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ABSTRACT 

We present a homological principle tha t  governs the behaviour of cou- 

ples of exact sequences of quasi-Banach spaces. Three applications are 

given: (i) A unifying method of proof for the results of Lindenstrauss, 

Rosenthal, Kalton, Peck and Kislyakov about the extension and lifting 

of isomorphisms in co, loo, lp and Lp for 0 < p < 1; (ii) A study of 

the Dunford-Pet t is  property in duals of quotients of £oo-spaces; and (iii) 
New results on the extension of C(K)-valued operators. 

1. I n t r o d u c t i o n  

The paper [25] of Lindenstrauss and Rosenthal contains a proof of the following 

fundamental results in Banach space theory (see also [27, Thms. 2.f.8, 2.f.10, 

2.f.12]): 

PROPOSITION 1.1 (case 11): Let q and Q be two operators from 11 onto a Banach 

space X not isomorphic to 11. There exists an automorphism 3- of 11 such that 

qT = Q. 

The paper also contains the "dual" results for co and loo: 

PROPOSITION 1.2 (case co): Let i and j be two injective isomorphisms from a 

Banach space Y into Co in such a way that both co / iY  and c o / j Y  are infinite 

dimensional. There is an automorphism 7 of Co such that 7i = j .  
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PROPOSITION 1.3 (case /oo): Let i and j be two injective isomorphisms from 
a Banach space Y into loo in such a way that both l ~ / i Y  and l ~ / j Y  are not 

reflexive. Then there is an automorphism r of l~  such that 7i = j .  If  the 

quotients loo/iY and loo/ jY are both reflexive, then the automorphism T exists 

if  and only if  the Fredholm index of any extension of j to loo through i is O. 

If  one of the quotients is reflexive but the other is not, no such automorphism 

exists. 

Kalton extended in [16] the first of those results to/p-spaces for 0 < p < 1: 

PROPOSITION 1.4 (case /;): Let 0 < p < 1 and let q and Q be two quotient 

maps onto a quasi-Banach space X not isomorphic to Ip. J[f kerq and ker Q 

contain copies of lp complemented in lp, then there exists an automorphism T 

Of lp SUCh that qT -~ Q. 

In [18] Kalton and Peck obtained some variations of this result for Lp(O, 1), 

0 ~ p < l .  

PROPOSITION 1.5 (case Lp): Let 0 < p < 1 and let q and Q be two quotient 

maps onto a quasi-Banach space X in such a way that ker q and ker Q are either 

q-Banach spaces for some q > p or ultrasummand spaces. Then there exists an 

automorphism T of Lp such that qv = Q. 

In [21] Kislyakov considered the case L1, obtaining: 

PROPOSITION 1.6 (case LI): Let A and B be two reflexive subspaces of LI(#) 

such that L I (p ) /A  = L I (p ) /B .  Then one of the subspaces A, B is isomorphic 

to the product of the other one with a finite dimensional space 

Lindenstrauss showed in [23] a partial converse of the/1-result and applied it 

to solve a problem raised in [26] about the existence of infinitely many isomorphy 

types of £1-spaces. 

PROPOSITION 1.7 (Ex subspaces of/1):  Let A , B  be two f~l-spaces, and let 

qA: l~ -+ A and qB: ll --+ B be two quotient operators with infinite-dimensional 

kernels. Then ker qA is isomorphic to ker qB if and only i f  A and B are isomor~ 

phic. 

Our purpose in sections 2 and 3 is to obtain a basic principle that  governs 

the behaviour of exact sequences of quasi-Banach spaces. Using what we have 

called the diagonal principle we obtain in section 4 a unifying method of proof 

for all the previous results 1.1-1.7, unveiling in this way their common homolog- 

ical nature. Section 5 contains a study of the Dunford-Pettis property in duals 
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of quotients o f / : ~  spaces, completing results of Kislyakov [21] and Kalton and 

Pelczynski [20]. In the final section 6 we obtain some new results on the ex- 

tension of C(K)-valued operators from subspaces of £~-spaces that  complement 

the Johnson-Zippin theorem [14]. 

2. P r e l i m i n a r i e s  

2.1. NOTATION AND BACKGROUND. For a sound background on homological 

algebra we suggest [13, 28]. We assume familiarity with the basic theory of 

exact sequences of (quasi-) Banach spaces and quasi- and zero-linear mappings 

as described in [7, 18, 1]. Let us however recall briefly the basic facts the reader 

should have in mind for the rest of the paper. 

