SQUARE ROOTS OF ELLIPTIC SECOND ORDER DIVERGENCE OPERATORS ON STRONGLY LIPSCHITZ DOMAINS: L^2 THEORY

By

P. AUSCHER AND PH. TCHAMITCHIAN

Abstract. We prove the Kato conjecture for square roots of elliptic second order non-self-adjoint operators in divergence form $L = -\text{div}(A\nabla)$ on strongly Lipschitz domains in \mathbb{R}^n , $n \geq 2$, subject to Dirichlet or to Neumann boundary conditions. The method relies on a transference procedure from the recent positive result on \mathbb{R}^n in [2].

Introduction

Let Ω be an open subset of \mathbb{R}^n , A a bounded uniformly elliptic complex matrix on Ω , and $L = -\text{div}(A\nabla)$ the elliptic second order divergence operator defined as the maximal-accretive operator associated with a regularly accretive sesquilinear form on a closed subspace V of $H^1(\Omega)$ containing $H^1_0(\Omega)$ (see Section 1 for precise definitions). The Kato conjecture amounts to showing that for any such L, the domain of the maximal-accretive square root $L^{1/2}$ of L agrees with V with equivalence of norms. One of Kato's questions was about perturbation theory for the square roots of real symmetric operators in order to study hyperbolic evolution equations with time-dependent coefficients. This conjecture is also related to other topics; see, e.g., [11].

In one dimension, the conjecture is now completely settled: for any Ω , V and L as above, the domain of $L^{1/2}$ agrees with V. The first solution when $\Omega = \mathbb{R}$ was given by Coifman, McIntosh and Meyer [6]. Their argument relied on translation invariance, so other methods needed to be devised when $\Omega \neq \mathbb{R}$. We used *ad hoc* wavelets in [4], while Auscher, McIntosh and Nahmod used a reduction from the case $\Omega = \mathbb{R}$ via interpolation methods [3].

In higher dimensions, when $\Omega = \mathbb{R}^n$, we refer the reader to the introduction of our work [5] and the references therein for a discussion on progress over the years about this problem until 1998. Very recently, the conjecture has been established

in arbitrary dimensions by Hofmann, Lacey and McIntosh along with us [2] after it was proved for L^{∞} -perturbations of self-adjoint operators by Hofmann, Lewis and us [1].

When $\Omega \neq \mathbb{R}^n$, geometry at the boundary plays a role which prevents a straightforward generalisation of results and methods in \mathbb{R}^n . To our knowledge, not even the Kato conjecture for L^{∞} -perturbations of the Laplacian is known. McIntosh proved it when the coefficients are in the space $MH^s(\Omega)$ of pointwise multipliers of the Sobolev space $H^s(\Omega)$ [10] for some s>0 and Ω strongly Lipschitz. This seems to be the best result currently available on strongly Lipschitz domains.

The purpose of this paper is to establish the following result.

Theorem 1. If $n \geq 2$, the Kato conjecture holds for any elliptic second order divergence operator $-\text{div}(A\nabla)$ subject to a Dirichlet or Neumann boundary condition on a strongly Lipschitz domain.

The meaning of a Dirichlet and Neumann boundary condition will be explained in the notation section.

Although square roots are non-local operators, the proof of Theorem 1 follows procedures which are customary for boundary value problems: we transfer the result from \mathbb{R}^n to \mathbb{R}^n_+ by a reflection principle; then to special Lipschitz domains by a bilipschitz change of variables; and eventually to general strongly Lipschitz domains by localisation. This last step relies upon a kind of "weak" comparison principle for solutions of complex elliptic operators.

Our method does not seem to work for more general boundary conditions (e.g., for mixed Dirichlet-Neumann conditions), which therefore are left as an open problem.

1 Notation

By a *strongly Lipschitz domain*, we mean an open connected set in \mathbb{R}^n whose boundary is a finite union of parts of rotated graphs of Lipschitz maps, at most one of which parts is possibly infinite. These include special Lipschitz domains (the open set above a Lipschitz graph), bounded Lipschitz domains and exterior Lipschitz domains.

For an open set Ω of \mathbb{R}^n , $||f||_p$ or $||f||_{L^p(\Omega)}$ denotes the usual norm in the Lebesgue space $L^p(\Omega)$ equipped with Lebesgue measure. We write $H^1(\Omega)$ for the usual Sobolev space with norm $(||\nabla f||_2^2 + ||f||_2^2)^{1/2}$ and $H_0^1(\Omega)$ for the closure of $C_0^{\infty}(\Omega)$ in $H^1(\Omega)$.

