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A b s t r a c t .  We prove the Kato conjecture for square roots of elliptic second 
order non-self-adjoint operators in divergence form L = -div(AX7) on strongly 
Lipschitz domains i n / in ,  n > 2, subject to Dirichlet or to Neumann boundary 
conditions. The method relies on a transference procedure from the recent positive 
result o n / i  n in [2]. 

I n t r o d u c t i o n  

Let f~ be an open subset of It '~ , A a bounded uniformly elliptic complex matrix 

on f~, and L = -div(AV) the elliptic second order divergence operator defined as 

the maximal-accretive operator associated with a regularly accretive sesquilinear 

form on a closed subspace V of Hl(f~) containing H~(f~) (see Section 1 for 

precise definitions). The Kato conjecture amounts to showing that for any such 

L, the domain of the maximal-accretive square root L 1/2 of L agrees with V with 

equivalence of norms. One of Kato's questions was about perturbation theory for 

the square roots of real symmetric operators in order to study hyperbolic evolution 

equations with time-dependent coefficients. This conjecture is also related to other 

topics; see, e.g., [11]. 

In one dimension, the conjecture is now completely settled: for any f~, V and 

L as above, the domain of L ~/2 agrees with V. The first solution when fl = li was 

given by Coifman, McIntosh and Meyer [6]. Their argument relied on translation 

invariance, so other methods needed to be devised when f~ # / ~  We used ad hoc 

wavelets in [4], while Auscher, McIntosh and Nahmod used a reduction from the 

case f~ = ~ via interpolation methods [3]. 

In higher dimensions, when f~ = R n , we refer the reader to the introduction of 

our work [5] and the references therein for a discussion on progress over the years 

about this problem until 1998. Very recently, the conjecture has been established 
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in arbitrary dimensions by Hofmann, Lacey and McIntosh along with us [2] after 

it was proved for L~ of self-adjoint operators by Hofmann, Lewis 

and us [1]. 

When f~ r IR '~ , geometry at the boundary plays a role which prevents a straight- 

forward generalisation of results and methods in IR '~ . To our knowledge, not even 

the Kato conjecture for L~-perturbations of the Laplacian is known. Mclntosh 

proved it when the coefficients are in the space MHS(f~) of pointwise multipliers 

of the Sobolev space H'(f~) [10] for some s > 0 and f~ strongly Lipschitz. This 

seems to be the best result currently available on strongly Lipschitz domains. 

The purpose of this paper is to establish the following result. 

Theorem 1. I f  n > 2, the Kato conjecture holds for  any elliptic second 

order divergence operator -div(  A ~7) subject to a Dirichlet or Neumann boundary 

condition on a strongly Lipschitz domain. 

The meaning of a Dirichlet and Neumann boundary condition wilt be explained 

in the notation section. 

Although square roots are non-local operators, the proof of Theorem 1 follows 

procedures which are customary for boundary value problems: we transfer the 

result from IR n to N~ by a reflection principle; then to special Lipschitz domains 

by a bilipschitz change of variables; and eventually to general strongly Lipschitz 

domains by localisation. This last step relies upon a kind of "weak" comparison 

principle for solutions of complex elliptic operators. 

Our method does not seem to work for more general boundary conditions (e.g., 

for mixed Dirichlet-Neumann conditions), which therefore are left as an open 

problem. 

1 Nota t ion  

By a strongly Lipschitz domain, we mean an open connected set in IR n whose 

boundary is a finite union of parts of rotated graphs of Lipschitz maps, at most 

one of which parts is possibly infinite. These include special Lipschitz domains 

(the open set above a Lipschitz graph), bounded Lipschitz domains and exterior 

Lipschitz domains. 