In what follows we shall mostly work in the category B of Banach spaces 

and operators. An exact sequence 0 ~ Y --+ X --+ Z --+ 0 is a diagram in 

which the kernel of each arrow coincides with the image of the preceding; it 

is also called an e x t e n s i o n  of Z by Y; the middle space X is also called a 

t w i s t e d  s u m  of Y and Z. Two exact sequences 0 --+ Y ~ X --+ Z --+ 0 and 

0 --+ Y --+ XI --+ Z --+ 0 are said to be equivalent if there exists an operator 

T: X --+ X1 making commutative the diagram 

0 " Y  > X  > Z  >0  

0 ~'Y >Xl  > ' Z  >0. 

An exact sequence is said to split if it is equivalent to the trivial sequence 0 --+ 

Y --+ Y ® Z ~ Z --+ 0. The vector space (when endowed with suitable defined 

operations) of all extensions of Z by Y, modulo the equivalence relation, is 

denoted Ex t s ( Z ,  Y). A Banach space X is said to be projective if E x t s ( X ,  A) = 

0 for all Banach spaces A. The projective spaces in B are the 11 (F)-spaces. A 

Banach space X is said to be injective if E x t s  (A, X) = 0 for all Banach spaces A. 

The spaces l~  (F) are injective in B. An exact sequence 0 --+ Y --+ X --+ Z ~ 0 

with X projective is called a projective presentation of Z; if X is injective, then 

it is called an injective presentation of Y. Of course, the same notions can be 

defined for the bigger category Q of quasi-Banach spaces and operators and 

for its subcategory Qp of p-Banach spaces. There is a correspondence (see [15, 

18, 7]) between exact sequences 0 -+ Y --+ X --+ Z --+ 0 of Banach spaces and 

the so-called zero-linear maps which are homogeneous maps F: Z --+ Y with 

the property that  there exists some constant Z(F) > 0 such that  for all finite 
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V N N - • n = i  [[xn[[. sets x l , . . . , x g  E Z onehas  [[ (En___l Xn) ~ n = l  F(x,)[[  _< Z ( F )  g 

Thus, in what follows we shall use the notation 

O ~  Y ~ X--+ Z ~ O - F  

to indicate that  the exact sequence 0 ~ Y --+ X --+ Z --+ 0 is represented by the 

zero-linear map F: Z ~ Y. Two zero-linear maps F, G: Z --+ Y are said to be 

equivalent, and we write F -= G, if the induced exact sequences are equivalent. 

Extensions of quasi-Banach spaces come represented by the so-called quasi-linear 

maps, which are homogeneous maps satisfying the given inequality for N = 2. 

In [3, 9] we introduced the notion of isomorphically equivalent sequences, which 

is the key for our approach in this paper. 

Definition: We shall say that  two exact sequences 0 -+ Y ~ X -+ Z -+ 0 and 

0 ~ Yi -+ Xi -+ Z1 ~ 0 of Banach or quasi-Banach spaces are i s o m o r p h i c a l l y  

equ iva l en t  if there exist isomorphisms a: Y -+ Y1, ~3: X -+ X1 and ~/: Z -~ Zi 

making commutative the diagram 

0 ~ Y  ~ X  ~ Z  7 0  

l l 
0 " Y1 ~ X l  ~ Z l  , 0. 

In terms of quasi-linear maps it turns out (see [9]) that  0 --+ Y --+ X -+ Z --+ 0 

- F and 0 -+ Y1 ~ X1 --+ Zi --+ 0 -- G are isomorphically equivalent if and only 

if there exist isomorphisms a: Y --+ Y1 and 7: Z ~ Z1 such that  a F  = GT. 

2.2. T H E  PULL-BACK AND PUSH-OUT DIAGONAL SEQUENCES. The basic the- 

ory of the pull-back and push-out constructions in the categories B and Q, and 

their associated exact sequences, can be seen in [7, 4, 5, 3]. For the sake of 

clarity, and to ease the introduction of several new results which are essential 

for the rest of the paper, let us briefly describe the pull-back and push-out con- 

structions. Given operators q: X -+ Z and T: W -~ Z the pull-back space of 

{q ,T}  is P B  = {(x,w) : qx = T w }  C X ® W  endowed with the relative product 

topology. If 0 -+ Y A+ X -~ Z --+ 0 - F is an exact sequence, then there exists 

a commutative diagram 

J q 
0 ~ Y  ~ X  ~ Z  ~ O = F  

l l 
0 > Y  > P B  > W  > O = F T  

i 



Vol. 140, 2004 ON THE LINDENSTRAUSS-ROSENTHAL THEOREM 257 

in which the operators P B  ~ X and P B  -~ W are the restrictions of the 

canonical projections of X ~) W into, respectively, X and W, and i(y) = (jy,  0). 

