. A. Shkalikov, *The basis property of eigenfunctions of an ordinary differential operator,* Uspekhi Matematicheskikh Nauk 34 (1979), no. 5(209), 235-236.
- [5] A. A. Shkalikov, *Boundary value problem* for *ordinary differential equations with* a parameter *in the boundary conditions,* Trudy Seminara imeni I. G. Petrovskova 9 (1983), 190-229.
- [6] O. A. Veliev and M. Toppamuk Duman, *The spectral expansion* for a *nonselfadjoint Hill operator with a locally integrable potential,* Journal of Mathematical Analysis and Applications 265 (2002), 76-90.