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1 I n t r o d u c t i o n  

In this paper, we study properties of positive solutions of semilinear elliptic 

equations with critical exponent. We give different proofs, improvements, and 

extensions to some previously established Liouville-type theorems and Harnack- 

type inequalities. 
F o r # > 0 , ~ E I ~  n, 

(1) 

n_>3, 

n - 2  

= 1 + , 2 I x -  

satisfies 

(2) - A u  = n(n - 2)u ~1~-~ , u > 0, in I~ ~. 

The following celebrated Liouville-type theorem was established by Caffarelli, 

Gidas and Spruck. 

T h e o r e m  1.1 ([12]). A C 2 solution of (2)  is o f  the form (1). 

Under the additional hypothesis u(x) = o(Izl 2-n) for large Izl, the result was 

established earlier by Obata [49] and Gidas, Ni and Nirenberg ([30]). The proof 

of Obata is more geometric, while the proof of Gidas, Ni and Nirenberg is by 

the method of moving planes. The proof of Caffarelli, Gidas and Spruck is by a 

"measure theoretic" variation of the method of moving planes. Such Liouville-type 
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theorems have played a fundamental role in the study of  semilinear elliptic equa- 

tions with critical exponent, which include the Yamabe problem and the Nirenberg 

problem. The method of moving planes (and its variants including the method of 

moving spheres, etc.) goes back to A. D. Alexandroff in his study of embedded 

constant mean curvature surfaces. It was then used and developed through the 

work of Serrin ([54]) and Gidas, Ni and Nirenberg ([30] and [31]). In recent 

years, and stimulated by a series of beautiful papers of Berestycki, Caffarelli and 

Nirenberg ([1]-[8]), the method has been widely used and has become a powerful 

and user-friendly tool in the study of  nonlinear partial differential equations. In 

this paper, we develop a rather systematic, and simpler, approach to Liouville-type 

theorems and Harnack-type inequalities along the lines of  [42] and [26] using the 

method of moving spheres. 

For n > 3, let ~ = {x = (x', t) ; x' E /I~ '~-1 , t > 0} denote Euclidean half 

space. For/z > 0, :~ = (:~', t-) E I~ n, 

(3) 
n--2 

u ( x ' , t )  = 1 + u 2 1 ( ~ ' , t )  - (~' ,t-) l  2 

satisfies 

(4) 
- A u = n  - 2 ) u  --2, u > 0 ,  
Ou 
- ' ~  -~- C'll, n - 2 ~ 

in I~_, 

on 0II~_, 

where c = (n - 2)#L 

The following theorem was established by Li and Zhu. 

Theorem 1.2 ([42]). A C 2 solution o f (4)  is o f  the form (3) for  some # > O, 
Y~' E IR n-l ,  and t = ~ .  

Under an additional hypothesis u(x) = O(Ixl 2-n) for large Ixl, the result was 

established earlier by Escobar ([28]). The proof of Escobar is along the lines of the 

proof of Obata, while the proof of Li and Zhu is by the method of  moving spheres, 

a variant of the method of moving planes. 

Liouville-type theorems in dimension n = 2 were established in [22], [27], 

[42], and the references therein. Analogues for systems were established in [ 14]. 

Improvements to the results in [42] can be found in recent papers of Ou ([51]) and 

the second author ([55]). 

For n _> 3, Liouville-type theorems for more general semilinear equations 

(5) - A u = g ( u ) ,  u > O ,  i n ~  ~, 
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and 
s 
/ - ~ x u  = g(u), . > 0, ~. ,  

(6) 
Ou 
- ~  = h(u),  t = O, 

have been studied in [32], [22], [91, [ 15], [20], [26], [42], and the references therein. 

The following two Liouville-type theorems concerning (5) and (6) are improve- 

ments of  previous results. 

Assume that 

(gl) 
(g2) 

9 is locally bounded in (0, oo), 
.-1-2 

g ( s ) s - " - 2  is non-increasing in (0, c~). 

T h e o r e m  1.3. Let  9 satisfy ( g l  ) a n d  (g2), a n d  let u be a (cont inuous)  solut ion 

o f (5 ) .  Then e i ther  

f o r  s o m e  b > O, bu is o f  the f o r m  (1) a n d  

s - . - 2  g(s) =- n (n  - 2)b ~-~-~ 

o r  

o n  (0, n~ax u]; 

u - a f o r  some  cons tan t  a > 0 sat is fy ing g(a) = O. 

R e m a r k  1.1. Radial symmetry of  solutions was established, under additional 

hypotheses, by Caffarelli, Gidas and Spruck ([ 12]). Under the additional hypothe- 

ses that g > 0 and g is locally Lipschitz in (0, co), Theorem 1.3 was established 

by Chen and Lin ([15]) and by Bianchi ([9]). The locally Lipschitz assumption 

of  g was weakened to locally boundedness of  g by Chen and Lin in [20]. Theo- 

rem 1.3 gives a further improvement by dropping the extra hypothesis that g > 0. 

For g(s) = s p, 1 < p < nn-~_22, the non-existence of  positive entire solutions was 

established by Gidas and Spruck ([32]). See also a closely related work [37] by 

Congming Li. 

R e m a r k  1.2. Taking g(s) = - s  p, we recover the following well-known result 

(a very special case of  the results in [10]): for n > 1 and p > 1, there is no positive 

solution of  Au = u p in I~ n. Indeed, u can be viewed as a solution of  the same 

equation in IR m with p > (m + 2) / (m - 2) and m > n, and the result follows from 

Theorem 1.3. 

For Euclidean half space, we assume that h satisfies 

(hl)  h is locally H61der continuous in (0, oo), 

(h2) h(s )s  - . - ~  is non-decreasing. 
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T h e o r e m  1.4. Let  g satisfy ( g l )  a n d  (g2), and  let h sat is fy  ( h l )  a n d  (h2). 

A s s u m e  that  u is a (cont inuous)  solut ion o f  (6). Then one  o f  the f o l l ow ing  two 

al ternat ives  holds.  

A l ternat ive  One:  u depends  on ly  on t a n d  satisf ies the ord inary  di f ferential  

equat ion 

u" = - g ( u ) ,  u > O, in [0, c~), 

u ' ( 0 )  = h ( u ( 0 ) ) .  

Al ternat ive  Two." there exist  s o m e  cons tants  a and  b, wi th  b < - ~ / -  (,~-2)a~ when  

a <_ O, such that  

g(s )  = as  

( h(s)  = bs --~: , 

f o r  0 < s < rnaxR?u,  

f o r  0 < s < maxoR~_u. 

Moreover,  
Ol 

u(x)  - - -  

(Ix - + 

where  ~,~ = a ~  a n d S =  " a - - ~  ' (n-'2)n " 

a > 0 ,  ~'E/~n, 

R e m a r k  1.3. Under the additional hypotheses that g is locally Lipschitz, non- 

negative and non-decreasing, Theorem 1.4 was established by Bianchi ([9]). For 

g(s) = a s - - :  and h(s)  = bs ~-~-~, see [42] and [26]. 

R e m a r k  1.4. If  we further assume g(s) > 0 for s > 0, we have the following 

observation: 

1% If  g = 0, there exist a > 0 and b > 0 such that 

u(x)  = u(t) = at + b and h(b) = a. 

2 ~ If l im infs-~o~ g(s) > 0, then Alternative One does not occur. This follows from 

an elementary phase plane argument for ODE (see Appendix C). 

3 ~ If  l i m i n f s _ ~  g(s) = 0, Alternative One may occur. Indeed, we can take 
u(x)  = u(t)  = (1 + t)1 ,  g(s) = ~-81 --3, and h(s)  = ~sl ~ .  

We point out that Theorem 1.4 and Remark 1.4 include a number  of  previously 

established results of  various authors as consequences.  
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there is no pos i t ive  classical  Corollary 1.1. For n > 3, - ~  < q < ~-2, 

solution o f  

- Z X u  = o, 

Ou 
- -  = . 

Ot 

Proof .  Let g(s) = 0 and h(s)  = - s  q. Clearly, Alternative Two in Theorem 1.4 

does not occur. By Remark 1.4, Alternative One cannot occur either. [] 

R e m a r k  1.5. Corollary 1.1 in the case 1 < q < ~ was established by B. Hu 

in [35]. 

(n+2~ + C o r o l l a r y  1.2. S u p p o s e O  _< p -< ~-2,  - 0 0  < q - < ~n-~-2, and  p +  q < ~ - 2 J  

) Then  f o r  any  posi t ive  cons tant  a, there is no posi t ive  classical  solution o f  (Z:-~-2" 

Au + auV = O, ~_  , 

tt = - u  q, 0 ~ _ .  

Proof .  Let g(s)  = asp and h(s)  = - s q .  By the assumptions on p and q, we 

know that (gl), (g2), (hl), (h2) are satisfied. The conclusion follows easily from 

Theorem 1.4 and Remark 1.4. [] 

Remark  1.6. Corollary 1.2 under the additional hypothesis p, q > 1 was 

established by Chipot, Chlebik, Fila and Shafrir in [25]. 

Corollary 1.3 ( L o u  a n d  Z h u  [48]) .  For n > 1 and  p, q > 1, there is no 

positive classical  solut ion o f  

A01 = u p, in ~ _ ,  

Ou = uq ' on OR~. 

Proof. Let g(s) = - s  p and h(s)  = sq. Then u can be viewed as a solution of 

the same equation in ]l~ m with m > n so large that q > m / ( m  - 2). Then (gl), 

(g2), (hi), (h2) are satisfied (with n replaced by m). Clearly, Alternative Two 

of Theorem 1.4 does not occur. By Remark 1.4, Alternative One does not occur 
either. [] 
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C o r o l l a r y  1.4 (Lou and Zhu, [48]). 
solutions o f  

For q > 1, the only posit ive classical 

A u  = O, in ~n + 

u q, on 0~_  

are u = at + b with some positive constants a, b satisfying a = b q. 

Proof .  Choose large m such that q > m / ( m  - 2), and view u as a solution 

in I~ .  [] 

C o r o l l a r y  1.5 ( H u  a n d  k in  [361, O u  [50]). Let  n > 3, q < n~-~_2 , and let u 

be a posit ive classical  solution o f  

I - A u  = O, in ~_ ,  

"* and f o r  some 2' E I~ n - 1  and [ < O, Then q = -Y~-2, 

n--2 

Proof .  Apply Theorem 1.4. [] 

Based on the Liouville-type theorem of Caffarelli, Gidas and Spruck (Theorem 

1.1), Schoen established the following groundbreaking Harnack-type inequality. 

T h e o r e m  1.5 ~52]) .  For n >_ 3, let B3R be a ball o f  radius 3R in R n, and let 

U E C2(B3R) be apos i t i ve  solution o f  

(7) 

Then 

(8) 

- A u  = n(n  - 2)u ~'~--2 , in BzR. 

(max u)(min u) <_ C ( n ) R  2-n. 
BR B2R 

A consequence is the following energy estimate. 
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(9) 

Corollary 1.6 q 5 2 ] ) .  Let  u be as in Theorem 1.5. Then 

fBR ([Vu[2 "[- U"-'2m'22 )<- C(n). 

Hamack-type inequalities of  this nature in dimension n = 2 were established by 

Brezis, Li and Shafrir ([11]), Chen and Lin ([17]), and Li ([41]). For n > 3, Chen 

and Lin ([15], [16]) established such Harnack-type inequalities for more general 

right hand sides g(x, u). In particular, they established a slightly weaker version of 

the following theorem. 

Assume that g satisfies 

(10) g is continuous and positive in (0, oo), and 

then 

sup g(s) < oo, V t < oo; 
O<s<t 

and 

(12) lim s - , -~  g(s) exists and belongs to (0, c~). 
8-"+OO 

T h e o r e m  1.6. Let g satisfy the above, and let u be a (continuous) solution of  

(13) - A u  = g(u), u > 0, on B3n, 

with 

Then 

max u _> 1. 
Bn 

(max u)(min u) <_ CR 2-n, 
BR B2R 

where C depends only on n and g. 

R e m a r k  1.7. Under the slightly stronger hypothesis that g is locally Lipschitz 

in (0, o~), the result was established by Chen and Lin (theorem 1.2 in [15]). 

R e m a r k  1.8. If  we allow lims-~oo s - , - 2  g(s) = 0 in (12), the result no longer 

holds. For instance, let g(s) = �88 + 1)-3; then g satisfies (10), (11) and 

lims~oo s- , -2g(s)  = 0. However uj(x) = x / ~ + J -  1 satisfies - A u j  = g(uj) 
in Ba, and min~  uj -+ oo. On the other hand, as shown in Appendix D, if 

lim~_~oo s-Pg(s) E (-oo,  0) for some p > 1, and sup0<s<t [g(s)[ < oo for every t, 

then any positive solution of  - A u  = g(u) in B3 satisfies max,1 u _< C(n, g). 

_~__+_2 
(11) s ~-~ g(s) is non-increasing in (0, oc) 
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Harnack-type inequalities are closely related to works on pointwise estimates 

of  blow-up solutions to Yamabe-type and scalar-curvature-type equations (e.g., 

[52], [53], [38], [39], [40], [16], [18], [19], [46], [20], [21], [23], [34], [45], and 

the references therein). They are also related to the work in [13]. 

The following theorem is an extension of  the Harnack-type inequality and the 

energy estimate of  Schoen to half Euclidean balls under geometrically natural 

boundary conditions. We will use notation B + = {x = (x', t) E BR : t > 0} to 

denote the half ball, and O'B + = aB + N {t = 0}. For n > 3 and c E IIL consider 

(14) 

A u + n ( n - 2 ) u . - 2  = 0 ,  u > 0 ,  inB+R, 

Ou ,, 
= c u ~ ,  on O'B+R. 

1 + 2 + T h e o r e m  1.7. For n > 3, c E ~, let u E C (B3R) f3 a C (B3R) be solution o f  
(14). Then, f o r  some constant C = C(n, c), 

(15) (maxu)(min u) <_ C R  2-n 
os+R 

and 

(16) L+(I Vul + u~2~-~2)dx < C. 