It can be checked that  the composition FT:  W ~ Y is a quasi-linear map 

corresponding to the lower pull-back sequence. We are especially interested in 

another exact sequence 

O -+ P B --+ X e W ~ Z --+ O, 

where p(x, w) = qx - Tw,  which we shall call the d i a g o n a l  pu l l -back  se- 

que nc e .  It is not hard to verify that  its associated quasi-linear map is iF.  The 

dual notion of pull-back is that  of push-out. The push-out space P O  of two 

operators S: Y --+ M and j :  Y m X is the quotient space M ® X / A  where 

A = { ( S y , - j y )  • M • X } .  

If 0 --+ Y -~ X -~ Z ~ 0 is an exact sequence, then there exists a commutative 

diagram 
J q 

0 > Y  > X  > Z  > 0 - = F  

l l 
0 > M - - - - - - > P O - - ~ Z  > O = - S F  

where the arrows M ~ P O  and X --+ P O  are the restrictions to M and X of 

the quotient map M ® X ~ PO, and Q[(m, x) + A] = qx. It is not hard to 

verify that  the composition S F  is a quasi-linear map corresponding to the lower 

push-out sequence. The d i agona l  p u s h - o u t  s e q u e n c e  is now 

O - - - ~ y d  M @ x ~ P O ~ O ,  

where d(y) = ( S y , - j y ) ;  it is not hard to verify that  its associated quasi-linear 

map is FQ. 

De~nition: We shall say that  two exact sequences 0 --+ Y --+ X --+ Z --+ 0 = F 

and 0 -+ Y ~ X1 -~ Z1 ~ 0 = F1 (or two quasi-linear maps F and FI as before) 

are s e m i - e q u i v a l e n t  if one is the pull-back of the other, and vice-versa; i.e., 

if there exist two operators a: Z1 --+ Z and a l :  Z -~ Z1 such that  F a  =- F1 

and Fla l  - F. For instance, such is the case of any two injective presentations 

of a given space. Two exact sequences (or two quasi-linear maps F and F1) 

0 --+ Y ~ X --+ Z --+ O -  F a n d O  --+ }'1 --+ X1 ~ Z ~ 0_= F1 are said to 

be semi-equivalent if one is the push-out of the other, and vice-versa; i.e., if 

there exist two operators a: Y --+ Y1 and a l :  Y1 ~ Y such that  a F  = F1 and 
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alF1 - F. For instance, such is the case of any two injective presentations of a 

given space. 

With a slight abuse of notation, if 0 -+ Y -+ X -+ Z -+ 0 - F we shall 

denote (F, 0) the quasi-linear map z -+ (Fz,O) associated with the sequence 

0 -+ Y @ A -+ X @ A -+ Z ~ 0 obtained multiplying by a fixed space A. It is 

clear that  F and (F, 0) are semi-equivalent. The constructions on the right are 

analogous. To detect when a given sequence F has been obtained from another 

G via pull-back or push-out is not as hard as it seems. We do that  in the next 

result, whose proof is a direct application of the homology sequence (see [5]) plus 

the previous observations about the diagonal pull-back and push-out sequences. 

LEMMA 1: L e t O - + Y - ~ X Z ~ Z ~ O = F a n d O - + Y I - ~ X 1 - - ~ Z - ~ O = G .  

Then G is the push-out of  F i f  and only i f  Gq = O. I f  0 -+ Y ~ X 1 -+ Z 1 --'} 

0 -- G, then G is the pull-back o f F  i f  and only i f j G  = O. 

3. T h e  d i a g o n a l  p r inc ip l e s  

We establish now a basic principle asserting that  two semi-equivalent sequences 

are "essentially" isomorphically equivalent. 

THEOnEM 1 (Diagonal principle: projective case): Let 0 --+ Y --+ X ~ Z -+ 

0 =- F and 0 -+ Y1 -+ X 1  Q-~ Z --~ 0 ~ G be two exact sequences such that 

F Q  =- 0 = Gq. Then the exact sequences 

0 > Y @ X 1  ) X @ X 1  

0 ) Y I @ X  ~ ' X I ® X  

) z . o - ( F ,  o )  

z 0 -  (G, 0) 

are isomorphically equivalent. 