Denote by A the class of *elliptic matrices* in $L^{\infty}(\mathbb{R}^n, M_n(\mathcal{C}))$ with *ellipticity constants* $0 < \lambda, \Lambda < \infty$, that is, the best constants in the inequalities

$$||A||_{\infty} \le \Lambda$$
 and $\forall \xi \in C^n$ Re $A(x)\xi \cdot \bar{\xi} \ge \lambda |\xi|^2$, a.e. on \mathbb{R}^n .

If A is merely given on Ω , we tacitly require A to be the λ times identity matrix elsewhere.

Given $A \in \mathcal{A}$, an open set Ω of \mathbb{R}^n and a closed subspace V of $H^1(\Omega)$ containing $H^1_0(\Omega)$, denote by L the maximal-accretive operator on $L^2(\Omega)$, with largest domain $\mathcal{D}(L) \subset V$, such that

(1)
$$\langle Lf, g \rangle = \int_{\Omega} A \nabla f \cdot \overline{\nabla g}, \quad f \in \mathcal{D}(L), \quad g \in V.$$

The domain of L is characterized by the following condition. Let $f \in V$; then $f \in \mathcal{D}(L)$ if and only if there exists a constant c such that for all $g \in V$,

(2)
$$\left| \int_{\Omega} A \nabla f \cdot \overline{\nabla g} \right| \le c ||g||_{2}.$$

It is known that $\mathcal{D}(L)$ is dense in V [8].

Set $-\operatorname{div} = \nabla^* \colon L^2(\Omega, \mathcal{C}^n) \to V'$ the adjoint of $\nabla \colon V \to L^2(\Omega, \mathcal{C}^n)$. By density, we may extend L continuously from V to V'. We use the same letter to denote both L or its extension depending on the context. Instead of the customary notation $-\operatorname{div}(A\nabla)$, we prefer to write L as the triplet (A,Ω,V) to indicate the matrix of coefficients A, the domain Ω and the boundary condition determined by the space V.

Any L as above possesses a unique maximal-accretive square root $L^{1/2}$, given by Kato's representation

(3)
$$L^{1/2}f = \frac{2}{\pi} \int_0^\infty (1 + t^2 L)^{-1} t L f \, \frac{dt}{t}, \quad f \in \mathcal{D}(L).$$

For $f \in \mathcal{D}(L)$, we have

(4)
$$(1+t^2L)^{-1}Lf = L(1+t^2L)^{-1}f = t^{-2}(f-(1+t^2L)^{-1}f);$$

hence, $||(1+t^2L)^{-1}Lf||_2 \le \inf(||Lf||_2, 2||f||_2 t^{-2})$, since the resolvent is L^2 -contractive. The above integral converges in $L^2(\Omega)$ -norm. Observe that for each t>0, $(1+t^2L)^{-1}tL$ extends to a bounded operator on $L^2(\Omega)$ with

(5)
$$||(1+t^2L)^{-1}tLf||_2 \le \frac{2}{t} ||f||_2.$$

Note also that if $f \in V$, then $(1 + t^2L)^{-1}tLf \in V$.

To tackle the Kato conjecture, it is enough to prove one of the inequalities

(K)
$$||L^{1/2}f||_2 \le c||\nabla f||_2, \quad f \in V,$$

$$||L^{1/2}f||_2 \le c(||\nabla f||_2 + ||f||_2), \quad f \in V$$

(it suffices to do it *a priori* for $f \in \mathcal{D}(L)$). Indeed, it is well-known that (K) (resp. (K_{loc})) for L and its adjoint imply that the domain of $L^{1/2}$ is V [9].

Here, Dirichlet boundary condition means $V=H^1_0(\Omega)$; Neumann: $V=H^1(\Omega)$. Assume Ω is strongly Lipschitz. In the first case, a function f is in the domain of L if $f\in H^1_0(\Omega)$ and the divergence of $A\nabla f$ in the distributional sense on Ω belongs to $L^2(\Omega)$. In the latter case, a function f is in the domain of L if $f\in H^1(\Omega)$, the divergence of $A\nabla f$ in the distributional sense on Ω belongs to $L^2(\Omega)$ and the conormal derivative of f at the boundary vanishes.

One can think of (K) as a homogeneous or global inequality and (K_{loc}) as an inhomogeneous or local inequality. Proving the first one is harder.

When Ω is unbounded (e.g., special Lipschitz or an exterior domain), this does make a difference. In particular, we do not obtain (K) on an exterior domain while we expect it. This suggests finding a different argument.