R e m a r k  1.9. It is easy to see from the proof that for all c < A, the constant C 
in Theorem 1.7 depends only on n and A. 

R e m a r k  1.10. For c < 0, the energy estimate (16) can easily be deduced 

from (15) as in the derivation of  (9) from (8) (see, e.g., pages 974-975 of [16]). 

However, our proof of  (16) for c > 0 is surprisingly elaborate. See Section 9 for 
details. 

R e m a r k  1.11. The difference between Theorem 1.7 and the results in [34] 

is that Theorem 1.7 is purely local (no assumption is made on the other part of  

the boundary of  OB+R). The difference is the same as that between [38] and [16]. 

The Harnack-type inequality (15) plays an important role in deducing the energy 

estimate (16). It implies that all the large local maxima of  u must have comparable 

magnitudes if they are not too close to OB+R ;1 ~ .  Once the energy estimate (I 6) is 

established, the results in [34] can be applied, i.e., any blow-up solutions {uj) must 

have isolated simple blow-ups in B(3_~)R+ for any ~ > 0, and the distance between 
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any two blow-up points is bounded below by dR, d = d(n, c,/3) > 0. Moreover, 

(17) inf u < C(n, c,/3, A1, A2) inf u, 
RA1 - -  R A 2  

for any solution u of (14) and any infinite subsets A1 and A2 of B~_Z). In particular, 

min~--ff~--u in (15) can be replaced by infRA u for any infinite subset A of B + (the 
O B 2 R  

C in (15) then depends also on A). Estimate (17) will be established towards the 

end of Section 9. 

We have also established the Harnack-type inequality (15) for more general 

right hand sides g and h. 

We assume that h is locally HSlder continuous in (0, oo) and g is continuous in 

(0, o~), and that they satisfy 

(G1) g ( s ) > O  and sup g ( s ) < o o V t < o %  
O < s < t  

, , + 2  n +_2 
(G2) s-a-~g(s)  is non-increasing and lira s .-2g(s) > 0, 

$-~oo  

(H1) inf h(s) > -oo ,  
O < s < l  

n-- 2 (H2) s -  ~ h(s) is non-decreasing and lira s - -  h(s) < oo. 
t ---+ (x) 

T h e o r e m  1.8. Let 9 and h satisfy the above, and let u be a (continuous) 

positive solution o f  

= B+ R, 

(18) 

Ou = h(u), t = O, 

with max~--g u > 1. Then 
B R - -  

(maxu)(min u) < C R  2-'~, 
B.+ oB +. 

where C depends only on 9, h and dimension n. 

Harnack-type inequalities for 

A u + K ( x ) u . - :  =0 ,  u > 0 ,  i n B  + 3R~ 

0-7 = c(z )u--~, on O'B+R, 

with appropriate K ( x )  and c(x'), will be given in a subsequent paper of the second 

author ([ 5 6] ). 
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Recent works on pointwise estimates of  blow-up solutions of  critical exponent 

equations with boundary conditions can be found in works of  Li ([39]), Li and 

Zhu ([43] and [44]), Han and Li ([34]), Zhu ([57] and [58]), Chen and Li ([24]), 

Ghoussoub, Gui and Zhu ([29]), Lin ([47]), Gui and Lin ([33]), Zhang ([56]), and 

the references therein. 

Our paper is organized as follows. In Section 2, we give a different proof 

of the Liouville-type theorem of Caffarelli, Gidas and Spruck (Theorem 1.1). 

For instance, we do not reduce it to the radial symmetry of  u and conclude by 

using ODE; rather, we catch the form of solutions using the method of moving 

spheres. This approach was suggested in [42], while we have made significant 

simplifications in this paper. Using the same approach, we prove Theorem 1.3 in 

Section 3, and Theorem 1.4 in Section 4. In Section 5, we give a different proof of  

the Hamack-type inequality of Schoen (Theorem 1.5). In particular, our proof does 

not rely on the Liouville-type theorem of Caffarelli, Gidas and Spruck. In Section 

6, we establish Theorem 1.6 by essentially the same arguments in Section 5. Our 

proof is different from the one given by Chen and Lin in [15]. In Section 7, we 

establish the Harnack-type inequality (15) in Theorem 1.7. In Section 8, we prove 

Theorem 1.8. In Section 9, we establish the energy estimate (16), thus completing 

the proof of  Theorem 1.7. In Appendix A, we prove a boundary lemma for linear 

second-order elliptic equations. In Appendix B, we include some calculus lemmas 

taken from [42] and [26]. In Appendix C, we present an elementary proof of 

some statement concerning ODE. In Appendix D, we present a result concerning 
Remark 1.8. 

2 A different proof  of  the Liouville-type theorem of 
Caffarelli, Gidas and Spruck 

In this section, we give a different proof of the Liouville-type theorem of 

Caffarelli, Gidas and Spruck (Theorem 1.1). Our proof makes use of  ideas in [42] 

and [26]. The theorem will be deduced from a number of  lemmas. For x E I~" and 

A > 0, consider the Kelvin transformation of  u: 

u~,~(y)-iy_zln_2u ~-)) y~ ~n \{z}. 

Our first lemma says that the method of  moving spheres can get started. 

L e m m a 2 , 1 .  For every x E ~n, there exists Ao ( X ) > O such that uz,x (y ) < u(y ), 

f o r  all O < A < A0(x) and ly - x [ > A. 
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Set, for x E Nn, 

~(x) = sup{/~ > 0:  u~,x(y) < u(y), for all lY -  xl > )~,0 < ~ < #}. 

By Lemma 2.1, ~(x) is well-defined and 0 < X(x) < c~ for x E I~ n. 

Then we show 

L e m m a  2.2.  l f  ~(x)  < oo f o r  some  x E ~n, then u~,x(~) = u on l~n\{x}. 

L e m m a  2.3.  l f  ~(~2) = oc f o r  some  5: E R ~, then ~(x)  = oo f o r  all x E ~'~. 

L e m m a  2.4.  ~(x) < c~ f o r  all x E ~ .  

P r o o f  o f  T h e o r e m  1.1. It follows f rom Lemma 2.2 and Lem m a  2.4 that for 

every x E Rn, there exists X(x) > 0 such that u~,x(~) - u. Then by a calculus 

lemma in Appendix A (Lemma 11.1), for  some a, d > 0 and some 5: E I~ n , 

n-2 ( a ) T  
u(x)  =_ d + l x -  Scl2 

Theorem 1.1 follows f rom the above and the fact that u is a solution of  (2). [] 

In the rest o f  this section, we establish the above lemmas. 

P r o o f  o f  L e m m a  2.1. Without loss of  generality we may take x = 0. We use 

ux to denote uo,x. Clearly, there exists r0 > 0 such that 

d n-2  
-~r (r---C-u(r,O)) > O, 0 < r < ro, 0 E S n-1. 

Consequently, 

(19) ux(y) < u ( y ) ,  o < ~ < lyl < r0. 

By the super-harmonicity of  u and the maximum principle, 

u(y)  > (min u)r'~-2lYl 2-'~, 
- -  O B ~ o  

( 2 0 )  

Let 
�9 I_.L__ 

�9 "~0 = r o ( m l n ~ 1 7 6  n-2  
\ m a x - %  o o  u ] 

Then for every 0 < ~ < ),0, and lyl >-- r0,  we have 

lyl > to .  

<_ r0 .  

~0 n - 2  
ux (y) < ~ (max u) < 

- l y l  - B.o - 

r~ -2 minoB.o u 
(21) lyl,~_ 2 



38 Y. Y. Li AND L. ZHANG 

It follows from (20), (21) and (19) that for  every 0 < A < A0, 

u~,(y) < u(y) ,  lYl >- A. 

[] 

P r o o f  o f  L e m m a  2 . 2 .  Without loss of  generality, we take x = 0 and let 

= A ( 0 ) , u ~ = u 0 , ~ , a n d E x = { y :  ]YI>A}- We wish to showux  = u i n R n \ { 0 } .  

Clearly, it suffices to show 

From the definition of  X, 

A simple calculation yields 

and, in view of  (2), 

u x _= u on E x. 

u x < u on ~x.  

e A ~ n+2 / A2y 

Therefore,  

= 2 ) u ~ - - 2 ,  ) , >  0. -Au~ ,  n (n  - 

- : - 2 ) ( u = - = - u ~  2 ) > 0  i n E  x. (22) - A ( u  uX) n (n  "+2 - 

If u - ux ~ 0 on E x, we stop. Otherwise, by the Hopf  lemma and the compactness 

of  aBx, we have 

d 
(23) ~rr(U -- ?/X)IOBx > b > D, 

By the continuity o f  Vu,  there exists R > ,~ such that 

d ( u -  ux) > b 
d---r _ 5 > 0  forA < )~ < R, A < r < R .  

Consequently, since u - u;~ = 0 on OB;~, we have 

(24) u ( y )  - u,~(y) > 0 for  X < A < R, A < lYl < R. 

Set c = min0Bn (u - u~,) > 0. It follows from the super-harrnonicity of  u - u x 

that 

cRn-2 
(25) u ( y )  - u~,(y) > lyl,~--------y, lyl -> R. 
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Therefore, 

cRn-2 
(26)  u(y) - u~,(y) > lYln_2 (u~,(y) - u x ( Y ) )  , lYl >- n.  

39 

By the uniform continuity of  u o n / ) n ,  there exists 0 < e < R - ,~ such that for 

all,~ < A < A + e ,  

-~-2 /A2Y~ ~n-2 /~2y~ cR for lyl > R. 
I ,c jl<y _ 

It follows from (26) and the above that 

(27) u(y) - u),(y) > 0 for X < ~ < Y, + ~, lyl ___ R. 

Estimates (24) and (27) violate the definition of  A. [] 

P r o o f  o f  L e m m a  2.3. Since A(5:) = oc, we have 

u(y )>u~,x (y )  for a l l A > 0 a n d  [Y-~I  >A.  

It follows that 

lira lyl'~-2u(y) = ~. 

On the other hand, if A(x) < cc for some x E ]~n, then by Lernma 2.2, 

lira lyln-2u(y) lira n-2 = lyl u,,xl,)(y) = ~(x)~-~u(x) < ~. 

Contradiction. [] 

P r o o f  o f  L e m m a  2.4. We prove this by contradiction. If  A(~) -- ~ for some 

~, then by Lemma 2.3, A(x) = oc for all x, i.e., 

u~,~(y) <_ u(y), for all A > 0 and x C I~ n, lY - x] _> A. 

By a calculus lemma in Appendix A (Lemma 11.2), this implies that u =_ constant, 

a contradiction to (2). [] 

3 P r o o f  o f  T h e o r e m  1.3,  a L i o u v i l l e - t y p e  t h e o r e m  for  
m o r e  g e n e r a l  e q u a t i o n s  in 1~ n 

In this section, we establish Theorem 1.3. The proof is along the lines of  the 

proof of Theorem 1.1, first establishing Lemmas 2.1-2.3. Our proof makes use of  
ideas in [42], [26] and [20]. 
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Proof  o f  L e m m a  2.1 under the hypothesis o f  Theorem 1.3. We follow 

the proof of  Lemma 2.1. Since we cannot use the super-harmonicity of u (g is 

allowed to change signs), we need to prove that 

(28) liminf (lYln-~u(y)) > O. 

Once (28) is proved, we have, instead of  (20), 

u(y) >_ c01yl 2-n for some co > 0 and V I~1 ->- r0. 

Then we pick some A0 E (0, r0) such that A~ -2 max , .  ~ u) <_ Co to complete the 

proof as in the proof of Lemma 2.1. 

In the following, we establish (28). Let 

O = { y :  u(y) < lyl2-'~}. 

By (g2), 

u(y)-~-~g(u(y)) >_ (lyl2-n)-:--~-~g(lyl2-'~) >_ g(X), y e 0 \ B~. 

It follows that 

g(~(y)) 

and therefore 

4 min{O,g(1)} 
>g(1)u(y)~-~ > ly14 , y e O \B1 ,  

( 7  
-au(y)  + i--~u(y) >0, y e O \ B1, 

where C = max{O, -g(1)} _> O. Let 

(29) ~(y) = lYl 2-n + [yl 1-'~. 

A simple calculation yields 

-A~(y)  + 1-~14 ~(y ) = - ( n  - 1)lYl -'~-1 + C(lyl  - n - e  + lyl- '~-a).  

Thus, for large/~, 

C 
- A ( ( y )  + ~ - ~ ( y )  < 0 for lYl _> R. 

Pick some small g > 0 such that 

~(y) > ~ ( y )  for l y t= ,~  
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and 

u(y) = lyl 2 - "  > ~ ( y )  

As a result, u - ~ satisfies 

C(u '-~tu~ - ~) + - ~) > 0 
Ivl' 

on 0 0 .  

in 0 \ B n ,  

u - g~ _> 0 on 0(O \ Bn), 

lim influl_~(u(y ) - ~(y))  >_ O. 

By the maximum principle, u - ~ _> 0 on 0 \ Bn,  and therefore 

liminf (lyl '~-2u(y))> liminf (elyln-=~(y))>0. 
v~O,Iv[-+oo v~O,Ivl-~ 

Estimate (28) follows immediately. [] 

P r o o f  o f  L e m m a  2 .2  u n d e r  t h e  h y p o t h e s i s  o f  T h e o r e m  1 .3 .  We follow 

the proof of  Lemma 2.2 and only provide necessary changes. 

The equation of  ux now is 

-Au:~ = (~yl)n+2g((l-~)n-2u~(y)), y E ~x.  

Let 

O : = { y E ~ x : u ( y ) < m i n { ( ~ ) n - 2 , 2 } u s , ( y ) } .  

By (g2), 
_~__-~ -~--~_~ [ X~ n+2 ( ( Y l )  n-2 ) 

u . -2g(u)  > u x ~-~1 ) g u x in O. 

So, instead of  (22), we have, 

_ ~_e..+_~ 
(30) u - - -2  Au _< u x ,-2 Aux in O. 