Proo£" The hypothesis Gq - 0 means, by~ Lemma 1, that  there exists an 

operator a such that  G - a F .  Thus, we h a v e a  commutative diagram 

J q 
0 ) Y  ~ X  ) Z  ) 0 - F  

0 >Y1 " X1 ~---~->Z > 0 -=G .  
( 4  

The hypothesis F Q  = 0 implies that  the diagonal push-out diagonal sequence 

0 -~ Y d Y1 @ X --+ X1 --+ 0 splits, which yields an isomorphism ¢: Y ® X1 --+ 
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Y1 ® X making the diagram 

d 
0 ~ Y  - l q ® X  > X l  ) 0  

0 ~ 'Y  ~ Y ® X 1  ~ X 1  >0 

commutative. We have Cd(y) = (y, 0) and therefore CdF =_ (F, 0). Recalling 

that  d(y) = ( a y , - j y )  we get dF - ( a F , - j F )  = (G,0), and thus (F, 0) = 

¢(G, 0), which means the existence of a commutative diagram 

0 : ' r l @ X  ~ X I @ X  " Z  ~ O= (G,O) 

oJ, 
0 , Y @ X ,  ~ X @ X  1 ~ 'a  ~. 0 ~ (F~O) 

in which the operator ~/is an isomorphism by the 3-1emma (see [7]). | 

The name d i agona l  pr inc ip le  comes from the fact that  there is a still 

stronger principle behind it: that  the diagonal pull-back sequence is a well- 

defined object, in a very precise sense we briefly describe now. If 0 --+ Y --+ 

X ~ Z --+ 0 -- F and 0 --+ II1 --+ X1 ~ Z --+ 0 _-- G are exact sequences and 

we construct the associated diagonal pull-back sequence 0 -4 P B  -+ X @ X1 --+ 

Z --+ 0 - A corresponding to the operators (q, ql), then the process (F, G) --+ A 

does as follows: if one replaces F, G by equivalent extensions F ' ,  G' then the re- 

sulting A' is isomorphically equivalent to A. That  correspondence A(-) actually 

defines a functor under the appropriate categories. The categorical foundations 

of the theory along with many of their applications can be found in [29]. The 

same remark as before can be made about the second diagonal principle: 

THEOREM 2 (Diagonal principle: injective case): Let 0 --+ Y d+ X --+ Z --+ 0 =_ 

F and 0 --+ Y -~ X1 --+ Z1 "+ 0 ~ G. I f  iF  = 0 = jG,  then the sequences 

0 ~ Y ~ X @ X l  :* Z @ X 1  > 0 

0 ~ 'Y  : * X l @ X  > Z I @ X  ) '0  

are isomorphically equivalent. 

The proof is simple dualization of the previous one. Observe that  the diago- 

nal principles work in a general category in which the statements have meaning. 
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We postpone for a different place the discussion of either their categorical back- 

ground or their applications to topological groups or Banach algebras. 

4. App l i ca t i ons  

4.1. EXTENSION AND LIFTING OF ISOMORPHISMS. Of course, two projective 

or injective presentations are not, in general, isomorphically equivalent. The 11 

case of the Lindenstrauss-Rosenthal theorem easily follows from the projective 

case of the diagonal principle; indeed, two exact sequences 0 ~ A --+ I1 ~ Z --+ 0 

and 0 ~ B --+ 11 --+ Z ~ 0 are isomorphicaily equivalent since the sequences 

0 -~ A --+ 11 ~ Z --+ 0 and 0 --+ A O 11 --+ 11 ® 11 ~ Z -~ 0 are isomorphically 

equivalent: this is due to the fact that  every closed infinite dimensional subspace 

of 11 contains a copy of 11 complemented in 11 (see [27]). Recalling that  the/p(F)- 

spaces are precisely the projective spaces in Qp, the preceding proof yields also 

a proof for Kalton's result about quotients of lp for 0 <: p < 1. 

The results of Kalton and Peck for Lp-spaces, 0 < p < 1, follow from the 

diagonal principle using that  Ext(Lp, A) = 0 = £(Lp,A) when A is either 

an ultrasummand or a q-Banach space for p < q (see [19]). The interested 

reader may find in [9] a proof for this result based on the study of the natural 

transformations of the functor Ext(Z,-). 

The co case of the Lindenstrauss-Rosenthal theorem is a consequence of the 

injective case of the diagonal principle using that  the sequences 0 --+ Y --+ co 

Z ~ 0 and 0 --+ Y --+ Co ® Co --+ Z G Co --+ 0 are isomorphically equivalent: 

this follows from Pelczynski's result (see [30]) that  Co admits no strictly singular 

quotient maps. The l~  (in general, the injective) case has to be treated, as 

in [25], with some care since injective spaces admit strictly singular quotient 

maps (actually, 12 is aquot ien t  o f l ~ ) .  So, i f 0  ~ Y ~ I1 -+ Z1 --+ 0 and 

0 --+ Y --+ I2 --+ Z2 --+ 0 are two injective presentations of Y, we have to 

distinguish three possibilities: 

(1) Both quotient operators are not strictly singular. In that  case they are 

isomorphisms on some copy of Ioo (see [32]) and we conclude that  the sequences 

0 , Y  ~ I i  > 2 i  ~ 0  

0 ~ Y  ~I~Oloo >Zi~)l~ ~0 

are isomorphically equivalent for i = 1, 2. So, when Ii = l~  the diagonal prin- 

ciple yields that  the two injective presentations are isomorphically equivalent. 
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(2) One quotient map is strictly singular but not the other. In such a case 

the two sequences cannot be isomorphically equivalent. 