In the case of bounded domains, there is no distinction between (K) and (K_{loc}). Indeed, when Ω is a bounded connected set with Lipschitz boundary, the Poincaré–Wirtinger inequality yields that $(\int_{\Omega} |\nabla f|^2)^{1/2}$ is a norm on $H^1_0(\Omega)$ or on the subspace of functions in $H^1(\Omega)$ with vanishing mean. Thus, (K) and (K_{loc}) are the same in the Dirichlet case. In the Neumann case, they are the same on functions with vanishing mean; this is harmless as ∇ and L annihilate constants and, in fact, $\mathcal{N}(\nabla) = \mathcal{C} = \mathcal{N}(L)$. Another way of saying this is by factoring out \mathcal{C} : write $L^2(\Omega) = L^2_0(\Omega) \oplus \mathcal{C}$, where $L^2_0(\Omega)$ is the subspace of $L^2(\Omega)$ characterized by $\int_{\Omega} f = 0$; then the restriction of L to $\mathcal{D}(L) \cap L^2_0(\Omega)$ is one-one, and so is the restriction of ∇ to $H^1 \cap L^2_0(\Omega)$.

Thus, we can consider that L has the form D^*AD with D being a one-one operator and the abstract nonsense material contained in Preliminaries of [5] applies.

Remark. As far as the Kato conjecture is concerned, adding lower order terms with bounded coefficients to such an operator is taken care of by a result in [4]: that is, Theorem 1 is valid for inhomogeneous second order elliptic operators in divergence form. See also Proposition 11 of Preliminaries in [5] for a more precise result with a proof which applies to higher order systems. Thus, we restrict ourselves to pure second order operators in this paper.

2 Proof of the main result

To prove Theorem 1, we establish (K) or (K_{loc}) (depending on Ω) for any elliptic operator $L = (A, \Omega, V)$ as above: $A \in \mathcal{A}$, Ω is a strongly Lipschitz domain and V is $H_0^1(\Omega)$ or $H^1(\Omega)$.

By [2], (K) holds for all elliptic operators of the form $(A, \mathbb{R}^n, H^1(\mathbb{R}^n))$. The argument to obtain the conclusion on any strongly Lipschitz domain contains four steps: localization, change of variables, multiplicative perturbations and the study on the upper half-space. We take them in reverse order.

Step 1: Study on the upper half-space.

Pick a coordinate system (x_1, \ldots, x_n) in \mathbb{R}^n . Let

$$\Omega = \mathbb{R}^n_+ = \{ x \in \mathbb{R}^n ; x_n > 0 \}.$$

Define the orthogonal symmetry S of \mathbb{R}^n across $\partial \mathbb{R}^n_+$ by

$$S(x_1,\ldots,x_{n-1},x_n)=(x_1,\ldots,x_{n-1},-x_n).$$

Denote by I(f)(x) = f(x) the identity operator and by J(f)(x) = f(Sx) the reflection operator for $f: \mathbb{R}^n \to \mathcal{C}$. The transformation \mathcal{J} defined by

$$\mathcal{J}(f) = \frac{1}{\sqrt{2}} \left((I+J)(f) |_{\mathbb{R}^n_+}, (I-J)(f) |_{\mathbb{R}^n_+} \right)$$

is an isometry from $L^2(\mathbb{R}^n)$ to $L^2(\mathbb{R}^n_+) \oplus L^2(\mathbb{R}^n_+)$ with

$$\int_{\mathbb{R}^n} |f|^2 = \frac{1}{2} \int_{\mathbb{R}^n_\perp} |(I+J)(f)|^2 + \frac{1}{2} \int_{\mathbb{R}^n_\perp} |(I-J)(f)|^2$$

and from $\dot{H}^1(\mathbb{R}^n)$ to $\dot{H}^1(\mathbb{R}^n_+)\oplus\dot{H}^1_0(\mathbb{R}^n_+)$ (homogeneous spaces) with

$$\int_{\mathbb{R}^n} |\nabla f|^2 = \frac{1}{2} \int_{\mathbb{R}^n_1} |\nabla (I+J)(f)|^2 + \frac{1}{2} \int_{\mathbb{R}^n_1} |\nabla (I-J)(f)|^2.$$

This map is also onto in both cases, and its inverse is given by

$$\mathcal{J}^{-1}(\phi,\psi) = \frac{1}{\sqrt{2}}(\phi_e + \psi_o),$$

where for $f: \mathbb{R}^n_+ \to \mathcal{C}$, f_e (resp., f_o) is its even (resp., odd) extension to \mathbb{R}^n defined by $f_e(x) = f(Sx)$ (resp., $f_o(x) = -f(Sx)$) if $x_n < 0$.