Writing us = su + (1 - s)u x, we have by (30) that 

fo d { -"+2 \ o> Us _ L u s " - 2 A u s )  ds 

fo _-_+_z \ 
(31) = us " - = d s )  A(u - ux) - - -  -+' (/o ) n - 2 us ~-2 Ausds  (u - ux) in O. 
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We establish (23) as follows. For yo E OB~,, if d--(u -- ux ) ( yo  ) < (n  -- 2)u(yo), dr 

then 

d ( ( fv l ) - -2  ~ d 
u x ( v )  - u(v)}.  = (n  - 2)u(y0) - --~r(u - ux)(Vo)  > O. k k-~-/ 

Y=Yo  

So for some 3 > 0, B$(yo)  NEX C O. By the Hopf lemma (see (31)), d ( u  -- uy~)(yo) 

> 0. Estimate (23) is established. Clearly, (24) still follows from (23). Next we 

establish, instead of (25), the estimate 

(32) liminf [y[n-2(u  - u x ) ( y  ) > O. 
luL--*~ 

Once (32) is established, the rest of the proof of Lemma 2.2 is the same (note that 

on E x \ ( 0  t.J B R ) ,  u > au  x with a =: min{(R/~) ~-2, 2} > 1; moreover, by (31) and 

the strong maximum principle, u - u x > 0 in O). 

To prove (32), we observe that for large/~, 

ux(y ) < u(y )  < 2ux(y ) < Clyl  2 - n  < 1 in O \ B E. 

It follows by (g2) and the the equation of u that 

C 
A u  = - 9 ( u )  <_ -g(1)u--2 < jyl,~+ ~ in O \ B E. 

Since both ( ] y [ / ~ ) n - 2 u X ( y )  and ( [ y [ / ~ ) n - 2 u ( y )  stay in a compact subset of (0, co) 

for y ~ O \ BE, 

1 C 
Clyl,~_ 2 < ~8(y) < lyi~_-------z, y �9 o \ BE, 0 < s < 1; 

and, by the equation of u~, 

C 
[Auxl < [yl,~+------- ~ in 0 \ B E. 

By (31) and the above estimates, we have, for some positive constant C, 

- A ( u - u x ) + l y [ 4  - u ~ ) > 0  i n O \ B  E. 

Let ~ be given in (29). Then for a possibly larger/~, 

C 
-A~(y) + ~ ( y )  < 0 for lyl ->/~. 

Since, u - u~ > o in 0 and 

~n-2 min~_ x u 
(u  - u~,)(y) >_ ux(y) _> lYl,~_ 2 in 0 0  \ B E, 
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there exists some ~ > 0 such that 

(~ - ~ x  - ~ r  _> 0 

By the m a x i m u m  principle,  

( u  - u x  - ~ r  > 0 

It follows that 

on O(O \ B2R ). 

in 0 \ B2~. 

l iminf  lyln-2(u- ux)(y) >_ ~ > 0. 
v~O,lyl--+oo 

On the other hand, by the note below (32), for some a > 1, 

l iminf  lyln-2(u- ux)(y) > ( a -  1) lira lyl~-2ux(y) > o, 
ycR-\O,lvl--*oo - lyl--*oo 

Estimate (32) is established. [] 

Proof  of  T h e o r e m  1.3. It follows f rom L e m m a  2.1 and L e m m a  2.3 that either 

A(x) = ~ for  all x in I~ '~, or  0 < A(x) < ~ for  all x in/R '~. In the first case, u = b 

for some constant  a by  L e m m a  11.2. In the second case, it fol lows f rom L e m m a  

2.2 that u~,x(~) _= u for  all x in I~ n . Consequently,  in view of  L e m m a  11.1, 

n - 2  

u(x) = d + I z -  el 2 

where a, d > 0. So, for  some constant c > 0, 

- A u  = c u . - ~  = g ( u ) .  

Theorem 1.3 fol lows easily. [] 

4 P r o o f  o f  T h e o r e m  1.4,  a L i o u v i l l e - t y p e  t h e o r e m  on  N~ 

In this section, we establish T h e o r e m  1.4. Our  p roof  makes  use o f  ideas 

in [42], [26], [9] and [20]. We still use u~,x to denote the Kelvin  t ransformation 

of u, as in Section 2, but mainly work  with x E 0 1 ~ .  We use notations Bx (x) = 

{y E ~'~ : lY - xl < A} and B;~ = B~ (0). 

L e m m a  4.1.  For every x E O~ n, there exists A0(x) > 0 such that ux,x(y) 

<<_ u(y), for  all O < A < Ao(X) and y E ~ \ B~(x). 

Set, for x �9 0R~,  

A(z) = sup{# > 0 :  ux,x(y) < u(y), for  all y �9 ~_ \ Bx(x), 0 < A < #}. 
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L e m m a  4.2. I f  A(~c) < c~ for  some 5: E 0I~_, then ue,x(~) =- u on ~_ \ {~}. 

L e m m a  4,3. I f  A(J:) = ~ for  some ~: E 0~_,  then A(z) = ~ for  all x E 0~_.  

By Lemma 4.3, either A(z) = c~ for all x E 01~, or A(z) < c~ for all x E 01~_. 

Theorem 1.4 then follows from the following two lemmas. 

L e m m a  4.4. l f  A(x) = c~ for  all x E OIR ~, we have Ahernative One in Theorem 

1.4. 

L e m m a  4.5. IfA (x) < cx~ for  all x E OIR ~,§ we have Alternative Two in Theorem 

1.4. 

P r o o f  o f  L e m m a  4.1. Without loss of generality, we let x = 0 and write 

u~ = u0,~, ,~ = ~ (0 ) .  

A direct calculation gives 

(33) 
/ A ~n+2 y n-2 

and 

o ,:0 (34) 

By the argument in the proof of Theorem 1.3, we only need to show that 

lim inf ]yln-2u(y) > O. (35) 

Let 

By (g2) and (h2), 

O = {y  e ~ ; u (y )  < l y ? - n ) .  

_ _  min{O, g ( 1 ) }  
g(u(y)) > y E 0 \ B + u(y)  - lyl 4 ' 

and 
h(u(y)) max{0, h(1)} 

_ < h ( 1 ) u ( y ) ~  _ < u(y----7 lyl 2 ' y e o \ B ? .  

It follows that 
C1 

- A u + ~ - f f F u  > O, y E O ,  

Ou C2 
Ot lyl - - q u  < O, y e O ' O ,  

where C1 = max{0, -g(1)} and C2 = max{0, h(1)}, and 0'O = 00  fq {t = 0}. 
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For A > 1, let 

(36) ~(u)  = ly - Ae.I  2-n + lYl l -n ,  

where e,~ = ( 0 , . . . ,  0, 1). It is easy to see that for large A and R = A 2, we have 

~ 
-~x~ + lyl' _< 0, y E I~_ \ BR, 

o~ c~ 
Ot lyl 2 > o, { t = o } ,  

Picking some small g > 0 such that u > ~ on 0 ( 0  \ BR) we have, by the maximum 

principle, 

u >_ ~ on O \ B n. 

Estimate (35) follows from the above. [] 

P r o o f  o f  L e m m a  4.2.  Without loss o f  generality, ~ = 0. The equations of  u X 

are given in (33) and (34). Let 

O : = { Y E ] ~ - \ B x ; u ( y ) < m i n { ( ~ ) n - 2 , 2 } u x ( Y ) } .  

By (92) and (h2), 

,__+a u-~--~- ~ l X .~n+2 i l lY l~n-2  
u-.-~9(~) > ~ klT) 9k~,T) ~)  

and 

in 0 

u - -  h(u) <_ u S h us, in 0 'O, 

where 0 'O = 0 0  Cl {t = 0}. Thus, by the equations of  u and ux, we have 

_ .__+_~ 

u x "-2 Aux, in O, 

- ~ Oux 
on frO. 

ux Ot ' 

su + (1 - s)u x we have, by the arguments 

.__+_2 
u - -~Au _< 

(37) , Ou 
U - , , - ~  - -  < 

a t  - 

Letting w~ = u - ux and ua = 

following (30), that 

(38) { Awx <_ (~_2) f~ u-~:--~- ~ ds f~ u~ .-2 Au~ds wx, in O, 

Owx n ) -1 ( 2~.-~) \ 
_ o n a ' O .  
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Our goal is to show w x = 0 in I~_ \ B  x. We prove it by contradiction. Suppose 

w x ~ 0. Let v denote the unit outer normal of  OBy,. For Yo E OB x C311~_, if 

Owx(yo)/Ov < (n - 2)u(y0), by arguments similar to those following (30), we have 

for some ~ > 0, Bs(yo ) M ( ~ .  \ Bx) C O. By the Hopf  lemma and Lemma 10.1, 

Owx(yo)/Cgv > 0. So we have shown that 

(39) Owx(y)/Ov > 0, for y E OB x M II~_. 

By the maximum principle, 

w:~(y) > 0, for y �9 0 U (0'0 \ OBy,). 

Following the arguments in the proof of  Theorem 1.3, we reach a contradiction 

once we show 

(40) lim inf {yln-2w~,(y) > O. 
lyl--*oo 

As in the proof of  Theorem 1.3, for some large/~ and some positive constants 

C1 and C2, 

- A w x  + ~-~w x >_ O, y e O \ B~, 

Owx C2 
0t [yl2Wx < 0, y �9 0'(O \ BE). 

Let ~ be given in (36) for sufficiently large A, and let g > 0 be such that 

w x _> ~ on 0(0  \ B2n). 

Applying the maximum principle in O \ B2~ as in the proof of  Lemma 4.1, we 

have 

w x > ~ on (0  \ B2rt). 

Estimate (40) follows from the above. [] 

The proof of  Lemma 4.3 is the same as that of  Lemma 2.3. 

P r o o f  o f  L e m m a  4.4. Suppose that ~(x) = oo V x �9 05~.  Then by a calculus 

lemma (Lemma 11.3 with v = n - 2), u depends only on t, and we have Alternative 

One. [] 

Proof  of  L e m m a  4.5. By Lemma 4.2, u -- u~,x(~) V x �9 011~_. In particular, 

(41) a := lim [yIn-~u(y) = A(x)n-2u(x) < c~ V x E OIR~_. 
lyl~o~ 
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Applying a calculus lemma (Lemma 11.1), on 01~,  we have for all x' 

(42) u(z', O) = a 
(Ix' - 2 + ' 2  

where ~' ~ 011~ and a, d > O. 

The following arguments are taken from [26] and [9]. Consider the spheres 

B(x, X(x)) for x E 0~_ .  From (41) and (42), we see that all these spheres pass 

through (Y~', +d). Let P = (~', -d )  and define 

/ 2d ~n-2 [ 4 d 2 ( z _ p )  
v(z) = ~ - - ~ )  u ~ p +  / ; : P F  )" 

Then by direct computation and the properties of conformal transformations, Q := 

(~', d) is mapped into itself and P is mapped to co, and II~ is mapped to [z-Q[ < 2d. 

Since u _= ux,x(x) for all x E 01~_, v is symmetric with respect to all hyperplanes 

through Q, so v is radially symmetric about Q in [z - Q[ _< 2d. The equations that 

v satisfies are 

(43) 

J -  I a 

OB(Q,2d), 
4d c3v \ 2d ) k \ 2d ) ] 

where v denotes the unit outer normal to the boundary of [z - Q] <_ 2d. Since v is 

radially symmetric about Q, the right hand side of  the second equation of  (43) is a 

constant C on [z - Q[ = 2d. Thus we have 

bs,-2 for 0 < s < max u. h(s) = 
- -  OR~.  

H e r e  we have used the fact that { [z - P I/2d) n-  2 v (z) : I z - Q] = 2d} = (0, maxoR~ u]. 

From the first equation of (43), we can deduce that for some c E IR, 

(44) g(s) = cs,-2, 0 < s < maxu. 

I n d e e d ,  since v is radially symmetric about Q, and Q # P, 

( p  + 4d 2 (z - P)  - - 
u 

is not constant on {]z - Q] = r}, i.e., mins,  u < maxs~ u, where 

S , . = { P +  4 d 2 ( z - P )  Iz Q[ r} 
; - = 
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Thus, by the radial symmetry of  v and the first equation of  (43), we have for every 

r E (0, 2d), g(s) = C(r)s,-2 for mins,  u < s < maxs,  u. It is clear that C(r) is 

locally constant and therefore independent of  r. Thus (44) follows from the fact 

that U0<~<za S~ = N'~. Therefore, the first equation of  (43) becomes 

Av(z) + c v ( z ) ~  = 0 in [z - Q[ < 2d. 

Since v is radially symmetric about Q, by an ODE argument, we have Alternative 

Two. [] 

5 A different proof  of  the Harnack-type inequality of  
R. Schoen 

In this section, we give a different proof  of  the Harnack inequality of  R. Schoen 

(Theorem 1.5). Our proof, making use of  ideas in [42], [26] and [52], is more direct 

and does not rely on the Liouville-type theorem of  Caffarelli, Gidas and Spruck. 
n - 2  

The transformation u(y) --+ R-~--u(Ry) shows that it suffices to prove Theorem 1.5 

for R = 1; hence, for the rest of  this section, we assume R = 1. 

First we have the following elementary lemma. 

L e m m a  5.1. Let u E C~ be a positive function. Then for  every a > O, 

there exists Ix[ < 1 such that 

1 
u(x)  > ~z m~x  u 

- B . ( z )  

where a = (1 - Ix l ) / 2 .  

P r o o f .  Consider 

and aau(x) >_ ~gu(0), 

v(y )  = (1 - ly l )%(y) .  

Let x E B1 be a maximum point o f v  and let a = (1 - Ix[)/2. It is easy to see that 

x and a have the desired properties. 

P r o o f  o f  T h e o r e m  1.5. The proof  is by contradiction. Suppose the contrary; 

then there exist solutions of  (7) uj, j = 1, 2, ..., such that 

(45) uj(~j )minuj  > j, 
B2 

where uj (2j) = max-B1 uj (y). 