(3) Both quotient maps are strictly singular. Then Z and W are reflexive 

and all operators Ii ~ Zi are strictly singular. Since I1 ff~ Ze is isomorphic to 

/2 • Z1, Z2 must be isomorphic to a complemented subspace of I2 ® Z1. Applying 

the Edelstein-Wojtasczyk decomposition principle [12] it must occur that  Z2 = 

F2 • 221 with F2 a complemented subspace o f / 2  and Z21 a complemented 

subspace of Z1. Necessarily then F2 must be finite dimensional. The same 

reasoning with Z1 yields that  Z1 = F1 e Z12, and F1 must be finite dimensional. 

So, in this case the conclusion of the diagonal principle can be improved to 

obtain that  the sequences 

0 ~ Y  ~ /1 0 F'2 >ZI@F2 7 0  

0 , Y  > I 2 0 F 1  >Z2®F1 >0 

are isomorphically equivalent. It is now easily achieved that  the two starting 

sequences are isomorphically equivalent if and only if F1 and F2 have the same 

dimension. 
A similar (dual) reasoning yields an improvement for Kislyakov's results [21, 

Thm. 4 and Cor]: given two exact sequences 0 --+ A --+ gl  --+ Z -+ 0 and 

0 -+ B ~ £~ -+ Z -+ 0 with A and B reflexive there exist finite dimensional 

spaces F and G so that  the sequences 

0 , A ® F  " £1 @F 

0 , B O G  

are isomorphically equivalent. 

- Z  7 0  

> Z  >0  

The result of Lindenstrauss [23] about £Fsubspaces of 11 can also be easily 

achieved. Let £1 and £~ be two unspecified £1-spaces. Consider the couple of 

exact sequences 

0 > K1 ~ ll > £1 > 0 

It is clear that  K1 and / / 2  are £1-spaces. By Lindenstrauss's lifting principle, 

Ext(£1,11) = 0, and therefore applying the diagonal principle we get, in partic- 
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ular, that  £1 @ ll and £~ ® ll are isomorphic. Since every £1-space contains ll 

complemented we conclude: £1 ~- £1 ® 11 ~ £~ • ll ~ £~. 

4.2. THE DUNFORD-PETTIS PROPERTY ON QUOTIENTS OF £oo-SPACES. The 

background we will use about the Dunford-Pettis property, which can be found 

in [10] and in [7, Chapter 6], can be resumed as: A Banach space X is said to 

have the Dunford-Pettis property (in short, DPP) if weakly compact operators 

X --+ Y are completely continuous. The DPP passes to complemented subspaces 

but not to dual spaces as Stegall's example Ii(l~) has a dual loo(l~) which 

contains complemented copies of 12 (see [34, 10, 8]). A result of Diestel [10] 

establishes that  if in an exact sequence 0 ~ Y --+ X ~ Z --+ 0 the space X has 

DPP and Y does not contain 11, then X / Y  has DPP. A consequence of this 

is Kislyakov's result [21] that  quotients of an £oo-space by a reflexive subspace 

have DPP, as well as all their higher duals. And the same occurs with the 

kernels of quotient maps from an £1-space onto a reflexive space. A warning 

is in order for this and the next section: we shall adopt the slightly improper 

custom of writing £ ~  and £1 to denote an unspecified £ ~ -  or £1-space. 

The following proposition extends Kislyakov's result and completes those of 

Kalton and Pelezynski in [20]: 

PROPOSITION 4.1: Let 0 --~ K -~ £1 -+ X -~ 0 be an exact sequence in 

which X is an ultrasummand (i.e., it is complemented in its bidual) with the 

Radon-Nikodym property (in short, RNP). Then K has the DPP. 

Proof: Let us observe the commutative diagram: 

0 , K ( x )  , zl ( r )  - x  , 0  

0 " K  >£1 > X  >0.  

The kernel K ( X )  is an ultrasummand as proved by Kalton and Pelczynski 

[20, Prop. 2.3] (see below for another proof). Thus, Ex t (£1 ,K(X))  = 0 by 

Lindenstrauss's lifting principle [22] (see also [4] for several extensions of the 

principle); hence the diagonal principle yields that  K ( X )  G £1 is isomorphic to 

/t" (~ ll (I~). The former space has the DPP since K ( X )  is Schur; hence, the latter 

space also has the DPP, as well as K.  | 

If X is just a separable dual (instead of reflexive), then K* need not have the 

DPP as the example 0 ~ ll (l~) -~ 11 --+ X -+ 0 shows. A slightly more general 
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proof than those of [20, Lemma 2.1 and Prop. 2.3] of the fact that  K ( X )  is an 

ultrasummand follows. 

