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Abstract. We prove the Kato conjecture for square roots of elliptic second
order non-self-adjoint operators in divergence form L = —div(AV) on strongly
Lipschitz domains in R®, n > 2, subject to Dirichlet or to Neumann boundary
conditions. The method relies on a transference procedure from the recent positive
result on R™ in [2].

Introduction

Let © be an open subset of R, A a bounded uniformly elliptic complex matrix
on 2, and L = —div(AV) the elliptic second order divergence operator defined as
the maximal-accretive operator associated with a regularly accretive sesquilinear
form on a closed subspace V of H(f) containing H}(Q) (see Section 1 for
precise definitions). The Kato conjecture amounts to showing that for any such
L, the domain of the maximal-accretive square root L'/? of L agrees with V with
equivalence of norms. One of Kato’s questions was about perturbation theory for
the square roots of real symmetric operators in order to study hyperbolic evolution
equations with time-dependent coefficients. This conjecture is also related to other
topics; see, e.g., [11].

In one dimension, the conjecture is now completely settled: for any €2, V and
L as above, the domain of L!/? agrees with V. The first solution when = R was
given by Coifman, McIntosh and Meyer [6]. Their argument relied on translation
invariance, so other methods needed to be devised when 2 # R. We used ad hoc
wavelets in [4], while Auscher, McIntosh and Nahmod used a reduction from the
case (! = R via interpolation methods [3].

In higher dimensions, when ) = R™, we refer the reader to the introduction of
our work [5] and the references therein for a discussion on progress over the years
about this problem until 1998. Very recently, the conjecture has been established
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in arbitrary dimensions by Hofmann, Lacey and MclIntosh along with us [2] after
it was proved for L*-perturbations of self-adjoint operators by Hofmann, Lewis
and us [1].

When 2 # R”, geometry at the boundary plays a role which prevents a straight-
forward generalisation of results and methods in R". To our knowledge, not even
the Kato conjecture for L*-perturbations of the Laplacian is known. McIntosh
proved it when the coefficients are in the space M H*({2) of pointwise multipliers
of the Sobolev space H*(2) [10] for some s > 0 and Q strongly Lipschitz. This
seems to be the best result currently available on strongly Lipschitz domains.

The purpose of this paper is to establish the following result.

Theorem 1. If n > 2, the Kato conjecture holds for any elliptic second
order divergence operator —div(AV) subject to a Dirichlet or Neumann boundary
condition on a strongly Lipschitz domain.

The meaning of a Dirichlet and Neumann boundary condition will be explained
in the notation section.

Although square roots are non-local operators, the proof of Theorem 1 follows
procedures which are customary for boundary value problems: we transfer the
result from R™ to R} by a reflection principle; then to special Lipschitz domains
by a bilipschitz change of variables; and eventually to general strongly Lipschitz
domains by localisation. This last step relies upon a kind of “weak’ comparison
principle for solutions of complex elliptic operators.

Our method does not seem to work for more general boundary conditions (e.g.,
for mixed Dirichlet-Neumann conditions), which therefore are left as an open
problem.

1 Notation

By a strongly Lipschitz domain, we mean an open connected set in R® whose
boundary is a finite union of parts of rotated graphs of Lipschitz maps, at most
one of which parts is possibly infinite. These include special Lipschitz domains
(the open set above a Lipschitz graph), bounded Lipschitz domains and exterior
Lipschitz domains.

For an open set €} of R, [[fll, or ||fllLr(q) denotes the usual norm in the
Lebesgue space L?(Q) equipped with Lebesgue measure. We write H(() for the
usual Sobolev space with norm (||Vf||2 + || f]13)*/? and H}(Q) for the closure of
C§(Q) in HY(Q).
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Denote by A the class of elliptic matrices in L*(R", M,,(C)) with ellipticity
constants 0 < A\, A < oo, that is, the best constants in the inequalities

lAllo <A and  VE€C™ Re A(z)¢-&> )¢|?, ae.onR".

If A is merely given on {2, we tacitly require A to be the A times identity matrix
elsewhere.