Applying Lemma 5.1 to u = uj(. + 2j) and a = (n - 2)/2, we find xj E Bl(Xj) 
such that 

2 - - n  n ~ 2  2 - - n  

uj(zj)  > 2-r-  max uj and (~j)-v-u~(zj) > 2-~-uj(~j),  
- B~, i ( x j )  
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where 

It follows that 

1 
a s = ~(1 - I x s  - :rSl) < �89 

(46) us(xs)  > us(~S); 

also, using (45), we have 

(47) 7j := uj(xj)"2-2--~-2aj > �89 "--a~2-2 > �89 "~-2 > �89 --} oo. 

Set 

where 

1 y ),  
~s(y) - ~s(xJ) us (~s + uj(zj).-~-, 

r j  := us(xA.-~-~. 

lYl < Fj ,  

Then 
.-1-2 

(48) --Aw s = n(n -- 2)wj "-2 , w s > 0, on Br j  

and 

2 - n  

l = w  s(O) > 2  2 m a x w  s. (49) 
B-cj 

On [Yl = Fj we have, by (45) and (46), that 

min~2 uj j J �9 : - n  
(50) m i n w  s > > > - - -  OF s . oBr~ - us (x#)  us (x~)~ , s (~s )  - u s ( x j )  2 

For every fixed x E 11~ n, as in the derivation of  (19), we can find 0 < rz,j  < 1 

such that 

(51) 
/ A ~n-2 / A 2 ( y -  x) 

~s,~,~(y) := K f f : - ~ )  wJV + ~ -  ~1 -~ ) -< ~J(Y)' o < ~ _< ly - ~1 _< r z , j .  

It is then easy to find some A~,S 6 (0, r~,s ] such that 

(52) ws,~,x (y) _< w s (y) for all 0 < A _< ),.,S, Y E Br~ \ Br.,j (x). 

Indeed, the above can be verified as in (21) with 

[minBrj \B..  j(x) wj~  
~x,S = " - -  - ' "  " - -  ) < _ r x , s .  

rz,3 ~ maxly-zl-<r-,~ w s  

Because of  (51) and (52), we can define 
(53) 

XS(x ) = sup{0 < # < F s - Ixl: wS,~,~(Y) <_ w a y ) ,  y E Br~ \ Bx(x),  0 < A < #}. 
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Lemma 5.2. F o r  e v e r y  x E I~ n, 

lim i j ( x  ) = c~. 
j--+oo 

P r o o f .  For simplicity, we take x = 0. Suppose the contrary; then (along a 

subsequence) 

(54) ~j _< C < 7S 

for some constant C independent of  j. Here we have used the fact 7S ~ cc 

(see (47)). 
By the definition of  ~S, 

ws,xj _< w s in ~S := {Y : ~S < lYl < US}, 

and therefore 

f ~ ,+5 \ 
(55) - A ( w  s - wj ,x i  ) = n ( n  - 2) twj"-2 - w " r 2  l _ S,xj ) > 0, in ES. 

Also, by (49) and (54), 

max w s X. < CF~ -n  
O B r j  ' ~ - -  

for some constant C independent of  j. Therefore, by (55) and (50), for large j ,  

Recall that 

min (w s - wS,X~) > 0. 
O B r j  

w s - wj,~j = 0 o n  OB~. i.  

An application of  the Hopf  Lemma and the strong max imum principle yields 

(w s - ws,x~)(y) > 0, ,~s < lyl -< rs  (56) 

and 

O(wj - %,x~) > 0. 
(57) Or [0Bxj 

Consequently (see the derivation of  (19)), for some eS > 0, 

w s , x ( y  ) < _ w s ( y ) ,  for~s  < A < ~ j + e s ,  )~_<lyl_<rs. 

This violates the definition of  As. I-1 
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Since 7j ---roo, one easily deduces f rom (48) and (49) that (along a subsequence) 

wj --+ w in C~oc(l~ n) 

for some solution w of  

= - 2 ) w - - 2 ,  w > 0 ,  (58) - A w  n(n ~ ]R n. 

By L e m m a  5.2 and the convergence of  wj to w, we have 

(59) w~,x(y) < w(y) for  lY - x[ > A > 0. 

It follows, by L e m m a  11.2, w - constant. This violates (58). Theorem 1.5 is 

established. [] 

6 P r o o f  o f  T h e o r e m  1 .6 ,  a H a r n a c k - t y p e  i n e q u a l i t y  f o r  
m o r e  g e n e r a l  e q u a t i o n s  i n  R n 

Essentially the same proof  of  Theorem 1.5 yields a 

P r o o f  o f  T h e o r e m  1.6. The proof  is by contradiction. Suppose the contrary; 

then there exist solutions of  (13) us, j = 1, 2, ..., such that 

(60) uj(.~j) min u s > j/Rr] -2, 

where 

(61) uj(ej)=m_axuj > 1. 
BRj 

Applying L e m m a  5.1 to u = ui (Rj .+~j) and a = ( n - 2 ) / 2 ,  we can find x~ E Bn~ (Y:j) 
such that 

2-r~ 
uj(xj)  > 2--~-- max us(x ) 

- -  B c j  (xj )  

and 

where 

It follows that 

(Rj/2) uj(~j), 

1 ~j = ~(R~ - Ix~ - ~Jl) < Rj/2. 

(62) u~(zj) > u~(~) 
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and, by (60), 

_~ Rj _ . 1 . z 2 
(63) 7j := uj(xj),-=crj >_ uy(~j)J-2 >_ -~-[uj(xj)~l~ uj] ~--~-~ > ~3 - ~ oo. 

Set 

where 

Then 

1 Y2)  

2 

(64) - A w j  = uj(xj)-~-~g(uj(xj)wj)  on Brj ,  

2 - - n  

(65) 1 = wj(0) > 2 2 maxwj. 
B~j 

On ]Yl = Fj, we have by (60) and (62) 

rain wj > mmB2R~ uj J > J �9 2 - ,  
oBr~ u j ( z ~ )  > u ~ ( z j ) u j ( ~ ) R . ) _  2 _ u j ( x j ) 2 1 ~ _ 2  = 3r~ . 

As in the proof of  Theorem 1.5, for every x 6 IR n, we can find 0 < A~,j < 1 

such that 

/ I wj,~,~(y) := ~,[~-x[] wjt x+ [y_xl2 ] <wj(y) ,  f o ra l l yEBr j \B~(x ) .  

Define Aj(x) as in (5.3); then Lemma 5.2 still holds. Indeed, only one change is 

needed in the proof: the derivation of (56) and (57). Consider 

0 = (y 6 Brj \ BX~ : wj(y) < (lyl/~A~-:~j,x~ (y)}- 

As in the proof of  (30), we have 

-:-~A 
w j  ~ Awj _< w~,xi Awj,xi , in O. 

Since Awi and Awj,xj are negative in 0 and wj _> wj,~ in O, we have, instead 

of  (55), 

Awj <_ Awj, x~, in O. 

(56) and (57) follow from the arguments following (30). 

Next we show 
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Lemma 6.1.  

Proof. It follows f rom (11) and (10) that 

g(s )  < C(1 + s~"--~-~), s > 0. 

Therefore,  by (64), (65) and (61), 

[Aw~l < C on B ~ .  

L e m m a  6.1 follows f rom standard W 2,v estimates and Sobolev embedding 

theorems. [] 

By L e m m a  6.1, we know that along a subsequence,  

wj --+ w in C~ 

where w satisfies w > 0, w(0) = 1. 

By the convergence of  wj to w and the fact that ]~j(x) -~ c~ for every x E I~ '~, 

we have (59). Again,  by L e m m a  11.2,  w - c o n s t a n t .  

Let 

c = l i m s u p u j ( x j )  > 1. 
j---~c~ 

I f  c = co, we see easily by (64), (12), and the convergence of  w j  to w, that for 

some a > 0, 

- A w  = a w , - 2 ,  w > O, on ~ n .  

I f  c < ~ ,  then 

- - A w  = c "-~ g (cw)  w > 0, on II~ ~ . 

Neither  o f  the above  is possible since w is identically a constant.  Theorem 1.6 

is established. [] 

7 A Harnack- type  inequal i ty  on hal f  Euc l idean  balls ,  
the first part  of  T h e o r e m  1.7 

In this section, we establish the Harnack- type  inequality (15) in Theo rem 1.7. 

For  x E II~ n, n > 3, we write x = (x',  t), where x'  = ( x l , . . . ,  x,~-x). We also use the 

following notation: 

B n ( x )  = B ( x ,  R )  = {y  E l~ n : [y - xl  < R } ,  B n  -= Bn(0),  
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BT(x) = B ( x , R ) O { t  > T}, B+(x) = B ( x , R ) f ) { t  > O}, B +=B+(0), 

O"BT(x) = OBT(x) fq {t > T}, O'BT(x) = OBT(x) 0 {t = T}, 

O'B+(z) = OB+(z) n 0~_, O"B+(x) = OB+(z) n ~_, B + = B + ( O ) .  

In this section, we give a proof  o f  the Harnack-type inequality (15) in Theorem 

1.7. 

P r o o f  o f  (15)  in  T h e o r e m  1.7. We argue it by contradiction. If  (15) were 

not true, we would have solutions {uj} of  (14) on B+R~ such that 

�9 2 - - n  uj(x~) inf u~ > jRj  , 
O B 2 R j  

where uj (xj) = max uj. It follows that 
B ~ j  

n - 2  
(66) u j ( x j )R j  ~ ~ oo. 

Before proceeding further, we record the following elementary lemma, which is 

similar to Lemma 5.1, and whose simple proof  we leave to the reader. 

L e m m a  7.1.  Let u E C~  T) be a positive function, T >_ O. Then f o r  every 

a > O, there exists x r B1 0 {t > - T }  such that f o r  a = (1 - Ixl)/2, 

1 1 
max u and a%(x)  >_ u(O). ~(x) > ~ B;T(~I 

Applying Lemma 7.1 to  uj (x j  q- Rj/4 . )  with a = (n - 2)/2 and T = 4x jn /R j  
(xj,~ denotes the n-th component  of  xj),  we find zj E B(x j ,  R j /4 )  0 11~_ such that 

2--n 
uj(zj)  >_ 2 - r -u j ( x )  for  x E B(z j ,  aj) 0 ~_ (67) 

and 

(68) 
n--2 n--2 

(2oj)-~-,,~(z~) _ uAx~)(Rj/4)--~- -~ o~, 

where aj I 1 .._2.- ~(~Rj - l z j - x j l )  <_ IRj.  SetTj := -= Uj(Zj) , -2a j  andF j  := uj(zj),-~-~2 Rj.  
It follows from (66), (67) and (68) that 

(69) uj(z~) > uj(xj) ,  

Consequently, 

(70) 

F j > 8~,~ --roo. 

�9 2 - - n  uj(zj)  inf uj > )R j  . 
0 H B2+Ri 
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Let 
2 

and set 1( 
v~(y) - u~(zr z~ + y) 

~Az~)2-~-= ' 
y E f~j, 

where 

~-~j = {y  ; z j  + ~(z~.)~-% 
Clearly vj satisfies 

Av j  + n (n  - 2)vj ~-2 = 0, in f/j,  

Ovj n 
= cv ;  -2 , on t = - T  i, 

Ot 

vj(O) = 1, and vj (y)  < 2 ~  for y E f~j and lYl -< 7j. 

Let Ott~-~j -~ O~-~j A {y  ; Yn > - T j } .  It is c lear  that 

1 
- ~ r j  < dist(O,O"f~j) < 10Fj, 

and by (70) and the above, 

Uj (Zj) info,,B+ j u s 
(71) inf ( ly ln-2v j (y) )  > inf (ly[ '~-2) --+ cr 

yeO"f2j "- Uj (Zj )  2 yeO"f~j 

We divide the remaining proof of  Theorem 1.7 into two cases (after passing to 

a subsequence). 

C a s e  1: l i m j ~  Tj = ~ .  

C a s e  2: l i r n j ~  Tj = T E [0, oc). 

R e a c h i n g  a c o n t r a d i c t i o n  in C a s e  1. Since min{Tj, Tj}  ~ c~, {vj}j=l,2 .... 

is uniformly bounded on compact subsets of  ~" .  It follows from standard elliptic 

estimates that vj (or a subsequence) converges in C 2 norm to some U on compact 

subsets of  I~ n , where U is a positive solution of  (2). 

For x E I~ '~ and A < Tf f2 ,  let vj~,~ denote the Kelvin transformation of  vj with 

respect to the Bx(x), i.e., 

v J V  + := 

Clearly v~ satisfies the same equation of  v~ in Ex 
3,x 3,X �9 
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As in the proof of Theorem 1.5, we can find Aj.,~ > 0 such that 

vj~,~ (y) < Vj (y) for y E Ej~,x and 0 < A < Aj,~. 

Define 

Aj(x) := sup{p > 0: vj,x(y) < vj(y) for y E E~,x and 0 < A < #}. 

L e m m a  7.2. A j ( x )  --+ o0 a s  j ---r c~. 

Proof .  Without loss of generality, we take x = 0. Suppose the contrary; then 

along a subsequence, Aj < C. Let wx = vj - v~. To reach a contradiction, we only 

need to show that 

Ow~,~ 
Ou (y) > 0 for y E OBxj (72) 

and 

(73) wxj (y) > 0 for y E EXj \ OBx~, 

where u denotes the unit outer normal of  OBx~. 
Indeed, we easily deduce from (72) and (73) that wx _> 0 on E;~ for A close to 

A j, violating the definition of Aj. 

It is clear that 

wxj _> 0 

and 

where 

in Zs 

Awxj (y) + bj(y)wx~ (y) = 0 in EX~, 

bj(y) = n(n - 2) vj(y)"-2 
vj [y) 

~,j(y) - v j  (y) 

By (71) and the boundedness of A~, wx~ > 0 on O"f~j; thus, by the strong maximum 

principle and the Hopf  lemma, we have (72) and 

wx~ (y) > 0 for y E XX~. 

To show (73), we only need to establish 

wxj(y ) > 0 on {t = -Tj}NOf~3. 

This follows from the following 
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L e m m a  7.3. Suppose Tj ~ c~ and {Aj} are bounded. Then f o r  any N > O, 

there exists jo > 1 such that f o r  j > jo, 

Ov~ ~ (z) x~ 
O ~  > g v j  ( z ) ~ ,  f o r  z e Oaj N {t = - T j } .  