Given $A \in \mathcal{A}$, define $A^{\sharp} \in \mathcal{A}$ by $A^{\sharp}(x) = A(x)$ if $x_n \geq 0$ and $A^{\sharp}(x) = SA(Sx)S$ if $x_n < 0$. Let $L_D = (A, \mathbb{R}^n_+, H^1_0(\mathbb{R}^n_+)), L_N = (A, \mathbb{R}^n_+, H^1(\mathbb{R}^n_+))$ and

 $L^{\sharp} = (A^{\sharp}, \mathbb{R}^n, H^1(\mathbb{R}^n));$ and let Q_D , Q_N and Q^{\sharp} be the associated sesquilinear forms as in (1). The operator \mathcal{J} relates the forms by

$$Q^{\sharp}(f,g) = Q_N(f_N, g_N) + Q_D(f_D, g_D),$$

where $\mathcal{J}(f)=(f_N,f_D)$ and $\mathcal{J}(g)=(g_N,g_D)$. Using the characterization (2) of the domain of each operator, it is not difficult to show that

$$\mathcal{D}(L^{\sharp}) = \mathcal{J}^{-1}(\mathcal{D}(L_D) \oplus \mathcal{D}(L_N))$$

and that

$$L^{\sharp} = \mathcal{J}^{-1} \begin{pmatrix} L_N & 0 \\ 0 & L_D \end{pmatrix} \mathcal{J}.$$

It follows from the interpolation result of [9] that (K) holds for L^{\sharp} if and only if it holds for both L_N and L_D . Hence, we have proved that (K) holds for any $L = (A, \mathbb{R}^n_+, V)$.

Step 2: Perturbative multiplications.

Assume that m is a positive real-valued function with $m, m^{-1} \in L^{\infty}(\mathbb{R}^n_+)$ and let $L = (A, \mathbb{R}^n_+, V)$. The operator mL is well-defined on $\mathcal{D}(L)$ and has a square root. We have that (K) for L is equivalent to (K) for mL. The proof of Lemma 14 in the Preliminaries of [5] given on \mathbb{R}^n applies with the obvious changes.

Step 3: Bilipschitz change of variables.

Assume that Ω is a special Lipschitz domain: if $\Phi \colon \mathbb{R}^{n-1} \to \mathbb{R}$ is a defining Lipschitz function of $\partial \Omega$, the Lipschitz constant is, by definition, the quantity $\|\nabla \Phi\|_{\infty}$.

Choose $\phi \colon \mathbb{R}^n \to \mathbb{R}^n$ to be a bilipschitz change of variables with $\phi(\mathbb{R}^n_+) = \Omega$ and $\phi(\partial \mathbb{R}^n_+) = \partial \Omega$. Define $Tf = f \circ \phi$. Let $L = (A, \Omega, V)$. Then one has $\mathcal{D}(L) = T^{-1}(\mathcal{D}(mL_\phi))$ and

$$L = T^{-1}(mL_{\phi})T,$$

where $L_{\phi} = (A_{\phi}, \mathbb{R}^n_+, T^{-1}(V))$ with, for $x \in \mathbb{R}^n_+$,

$$A_{\phi}(x) = |\det J_{\phi}(x)|^T J_{\phi}^{-1}(x) A(\phi(x)) J_{\phi}^{-1}(x),$$

 $J_{\phi}(x)$ being the jacobian matrix of ϕ at x, ${}^TJ_{\phi}(x)$ its transpose and $m(x) = |\det J_{\phi}(x)|^{-1}$. Note that $T^{-1}(V) = H^1(\mathbb{R}^n_+)$ if $V = H^1(\Omega)$ and $T^{-1}(V) = H^1_0(\mathbb{R}^n_+)$ if $V = H^1_0(\Omega)$.

From the first two steps, we deduce that (K) is valid for L.

Step 4: Localisation.

This relies on three lemmas, the first of which we only need for k=2 being the key one. We stress that since the operators are complex, the usual comparison principles for weak solutions do not apply.