Given A € A, an open set 2 of R" and a closed subspace V of H!(f) containing
H} (), denote by L the maximal-accretive operator on L(0), with largest domain
D(L) C V, such that

0 (Lf.g) = /Q AVf-Vg, feDL), gev.

The domain of L is characterized by the following condition. Let f € V; then
f € D(L) if and only if there exists a constant ¢ such that forall g € V,

@ ‘ /Q AVS. ‘v—g‘ < cllglla-

It is known that D(L) is dense in V [8].

Set —div = V*: L?(2,C") — V' the adjoint of V: V — L%(Q2,C"). By density,
we may extend L continuously from V' to V'. We use the same letter to denote both
L or its extension depending on the context. Instead of the customary notation
—div(AV), we prefer to write L as the triplet (4,2, V) to indicate the matrix of
coefficients A, the domain {2 and the boundary condition determined by the space
V.

Any L as above possesses a unique maximal-accretive square root L!/2, given

by Kato’s representation
1/2 2 = 27y-1 dt
3) L f=; (1+t°L) thT’ f e D(L).
0
For f € D(L), we have
4) (A+2L)7'Lf =LA+ L) f =t72(f - 1+ L)' f);

hence, ||(1+t2L) 1 Lf||2 < inf(||Lf||2, 2| f]l2 t~2), since the resolvent is L2-contractive.
The above integral converges in L%(Q2)-norm. Observe that for each ¢t > 0,
(1 4 t2L)~'tL extends to a bounded operator on L%(Q2) with

) 10+ 2 L)L Az < 3 1l

Note also that if f € V, then (1 + t?L)~tLf € V.
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To tackle the Kato conjecture, it is enough to prove one of the inequalities

(K) ILY2flla < cllVfllz,  fEV,

(Kioc) ILY2flla < eIV flla + IIfll2), feV

(it suffices to do it a priori for f € D(L)). Indeed, it is well-known that (K) (resp.
(K1oc)) for L and its adjoint imply that the domain of L'/2 is V [9].

Here, Dirichlet boundary condition means V = H} (2); Neumann: V = H'(Q).
Assume (2 is strongly Lipschitz. In the first case, a function f is in the domain of
Lif f € H}(Q) and the divergence of AV f in the distributional sense on 2 belongs
to L*(Q). In the latter case, a function f is in the domain of L if f € H'(Q),
the divergence of AV f in the distributional sense on Q belongs to L2(f2) and the
conormal derivative of f at the boundary vanishes.

One can think of (K) as a homogeneous or global inequality and (Kj..) as an
inhomogeneous or local inequality. Proving the first one is harder.

When (2 is unbounded (e.g., special Lipschitz or an exterior domain), this does
make a difference. In particular, we do not obtain (K) on an exterior domain while
we expect it. This suggests finding a different argument.

In the case of bounded domains, there is no distinction between (K) and (Kj,¢)-
Indeed, when 2 is a bounded connected set with Lipschitz boundary, the Poincaré-
Wirtinger inequality yields that ( f, |V f|?)!/2 is a norm on Hg (£2) or on the subspace
of functions in H(Q?) with vanishing mean. Thus, (K) and (K),.) are the same
in the Dirichlet case. In the Neumann case, they are the same on functions
with vanishing mean; this is harmless as V and L annihilate constants and, in
fact, N(V) = C = N(L). Another way of saying this is by factoring out C: write
L*(Q) = L§(Q)&®C, where L3(1) is the subspace of L?(Q2) characterizedby [, f = 0;
then the restriction of L to D(L) N LZ(Q) is one-one, and so is the restriction of V
to H! n LE(9).

Thus, we can consider that L has the form D*AD with D being a one-one
operator and the abstract nonsense material contained in Preliminaries of [5]
applies.

Remark. As far as the Kato conjecture is concerned, adding lower order
terms with bounded coefficients to such an operator is taken care of by a result in
[4]: that is, Theorem 1 is valid for inhomogeneous second order elliptic operators
in divergence form. See also Proposition 11 of Preliminaries in [5] for a more
precise result with a proof which applies to higher order systems. Thus, we restrict
ourselves to pure second order operators in this paper.
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2 Proof of the main result

To prove Theorem 1, we establish (K) or (Kj,.) (depending on ) for any elliptic
operator L = (A,9,V) as above: A € A, (1 is a strongly Lipschitz domain and V
is Hy () or H'(Q).