Indeed, if  for some z with zn = - T j ,  

wxj (z) = 0, 

then z is a min imum point; and by Lemma 7.3 and for large j ,  

o w ~  Ov~ ~ - o ov~  ~ 
o _ < - - g V - ( z )  = c v j ( z ) ~  - o t  ( z )  = c ( ~ ; ( z ) ) ~ - 2  - o t  (z )  < o, 

a contradiction. 

P r o o f  o f  L e m m a  7.3. Since Tj -~ ~ and {Aj} is bounded f rom above by 

positive constants, we have for large j ,  

_12U(0 ) < VY%lzl2 < 2u(0)  and Ii < IVU(0) l+l '  z �9 O f ~ j n { t =  - T i } .  ~lzl2J 

By a direct computation, 

Ov~ ~ _ ~2z X~z 
(z)  - I - ~ Izl 2 ] ,  

> m i ~ - 2 T ? z l  - "  > N ~ ' ( z ) ~ - ~ ,  

where m is a positive constant independent of  j .  Lemma 7.3 is established. So is 

Lemma 7.2. [] 

It follows f rom L e m m a  7.2 and the convergence of  vj to U that for every x �9 t~ n , 

lY - x[ 2 ] < V(y) ,  for [y - x[ > A > 0. 

By L e m m a  11.2, U = constant,  a contradiction. 

We have reached a contradiction in Case 1. Now we 

R e a c h  a c o n t r a d i c t i o n  in  C a s e  2. For convenience, let ~3j be a translation 

of  vj given by 

r = vj(y  - Tjen), y �9 ~ ,  

where en = (0', 1) and l~j = f~j + Tjen. 
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and 

(74) 

Clearly ~)j satisfies 

ACJj + n(n - 2)~3; -2 = 0, in fij, 

OCJj ^ n - 2  = o n t  = 0, 0 t  CVj , 

r = 1, and ~)j(y) < 2-"-~ for y E ~ j  and ]Yl < 7j - Tj. 

Let O"~j = O(2j fq {y ; yn > 0}. Then for some positive constant C, 

C-1F j  < dist(O, O"~j) g CFj 

inf (~j(y)]yl n-2) -r oc. 

It follows from standard elliptic estimates that after passing to a subsequence,  dj 

converges in C 2 norm to some g7 on compact  subsets of  ll~, where gr is a solution 

of  (4). 

For every fixed x E aR~,  consider the Kelvin transformation of  ~)j 

= ~j x +  , y E E x , ~ ,  

where Zx,x := f~j\Bx(x).  As usual, there exists Az,j > 0 such that 

^A vj,z (y) _< ~3j (y) f o r y e ~ x , x  and 0 < A < A z , j .  

Define 

A j ( x ) : = s u p { / , > O :  Oj(y)>v~,x(y) for y e ~ x , ~ ,  and 0 < A < # } .  

L e m m a  7.4. Aj (x) -+ oo as j -+ oo. 

P r o o f .  For simplicity we take x = 0. Suppose,  to the contrary, that along a 

subsequence,  Aj _< C. Let wx = ~)j - ~3~. To reach a contradiction, we only need to 

show that 

wxj > 0 inZxj  , 

Owx~ O. B_+ (75) Ov > 0 on xj 

^ 

wxj > 0 on O'ZXj \Bx. / ,  
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and 

Owx~ 
(76) Ou (y) > O, for y 6 01~ n OBx~ , 

where u denotes the unit outer normal of the sphere OBs, j , and 

O'~x~ = 0~x~ n {t = 0}. 

Indeed, we easily deduce from (75) and (76) that wx _> 0 on E:~ for A bigger and 

close to A j, violating the definition of Aj. 
It is clear that w~ satisfies 

in Zx, A w x + b x w x = O  

O w ~ _ _ _ c n  . . ~ _.~_ ~ 

n - 2 w~, 
o n t  = 0, 

where ~(y), given by the mean value theorem, is between 733 (y) and 0 3 (y) and 

^ ~_~ 

Since (2j} is bounded and i) i converges to 0 uniformly on compact subsets, 

we bare i)~ ~ (y)lyl n-2 <_ C on 0"~j.  It follows from (74) that for large j, 

(77) inf w,~j (y) > 0. 
0"12j 

Estimate (75) follows from the strong maximum principle and the Hopf lemma, 

and estimate (76) follows from Lemma 10.1 in Appendix A. Lemma 7.4 is 

established. [] 

By Lemma 7.4 and the convergence of bj to U, we have, for every x E 01I~_, 

/ A ~,~-2~/ A 2(y-x) 

< gr(y), for all y E ll~_ and [Y - x[ _> A > 0. 

By Lemma 11.3 in Appendix B, U depends only on t, a contradiction (see 2 ~ in 
Remark 1.4). [] 

8 Harnack-type inequality for more general equations 
on R~, proof  of Theorem 1.8 

In this section, we establish Theorem 1.8. The proof is similar to the proof of 
(15) in Theorem 1.7. 
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P r o o f  o f  T h e o r e m  1.8. We follow the same line of proof of Theorem 1.7 and 

often use the same notation without explicit mention. Suppose the contrary; then 

there exist solutions {uj} of (18) on B+n~ such that 

�9 2- -n  uj(xj) inf uj > jRj  , 
OB+nj 

where uj(xi) = max~-~--uj >__ 1. In the proof, we need to pass to subsequences 
n j  

several times; and we just do so without any explicit mention. Following the same 

selection process in the proof of Theorem 1.7, we can find {zj} e B(xj ,  Rj/4) f3 ~_ 
such that (67), (68), (69) and (70) hold. Define vj as in the proof of Theorem 1.7; 

then vj (y) satisfies (71) and 

_ ~.e..:~ 
Avj(y) + uj(zj) ~-2g(uj(zj)vj(y)) = O, in f~j, 

ovj(y) 
Ot - uj(zj)-~-~-2h(uj(zj)vj(y)), on t = -Tj ,  

vj(0) = 1, and vj(y) < 2~-~ z, fory  E Dj and lYl-< 7j- 

We divide the situation into two cases�9 

Case 1: limj~oo Tj = oc. 

Case  2: limj__,~ Tj = T E [0, co). 

R e a c h i n g  a contrad ic t ion  in Case  1. Most of the reasoning is like that in 

the proof of Theorem 1.7. We point out the necessary changes. 

We know that min{Tj, Tj} --roc, so on any given compact subset of/I~ n, {vj} 
is bounded by 2-~ -z for j large. It follows from (G1) and (G2) that on any given 

compact subset K of/~n, we have, for large j ,  

u j ( z j ) -~g (u j ( z j ) v j ( y ) )  < g(vj(y)) <_ C(K). 

Here we have used the fact that u(zj) >__ u(xj) > 1. By standard elliptic estimates, 

vj (after passing to a subsequence) converges in C 1 norm to some U on compact 

subsets o f ~  n. Clearly U(0) = 1. Since vj is super-harmonic, so is U; and therefore 

U > 0 on ]~n. 

For a fixed x E IR '~, let v~x be the Kelvin transformation of vj, as in the proof 

of Theorem 1.7. As usual, for every x, we can find Aj,x > 0 such that 

A vj,~(y) < vj(y) for y E Eix, x and 0 < A < A~,~. 

Define Aj(x) as in Section 7. 
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L e m m a  8.1. For every x E I~ ~, ~j (x) ~ c~ as j --+ c<~. 

P r o o f .  Without loss of  generality, we take x = 0. Suppose, to the contrary, that 

x To reach a contradiction, we only along a subsequence ~j < C. Let wx = vj - v s . 

need to show (72) and (73)�9 

Let 
�9 - n - 2  ~ j  o = {y e ~x~ \ Bx~, v~(y) < (lYl/'~) ~j (~)}. 

The derivation of  (37) yields 

,-2 Av j  < (vj ) - ~  Avj  , inO,  

ovj x~ ~ ~ v; O--'T < ( v j ) -  ~-~ --O-t-' on a'o, 

where 0 ' 0  = O0 r7 {t = 0}. Since Avj and Av~ j are negative in O, we have 

A(vj - v~ j) <_ O, in O. 

The derivation of  the second line in (38) yields, for some function cj(x'), 

- - o n  0 ' 0 .  

By (71) and the boundedness of  ~3, wxj > 0 on 0" f~j. Estimate (72) and wxj > 0 

on EX~ follow from the arguments following (38). So we only need to show that it 

is not possible to have wxj (z) = 0 for some z with z ,  = - T j .  Indeed, were this to 

hold, we would have 

By (H2), 

Ow1 i . Ov~ j 
0 <_ - - - ~ ( z )  = uj(zj)--~-~-2h(uj(zj)vj(z)) - - - -~(z ) �9  

uj (z j ) -  ~ h(uj (zj)vj (z)) <_ Cvj (z) ,~-2, 

where C is some constant independent of  j .  

Thus 
Ov~ j 

Ot (z) < Cv~(z).---~. 

This violates Lemma 7.3. 

[] 

It follows f rom Lemma 8.1 and the convergence of  v~ to U that for every x E I~", 

)~ n - 2  
lu - zl  2 / <- u ( u ) ,  lu - zl >__ ~ > 0. 
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By Lemma 11.2, U = U(0) = 1. By (G2), we have for some positive constant a, 

- A v j  > av;  -~ in fly. Let j --+ oo; we have - A U  _> a > 0 in the distribution sense, 

a contradiction (since U - 1). [] 

R e a c h i n g  a c o n t r a d i c t i o n  in C a s e  2. Let ~j(y) be defined on ~j  as in 

Section 7. The equation of  ~)j (y) now becomes 

~+~ ^ 
A~j(y) + u j ( z j ) - , -2g (u j ( z j ) v j ( y ) )  = O, y E fij ,  

~ ( y )  = uj ( z j ) -  ~ h(uj (zj)gy (y) ), on {t = 0}, 

for y E ~j  and [Y[ -< 7j - Tj. ~j(Tjen) = 1, and ~)j(y) _< 2"~ 2, 

Estimate (74) still holds. 

By (Gl) ,  (G2) and the fact that Uj(Zj) ~ 1, we know from the equation of  vj 
that 

n ~ 2  ^ 

0 < -AOj (y )  = uj(zj)  ~-2g(uj(zj)vj(y))  < g(Oj(y)) < C, 

f o r y  E ~j  and lY[ <_ 7j - Tj. By (HI),  (H2) and the fact that uj(zj)  > 1, we have 

0 ~ j  Y ^ ,, - c  < ) = < < C,  on O'fij, 

where O'(~j = O(~j n 01~_. 

By standard elliptic estimates and the fact that 75 ~ co, for 0 < a < 1 and 

R > I ,  

II AIco( ) -< R). 

It follows that after we pass 7)j to a subsequence, ~j converges to some 0 in C ~ 

norm on compact subsets of  ~-+. In particular, (](Ten) = 1. Since vy is super- 

harmonic in fry,/)" is super-harmonic in 1~_, so 0 is positive in ~_.  Let j -~ oo; 

then either (if u s (zj) ~ oo) (] satisfies 

- A U  = aU, -~ ,  in l~_, 

for some a > 0, or (if uj(z j)  --+ M > 1) 

n 2 

--AU1 = M - ~ g ( M U 1 )  , in ~ .  

Defining vj,x, ^~ E~,~ and Aj(x) as in Section 7, we still have 

L e m m a  8.2. For every x E 011~", A3 (x) --+ oo as j ~ oo. 
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p roo f .  Without loss of  generality, we take x = 0. Suppose, to the contrary, that 

x To reach a contradiction, we only along a subsequence Aj < C. Let wx = vj  - v j .  

need to show (75) and (76). 

The equation of  b~ now is 

. - 2  - :-t-]_~ . - 2  ( lyl - lyl (~--) uy(z/)) g((--~) uj(z3)b~(y))=O, i nEx ,  AT)~(y) + 

O~(y) lYl "-2 z - .-e-~ n-2 
- 

Ot 

Consider 

) vj ty j'. 

As usual, we can show 

A ((~ - vj  ) <_ O, in O, 

and, for some function c(x'), 

O0)y - ~'j~' ) < c(x ' )( 'b/-  v~'), on 0'0,  

where 0'O = 0 0  n {t = 0}. 

Since(77) still holds, wxj is not identically zero. Thus we can apply the strong 

maximum principle, the Hopf  lemma, and Lemma 10. I in O the usual way to 

obtain (75) and (76). 

We conclude that ~r depends only on t. Passing to the limit in the equation of  

~3j, we see that either b" satisfies 

5" ( t )  = ~O(t),  t > o, 

for some a > 0, or for M = limj~oo u(z j )  < ~ ,  

^ 
l ) " ( t )  = M - - - 2  g ( M U ) ,  t > 0 .  

This is impossible (see 2 ~ in Remark 1.4). [] 

9 E n e r g y  e s t i m a t e  on  h a l f  E u c l i d e a n  bal l s ,  the  s e c o n d  
p a r t  o f  T h e o r e m  1.7 

In this section, we establish the energy estimate (16) in Theorem 1.7. We only 

need to prove (16) for R = 1. The general case follows by applying the result to 
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n - - 2  
v(.) = R--r-u(R.) .  In order to prove (16) for R = 1, we analyze the interaction 

between large local maximum points of a solution u of  

Au + n(n ,__.+_a -2)u--2 = 0 ,  u > 0  i n B  +, 
(78) Ou . 

ff-[ = cu , -2 ,  on 0 'B + . 

The following proposition indicates how the large local maximum points are de- 

termined; its proof is by a standard blow-up method based on the Liouville-type 

theorems of  Caffarelli, Gidas and Spruck, and Li and Zhu. See [34] for a proof. 

Proposition 9.1. Suppose u is a solution o f (78) .  Then f o r  any e E (0, 1), 

R > 1, there exist some positive constants C~ = C~ (e, R, n), C~ = C[ (e, R, n) > 1 

such that / fmaxB+u  > C~, there exists a set Z = {ql,. . . ,qk } C B + o f  local 

maximum points o f  u such that f o r  each 1 <_ j <_ k, one o f  the two situations 

occurs." 