For an open set f~ of ~'~, II/tlp or [/fllL,(n) denotes the usual norm in the 

Lebesgue space Lp(f~) equipped with Lebesgue measure. We write Hl(f~) for the 

usual Sobolev space with norm (IWflJ~ + Ilfll~) 1/= and Hd(fl) for the closure of 
C~ (f~) in H 1 (12). 
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Denote by ,4 the class of elliptic matrices in L~176 n , Mn(C)) with ellipticity 
constants 0 < A, A < co, that is, the best constants in the inequalities 

IIAlloo _ A and V~ c C ~ Re A(x)~, ~ > ~l~l ~, a.e.  on  ~ n .  

If A is merely given on fL we tacitly require A to be the A times identity matrix 

elsewhere. 

Given A E A, an open set ~ of I~ n and a closed subspace V of H 1 (f~) containing 

H~ (gt), denote by L the maximal-accretive operator on L z (f~), with largest domain 

D(L) C V, such that 

L - (1) (Lf, g) = A V I . V g ,  f E D(L), g E V. 

The domain of  L is characterized by the following condition. Let f E V; then 

f E D(L) if and only if there exists a constant c such that for all g E V, 

(2) fn A V f .  V---g ] _< allgll2. 

It is known that D(L) is dense in V [8]. 

Set -d iv  = V* : L2(fl, C '~) ~ W the adjoint of V: V ~ L2(12, C~). By density, 

we may extend L continuously from V to V'. We use the same letter to denote both 

L or its extension depending on the context. Instead of  the customary notation 

-div(AV), we prefer to write L as the triplet (A, fl, V) to indicate the matrix of 

coefficients A, the domain fl and the boundary condition determined by the space 

V. 

Any L as above possesses a unique maximal-accretive square root L 1/2, given 

by Kato's representation 

(3) LI/21 = 2_ ( l + t 2 L ) - i t L y  , Y ~ Z)(L). 

For f E D(L), we have 

(4) (1 + t2L)-ILI = L(1 + t2L)-~ I = t -2 ( f  - (1 + t2L)- l f ) ;  

hence, H(I+t2L)-ILflI2 < inf(llLfl]2,211Yll~ t-2), since the resolvent is L2-contractive. 

The above integral converges in L2(f~)-norm. Observe that for each t > 0, 

(1 + t2L)-ltL extends to a bounded operator on L2(f~) with 

2 
(5) H(I+ t2L)-ttLfll2 <_ -[ IlfH2- 

Note also that i f f  E V, then (1 + t2L)- l tLf  E V. 
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To tackle the Kato conjecture, it is enough to prove one of  the inequalities 

(K) IIL1/2fl12 < cllVfll2, f c V, 

(Kloc) [IL1/2fH2 ~ c(11~7f112 + 11/112), f ~ V 

(it suffices to do it a priori for f E/ ) (L)) .  Indeed, it is well-known that (K) (resp. 

(Klor for L and its adjoint imply that the domain of  L 1/2 is V [9]. 

Here, Dirichlet boundary condition means V = H i (f~); Neumann: V = H l(f~). 

Assume 12 is strongly Lipschitz. In the first case, a function f is in the domain of  

L if f E H 1 (f~) and the divergence of  A V f  in the distributional sense on f~ belongs 

to L2(f~). In the latter case, a function f is in the domain of  L if  f E HI(~), 
the divergence of  A V f  in the distributional sense on f~ belongs to L2(f~) and the 

conormal derivative of  f at the boundary vanishes. 

One can think of  (K) as a homogeneous or global inequality and (Klor as an 

inhomogeneous or local inequality. Proving the first one is harder. 

When fl is unbounded (e.g., special Lipschitz or an exterior domain), this does 

make a difference. In particular, we do not obtain (K) on an exterior domain while 

we expect it. This suggests finding a different argument. 

In the case of  bounded domains, there is no distinction between (K) and (Kloc). 