Lemma 2. Let Ω be an open set of \mathbb{R}^n and $A \in \mathcal{A}$. Let V be a closed subspace of $H^1(\Omega)$ that contains $H^1_0(\Omega)$ such that $v \in V$ and $\eta \in C_0^{\infty}(\mathbb{R}^n)$ imply $v\eta_{|\Omega} \in V$. Let P be an open set of \mathbb{R}^n and, for t > 0, let $u_t \in V$ be such that

$$\int_{\Omega} u_t \, \overline{v} + t^2 \int_{\Omega} A \nabla u_t \cdot \overline{\nabla v} = 0$$

for all $v \in V$ such that $\operatorname{supp} v \subset P$. Let O be an open set with positive distance to ${}^{c}P$ (in particular, $\overline{O} \subset P$). Then, for any $k \in \mathcal{N}^*$, we have

$$\int_{O\cap\Omega} |u_t|^2 \le \frac{ct^{2k}}{d^{2k}} \int_{P\cap\Omega} |u_t|^2,$$

where $d = d(^{c}P, O) > 0$ and c depends on n, k and the ellipticity constants of A.

Proof. The argument uses a Caccioppoli-type inequality. Let $\eta \in C_0^{\infty}(\mathbb{R}^n)$, where η is real-valued with $\operatorname{supp} \eta \subset P$; then $v = u_t \eta_{|\Omega}^2$ is an appropriate test function in V. A calculation gives

$$\int_{\Omega} |u_t|^2 \eta^2 + t^2 \int_{\Omega} A \nabla u_t \cdot \overline{\nabla u_t} \, \eta^2 = -2t^2 \int_{\Omega} A(\eta \nabla u_t) \cdot \overline{u_t \nabla \eta}.$$

Using ellipticity and $2|ab| \le \epsilon |a|^2 + \epsilon^{-1}|b|^2$, we obtain for all $\epsilon > 0$

$$\int_{\Omega} |u_t|^2 \eta^2 + \lambda t^2 \int_{\Omega} |\nabla u_t|^2 \eta^2 \leq \Lambda \epsilon t^2 \int_{\Omega} |\nabla u_t|^2 \eta^2 + \Lambda \epsilon^{-1} t^2 \int_{\Omega} |u_t|^2 |\nabla \eta|^2.$$

Choosing $\epsilon = \lambda/\Lambda$ leads to

$$\int_{\Omega} |u_t|^2 \eta^2 \le \delta t^2 \int_{\Omega} |u_t|^2 |\nabla \eta|^2.$$

We have set $\delta = \Lambda^2/\lambda$. Observe that this is valid for all η as above. Hence, applying this inequality to η^k , k integral, and iterating yields

$$\begin{split} \int_{\Omega} |u_{t}|^{2} \eta^{2k} & \leq \delta t^{2} \int_{\Omega} |u_{t}|^{2} k^{2} \eta^{2(k-1)} |\nabla \eta|^{2} \\ & \leq k^{2} \delta ||\nabla \eta||_{\infty}^{2} t^{2} \int_{\Omega} |u_{t}|^{2} \eta^{2(k-1)} \\ & \leq (k!)^{2} (\delta ||\nabla \eta||_{\infty}^{2} t^{2})^{k-1} \int_{\Omega} |u_{t}|^{2} \eta^{2}. \\ & \leq (k!)^{2} (\delta ||\nabla \eta||_{\infty}^{2} t^{2})^{k} \int_{P \cap \Omega} |u_{t}|^{2}. \end{split}$$

It remains to choose $\eta = 1$ on O with $\|\nabla \eta\|_{\infty} \sim 1/d$ to conclude.

Remark 3. Pursuing the argument of the lemma leads to the following off-diagonal estimate for the resolvent,

$$||(1+t^2L)^{-1}f||_{L^2(O\cap\Omega)} \le ce^{-\alpha d(\circ P,O)/t}||f||_{L^2(\circ P\cap\Omega)}, \quad \operatorname{Supp} f \subset {}^{c}P\cap\Omega,$$

where c and $\alpha > 0$ depend only on n, ellipticity and Ω . See [2], where this is done for $\Omega = \mathbb{R}^n$. Further considerations give us also the off-diagonal estimate for the semigroup

$$||e^{-tL}f||_{L^2(O\cap\Omega)} \le c'e^{-\alpha'd(\circ P,O)^2/t}||f||_{L^2(\circ P\cap\Omega)}, \quad \operatorname{Supp} f \subset {}^cP\cap\Omega.$$

This means that the well-known Gaffney Lemma [7] extends to any complex elliptic second order operator as above with the hypotheses on V in the lemma. Of course, if Ω is strongly Lipschitz or \mathbb{R}^n and $V = H_0^1(\Omega)$ or $H^1(\Omega)$, then the lemma applies.