By [2], (K) holds for all elliptic operators of the form (A,R*, H!(R")). The
argument to obtain the conclusion on any strongly Lipschitz domain contains four
steps: localization, change of variables, multiplicative perturbations and the study
on the upper half-space. We take them in reverse order.

Step 1: Study on the upper half-space.
Pick a coordinate system (zx;,...,z,) in R*. Let

=R} ={zcR"; z, >0}
Define the orthogonal symmetry S of R® across OR} by
S(.’E],. --7-7771-—1;-7:11) = (xl,' . -’In—ly—zn)-

Denote by I(f)(z) = f(z) the identity operator and by J{f)(z) = f(Sz) the
reflection operator for f: R* — C. The transformation 7 defined by

1
T = 75 (T + DDk, (= D)) lmz)

is an isometry from L%(R") to L*(R7 ) & L*(R} ) with

1 1
[oase=5 [ asnneg [ - nor
R~ R" R%
and from H!(R") to H'(R? ) & H(R? ) (homogeneous spaces) with
1 1
[ovse=5 [ wasaor; [ o= nor
R" R} RY
This map is also onto in both cases, and its inverse is given by
1
-1 ) = —=(@e + Yo ),
T ($,9) \/5(43 o)
where for f: R} — C, fe (resp., f,) is its even (resp., odd) extension to R* defined
by fe(z) = f(Sz) (resp., fo(z) = —f(Sz)) if z, < 0.

Given A € A, define A' € A by A¥(z) = A(z) if z, > 0 and A¥(z) =
SA(Sz)S if 2, < 0. Let Lp = (A,RY, HY(RL)), Ly = (A4, R}, H'(R?)) and
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L' = (AY, R, HY(R")); and let Qp, Qn and Q! be the associated sesquilinear
forms as in (1). The operator 7 relates the forms by

Q'(f,9) = Qn(fn,9n) + Qn(fD) 9D),

where J(f) = (fn, fp) and J(g) = (9~, gp). Using the characterization (2) of the
domain of each operator, it is not difficult to show that

D(L*Y) = J~(D(Lp) ® D(Ln))

+f{Ln O
=gt :
7 ( : LD) 7
It follows from the interpolation result of [9] that (K) holds for L* if and only

if it holds for both Ly and Lp. Hence, we have proved that (K) holds for any
L=(ARy,V).

and that

Step 2: Perturbative multiplications.

Assume that m is a positive real-valued function with m,m~! € L>°(R} ) and
let L = (A,R},V). The operator mL is well-defined on D(L) and has a square
root. We have that (K) for L is equivalent to (K) for mL. The proof of Lemma 14
in the Preliminaries of [5] given on R™ applies with the obvious changes.

Step 3: Bilipschitz change of variables.

Assume that § is a special Lipschitz domain: if : R*~! — R is a defining
Lipschitz function of Jf?, the Lipschitz constant is, by definition, the quantity
IV%]/co-

Choose ¢: R* — R™ to be a bilipschitz change of variables with ¢(R}) = Q
and ¢(6R}) = 00. Define Tf = fog¢. Let L = (A,Q,V). Then one has
D(L) = T~Y(D(mL,)) and

L =T"YmLy)T,

where Ly = (A4, R}, T-1(V)) with, for z € R%,
Ag(2) = |det Jy(z) | 7T, (@) Ap(2)) T; (),

Js(z) being the jacobian matrix of ¢ at z, TJy(z) its transpose and
m(z) = |detJy(z)|"!. Note that T-Y(V) = HYR?) if V = H(Q) and
T-Y(V) = HY(R:) if V = H}(Q).

From the first two steps, we deduce that (K) is valid for L.
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Step 4: Localisation.

This relies on three lemmas, the first of which we only need for k¥ = 2 being
the key one. We stress that since the operators are complex, the usual comparison
principles for weak solutions do not apply.