Indeed, when f~ is a bounded connected set with Lipschitz boundary, the Poincar6- 

Wirtinger inequality yields that (fo IVfl2)1/2 is a norm on H 1 (12) or on the subspace 

of  functions in H l(f~) with vanishing mean. Thus, (K) and (Kloc) are the same 

in the Dirichlet case. In the Neumann case, they are the same on functions 

with vanishing mean; this is harmless as V and L annihilate constants and, in 

fact, Af(V) = d = .Af(L). Another way of  saying this is by factoring out C: write 

L 2 (f~) = L~ (f~) ~C, where L0 2 (12) is the subspace of  L 2 (f~) characterized by f a f  = 0; 

then the restriction of  L to / ) (L)  n L~(f~) is one-one, and so is the restriction of V 

to H 1 N L02(f~). 

Thus, we can consider that L has the form D*AD with D being a one-one 

operator and the abstract nonsense material contained in Preliminaries of  [5] 

applies. 

R e m a r k .  As far as the Kato conjecture is concerned, adding lower order 

terms with bounded coefficients to such an operator is taken care of  by a result in 

[4]: that is, Theorem 1 is valid for inhomogeneous second order elliptic operators 

in divergence form. See also Proposition 11 of  Preliminaries in [5] for a more 

precise result with a proof which applies to higher order systems. Thus, we restrict 

ourselves to pure second order operators in this paper. 
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2 P r o o f  o f  the  m a in  result  

To prove Theorem 1, we establish (K) or (Kioc) (depending on ft) for any elliptic 
operator L = (A, it, V) as above: A E .4, f~ is a strongly Lipschitz domain and V 

is H i (Q) or n 1 (it). 
By [2], (K) holds for all elliptic operators of the form (A, IR n , H 1 (II~ n)). The 

argument to obtain the conclusion on any strongly Lipschitz domain contains four 
steps: localization, change of variables, multiplicative perturbations and the study 
on the upper half-space. We take them in reverse order. 

S tep  1: Study on the upper half-space. 
Pick a coordinate system (x l , . . . ,  x,~) in I~ n. Let 

it = ~7- = {z ~ ~ " ;  z .  > 0}. 

Define the orthogonai symmetry S of I~ '* across 0~_ by 

S ( X l , . . . , X n - - I , X n )  : ( X l , . . * , X n - - 1 , - - X n ) .  

Denote by l ( f ) (x)  = f(x)  the identity operator and by J(f)(x)  = f (Sx)  the 
reflection operator for .f : R n --+ C. The transformation ,7 defined by 

1 
((I  + J)(f)IR~_, (I - J)(f)IR~_) s ( f )  = 

is an isometry from L2(R n) to L2(I1r (9 L2(R~_) with 

JR ~ I f R  .1f[2=21 ~ - [ ( I + J ) ( f ) [ z + 2  ~- [ ( I - J ) ( f ) [2  

and from/:/1 (ii~,~) to t:/1 (R~_) �9  (I1{~) (homogeneous spaces) with 

fa ~ 1~ IV(I_ j)(f)[2" 1 I V ( I  + J)(Y)l  2 + ~ ~- . IVf l  2 _- ~ 

This map is also onto in both cases, and its inverse is given by 

1 
j - l ( ~ , ~ )  : ~ ( ~  +~o),  

where for f : II~ ~ C, fe (resp., fo) is its even (resp., odd) extension to R '~ defined 

by re(X) = f (Sx)  (resp., fo(X) = - f ( S x ) )  ifx,~ < 0. 
Given A E -4, define A~ E .4 by AS(x) = A(z) ifx,~ > 0 and AS(x) = 

SA(Sx)S  if xn < 0. Let LD = (A,R~,H(~(R~_)), LN = (A, IR~_,HI(R~_)) and 
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L ~ = (A~,I~ n, HI(/Rn)); and let QD, QN and Q~ be the associated sesquilinear 

forms as in (1). The operator ,7 relates the forms by 

Q~(Y, g) = QN(YN, gN) + QD(YD, gD), 

where ,7(f)  = (fN, fD) and ,7(g) = (gN, gD). Using the characterization (2) of  the 

domain of each operator, it is not difficult to show that 

79(L ~) = fl-1(79(LD) @ 79(LN)) 

and that 

It follows from the interpolation result of  [9] that (K) holds for L ~ if and only 

if it holds for both LN and Lb.  Hence, we have proved that (K) holds for any 

L = (A, II~_,V). 