The first consequence is the treatment of operators with coefficients that agree on an open set. We use a formulation that takes into account interior and boundary estimates in the same flow.

Lemma 4 (Comparison principle). Assume both domains Ω_{α} and Ω_{β} to be either \mathbb{R}^n or strongly Lipschitz. Let $A_{\alpha}, A_{\beta} \in \mathcal{A}$ such that $L_{\alpha} = -\text{div}(A_{\alpha}\nabla)$ and $L_{\beta} = -\text{div}(A_{\beta}\nabla)$ are operators with $V_i = H_0^1(\Omega_i)$ (resp., $V_i = H^1(\Omega_i)$) for $i = \alpha, \beta$. Let P be an open set of \mathbb{R}^n such that $P \cap \partial \Omega_{\alpha} = P \cap \partial \Omega_{\beta}$, $P \cap \Omega_{\beta} \subset \Omega_{\alpha}$ and that $A_{\alpha} = A_{\beta}$ on $P \cap \Omega_{\beta}$. Then for any $\chi \in C_0^{\infty}(P)$ and for any open set O of \mathbb{R}^n such that $d = d({}^{c}P, O) > 0$, we have

$$\int_0^\infty \|(1+t^2L_{\beta})^{-1}tL_{\beta}(\chi f) - (1+t^2L_{\alpha})^{-1}tL_{\alpha}(\chi f)\|_{L^2(O\cap\Omega_{\beta})} \frac{dt}{t} \le \frac{c\|\chi f\|_{L^2(\Omega_{\beta})}}{d}$$

for all $f \in V_{\beta}$, where c depends only on n and the ellipticity constants of A_{β} .

Proof. First, note that the assumptions on f and χ insure that $\chi f \in V_{\alpha} \cap V_{\beta}$ (we are making a slight abuse of notation, as one should distinguish $f_{\alpha} = \chi_{|\Omega_{\alpha}} f$ from $f_{\beta} = \chi_{|\Omega_{\beta}} f$). Set $u_t^i = (1 + t^2 L_i)^{-1} t L_i(\chi f) \in V_i$, for $i = \alpha, \beta$, and $u_t = u_t^{\beta} - u_t^{\alpha}$. Since $||u_t^i||_{L^2(\Omega_i)} \leq \frac{2}{t} ||\chi f||_{L^2(\Omega_i)} = \frac{2}{t} ||\chi f||_{L^2(\Omega_{\beta})}$,

$$\int_{d}^{\infty} \|u_t^i\|_{L^2(\Omega_i)} \, \frac{dt}{t} \leq \frac{2}{d} \, \|\chi f\|_{L^2(\Omega_{\theta})},$$

so it is enough to prove

$$\int_0^d ||u_t||_{L^2(O\cap\Omega_\beta)} \, \frac{dt}{t} \le \frac{c}{d} \, ||\chi f||_{L^2(\Omega_\beta)}.$$

The variational formulation tells us that for all $v \in V_i$,

$$\int_{\Omega_i} u_t^i \, \overline{v} + t^2 \int_{\Omega_i} A_i \nabla u_t^i \cdot \overline{\nabla v} = -t \int_{\Omega_i} A_i \nabla (\chi f) \cdot \overline{\nabla v};$$

and since $A_{\alpha} = A_{\beta}$ on $P \cap \Omega_{\beta}$, we obtain

$$\int_{\Omega_{\beta}} u_t \, \overline{v} + t^2 \int_{\Omega_{\beta}} A_{\beta} \nabla u_t \cdot \overline{\nabla v} = 0$$

for all $v \in V_{\beta}$ such that Supp $v \subset P$. We deduce from the previous lemma that

$$||u_t||_{L^2(O\cap\Omega_\beta)} \le \frac{ct^2}{d^2} ||u_t||_{L^2(P\cap\Omega_\beta)} \le \frac{4ct}{d^2} ||\chi f||_{L^2(\Omega_\beta)},$$

and the conclusion follows readily.

Next, we can also obtain estimates taking care of non-local terms.

Lemma 5 (Off-diagonal estimates). Let Ω be a strongly Lipschitz domain or \mathbb{R}^n and $L=(A,\Omega,V)$ an elliptic operator on Ω with Dirichlet or Neumann boundary condition. Let E,F be two closed subsets of \mathbb{R}^n such that d=d(E,F)>0 and $\chi\in C_0^\infty(E)$. Then

$$\int_0^\infty \|(1+t^2L)^{-1}tL(\chi f)\|_{L^2(F\cap\Omega)} \, \frac{dt}{t} \le \frac{c \, \|\chi f\|_{L^2(\Omega)}}{d}$$

for all $f \in V$. The constant c depends on n and the ellipticity constants of A.