Lemma 2. Let §) be an open set of R" and A € A. Let V be a closed subspace
of H'(Q) that contains H}(Q) such that v € V and n € C§°(R") imply vniq € V.
Let P be an open set of R" and, for t > 0, let u; € V be such that

/ut5+t2/AVut~—V_v:0
Q Q

for all v € V such that suppv C P. Let O be an open set with positive distance to
°P (in particular, O C P). Then, for any k € N*, we have

12k
u)? < . / U 2,
/orm el < d* Jpnq e
where d = d(°P, O) > 0 and c depends on n, k and the ellipticity constants of A.

Proof. The argument uses a Caccioppoli-type inequality. Let n € C§°(R™),
where 7 is real-valued with suppn C P; then v = umfﬂ is an appropriate test
function in V. A calculation gives

/ lug|?n® + t2/ AVu, - Vu 72 = —2t2/ A(MVug) - us V.

Q Q Q

Using ellipticity and 2|ab| < €|a|? + ¢71|b]? , we obtain for all ¢ > 0
/ |ut|2n2 + /\t2/ }Vut|2 172 S Aetz/ qut|2 7]2 + AE—ltz/ |ut|2|Vn|2.
Q Q Q Q

Choosing € = A/A leads to

/ P < 682 / el .
Q Q

We have set § = A2/)\. Observe that this is valid for all 5 as above. Hence, applying
this inequality to n*, k integral, and iterating yields

/ P <68 [ fuRe 00 o
Q Q
<RIVl ¢ [ Jufrpt-
Q
< RNVl 20 [
Q

< (K)2(E)|VlZ, £)¢ / fuel?.

PNQ
It remains to choose = 1 on O with ||V7||e ~ 1/d to conclude. a
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Remark 3. Pursuing the argument of the lemma leads to the following off-
diagonal estimate for the resolvent,

(1 + L) fllz2ong) < ce™® PO fllLaepna), Suppf C PNQ,

where c and a > 0 depend only on n, ellipticity and 2. See [2], where this is done
for 0 = R™. Further considerations give us also the off-diagonal estimate for the
semigroup

! 2
“e—th“L?(onn) < clemo'deR0) /t”f“m(cpnn), Supp f C PN

This means that the well-known Gaffney Lemma [7] extends to any complex elliptic
second order operator as above with the hypotheses on V in the lemma. Of course,
if Q is strongly Lipschitz or R* and V = H}(2) or H(Q), then the lemma applies.

The first consequence is the treatment of operators with coefficients that agree
on an open set. We use a formulation that takes into account interior and boundary
estimates in the same flow.

Lemma 4 (Comparison principle). Assume both domains ), and Qp to be
either R™ or strongly Lipschitz. Let Ay, Ag € A such that L, = —div(A,V) and
Lg = —div(AgV) are operators with V; = H} () (resp., V; = H (§%)) fori = a, B.
Let P be an open set of R" such that P N 0§ = PN 0Q, PN Qs C Ny and that
Ay = Ag on PN Qg. Then for any x € C§°(P) and for any open set O of R® such
that d = d(°P,0) > 0, we have

cllxflle2s)

dt
t d

o
2 -1 2 -1
|10+ 2L L) = 1+ ELa) Lol rionan T S
Jor all f € Vs, where c depends only on n and the ellipticity constants of Ag.

Proof. First, note that the assumptions on f and y insure that x f € Vo, NV (we
are making a slight abuse of notation, as one should distinguish f, = x,q, f from
fa = xia.f)- Setui = (1+ L)~ YLi(xf) € Vi, fori = o, B, and u; = uf —ud.
Since [lufll2(0:) < Filxfllz@) = 2IxFllL2@q)s

o dt 2
[ Ml G < 3 Il

so it is enough to prove

d
dt ¢
| tlliaona,) G < § Ixflzacan.
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The variational formulation tells us that for all v € V,
/ uiT+ t2/ AVl - Vo = —t/ AV (xf) Vv,
Q; Q; Q;
and since A, = Ag on P N g, we obtain
/ Utﬁ+t2 AgVutW=0
Qg 2
for all v € V3 such that Suppv € P. We deduce from the previous lemma that

futl|L2(0n0s) < << ||Ut||L2(Pnn,,) < d2 |le”L2(Qp)a
and the conclusion follows readily. O
Next, we can also obtain estimates taking care of non-local terms.