S t e p  2: Perturbative multiplications. 

Assume that m is a positive real-valued function with m, m -1 G L~176 and 

let L = ( A , / ~ ,  V), The operator mL is well-defined on D(L) and has a square 

root. We have that (K) for L is equivalent to (K) for mL. The proof of  Lemma 14 

in the Preliminaries of  [5] given on ]R n applies with the obvious changes. 

S t ep  3: Bilipschitz change of variables. 

Assume that f~ is a special Lipschitz domain: if r  ]I~ n - 1  -'-9' ]I~ is a defining 

Lipschitz function of  0fL the Lipschitz constant is, by definition, the quantity 

][Vr 
Choose r IR n ~ I~ n to be a bilipschitz change of  variables with r = f~ 

and r  = 0f~. Define Tf  = f o e .  Let L = (A,f~,V). Then one has 
79(L) = T-I(7)(mLr and 

L = T-I(mLr 

where Lr = (Ar l~_~, T- I (V))  with, for x 6 l~_, 

Ar = I det Jr I TJcl(x)A(r162 (x), 

Jo(x) being the jacobian matrix of  r at x, TJr its transpose and 

m(x) = IdetJr  -1. Note that T-I(V) = HI(R~_) if  V = Hi(12) and 
T-I(V) = go1 ( ~ )  i f V  = H~(I2). 

From the first two steps, we deduce that (K) is valid for L. 
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S t e p  4: Localisation. 

This relies on three lemmas, the first of  which we only need for k = 2 being 

the key one. We stress that since the operators are complex, the usual comparison 

principles for weak solutions do not apply. 

L e m m a  2. Let ~ be an open set o f ~  n and A E ~4. Let V be a closed subspace 
o f  Hl(~)  that contains H~(~) such that v E V and ~ E C ~ ( ~  n) imply v~l ~ E V. 

Let P be an open set o f R  n and, for  t > O, let ut E V be such that 

~ ut ~ + t2 ~ AVut  . V---v = O 

for all v E V such that supp V C P. Let 0 be an open set with positive distance to 
cp (in particular, 0 C P). Then, for  any k EAf*, we have 

ct  2k 

fon  lut]2 < - - ~  fpn  'utl2, 

where d = d(cP, O) > 0 and c depends on n, k and the ellipticity constants o f  A. 

P r o o f .  The argument uses a Caccioppoli-type inequality. Let  ~ E C~ ~ (l~ n), 

where ~ is real-valued with supp~? C P;  then v = u t ~  is an appropriate test 

function in V. A calculation gives 

f ] u t 1 2 7 1 2 + t 2 ~ A V u t . V u t ~ 2 = - 2 t 2 ~ A ( ~ V u t ) . u t V q .  

Using ellipticity and 2lab I <_ ela] 2 + e -x Ib] 2 , we obtain for all e > 0 

Choosing e = A/A leads to 

fn lu,12w~ <_ 6? fnlu~i21vn,~. 
We have set ~ = A 2/),. Observe that this is valid for all 7] as above. Hence, applying 

this inequality to ~?k, k integral, and iterating yields 

< kZ6ilVw]l~ ? .~ ]ud2n 21k-x) 

< (k!)2(6j[V~?J]~ t2) k-~ ~ ]utl2~? 2" 

< (k!)2(6l[Vn]J~ t2)k fPn~ jutl2" 

It remains to choose r 1 = 1 on O with liVyI]~ "-~ 1/d to conclude. [:3 
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R e m a r k  3. Pursuing the argument o f  the lemma leads to the following off- 

diagonal estimate for the resolvent, 

Ii(1 + t2L)-If l lL~(On~ ) < ce-~a(~176 ), Supp f C ~P n f~, 

where c and a > 0 depend only on n, ellipticity and f~. See [2], where this is done 

for [2 = Rn. Further considerations give us also the off-diagonal estimate for the 

semigroup 

Ile-tL fllL2(On~) ~ c' e-a'd(~176 Supp f C c p  N [2. 