Proof. Again, χf should be interpreted as $\chi_{|\Omega} f$. Using (5), we have

$$\int_{d}^{\infty} \|(1+t^{2}L)^{-1}tL(\chi f)\|_{L^{2}(\Omega)} \frac{dt}{t} \leq \frac{2}{d} \|\chi f\|_{L^{2}(\Omega)}.$$

Next, using (4) and (Supp χ) $\cap F = \emptyset$, we obtain

$$(1+t^2L)^{-1}tL(\chi f) = -\frac{(1+t^2L)^{-1}(\chi f)}{t}, \text{ on } F \cap \Omega.$$

Hence, it suffices to prove

$$\int_0^d \frac{1}{t} \|(1+t^2L)^{-1}(\chi f)\|_{L^2(F\cap\Omega)} \, \frac{dt}{t} \le \frac{c}{d} \, \|\chi f\|_{L^2(\Omega)}.$$

Setting $u_t = (1 + t^2 L)^{-1}(\chi f)$, we have for all $v \in V$ such that v = 0 on F

$$\int_{\Omega} u_t \overline{v} + t^2 \int_{\Omega} A \nabla u_t \cdot \overline{\nabla v} = 0.$$

By Lemma 2 applied with O a neighborhood of F and P a neighborhood of \overline{O} such that d(E,P)=d(E,F)/2>0, and the $L^2(\Omega)$ -contractivity of the resolvent, we obtain

$$||u_t||_{L^2(F\cap\Omega)} \le \frac{ct^2}{d^2} ||u_t||_{L^2(P\cap\Omega)} \le \frac{ct^2}{d^2} ||\chi f||_{L^2(\Omega)}.$$

The conclusion follows at once.

We are now ready to prove that (K_{loc}) holds on all strongly Lipschitz domains. Let $L = (A, \Omega, V)$ be defined on the strongly Lipschitz domain Ω with boundary condition space given by V. Following [12], there exist an integer s, a number d > 0 and for $0 \le k \le s$, $C_0^{\infty}(\mathbb{R}^n)$ real-valued functions χ_k and η_k , and open sets O_k, P_k, Ω_k with the following properties:

- 1. $\sum_{0 \le k \le s} \chi_k(x) = 1$, for x in a neighborhood of Ω ;
- 2. $\Omega_0 = \mathbb{R}^n$, Supp $\chi_0 \subset O_0 \subset \overline{O_0} \subset P_0 \subset \overline{P_0} \subset \Omega$;
- 3. for $k \ge 1$, Ω_k is the image of a special Lipschitz domain under an orthogonal transformation in \mathbb{R}^n such that Supp $\chi_k \cap \Omega \subset \Omega_k \cap \Omega$;
- 4. for $k \geq 1$, O_k and P_k are open neighborhoods of Supp χ_k in \mathbb{R}^n such that $\overline{O_k} \subset P_k$, $P_k \cap \Omega \subset \Omega_k \cap \Omega$ and $\partial \Omega \cap \overline{P_k} = \partial \Omega_k \cap \overline{P_k}$, at most one of the latter possibly infinite;
- 5. for $k \geq 0$, Supp $\eta_k \subset P_k$, $\eta_k = 1$ on a neighborhood of $\overline{O_k}$, $\eta_k \geq 0$ and $\|\eta_k\|_{\infty} = 1$;
- 6. for $k \geq 0$, $d(O_k, {}^cP_k) \geq d$ and $d(\operatorname{Supp} \chi_k, {}^cO_k) \geq d$.

The Lipschitz constant of Ω is the infimum of $\max(M_1, \ldots, M_s)$, where M_k is the Lipschitz constant of Ω_k , taken over all possible decompositions of Ω in this way. Roughly, there is one interior piece and s boundary pieces to look at.

For $0 \le k \le s$, set $L_k = (A, \Omega_k, V_k)$, where $\Omega_0 = \mathbb{R}^n$, $V_0 = H^1(\mathbb{R}^n)$ and for $k \ge 1$, if $V = H^1_0(\Omega)$ (resp., $H^1(\Omega)$) then $V_k = H^1_0(\Omega_k)$ (resp., $H^1(\Omega_k)$). Note that if $f \in V$, then $\chi_k f \in V \cap V_k$, so that all operations make sense.