LEMMA 2: f f  Z is an ultrasummand with R N P  then, for every Ll (#)-space, the 

kernel of  a quotient map LI (#) -~ Z is an ultrasummand. 

Proof: A careful observation of the following diagram (in which the names of 

the zero-linear maps have been chosen following the duality theory developed in 

[3] plus the pull-back and push-out agreements in section 2; this does not affect 

the understanding of the proof): 

0 ~ /x" ~ LI(#) q ~ Z ) 0 - F  

5K l~ 

0 > K** > P O  > Z > 0 = 5KF 

0 > K** ~ P B  ~ > Z  ) O = F * * S z  

l w ~[ 6z 

0 , K * *  , L I ( ~ ) * *  , Z * *  > 0 = F * *  q** 

reveals that  the second and third rows are equivalent. The existence of a pro- 

jection p: Z** -+ Z and the fact that  q**w = ~zv imply pq**w = pSzv = v; 

and thus, since Z has the RNP and L1 (#)** is an abstract L-space, v factorizes 

through some ll(F). Therefore Fv  = O. Moreover, F**Szq = 0 quite obviously. 

The diagonal principle implies that  K ® P B  is isomorphic to K** ® L1 (tt), hence 

K is complemented in some dual, and it is therefore an ultrasummand. | 

It is perhaps worth remarking that  the Ll(#)-space cannot be replaced by 

an arbitrary gl-space. For instance, if 0 --+ D1 --+ ll -+ L1 --4 0 then D1 is 

an £1-space that  is not an ultrasummand. Hence, the kernel K in a sequence 

0 --+ K -+ D1 --+ 12 --+ 0 is not an ultrasummand since, otherwise, D1 would be 

an ultrasummand using [3]. 

In [20], Kalton and Pelczynski asked if the kernel K1 of a sequence 0 --+ K1 --+ 

L1 --+ c0(F) --+ 0 has the DPP. In the same paper they give one interesting 

quotient map L1 (G) -~ Co(S), namely the Fourier transform when G is a locally 

compact abelian group and S a Sidon set of the dual group of G, whose kernel 

has the DPP. Of course, it is not difficult to give quotient maps L1 -+ co with 
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DPP kernels. It is an open question if there exists one with non-DPP kernel. A 

reformulation of the question is then: 

QUESTION A: Are two sequences 0 -~ kerQ --+ LI(#) ~ X and 0 --+ kerq 

LI (#) -~ X semi-equivalent? 

Observe that if Q: L1 (#) -+ X and q: L1 (v) -~ X are two quotient maps so 

that Q factorizes through q, if ker q has DPP then also ker Q has DPP. This 

is so, because when Q factorizes through q we obtain a commutative push-out 

diagram 

0 >kerQ • L I ( # )  Q • Z ~ 0 

0 •ke rq  , Ll(u) q , Z , 0 .  

Its diagonal push-out sequence 0 --+ ker Q ~ kerq • L1 (#) ~ L1 (-) ~ 0 locally 

splits (which means that its dual sequence splits; see [16]). It is an elementary 

observation that if a sequence 0 --+ Y ~ X --+ Z --+ 0 locally splits and X has 

DPP, then so does Y. Thus, if ker q has DPP then so does ker Q. Moreover, 

since (kerQ)* ® LI(#)* = (kerq)* • LI(#)*, it is clear that the duals of the 

kernels have DPP simultaneously. 

This observation about the duals touches the question of when quotients of 

£~-spaces have DPP, which we consider now. Recall that an Asplund space is 

one all of whose separable subspaces have separable duals or, equivalently, the 

predual of a space with RNP. Hence, an Asplund space cannot contain ll and 

thus every quotient of an £~-space by an Asplund subspace has the DPP. We 

can extend Diestel and Kislyakov's results as follows: 

PROPOSITION 4.2: Let A be an Asplund space. The dual of every quotient 

£oo/A has the DPP. 

Proof: Since A* has RNP, Proposition 4.1 applies to the dual sequence 0 --+ 

A ± -~  •1 ~ A* ~ 0. | 

The bidual of £ ~ / A  does not need to have the DPP, as the sequence 0 -~ 

co( Kn) -+ co -+ co(l~ ) -+ 0 shows. The general situation about which quotients 

of an £~-space have DPP is much more elusive. In particular 

QUESTION B: Does loo/ll have the DPP? 

By the Lindenstrauss-Rosenthal theorem, the space I~/ l l  is uniquely defined. 