Lemma 5 (Off-diagonal estimates). Let Q) be a strongly Lipschitz domain
or R* and L = (A,Q,V) an elliptic operator on Q with Dirichlet or Neumann
boundary condition. Let E, F be two closed subsets of R* suchthatd = d(E,F) > 0
and x € C§°(E). Then

/0 (1 +¢2L)" ltL(Xf)”m(an) E_“X_fg_m

Jorall f € V. The constant c depends on n and the ellipticity constants of A.

Proof. Again, xf should be interpreted as x|o f. Using (5), we have

[ Ias e el s < 5 il
d

Next, using (4) and (Supp x) N F = @, we obtain

(L+¢2L)"(xf)

; , onFnNA.

1+ L) " HL(xf) = -
Hence, it suffices to prove
d
| 10+ 807 6hlzzeem § < S Iefllrn.
0

Setting u; = (1 + t2L)~!(xf), we have for all v € V suchthat v = 0 on F

/ut5+t2/AVuth=O.
Q Q
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By Lemma 2 applied with O a neighborhood of F' and P a neighborhood of O
such that d(E, P) = d(E, F)/2 > 0, and the L?(2)-contractivity of the resolvent,
we obtain
ct? ct?
luell2(rrny < 7 el L2(Pray < 7 lIxfllz2(0)-

The conclusion follows at once. ]

We are now ready to prove that (Kj,.) holds on all strongly Lipschitz domains.
Let L = (A,9,V) be defined on the strongly Lipschitz domain © with boundary
condition space given by V. Following [12], there exist an integer s, a number
d > 0 and for 0 < k < s, C§°(R") real-valued functions x, and 7, and open sets
Oy, Pr, Q1 with the following properties:

1. 3 o<k<s Xk(z) = 1, for z in a neighborhood of {2;
2. Qo =R",Suppxe CO COy C Py CPy C N

3. for k > 1, Q) is the image of a special Lipschitz domain under an orthogonal
transformation in R™ such that Supp xx N C Q. N

4. for k > 1, Oy and P, are open neighborhoods of Supp x; in R® such that
O C Pi, P.N N C QN and 80 N P, = 89 N P, at most one of the latter
possibly infinite;

5. for k > 0, Suppm, C Pi, m = 1 on a neighborhood of Ok, nx > 0 and
Imelloo = 1;

6. for k > 0, d(O, Pi) > d and d(Supp xx, Ox) > d.

The Lipschitz constant of (2 is the infimum of max(My,..., M,), where M is
the Lipschitz constant of {2, taken over all possible decompositions of 2 in this
way. Roughly, there is one interior piece and s boundary pieces to look at.

For 0 < k < s, set Ly = (A, Q, Vi), where Qy = R*, V, = H(R") and for
k> 1,if V = H}(Q) (resp., H}(Q)) then Vi, = H} () (resp., H}(4)). Note that
if f € V, then xif € V NV,, so that all operations make sense.

Now that these precautions are taken, fix f € D(L) C V;since f = > xx f, we
may write

L= mL’0aH)+ Y m(LY? =L))o f)

0<k<s 0<k<s

+ ) A=n) L2 ().

0<k<s
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By the result on R* and on special Lipschitz domains together with rotational
invariance, the inequality (K) holds for Lj; hence

||nkL/t/2(ka)||L2(Q) < crllVxr )iz -

Note that ¢, depends on n, A, A and also on M if, in addition, k& > 1.
Next, the comparison principle with L, = Ly, Lg = L, P = P, O = Oy,
Q. = and Q5 = 2 and the representation (3) for square roots yield

cl
k(L2 — LY (i )l < 5 lixe fllL2(o)-

Finally, the off-diagonal estimates with £ = Supp xx and F' = 90y, and (3) imply

1 = ) L2 (O Pl < Ed— Ixefllzz)-

Hence (K,.) follows for L. This concludes the proof of Theorem 1. O
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