1. /fqj E ~ \ {t = 0}, we have 

1 ( I I 
l u (qs ) -  u(u(qj) . - 2 y  + qy) _ ~, 1 + [yl 2 ] ] c2W;T~) < e' 

2 

where Tj = u(qj) .-2 qjn; qjn is the last component  o f  qj; 

2. i f  qj E O'B +, then 

u(qj)_lu(u(qj)_-~-. ~ ( Ac ) ' ~ 1  
Y + qJ) -- 1 + A~(ly'l 2 + lyn - t~12) c2w+(0)) < e, 

c 2 c where Ac = 1 + (h-=-5-2) , t~ = (,-2)xo" 

Moreover, f o r  rj = u(qj)-,-~-2 R, we have 

'Br,(qi) NB~j(qj)  = 0, f o r i  ~ j, 

n - - 2  

[qi - qyl--~u(qy) > C6, f o r j  > i, 

- -  , . n - - 2  

u(q) < Cl dtst(q, Z)- - -~-  , f o r  all q E B+3/2. 

We deduce the energy estimate (16) in Theorem 1.7 from the following result, 

which says roughly that every two bubbles must be separated by a positive distance 
independent of  u. 

Proposition 9.2. For suitably large R (depending only on n and c) and 

0 < ~ < e -R, there exists d = d(R,e)  > 0 such that f o r  all solutions u o f ( 7 8 )  

satisfying maxff~-l+ u > C~, we have 

min{dist(qi, qj):  qi, qj E Z 71 -B-~312 , i ~ j }  > d, 
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where C~ is the constant in Lemma 9.1, and Z is the set o f  large maximum points 

defined in Lemma 9.1 which is determined by e, R and C~. 

Proposition 9.2 leads to (16) in Theorem 1.7. This is given towards the end of  

this section. Our main effort in this section is to establish Proposition 9.2. 

We introduce the definition of  isolated blow-up points and indicate some 

standard consequences. 

Definition 9.1. Let  {u s } be a sequence of  solutions of  (78). Suppose {x s } is a 

sequence of  local maximum points of  {us} satisfying x s --+ �9 E B +. Then we say 

xS -+ ~ is an isolated blow-up point of  {us} if l i m j ~  us(xs) = ~ and, for some 

C > 0 and f > 0 (independent of  j ) ,  

us(~)l~ ~1 "~ - < C  for I x - ~ l  < ~ .  

Proposition 9.3 and Remark 9.1 below can be found in [34] (see Proposition 

1.3 and Proposition 1.4 there). 

Proposition 9.3. Let z s --~ :~ 6 B + U 0 'B + be an isolated blow-up point o f  

{us}. Then for  any sequence o f  positive numbers R s ~ oo, ej -+ O, there exists a 

subsequence o f{us}  (still denoted as {us} ) such that r s := Rsu s ,-2 (zs) ~ 0 and 

one of  the following two assertions holds. 

1. I f x  s E I~_, then 

where T s = uj (x s) ~ zSn. 
r + 

2. I f  x s E 0 B 2 , then 

. - - 2  

uj(xs) uj(us(xs) . - 2 y + x j ) -  Ac 1+ ~(ly'12 + Iw t 2 ) )  --'- - C2(B+Rj(=~) ) < e s, 

where he = 1 + ( c__z_)2 and tc c ,~-2 - (n-~)xo" 
Moreover, there exists rl E (0, ~) (independent o f  j )  such that 

uj(x ) < Cus(xs)-llx- xs] 2-", forx E B+\Bz,j, 

where C is independent o f  j; ~ is the one in Definition 9.1. 

Proposition 9.4. Using the notation in Proposition 9.3, we have 

(79) IDkus(x)l <_ 
Ck 

ixl~_2+k uS(xj) -1 f o r  2r s < Ix -- xs[ < r l / 2 ,  Xn > 0, 

where Dkuj is understood as all partial derivatives o f  uj o f  order k. 
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P r o o f  o f  P r o p o s i t i o n  9.4. For any 4rj _< Ix - zj[ _< r l /4 ,  set 

(y) = rn- us (x )us (ry), 

where r = I x -  xs[ and y E f~ := {�89 < [y[ < 2 ; ry e B+} .  By Proposition 9.3, 

v s _< C in fL By the equations of  u s, vj satisfies 

- A v  s = n(n  - 2)r-2uj (xs) - , -~-~v;  -~-~2 in f], 

and, if  0'[2 := 0f~ N {y ; ry E O'B +} 7~ 0, 

Ov s 2 
Ot = cr-luj(xs)-;=-~-~vJ'-~' on 0'f~. 

- - 2  - -  - - J ' - -  2 
_ n - 2  Since r > r s and R s ~ oc, the coefficients r u j ( x j )  n-2 and r - l u j ( x s )  - tend 

to zero. By standard elliptic estimates, 

[Dkvj(y)[ < Ck, for k > 1 and y E i2 f'l OB1, 

which implies (79). Proposition 9.4 is established. [] 

R e m a r k  9.1. As a consequence of  Proposition 9.3, for each isolated blow-up 

point xj --r 5: of  u s, we have 

u~(xS)u s --+ h in C~o~(B + (~)\{5:}) 

for some h E C~oc(B + (5:)\{5:}) satisfying 

Ah(x) = 0, B+ (5:)\{5:}, 

h(x) --+ 0% as x --+ ~, 

Oh(x) 
Ot - O, x E O'Srl (5:) if O'Brl (5:) 7~ 0. 

R e m a r k  9 .2 .  In fact, the domain of  the harmonic function h and the 

convergence o f u s ( x j ) u  j to h can be extended to B+(5:) \ ({5:} t.J O"B+(5:)). 

P r o o f  o f  R e m a r k  9.2. This is rather standard. For the reader's convenience, 

we include a proof. It is enough to show that for any r E (O, r l / 4 ) ,  u j ( x j ) u  s 

converges in C 2 norm over K = B+_r(5:) \ B+(5:). It follows from Definition 9.1 

that there exists C = C(r)  > 0 such that 

_< c on  \ 
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Then uj satisfies 

[Auj[ < Cuj in K1, 
Ouj 

[-~-[ _< Cuj  o n  OK1 N {t = 0}, 

where K1 = B+--r/2(5:) \ B~2(x)" By the Harnack inequality (see, e.g., Lemma 

A.1 in [34]), maxg uj <_ CminK uj. Then by Proposition 9.3, uj (x j )  maxK uj 

Cuj(x j )  mink uj _< C, i.e., uj (x j )u j  is uniformly bounded over K. The equation 

satisfied by u j ( x j )u j  is 

A ( u j ( x j ) u j )  + n(n  - 2)uj(x j )  -.4-~-: (uj (x j )uj)  ~-2 = O, K1, 

O ( u j ( x j ) u j )  2 o 
o t  = c u i ( x ~ ) - ~ - ~ ( u ~ ( x ~ ) u ~ ) ~ - ~ ,  OK1 n { t  = 0}. 

Since uj (x j )  --+ oc, uj(xj)uj converges to a harmonic function h over K. Remark 
9.2 is established. [] 

We first prove Proposition 9.2; and towards the end of this section, we use 

Proposition 9.2 to establish (16) in Theorem 1.7. 

The following two lemmas say that the magnitudes of two bubbles in set Z are 

comparable as long as they are not too close to O"B +. Note that in [34] two closest 

bubbles can be found because the solution is defined on the whole manifold. Here 

we do not have this advantage. The nature of our problem is purely local. 

L e m m a  9.1. Let u be a solution o f (78) .  Then there exists Ro = Ro(n, c) > 1 

such that f o r  any R >_ Ro and 0 < e < e -n ,  we have 

(80) u(q)u(x)  >_ C-1[x  - qlZ-n 

1 Here Z is the for  any q e Z and x E B ~  satisfying Ru(q)  -.-~-2 < Ix - q[ < ~. 

set defined in Proposition 9.1 with respect to R and e, and C is some constant 

depending only on Ro. 

P r o o f  o f  L e m m a  9 . 1 .  Let  e,~ = (0', 1), 

f~ = B(en, u(q) "--~-~ ) N {t > -u (q )" -~qn} ,  

and 

v(y) = u(q)-lu(u(q)-,-~-2y + q), y E ~. 

It follows from Proposition 9.1 that 

1 ~-~ 
I[ v(y) - (1 + ly[ 2) IIC2(B~, < e  
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o r  
n - 2  II ( )T I 

v(y) - 1 + A2(ly'l 2 + lYn - t c p )  C2(Ban~) 

In either case, we have for s o m e  61 = 61 (n, c) > O, 

v(y) > 611y] 2-n, y E-~NOBR. 

Here we have used the largeness o f  R0. 

To prove (80), we only need to show for some 62 = 6z (n, c) > 0 that 

(81) v(y) > ~zlyl ~-" f o r y  e ( ~ \  Bn)  n B(e. ,  u(q)"--~-2 /2). 

To see this, we set 

r = 262(ly - enl 2-n - u(q)-2), 

where 

Clearly, 

and 

1 ( n - 2 ~  
62 = mi"  {~1/4' 2 \lcl + 11 }" 

m 

v(y) > r on OBR n f~, 

v(y) > 0 = r for  lY - e.[ - u(q) .-~--~-2 . 

By a direct computation,  

Or > 262(n - 2)[y - enl -n  > [clr --e-~ 
O t  - 

It follows that for  some ~ >_ O, 

0 ( v  - r 
Ot < Iclv~--~-~ -Iclr _< ~(v  - r  

-u(q)"-2q.}. o n  { t  -= 

-u(q)-a-~-2 q. }. on {t : 2 

Since v -  r is super-harmonic in (12\BR)NB(en, _.z_ u(q) ,-2/2),  we apply the maximum 

principle to obtain that v - r > 0 on (f~\BR) ~ B(e~, u(q) ,-%/2), f rom which (81) 

follows. [] 

L e m m a  9.2.  For suitably large R and O < e < e -R, there exists C = C(e, R, n) 

such that for  any solution u of(78) and any q E Z N B~2, we have 

( 8 2 )  u(x) < Clu(q) for  x E B+(q, 1/12), 

where Z is the set o f  local maximum points o f  u defined in Proposition 9.1. 
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p r o o f  o f  L e m m a  9.2. By the Harnack-type inequality (Theorem 1.7), 

sup u inf u < C. 
B + ( q , 1 / 1 2 )  B + ( q , 1 / 6 )  - -  

Now u is well-approximated by standard bubbles; so, obviously, u(x) >_ u(q) -1 

for Ix - ql <- Ru(q) -~:a~-:. Thus, by (80), we have minB+(q,l/6) u > C-lu(q)  -1. 

Estimate (82) follows easily from above�9 Lemma 9.2 is established�9 [] 

P r o o f  o f  P r o p o s i t i o n  9.2. Suppose the contrary; then for some fixed large 

R0 and 0 < e0 < e -n~ there is no such d = d(eo, Ro). Consequently, there exist a 

sequence of solutions {uj } to (78) and some qlj E Zj such that dist(ql~, Zj \{q l j  }) -~ 

0, where Zj is the set of local maximum points of uj defined in Proposition 9.1 

with respect to e0 and R0. Let q2j be the local maximum of uj in Zj so that 

dist(qxj, Zj\{qlj}) = [qu - q'gJ[" Then we have 

aj :-- lqlj - q'gj[ --~ 0. 

By Proposition 9.1, we have 

�9 n - - 2  

(83) uj(y)d,st(y, Z j ) - r -  < C~(e0,Ro), y E B +. 

2 _ _ 2 . _  
Since B(qlj ,  uj (qlj)- ~ RO) and B(q2j, uj (q2j) .-2 Ro) must be disjoint, we have 

aj > uj(qzj)-4-2 Ro, 1 = 1, 2. Consequently, 

uj(qu),  uj(q2j) --4 oo as j --~ cr 

For the sake of simplicity, we write ql and q'9 instead of qlj and q2j later in this 

section. Still by Proposition 9.1, we have 

"9 _ n - 2  
Iluj(q,)-luj(uj(qt)-'-~-~y + qt) - (1 + lYl ) = IIc2(B;To~,) < ~0, l = 1,2 

o r  

n - 2  

-1 -~--~ ~c ) --r- 
[uj(qt) u j ( u j ( q t ) ~ - 2 y + q , ) - ( l + A ~ ( l y q ' 9 + l y n _ t , l ' 9 )  Ic=(B+o)<,o, 

l = 1 , 2 ,  

where Tfl __.z_ = uj(ql) ,-Zqln. 

L e m m a  9.3. For any Nj ~ ~ and 0 < ej < e -N~, there exists a subsequence 

{uij } (still denoted as {uj}) such that aj > uj (qt)- ~ Nj for  I = 1, 2 and one o f  

the foUowing two assertions holds. 

1. I f  q~ 6 B~'9, we have 

2 n - - 2  

(84) ]luj(qt)-luj(uj(qt)-"-~-2Y + qt) - (1 + lYl )--r-IIc=(BL~, ) < ej .  
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2. Ifqt �9 {t = 0}, then 
( 8 5 )  

( ~c ) ~ ~  c~w+~, ) uj(qt)-luj(uj(qt)-g=3-2Y + qt) - 1 + X~(lu'I 2 + lyn - tel 2) < e~" 

P r o o f .  Let  

be defined in 

v j ( y )  = u j ( q l ) - l t ~ j ( ~ j ( q l )  - "2-2y "k- ql )  

Dom(vj)  := B(O, l uj(ql)-:-2 ) rq {t > -uj(ql)~-~qln} .  