In [7, 8] the question was posed if the bidual K(CO)** of the kernel of a projective 
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presentation of Co has the DPP; which is the same as: does (loo/ll)* have the 

DPP? We show now that, as regards this last question, the space loo can be 

replaced by any other £oo-space. 

PROPOSITION 4.3: Let E be a subspace of£oo and £ ~ .  

(1) If £0o and £~  axe injective, the quotients £oo/E and £ ~ / E  have DPP 
simultaneously. 

(2) If £~  is a subspace of £oo and £ ~ / E  has DPP, then £ ~ / E  has DPP. 
(3) The dual spaces (£oo/E)* and (f_.~/E)* have DPP simultaneously. 

Proof'. The first assertion is a direct consequence of the diagonal principle 

(injective case). As for the second assertion, observe the following diagram 

0 0 

E E 

> £" > Z.~ 

. C ' I E  , CoolE 

0 O. 

> 0 

, 0  

Since the middle row locally splits, the same is true for the lower sequence. 

This also proves (3) since (£~/E)* -- (£~/E)* ® (£~/£~)*  and £ ~ / £ ~  is 

an £~-space. | 

In general, a quotient £ ~ / E  is not uniquely defined. Nonetheless, we conjec- 

ture the following: 

CON3ECTURE C: Given X a~d Y two isomorphic subspaces of C[0, 1], then 

el0, 1]/X has DPP if and only if C[O, I]/Y has DPP. 

Recalling that the Bourgain-Pisier construction [2] yields for every separable 

Banach space E an £oo-space, say £oo (E), such that the quotient £oo (E)/E has 

the Schur property, we see that the implication (2) in 4.3 cannot, in general, be 

reversed since C[0, 1] has non-DPP quotients, such as 12. Nevertheless, there is 

a connection between A, B and C which clarifies the situation: 
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PROPOSITION 4.4: Let X*  be a separable Banach space. The following are 

equivalent: 

(1) Given a projective presentation 0 ~ K ( X )  -~ 11 -'+ X ~ 0 of  X,  the 

space K ( X ) *  has DPP. 

(2) Given a sequence 0 --+ W ~ £1 --+ X --+ O, the space W* has DPP. 

(3) For all exact sequences 0 -+ X* --+ C[0, 1] -~ C[0, 1]/X* -+ 0, the space 

C[0, 1]/X* has the DPP. 

Proof: We already know that (1) and (2) are equivalent, and that (1) implies (3) 

has been proved in 4.3. To show that (3) implies (1) it is clearly enough to show 

that under the hypothesis (3) every separable subspace of l ~ / X *  is contained in 

some subspace with DPP. To this end, let S --+ l ~ / X *  be a separable subspace. 

The pull-back diagram 

0 > X* ~ l ~  > lo~/X* > 0 

0 , X* , P B  , S > 0 

shows the existence of a separable subspace P B  C l~  such that S = P B / X * .  

Let A be the commutative C*-algebra that P B  spans in l~. Necessarily A = 

C ( K )  with K metric, which implies, using Milutin's theorem, that A is isomor~ 

phic to a complemented subspace of C[0, 1]. Hence A / X *  is isomorphic to a 

complemented subspace of C[0, 1]/X*, and thus it has the DPP. | 

4.3. THE EXTENSION OF C(K)-VALUED OPERATORS. Lindenstrauss and 

Pelczynski [24] proved that C(K)-valued operators defined on subspaces H of 

Co can be extended to the whole Co; hence, see [24, cor.4], to any separable £ ~ -  

space; of course the separability assumption cannot be dropped. Later, Johnson 

and Zippin [14] proved that C(K)-valued operators defined on a weak*-closed 

subspace of 11 (i.e., the orthogonal of a subspace of Co) can be extended to the 

whole ll. From this they show [14, Cor.l.1] that if Q: S --+ H* is a quotient 

operator from a separable space onto H*, then every operator ker Q --+ £ ~  can 

be extended to S. The separability assumption can be dropped. 

LEMMA 3: Let H be a subspace of  co and let 0 -~ D - ~  fl-,1 -'} H* ~ 0 be an 

exact sequence. Every  operator D -+ £,o~ can be extended to £1. 
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Proo~ Since H is an Asplund space, by 4.1 the sequences 

0 > K ( H * )  ) 11 ~ H* > 0 

0 ) D • £1 ~ H* > 0 

are semi-equivalent and thus the sequences 

0 > K ( H * )  ® £1 • 11 ® £1 > H* > 0 

0 ~ D ® l l  ~'£1®11 * H *  ~ 0 

are isomorphically equivalent. Everything we need is to show that  the lower 

sequence is isomorphically equivalent to the starting sequence 0 -+ D -~ E1 --)" 

H* -+ O. In order to prove this, observe that  the middle space in its dual 

sequence 0 -+ H** -+ (£1)* ~-~ D* -+ 0 is a C(K)-space, and thus the quotient 

map j* is an isomorphism on some copy of Co which, by standard arguments 

(see [11]), produces a complemented copy of ll inside D on which j acts as an 

isomorphism. | 

The following lemma is essentially [14, Prop. 1.1]. 