This means that the well-known Gaffney L e m m a  [7] extends to any complex  elliptic 

second order operator  as above with the hypotheses on V in the lemma. O f  course, 

if  [2 is strongly Lipschitz or ~" and V = H 1 ([2) or H 1 ([2), then the lemma applies. 

The first consequence is the treatment o f  operators with coefficients that agree 

on an open set. We use a formulation that takes into account interior and boundary 

estimates in the same flow. 

L e m m a  4 ( C o m p a r i s o n  p r inc ip l e ) .  Assume both domains  f~s and  [2~ to be 

either E ~ or strongly Lipschitz. Let As ,  A~ E .4 such that L s  = - d i v ( A s V )  and 

L~ = - d i v ( A ~ 7 )  are operators with Vi : H l ( [ 2 i )  (resp., Vi : H l ( I 2 i ) ) f o r i  : a, ft. 

Let P be an open set oflR n such that P M O[2s = P M 012~, P fq f ~  C [2s and that 

A s  = A~ on P M [2~. Then for  any X E C ~ ( P )  and f o r  any open set 0 o f ~  n such 

that d = d(cP, O) > O, we have 

f0 ~ I1(1 + t 2 L ~ ) - l t L ~ ( x f )  - (1 + t2Ls ) - l tLs (x f ) ] lL2(ona~)  -t < c [IxfllL2(aa) 
t - d 

f o r  all f E V~, where c depends only on n and the ellipticity constants o f  A~. 

Proof .  First, note that the assumptions on f and X insure that x f  E Vs MV~ (we 

are making a slight abuse of  notation, as one should distinguish f s  = Xta, f f rom 

f~ = Xla~f). Set u~ = (1 + t 2 L i ) - l t L i ( x f )  E V~, f o r / =  a,/~, and ut = ut ~ - u ~ .  
Since i 2, 2 [[UtIIL2(Q,) < = -- TIIx/IIL=(,,) zllxfllL2(aa), 

j•u ~176 i dt 2 

so it is enough to prove 

~o a dt c 
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The variational formulat ion tells us that for all v E Vi, 

fa u t v +  ~ t2f~ ZiVu~ �9 V----v = - t / n  A i V ( x f )  . ~--v; 
i i i 

and since As = Ae on P n f~Z, we obtain 

~ u t ~ + t 2 ~  Z~Vut .  V--~=O 
fJ 

for  all v E V~ such that Supp v C P .  We deduce f r o m  the previous  l emma that 

ct 2 4ct 
Ilu~llL=(On.~) < -~  IlutlIL=(Pn.~) <_ -~  IlxfllL2(..), 

and the conclusion follows readily. [:] 

Next,  we can also obtain est imates taking care of  non-local  terms. 

L e m m a  5 (Off-diagonal  estimates). Let f~ be a strongly Lipschitz domain 
or ~n and L = (A, f~, V) an elliptic operator on f~ with Dirichlet or Neumann 
boundary condition. Let E, F be two closed subsets ofl~ n such that d = d( E, F) > 0 
and X E C~ r (E). Then 

fo c~ dt c IIxf[IL2(f~) 
I1(1 + t2L)-ltL(xf)IIL~(FnO) T < d 

for all f E V. The constant c depends on n and the ellipticity constants of  A. 

P r o o f .  Again,  x f  should be interpreted as Xl~f. Using (5), we have 

fd ~ dt 2 I1( 1 + t2L)-ltL(xf)]lL2(~)-~- < ~ ]lxfllL2(~). 