Now that these precautions are taken, fix $f \in \mathcal{D}(L) \subset V$; since $f = \sum \chi_k f$, we may write

$$L^{1/2}f = \sum_{0 \le k \le s} \eta_k L_k^{1/2}(\chi_k f) + \sum_{0 \le k \le s} \eta_k (L^{1/2} - L_k^{1/2})(\chi_k f) + \sum_{0 \le k \le s} (1 - \eta_k) L^{1/2}(\chi_k f).$$

By the result on \mathbb{R}^n and on special Lipschitz domains together with rotational invariance, the inequality (K) holds for L_k ; hence

$$\|\eta_k L_k^{1/2}(\chi_k f)\|_{L^2(\Omega)} \le c_k \|\nabla(\chi_k f)\|_{L^2(\Omega)}.$$

Note that c_k depends on n, λ , Λ and also on M_k if, in addition, k > 1.

Next, the comparison principle with $L_{\alpha} = L_k$, $L_{\beta} = L$, $P = P_k$, $O = O_k$, $\Omega_{\alpha} = \Omega_k$ and $\Omega_{\beta} = \Omega$ and the representation (3) for square roots yield

$$\|\eta_k(L^{1/2}-L_k^{1/2})(\chi_k f)\|_{L^2(\Omega)} \le \frac{c'}{d} \|\chi_k f\|_{L^2(\Omega)}.$$

Finally, the off-diagonal estimates with $E = \operatorname{Supp} \chi_k$ and $F = \mathcal{O}_k$ and (3) imply

$$||(1-\eta_k)L^{1/2}(\chi_k f)||_{L^2(\Omega)} \le \frac{c''}{d} ||\chi_k f||_{L^2(\Omega)}.$$

Hence (K_{loc}) follows for L. This concludes the proof of Theorem 1.

REFERENCES

- [1] P. Auscher, S. Hofmann, J. Lewis and Ph. Tchamitchian, Extrapolation of Carleson measures and the analyticity of the Kato's square root operator, Acta Math. 187 (2001), 161-190.
- [2] P. Auscher, S. Hofmann, M. Lacey, A. McIntosh and Ph. Tchamitchian, *The solution of the Kato square root problem for second order elliptic operators on* \mathbb{R}^n , Ann. of Math. (2) **156** (2002), 633-654.
- [3] P. Auscher, A. McIntosh and A. Nahmod, The square root problem of Kato in one dimension, and first order systems, Indiana Univ. Math. J. 46 (1997), 659-695.
- [4] P. Auscher and Ph. Tchamitchian, Conjecture de Kato sur les ouverts de ℝ, Rev. Mat. Iberoamericana 8 (1992), 149–199.
- [5] P. Auscher and Ph. Tchamitchian, Square root problem for divergence operators and related topics, Astérisque 249, Soc. Math. France, 1998.
- [6] R. Coifman, A. McIntosh and Y. Meyer, L'intégrale de Cauchy définit un opérateur borné sur L²(R) pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), 361-387.
- [7] M. P. Gaffney, The conservation property for the heat equation on Riemannian manifold, Comm. Pure Appl. Math. 12 (1959), 1-11.
- [8] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.
- [9] J.-L. Lions, Espaces d'interpolation et domaines de puissances fractionnaires, J. Math. Soc. Japan 14 (1962), 233-241.
- [10] A. McIntosh, Square roots of elliptic operators, J. Funct. Anal. 61 (1985), 307-327.
- [11] A. McIntosh, The square root problem for elliptic operators, in Functional Analytic Methods for Partial Differential Equations, Lecture Notes in Math. 1450, Springer-Verlag, Berlin, 1990, pp. 122-140.

[12] E. M. Stein, Singular Integrals and Differentiability of Functions, Princeton University Press, 1970.

P. Auscher
LABORATOIRE DE MATHÉMATIQUES
CNRS UMR 8628
UNIVERSITÉ DE PARIS-SUD
F-91405 ORSAY CEDEX, FRANCE
email: pascal.auscher@math.u-psud.fr

Ph. Tchamitchian
FACULTÉ DES SCIENCES ET TECHNIQUES DE SAINT-JÉRÔME
UNIVERSITÉ D'AIX-MARSEILLE III
AVENUE ESCADRILLE NORMANDIE-NIEMEN
F-13397 MARSEILLE CEDEX 20, FRANCE
AND
LATP, CNRS, UMR 6632
email: philippe.tchamitchian@univ.u-3mrs.fr

(Received April 1, 2001)