By Lemma 9.2, vj satisfies 

Avj(y)  + n(n - 2 ) v ~ ( y ) - - ~  = 0,  y �9 Dom(vj) ,  

n 
Ova(y)  _ c v . : : ,  , on O'Dom(vj), 

vj(O) = 1, vj(y) < C, f o r y  �9 Dom(vj) ,  

where 0 'Dom(vj)  = ODom(vj) n {t = -uj(ql)--~ql,~}.  Since uj(ql) --+ ~ ,  vj 
is uniformly bounded on any compact  subset of  {t > - l i m j ~  uj(ql)"-~-'~qln}. 
After passing {vj} to a subsequence if necessary, (84) and (85) follow from the 

Liouville-type theorems of  Caffare l l i -Gidas-Spruck and Li -Zhu.  Similarly, we 

have (84) and (85) after applying the same argument to q2. Since q2 is a local 

maximum point of  uj, (84) and (85) imply that o-j > uj(ql)-~2-~-~gj because for 

]Y - qll <_ uj(ql)-"2-~-2Nj, ql is the only local maximum point of  uj. So we have 

o'j > u j (q l ) - - -~Nj .  Similarly, we also have aj > u j (q2)- - -~Nj .  Lemma 9.3 is 

established. [] 

It follows f rom Lemma 9.3 that {B_(ql,uj(ql)-"-~Nj)}l=l,2 are disjoint and 
n - - 2  

uj(ql)af -r- ~ oc, l = 1, 2. We rescale uj to wj so that the distance between the 

two local maximum points corresponding to ql and q2 becomes one. Indeed, let 
n - - 2  

wj(y) = aj ~ uj(ajy  + ql) �9 Then wj satisfies 

Awj(y)  + n(n "+2 B -Tj - 2)wj(y)--2 = O, y E 1/~i' 

aw~(y )  . 
Ot - cwj(y) ,-:2, ~B-% y e v ~/.~ n {t = - T j } ,  

w j ( o )  ~ ~ ,  w j ( e )  -~ ~ ,  
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where e = ( q2 - q, ) / cr j and Tj = cr f l qln . 
By Lemma 9.1 (with u = uj, R = / t o ,  and c = e0), we have 

(86) wj(z) >_ C-'wj(O)- ' lz l  2-", lrlotyfluj(ql) -~-~-2 <_ Iz[ _< a j - ' /4 ,  z~ _> -Ty,  

and 

(87) 
IVj(Z) >_ C - l w j ( e ) - l [ z -  el 2-n, Roaf~uj(q2) -"-~2 < l z -  el < all~4, zn > -Tj ,  

where C > 0 is a positive constant depending on n only. 

We also have 

--1 _ 2  
(88) Roaj uj(ql) .-2 -+ 0 and  Roa-luj(q2) -~:-2 ~ O. 

In the rest o f  the proof, we analyze how wj(O)wj approaches a harmonic 

function and employ the Pohozaev Identity to get a contradiction. 

Lemma 9.4 and Remark 9.3 below are in correspondence with Proposition 9.3 

and Lemma 9.2. 

L e m m a  9.4.  Let Dj = wj ( 0 ) ~  Tj. After passing to a subsequence, we have 
the following. 
1.1f Tj > O, 

(89) wj(O)_lwj(wj(O)_ 2_~_:y) _ { 1 ~ 

2. l f  Tj = O for all large j, then 

(90) wj(O)-lwy(wj(O)-J-~-~2y) ( Ac ) - < ej. 
1 + A~(ly'[ z + [yn - tc[ 2) C=(B[~') 

b~ either case, let T = l i m j ~  Tj 6 [0, c~]; then there exists a harmonic function h 
defined on B1 T t_J (OB{ T fq {t = - T } )  such that 

(91) J~lim Ilwj(O)wj - hlIc=(B?_Tj \Be) = O, 0 < B < �89 

where h satisfies 

I Ah(y) = 0, h > 0, in B~-T\{0}, 

(92) h(y) ~ oc, as y ~ O, 

Oh(y) _ O, y 6 0 B  T n {t = - T }  
Ot 

if OB T n {t = -T} # ~. 



72 Y. Y. LI A N D  L. Z H A N G  

P r o o f  o f  L e m m a  9.4. Since 

wj(o)--lwj (wj(O)--nZ~-2y) :uj(ql)--I?zj (~j(ql)--n-'~2y"~-ql) , 

(89) and (90) are the same as (84) and (85) (l = 1). Let  Zj = {a~ -1 (q - ql) : q �9 Zj} 
be the set o f  large local maximum points o f  wj, the rescaled version o f  Zj for uj.  

Since q2 is the nearest point in Zj to ql, and Iq2 - qll = aj, for  any compact  subset 

K of  B I  T t30 'Bi  T, there exists C = C(K) such that 

lYl < C(K) dist(y, Zj) for  all y �9 K. 

Consequently, by (83), 

w j ( y ) l y l ~  <_ C(K) f o r y  �9 g .  

Therefore,  0 is an isolated blow up point o f  {wj}; and (91) and (92) follow from 

Remark 9.1 (see also Remark 9.2). L e m m a  9.4 is established. [] 

R e m a r k  9.3.  By  Lemma 9.2 (with u = uj,  R = R0 and e = e0), and the fact 

that aj = Iql - q21 "-+ O, we have 

q2 - -  q..__..__~l C-lwj(O) < wj(e) ~ Cwj(O), e = [q2 - q l l "  

R e m a r k  9.4.  It is not hard to see that the harmonic function h in Lemma 

9.4 is of  the form h(y) = a ly l  2 - n  + b(y), where a > 0 and b is harmonic o n  B I  T. 
Moreover,  if  T = 0, b satisfies Ob/Ot = 0 on O'B +. 

To complete the p roof  of  Proposition 9.2, we need to rule out the following two 

cases. 

C a s e  1: T = 

C a s e  2: T = 

We first 

limj-.oo Tj �9 (0, cc]. 

limj__}~ Tj = 0. 

R u l e  o u t  C a s e  1. Recall that wj (O)wj (y) --+ aly] 2-'~ + b(y) on compact  subsets 

o f  B I T \ ( 0 } .  We show that b > 0 on B i  T. 
S t e p  1: b > 0 on B I  T. 
For 0 < e < a, let 

e j ( y )  = ( a  -  )lyf - ( a  - 

-T~ 
We compare wj(O)wj and ej  in B71  \ B1/j. Since b is harmonic (and therefore 

bounded) near 0, we have for large j ,  

w j ( 0 ) w , ( y )  > lyl = 1 / j  or  lyl = o;-1 
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It is easy to see that for y �9 {t : -T j} ,  

n 

ocj > (n - 2)(a - e)--~-2 T j r  :2 , 
Ot - 

and 

o ( w j ( o ) ~ o j ( y ) )  __~_  . 
= ~,~ (o) --~ (~j (o)wj (y)) ~-~ 

Ot 
< (n 2)(a ~ _ _ e)W=-~-2Tj(wj(O)wj(y)).-5. 

It follows, by the mean value theorem, that 

0 [ w ~ ( 0 ) w j ( y )  - r  
< ~j(y)[wj(O)wj(y) - Cj(y)], y �9 {t = - T j ,  

Ot 

where ~j (y) > 0. By  the maximum principle, 

-Wj 
wj(O)wj > Cj, on B _~ \ B1/j.  

- -  c r j  

Sending j to infinity, we obtain, for any compact  subset w o f  B~ -T \ {0}, 

alyl 2-"  + b(y) > ( a  - e ) l y l 2 - L  y �9 ~ .  

Letting e ~ 0 +, we have b > 0 on B{ T \ {0}. 

S t e p  2: b > 0 o n  B i  T. 

For any compact  subset w of  Bx and j sufficiently large (which may depend on 

w), we have by (87) and (88) that 

w3(y) > C - l w j ( e ) - l l y - e l  2-n f o r y  �9 w. 

Letting j ~ oc, we have, by Remark 9.3, 

alyl  2 -"  + b(y) >__ C - 1 l y  - ~ 1 2 - n ,  y �9 B ~  z \ { 0 ] ,  

where ~ = limj~oo e. It follows that l imueB?r,u~e b(y) = oo. In particular, b(y) > 0 
for y in B1 and y close to e. We already know that b is non-negative and harmonic 

in B i T ;  so by  the maximum principle, b > 0 on B i  T. 

In order to reach a contradiction, we  need the following Pohozaev Identity. 

L e m m a  9.5.  Let f~ be a piecewise smooth bounded domain in ~n and u > 0 

a CZ(~) solution o f  
--Au n(n = - 2)u,,-~, f~. 

Then 

(93) fo {x  u , -2  IVul 2]/ Ou Vu) n - 2 0 u ]  _ + + = O, 
2 ~ ( x -  - - 5 - u ~  

where v is the unit outer normal o f  Of L 



74 Y. Y. LI AND L. Z H A N G  

A proof of  L e m m a  9.5 can be found in [38]. 

Let f~ = Br fo r0  < r < 1 and apply Lemma 9.5 to w 5. Multiply wff(0) on both 

sides and let j ~ c~. Elementary computation (see Proposition 1.1 in [38]) shows 

that the left hand side of  (93) is negative for r sufficiently small, which is clearly a 

contradiction. Case 1 is ruled out. 

Now we 

R u l e  o u t  C a s e  2. Recall that ws(O)w s (y  ) -4  alyl ~ - "  + b(y) on all compact 

subsets of  B +, with b(y)  harmonic in B1 + and satisfying Ob(y) /Ot  = 0 on O'B+I . 

Let 

r := (a - e)ly - ws(O)-"-~-2ent 2 - n  - (a - e ) ( a ;  1 - 1) 2-n. 

We compare wj (0)w 5 and Cj on 

- - T j  1 - -  

i25 = {y  E B ;1 : l Y -  wj(O)-Z:-a-2enl < a j  a _ 1}. 

It is clear that 

ws(O)ws(Y)  > r for lyl = 3 w 5 ( 0 )  - r~---~ or ly - wj(0)-r~-~e-[ = ~  - 1  - 1. 

Computation shows that for y E {t = -Ts},  

and 

0r -- (n - 2)(a - c) ~--~-2 [wj (0)- ~:-~-2 ~ - -  + Tj]fb~-~-2 
Ot 

o ( ~ 5 ( o ) w s ( y ) )  : 
ot  = c~5 ( ~  ~--~-~ (w5 (~ ~-~ 

< (n - 2)(a - , ) J - :  [~,5(o)- ~-~-~ + T s ] ( w A o ) w s ( y ) ) :  -e~-~ 

< ~5 (y)[~5 (o)w5 (y) - r (y)], 

y E B  +. 

By the mean value theorem, 

O[w5 (0)w5 (Y) - r (Y)] 
Ot 

where ~5 (Y) > 0. By the maximum principle, 

wj(O)w5 - r > o, 

Letting j --+ c~, we have 

alyl 2-n + b(y) >_ (a - e)ly] 2 -n ,  

Sending e to 0 shows that 

b(y) > O, y E B +. 

on 12j. 

y e {t  = - T s } ,  
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Arguing as in Case 1, we have 

b(y) > O, y e B~ +. 

Since ~(0)  = 0, by the Hopf Lemma, b(0) > 0. Apply Lemma 9.5 to wj and 

let f~ = / 3  +. Multiply wff (0) on both sides of (93) and let j ~ oo. Then b(0) > 0 

makes the left hand side of  (93) negative for r small, a contradiction. Case 2 is 

ruled out. [] 

Once Proposition 9.2 is established, we can finish the proof of (16) in Theorem 

1.7 as follows. 

P r o o f  o f  (16) in T h e o r e m  1.7. Clearly, we only need to establish it for 

R = 1. In fact, it is clear enough to show that fB5 (IVul a + ug--~:~)dx <_ C(n,c). 
Suppose, to the contrary, that there exists a sequence of  uj satisfying (78) such that 

. -5  )az  -~ o~. (IVusl 2 + u s 
2 

Then by standard elliptic estimates, max~--~+ uj ~ oo. Let e and R be as in 

Proposition 9.2, and let Zj be defined in termsaof e and R for uj. By Proposition 

9.2, any two points of Z s r are separated by a distance no less than d(e, R) > 0. 

In particular, the number of  points in Zj N B~2 is bounded by a fixed number 

k. Since rnax~-+ u s ~ oo, max + uS(z ) --+ oo. For any fixed r > 0, {us} is z6ZjNB4/3 
bounded on 13~s \ Uzczi Br (z); therefore, by the Hamack inequality, the maximum 

and the minimum of uj on the set are comparable. So, by Proposition 9.3, the 

maximum of u s on the set tends to zero; and by standard elliptic estimates, 

n - 2  ,u .e~. (~)( IVusl2  + uj ) ~ O. 

On the other hand, for every z e Zj n B+/3, we have, by Proposition 9.3 and 

Proposition 9.4, that 

fB 2,~ 
+(z,r)(IVujl~ + u;-=)dx ~ C. 

Since Zj n B+/2 has at most k points, 

(IVujl 2 + u2-2)dx < C, 

a contradiction. Estimate (16) in Theorem 1.7 is established. O 
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(94) 

For y, )7 �9 B3, let 

As pointed out in Remark 1.10, if  c < 0, estimate (16) in Theorem 1.7 can be 

established in a much simpler way. Indeed, we have 

P r o o f  o f  (16) in  T h e o r e m  1.7 f o r  c < 0. We first show 

u.-5 < C(c, n). 

1 ( lY-r l l  2-'~ 3 ,~-2 9r/ _ y 2 - n ) ,  7 /#0 ,  
n ( n -- 2 ) Wn - ( -~1) 

Gl (y, rl) = 
1 

-- 2 Wn(M2-n--  32-n)' 7/=0 ,  n(n ) 

be the Green's function on B3 with respect to the Dirichlet boundary condition. 

Here w,, is the volume of  the unit ball B1. Set 

G(y, ~) = G1 (y, ?7) .-}- G1 (y, ~), y, ?7 �9 B3 +, 

where ~ = (~', -r/,~) is the reflection of  r /with respect to 0 I ~ .  

Then from above it is immediate that for fixed y �9 B + U (O'B + \ OB+), 
G satisfies 

-A~G(y,  ~) = 5~, n �9 B +, 

G(y,7?)=O, r / � 9  + 3 '  

_ o ,  �9 O'B+  , 
Ov 

It is also clear that 

OG(y,O) 
Ou 

- - < o ,  71e O"B +. 

G(y, rl) > C - I ,  y, rl 6 B +, 

for some C > 1. 

