
ISRAEL JOURNAL OF MATHEMATICS 137 (2003), 265-284 

ENUMERATING FINITE GROUPS WITHOUT 
ABELIAN COMPOSITION FACTORS 

BY 

B E N J A M I N  K L O P S C H  

Mathematisches Institut, Heinwich-Heine- Universit~it 
Diisseldor], Germany 

e-mail: klopsch@math.uni-duesseldorf.de 

ABSTRACT 

Let E denote  the  class of all non-abelian finite s imple groups.  We are 

concerned wi th  e n u m e r a t i n g  poly -~, groups,  t ha t  is finite groups  wi thout  

abel ian composi t ion  factors. For any  na tu ra l  n u m b e r  n let g ~ ( n )  denote  

t h e  n u m b e r  of ( i somorphism classes of) poly-E groups of order at  mos t  

n. We de te rmine  the  growth  ra te  of  the  sequence  gE(n ) ,  n E N. 

Similarly, for any  S E E we give es t ima tes  for the  n u m b e r s  ~s(k) 
of poly-S groups  of composi t ion  length  a t  mos t  k, as k t ends  to infinity. 

This  ini t iates an  invest igat ion somewha t  c o mp lemen ta ry  to the  "classical" 

e n u m e r a t i o n  of finite p-groups  by H i g m a n  [6] and  Sims [15]. 

Our  ancillary resul ts  include upper  b o u n ds  for the  min imal  n u m b e r  of  

genera tors  and  for the  n u m b e r  of  (equivalence classes of) p e r m u t a t i o n  

act ions  of any  given poly-E group.  

1. I n t r o d u c t i o n  

1.1. M O T I V A T I O N  AND M A I N  R E S U L T S .  The problem of determining the num- 

bers f(n)  of (isomorphism classes of) groups of order n is as old as Cayley's 

introduction of the abstract group concept. In 1895 HSlder [8] established a 

beautiful formula which yields f(n)  for all square-free n. In contrast, it is now 

considered unlikely that an equally explicit formula can be found if n is allowed 

to take prime power values; cf. [13, Section 2]. Modern computer algorithms 

determine f(n) successfully in the range 1 < n < 2000; see [2]. 
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The asymptotic behaviour of the arithmetic function f(n) ,  n C N, and certain 

variants - -  enumerating only groups of some restricted type - -  came under inves- 

tigation in the early 1960s. For any given prime p, Higman and Sims determined 

the asymptotic  growth rate of the sequence f(pk), k E N, thus estimating the 

number of p-groups of any given order: their results in [6] and [15] show that  

p~Vk -o(k ) < f(pk) < as k --+ oo. (1.1) 2 a 2 _ _ p~ka+O(kS/a) 

Since then there has been a steady interest in the subject, especially, after the 

classification of finite simple groups (CFSG) made the general enmneration prob- 

lem much more treatable [11, 4, 9, 7]. Indeed, in 1993 Pyber  [12] succeeded in 

showing that  f(n) < n (2/27+°(1))•(n)2 as n tends to infinity, where p(n) denotes 

the exponent of the highest prime power dividing n. 

For every n E N let g(n) denote the number of (isomorphism classes of) groups 

of order at most n. For every n E N the interval In/2, n] contains a power of 2, 

and thus Pyber ' s  result combined with (1.1) yields 

?t (2-'~-°(1))(1°g2 n)2 ~ g(n) <_ I), ( ~ + ° ( 1 ) ) ( l ° g 2  n)2 a s  n --+ c~. 

The purpose of this paper is to consider a restricted enumeration problem 

which in a way complements the "classical" situation studied by Higman and 

Sims. Let S denote the class of all n o n - a b e l i a n  finite simple groups. For every 

n E N let g~ (n) denote the number of (isomorphism classes of) poly-Z groups of 

order at most n, and for every S E Z and k E N let ~s(k)  denote the number of 

(isomorphism classes of) poly-S groups of composition length at most k.* Thus 

we propose to count groups which are far from soluble, or in the above parlance: 

far from poly-abelian. 

Intuitively, it is clear that  gr.(n) grows much slower than g(n) as n tends to 

infinity; cf. [4]. But what is the precise growth rate of the sequence gE (n), n E N?. 

And, given S E Z, what is the growth rate of ~s(k)  as k tends to infinity? In 

view of the successful enumeration of finite p-groups by Higman and Sims these 

questions appear very natural. Our main results are 

THEOREM A (Enumeration of poly-Z groups): There exist constants B, C E 

R>0 such that for all n E N, 

7/Blog2 log 2 n ~ g~(n) _< n C l ° g 2  l°g2 n 

* If F is any class of groups, then a poly-F group is a group G which allows a finite 
subnormal series 1 = Go ~ G1 ~ ..- ~ G r  ---- G such that each factor G~/Gi-1 is 
isomorphic to some group in F. If F = {H} contains a single element, we also 
speak of poly-H instead of poly-F groups. A poly-Z group is just a finite group 
without abelian composition factors. 
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THEOREM B (Enumeration of poly-S groups): For every non-abelian finite 

simple group S there exist constants B, C E R>o such that for all k E N, 

k Bk <_ ~s(k)  <_ k ck. 

Our methods allow us to bound the constants appearing in Theorems A and 

B quite explicitly e.g. one may take C = 53 in Theorem A - -  but most likely 

this is not optimal. Thus one feels compelled to ask the following intriguing 

Question: Let S E E. Does there exist a constant C = C(S) E R>0 such that  

~s(k) = kCk+°(k)? If so, how does its value depend on S? 