Next, using (4) and (Supp X) A F = 0, we obtain 

(1 + t2L)-ltL(x]) = (1 + t2L)-I(xy) 
t 

Hence,  it suffices to prove  

, on F M ~ .  

fo d 1 dt c 
I]( 1 + t2L)-l(xf)]]L2(Fn~) -~ <_ "~ ]Ixfl]L2(~). 

Setting ut = (1 + t2L)-I (x f ) ,  we have for  all v e V such that v = 0 on F 

~ ut~ + t2 ~ AVut  . V---~ = O. 
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m 

By Lemma 2 applied with O a neighborhood of  F and P a neighborhood of  O 

such that d(E, P) = d(E, F)/2 > 0, and the L2(f~)-contractivity of  the resolvent, 

we obtain 
ct  2 ct  2 

IlutllL=fFn~) <_ ~ IlutllL=(Pn~) < -f f  IIx/IIL=(~)" 
The conclusion follows at once. [] 

We are now ready to prove that (Kloc) holds on all strongly Lipschitz domains. 

Let  L = (A, f~, V) be defined on the strongly Lipschitz domain f~ with boundary 

condition space given by V. Following [12], there exist an integer s, a number 

d > 0 and for 0 < k < s, C ~ ( R  n) real-valued functions Xk and Ok, and open sets 

Ok, Pk, f~k with the following properties: 

1. ~o<k<8 Xk(x) = 1, for x in a neighborhood o f f l ;  

2. f~o = ll~n, Supp Xo c Oo C Oo C Po c Po C f~; 

3. for k > 1, f~k is the image of  a special Lipschitz domain under an orthogonal 

transformation in R'~ such that Supp Xk n f~ c f~k n f~; 

. 

. 

for k > 1, Oh and Pk are open neighborhoods of  Supp Xk in IR n such that 

Oh C Pk, Pk N f~ C f~k ~ f~ and 0f~ fq Pk = Oflk ~ Pk, at most one of  the latter 

possibly infinite; 

for k > 0, Supp~?k C Pk, rlk = 

lloklloo - -  1 ;  

1 on a neighborhood of  Ok, r/k > 0 and 

6. for k >_ O, d(Ok, cp}) > d and d(Supp Xk, qg}) _> d. 

The Lipschitz constant of  fi is the infimum of max(M1,..., Ms), where Mk is 

the Lipschitz constant of  f~k, taken over all possible decompositions of  f~ in this 

way. Roughly, there is one interior piece and s boundary pieces to look at. 

For 0 < k < s, set Lk = (A, f~k, Vk), where fl0 = l~n, V0 = H 1 (]R n) and for 

k > 1, if V = Hl(f~) (resp., HI(~)) then Vk = Hol (ilk) (resp., H~(flk)). Note that 

if  f E V, then Xkf  E V r Vk, so that all operations make sense. 

Now that these precautions are taken, fix f E :D(L) C V; since f = ~ Xkf, we 

may write 

L1/2 L1/2f : ~ rlk k (Xkf)+ 
O<k<s  

~k( L1/2 - L~/2)(xkf) 
O<k<s 

+ E ( 1 -  yklL1/2(xkf ). 
O<k<s  
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By the result on IR" and on special Lipschitz domains together with rotational 

invariance, the inequality (K) holds for Lk; hence 

1/2 
II~kZk (xkf)llL2(~) < cklIV(xkf)IIL2(~). 

Note that ck depends on n, A, A and also on Mk if, in addition, k > 1. 

Next, the comparison principle with L~ = Lk, L~ = L, P = Pk, O = Oh, 

f ~  = f~k and f ~  = f~ and the representation (3) for square roots yield 

link(L1/2 1/2 c' - L k  )(xkf)llL2(f~) <_ -~ IIxkf[IL2(f~). 

Finally, the off-diagonal estimates with E = Supp Xk and F = qgk and (3) imply 

C tt 
II(1- rlk)L1/2(Xkf)I[L2(f~) <_ --~ IIXkfItL~(~2). 

Hence (Kloc) follows for L. This concludes the proof of Theorem 1. [] 
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