Let u(y) = m i n - ~ u ,  y E B +. By Green's  formula, and as in [21], 
B2 

u ( y ) =  +G(y, r l ) ( -hu)drl+ B+G(y,s)~-~v(y,s)ds- B + Ou 

> G(y, rl)U(rl) .-2 do - a(y ,  rl)CU(rl ) ~ do - ,,B + 

_> c-a fB u--= (r/)dr/. 
1+ 
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Therefore, 

fB  u2-~2 < maxu f ,+2 u. -2  < C(maxu) (minu)  < C. 
+ ~ J B  + - -  b-~ B--~ --  

The derivation of 

(95) fB IVul 2 c __5 

from (94) is as follows. Let r e C ~ ( B  +) such that 

r  y � 9  , r 

[] 

IY{ >- 1/V r~- 

First we multiply r on (78) and integrate by pans to obtain 

r  + (r + 2r162 Vu - n(n - 2)r u--2)  = O. c ,B~ 

Then it follows by H61der's inequality that 

To estimate the last term of the above, we have for Ix'l < 1/2, 

~. , f d ~ 2 ~ - :  ( x ' , s ) ) d s  r , 0 ) =  i 1 /v '~  Tss (r s)u -~-~ ,tO 

f l / , /~  2 2 n - 2  . Ou I f Or162 ds + I r --------~u-C:-~-:-z--ds[ 
= Jo Oxn Jo n -  z axn t 

< C u . - :  ds + C  r  ~ r  
- -  JO dO OXn  / " JO [ii,a .o_~ [,i~r ab_~.)~d, C [iiW 
< C u ,,-2 ds + e + -- u"-~22ds. 

JO JO f- JO 

Integrating with respect to x' and choosing e sufficiently small, we can derive (95) 

in view of (94). [] 

P r o o f  o f  (17). We only need to prove it for R = 1. Without loss of generality, 

we may assume that A1 and A2 are subsets of B~2. We argue by contradiction. 

Suppose there is a sequence {uj} solving (78) such that 

(96) iAnf uj > j infAs uj. 
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Then we must have max~-~-+ uj ~ co, since otherwise, by the Harnack inequality, u s 

on B~2 would be bounded below and above by positive constants and (96) would 

be impossible. Let Zj be as in the proof of  (16). We know that Zj M B + has at most 

k points with k independent of  j ,  and the values o f u j  on Zj M 13 + are comparable. 

So for r > 0 small, A1 \ (Uz~z~ By(z))  and A2 \ (U~cz~ Br(z) )  are non-empty. 

The values of  uj on 13+ \ (U~z~ B~(z)) are comparable; and by Proposition 

9.3, are all bounded above by C(r)u(z) -1 for z E Zj M B+I . So in particular, 

inf^~ uj < C(r)u(z) -1 for z E Zj M 13+. On the other hand, by Lemma 9.1, 

infa2 uj ~ C(r)-lu(z) -1 for z E Zj n B +. It follows that infi~ uj ~ C ( r )  infh2 uj, 

violating (96). This completes the proof of  (17). I-1 

10 Appendix  A. A boundary l emma 

In this section, we let f~ be a domain of  I~ n, n > 2, with the origin 0 on 

its boundary. Assume that near 0 the boundary consists of  two transversally 

intersecting C 2 hypersurfaces p = 0 and a = 0. Also, suppose p, a > 0 in ft. Let 

v(y) be the unit outer normal to the surface {a = 0} fq Oft at y. 

Let {hi(y)} be L ~ functions, and let {aij(y)} be a n • n matrix function 
satisfying, for some positive constant A > 1, 

A-1l~le<~-~aij(y)~i~j<Al~l  2 for ~ E/l~n,y E f L  
i,j 

Under this setting, we have 

L e m m a  10.1. Let u E C 2 (f~) n C 1(~) be positive h~ ft, u(O) = O, and suppose 

that for  some positive constant A 

{ ~inj=l aijltij -1- Ein=l biui < Au, in ft, 

~ > - A u ,  _ on { a  = O, p > 0 } ,  

where v denotes the unit outer normal. Then 

Ou 
0~' (o) > o, 

where v' is any vector in the tangent space o f  {a = 0} that enters into {p > 0}. 

P r oo f .  Since the hypotheses and conclusions are invariant under change of  

coordinates, and of  the choices of  the particular p and a representing the bounding 

hypersurfaces, we may assume without loss of  generality that p(y) = yl and 
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r -= Y2. By the Hopf  lemma, u > 0 on {y2 = 0, yl > 0} (otherwise, by the 

boundary condition and the fact that u > 0 in f~, u = 0 and Ou/Ov = 0 at a point 

on {y~ = 0, yl > 0}, violating the Hopf  lemma). So we may, as in [30], assume 

without loss of  generality that u > 0 on ~2 \ {0}, because we may replace yl = 0 by a 

sphere tangent to yl = 0 at the origin and then straighten the sphere to a hyperplane 

by a coordinate change and call the new hyperplane yl = 0. 

Pick e > 0 so small that {Yl > 0} n {Y2 ) 0} n B(0, 2e) C f~. We wish to 

construct a function r > 0 in f~ such that 

1. ~ , j  a~jr + ~ b~r >_ Ar in f2 O B(0, e), 

2. r  

0r 
3. ~u -< - A r  on {Y2 = 0, Yl > 0} n B(0, e), 

4. r _< u on OB(O, e) n -~, 

5. > 0. 

Once such r is constructed, Lemma 10.1 can be proved as follows. Let w = u - r 

then w satisfies 

l ~"~aijw,j + Zb ,  wi-  Aw <_ 0, fl n B(0,e), 
i , j  i 

w_>0, o n { y l = 0 } n B ( 0 , e )  and OB(O,e) nfl, 

~---~ + > 0, o n  {Y2 = 0, Yl > 0} n B(0, e). Aw 

By the maximum principle, w _> 0 on the closure of  B(0, e) n f~; and therefore by 

w(0) = 0, we have 

(o) > o. 

Consequently, 

(o) > (o) > o. 

Such a r can be given explicitly by setting 

r = ~ ( e  a2yl  - 1)e '~y2, y Efl, 

where a > 1 is large and then ~ > 0 is chosen small. 

By a direct calculation, we have for large a,  

ff'~ aijr + ~bir  >_ r - C)e'~:U'e "u' >_ Ar 
i , j  i 
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where c and C are generic positive constants. 

On {y2 = 0}, for large a,  

0 r  = a r  _> Ar 
Oy2 

i .e. ,  

0.._r162 < -Ar  on {a = 0}. 
O r -  

Now fix the value of a. Since u > 0 on ~ \ {0}, choose 6 > 0 small enough 

such that 

u >  r onOB(O,e)n~2. 

Finally, it is immediate that ~ (0) > 0, so all the desired properties are satisfied. 

Lemma 10.1 is established. [] 

11 Appendix B. Some calculus l emmas  

In this section, we present, for the reader's convenience, a few calculus lemmas 

and their proofs taken from [42] (see also [26]). 

L e m m a  11.1. Let f ~ Cl(l~n),n > 1,u > O. Suppose that for  every x E Nn, 

there exists )~(x) > 0 such that 

Then for  some a > O, d > O, ~ E ~n, 

a ,~u12 
�9 

P r o o f .  It follows from (97) that 

B := lim lyl"f(y) = A(x)"f(x), x ~/R '~. 
lul--}~ 

If B = 0, then f - 0, and we are done. If B # 0, then f (x)  does not change sign. 

Without loss of generality we may assume that B = 1 and f (x)  > 0. For large y, 

by making a Taylor expansion of the left hand side of (97) at 0 and x, we have 

[a(O)~. ( / ( 0 ) +  Of ( . .  A(O)~y, (98) 

and 

(99) 
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1 1 where o(1~1 ) denotes some quantity satisfying lira o ( ~ ) / ( ~ )  = 0. Combining 
h/I-->~ 

(97), (98), (99), and our assumption B = 1, we have 

= _ 

Yi oyi 

It follows that for some ~ E ~'~, d > 0, 

f - ~ / ' ( y )  = ly - ~1 = + d. [] 

L e m m a  11.2. Let f E C 1 (Rn) ,  n > 1, ix > O. Assume that 

( A ) ~  A S ( y - x )  
f ( x  + -~---xl- ~ ) < S(Y) for  all A > O, 

Then f = constant. 

P r o o f .  For  x E I~ '~ , ), > 0, set 

1, 
It is easy to see that 

z e ~ , n , l y - z l >  ~. 

Izl >_ ,x. 

{ g,,l:l(z) = 0, 

g, , l= l ( rz)  > O, r > 1. 

It follows that ~ {g~,i=i(rz)}l~_-~ > o. 
A direct calculation yields 

2V f ( z  .-I- x) . z -4- lxf(z -t- x) >_ O. 

Since z and x are arbitrary, by a change of  variables, we have 

2 V f ( y ) .  ( y -  x) + vf(y)  > O. 

Dividing the above by Ix[ and sending Ix[ to infinity, we have V f ( y )  �9 0 <__ 0 for all 

x E I~ '~ and 0 E S n-1. It follows that V f  = 0 in I~ '~ . [] 

L e m m a  11.3. Let f E CX(~_) ,n  > 2, v > O. Assume that 

~-71 ~s<s(y), ~>o, xeo~7_,ly-xl>~,yeRT_. 
Then 

f (x)  = f (x ' , t )  = I (0 , t ) ,  x = ( d , t )  e ~ .  
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Proof .  For x E 0II~, A > 0, set 

Izl: ] ,  

As in the proof of Lemma 11.2, we have 

2Vf(z + x) . z + v f ( z  + x) >_ 0 

Making a change of variables, we have 

for all x E 01~, z E I~_. 

_ y, ~n--1 20y, f ( y ' , t ) . ( y ' - x ' ) + 2 O t f ( y ' , t ) t + v f ( y ' , t ) > O  for all x', E , t > 0 .  

Dividing the above by Ix'l and sending Ix'l to infinity, we have Ou, f ( y ' , t ) .  0 > 0 

for all (y't) E R~ and 0 E S n-1. It follows that Ou, f ( y ' , t )  - O. [] 

12 A p p e n d i x  C 

In this appendix, we prove the following simple result which is needed for 2 ~ 

in Remark 1.4. 

L e m m a  12.1. Let g be a positive continuous funct ion on (0, oo) satisfying 

liminfg(s ) > 0. 
$-'4'OO 

Then 

u"(t) + g(u(t))  = o, 

does not  have any positive solution u. 

0 < t < o o  

Proof .  Let v = u~; then 

(100) (v) 
dt v - g ( u )  

If  v(0) < 0, we have from the second equation of (100) that v(t) < v(0) for all 

t > 0. Then by the first equation, u(t) < u(O) + v(O)t. This is impossible for large 

t since u is positive. If v(0) = 0, then by the second equation, v(t) < 0 for t > 0. 

This is impossible by the above argument since the system is autonomous. So we 

only need to rule out the possibility that v(t) > 0 for all t > 0. In this case, by the 

first equation, u(t) > u(0) > 0 for all t; and therefore, by the hypothesis on g and 

the second equation, there exists some 5 > 0 such that v'(t) < - S t  for all t. This is 

impossible, since v is assumed to be positive all the time. [] 
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13 A p p e n d i x  D 

In this appendix,  we present a result which we could not  find in the literature. 

T h e o r e m  13.1.  For n > 1 and pj --+ p E (1, ~ ) ,  let {gj} be a sequence o f  

measurable functions on (0, cx3) satisfying 

sup lgj(s)l < o~, t > 0, 
j, 0 < s < t  

and, for  some a < O, 

(101) lim (sup sVJ - a = O. 
s--+~ \ j 

Let {uj } be positive solutions (in the distribution sense) o f  

- A u j  = g~(uj), on B:n  C 1~ '~. 

Then we have 

(102) l imsup(sup uj) < ~ .  
j--+c~ BR 

R e m a r k  13.1.  I f  I < p < ~----~_22,n > 3, and a > 0, estimate (102) still holds. 

This can be seen easily f rom the proof, by using the result of  Gidas and Spruck: 

For  such p and n, - A u  = u p has no positive solution in IR n . 

P r o o f .  It is easy to see that we only need to prove it for  a = - 1 and R = 1. Our 

proof  is by contradiction. Suppose the contrary; we may assume, without loss of  

generality, that 

u~(O) ~ oo.  

By L e m m a  5.1 (with a = vj2-~_~), there exist Ixj[ < 1 such that 

2 
uj(z j )  > 2~-'~ sup uj, 

B,,.i ( z.i ) 

and 
2 

a fJ - l u j ( x j )  >_ 21-'~ uj(O) --+ oe, 

where aj  = (1 - I x ,  I)/2. 

Consider 

Y 
1 u j ( x j  + uj(xj)-~j_i) /2)  ~'~(Y)- u~(xj) lYl < a ju j (x j )  (vj-1)/2 --> cx~. 
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Then wj satisfies 

= g (uj(z )wj(y)) 

Uj(Zj)  pj 

By the hypothesis on gj, 

and therefore 

lYl < O'jUj(Xj) (p'i-1)/2" 

Igj(s)l < C(1 + [slPJ), 

IAwjl <_ c. 

After passing to a subsequence (still denoted as {wj }, etc.), we have, by standard 

elliptic theories, 

wj ~ w > 0 in C~oc(~n). 

Sending j to ac in the equation of wj, we have 

(103) Aw = w p, on ~n. 

Indeed, if u j (x j )w j (y )  --+ co, then by (101), uj (x j ) -P~gj (u j (x j )wj (y ) )  --+ -w(y)P; 

if u j ( x j )w j ( y )  ~ O, wj(y)  --+ 0 = w(y),  and then by the boundedness of {gj}, 

uj (x j ) -P~gj (u j (x j )wj (y ) )  --+ 0 = - w ( y )  p. Since wj(0) = 1, w(0) = 1. By the 

strong maximum principle, w is a positive solution of (103), a contradiction (see 

Remark 1.2). tq 

Added  in proof. We thank Yihong Du, who kindly informed us that Theorem 

13.1 in Appendix D can be deduced from a result of J. B. Keller in: On solutions 

o f A u  = f (u ) ,  Comm. Pure Appl. Math. 10 (1957), 503-510. 
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