LEMMA 4: Let 0 -+ Y -~ X -+ Z -+ 0 =_ F be an exact sequence with the 

£~-extens ion property; i.e., every operator Y -+ £ ~  can be extended to X .  

Let a: Y -4 Y1 a quotient operator. The push-out sequence a F  also has the 

£~-extens ion property. 

Putting the two lemmata in combination with the observation that  every 

exact sequence 0 ~ Y --+ X -+ Z -+ 0 can be obtained taken push-out from a 

certain projective presentation of Z via a surjective operator, we get: 

PROPOSITION 4.5: Let H be a subspace of  co. Each sequence 0 -+ Y -+ X -+ 

H* -+ 0 has the £~-extens ion property. 

It is therefore obvious that  there are non-weak*-closed subspaces of 11 ad- 

mitting extension of £~-valued operators. Kalton has shown in [17] that  if a 

subspace K of ll has the extension property for C(K)-valued operators, then 

11/K must have the strong Schur property. The weak*-character of the subspace 

has to be taken with respect to Co, or at least with respect to a predual with 

the hereditary Dunford-Pettis property: otherwise, if X is a predual of 11 and 
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0 --+ S -+ X --+ Z ~ 0 is an exact sequence in which S does not have the DPP, 

then S* is not Schur and thus the kernel K(S*) of a quotient operator ll ~ S* 

cannot have the extension property for C(K)-valued operators. 

Definition: Let Y,X be Banach spaces. We shall say that X is Y - a u t o r n o r p h i c  

if any two exact sequences 0 -+ Y0 -+ X -+ Z0 ~ 0 and 0 -+ Y1 -+ X -+ Z1 -+ 0 

in which Y0 and Y1 are isomorphic to Y, and Z, Z1 are infinite dimensional, are 

isomorphically equivalent. We say that X is automorphic if it is Y-automorphic 

for every inifinite dimensional subspace Y of X. 

Lindenstrauss and Pelczynski prove in [24] that  C[0, 1] is H-automorphic for 

all subspaces H of Co and pose the question of whether this property charac- 

terizes Co. The automorphic character of co is at the basis of the "partially 

automorphic" character of C[0, 1]. Since Hilbert spaces are also automorphic, 

it makes sense to pose the question: Is/2-automorphic the space C[0, 1]? Let us 

show that this question actually is not different from problem 4.2 in [14] about  

the extension of C(K)-valued operators: 

PROPOSITION 4.6: Let X be a separable Banach space not containing 11. The 

space C[O, 1] is X-automorphic if and only if every C(K)-valued operator on X 

can be extended to C[O, 1]. 

Proof: Since C(K)-valued operators on a Banach space X can be extended 
to C(Bx . )  through the canonical embedding, if C[O, 1] was X-automorphic,  

Milutin's theorem yields the result. To prove the converse, observe that, since 

X is separable, it is enough to work with C[O, 1J-valued operators. Let 0 --+ X 

C[0, 1] £~ Q1 -~ 0 and 0 -~ X --+ C[0, 1] -~ Q2 --+ 0 be two exact sequences. The 

hypothesis yields that they are semi-equivalent and thus, applying the diagonal 

principle, the sequences 0 -~ X --+ C[0, 1] ® C[0, 1] --+ Q1 ® C[0,1] --+ 0 and 

0 --+ X -+ C[0, 1] @ C[0, 1] --~ Q2 @ C[0,1] -+ 0 are isomorphically equivalent. 

Now, since Q~ (and Q2) contain li, the dual spaces are not separable and thus 

(see [33]) ql is an isomorphism on some copy C~ of C[0, 1] inside C[0, 1]. By a 

result of Pelczynski [31], C~ contains another copy of C[0, 1] complemented in 

C[0, 1]; and the same occurs in Q:. In other words, the sequences 0 --+ X -~ 

C[0,1] --+ Qi ~ 0 and 0 --+ X --+ C[0,1] @ C[0,1] ~ Qi ® C[0,1] --+ 0 are 

isomorphically equivalent (i = 1, 2), which gives the result. | 

Thus, either the Johnson-Zippin question has a negative answer (i.e., not 

every C(K)-valued operator on 12 extends to C[0, 1]) or the Lindenstrauss- 

Pelczynski conjecture has a negative answer. 
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