As far as I know this is completely open, even for alternating groups. As 

indicated above, the analogous problem for finite p-groups has positive solution 

and the constant involved depends uniformly on the prime p; see (1.1). 

1.2. DETAILED DISCUSSION AND ANCILLARY RESULTS. Clearly, for every S E 

E and all k E N we have ~s(k) <_ g2([S[k). So the lower bound in Theorem A 

can be derived from the lower bound in Theorem B; conversely, the upper bound 

in Theorem A yields the upper bound in Theorem B. 

At first sight the lower bound in Theorem B may come as a surprise, because 

groups without abelian composition factors are known to have a very rigid struc- 

ture. For instance, if S E E is such that  Ant(S) splits over Inn(S),  then every 

poly-S group can be written as an iterated twisted wreath product of several 

copies of S; see [1]. Nevertheless we are able to manufacture sufficiently many 

poly-S groups of socle length just two. 

The proof of the upper bound in Theorem A has two main ingredients. Using 

recursive methods we construct small generating sets for poly-E groups. Writing 

d(G) for the minimal nmnber of generators of a finite group G and corn(G) for 

its composition length, we show 

PROPOSITION 1.1: Every non-trivial finite group G without abelian composition 

factors satisfies 

d(G) <_ 3 log 2 corn(G) + 2. 

This can be regarded as a first step towards generalizing results of Wiegold and 

others on growth sequences of finite simple groups: given S E E, there are rather 

precise estimates for the generating numbers d(Sk), k E N; e.g., see [10]. A much 

more elementary observation shows that  every poly-E group can be generated by 

a single eonjugacy class of elements; see Proposition 4.3. 

Proposition 1.1 and a rather crude, but  often-used argument (based on the 

fact that  every poly-E group embeds into the automorphism group of its socle; 
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e.g., see [11, 4]) already ensure the existence of a constant C C R>0 such that  

for all n E N we have g~(n)  _~ n C(l°g2 log2 n) 2. The sharper estimate provided in 

Theorem A requires a new ingredient, namely information about the number of 

permutat ion actions of a given poly-E group. 

PROPOSITION 1.2: There exists a constant C E R>I such that for all n E N 

every non-trivial finite group G without abelian composition factors admits (up to 

equivalence) at most C n(l°g2 com(e)+log2 n) permutation representations of degree 

n. In fact, one may take C = 224. 

It  is not difficult to bound the number of normal subgroups of a poly-E group. 

This leads to the following interesting consequence. 

COROLLARY 1.3: There exists a constant C E R>I such that for all n E N every 

finite group G without abelian composition factors admits (up to equivalence) at 

most C n log2 n faithful permutation representations of degree n. In fact, one may 

take C = 24s. 

These bounds for the number of permutat ion representations of poly-E groups 

are somewhat reminiscent of similar estimates which have been established for 

groups with "restricted sections"; e.g., see [3, Theorem 1.2]. But in fact there is 

little common ground, because in our setting all non-abelian finite simple groups 

are allowed as composition factors, and hence the powerful Baba i -Cameron-  

P~lfy restrictions simply do not apply. Another noteworthy difference is that  our 

approach relies much less on consequences of CFSG. 

All our results are true for finite groups whose composition factors belong to 

the list of "known" simple groups, and we only require the following consequences 

of CFSG: the validity of Schreier's conjecture, the fact that  finite simple groups 

are two-generated, and - -  for the upper bounds in Theorems A and B - -  the fact 

that  there are at most two non-isomorphic finite simple groups of any prescribed 

order (actually a suitable weaker bound would be enough). 

1.3. ORGANIZATION OF THE PAPER AND NOTATION. Section 2 provides basic 

estimates for the socle size and socle length of a poly-E group. In Section 3 

we bound the minimal number of generators required by a poly-E group and 

thus establish Proposition 1.1. Section 4 contains two results about the normal 

subgroups of a poly-E group. In Section 5 we study permutat ion representations 

of poly-E groups and verify Proposition 1.2. The proof of Theorems A and B 

appears in Sections 6 (upper bound) and 7 (lower bound). 

Our notation is mostly standard. For every x E R>0 we write log x :-- log 2 x 

for brevity. If necessary, the reader can look up the definitons of 
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E, g~(n), ~s(n) ,  d(G), corn(G), poly-E, poly-S group in Section 1; 

soe(G), soci(G), sol(G) in Section 2; 

anything related to socle types M in Section 6. 

2. T h e  soc le  series  o f  a p o l y - ~  group  

Let G be a finite group. The characteristic subgroup soc(G) < G generated by 

all the minimal normal subgroups of G is called the soc le  of G. More generally, 

the soc le  series  

1 = soc0(G) _< SOCl(G) < --- < G 

of G is defined recursively as follows: soc0(G) := 1, and for every i C N the i-th 

term soci (G) is to satisfy the condition soc(G/soci-1 (G)) = soci (G)/soci_l  (G). 

The socle l e n g t h  of G is sol(G) := min{i C N01 soci(G) = G}. 

Suppose that G is poly-~. As explained in the introduction, this just means 

that G is a finite group without abelian composition factors. Then its soele is 

the direct product of non-abelian simple groups, say 

71 r M : = s o c ( G ) = S ~  ll x . . . × S , .  , S i c ~ f o r i E { 1 , 2 , . . . , r } ,  

where Si ~ Sj if and only if i = j .  The centralizer C a ( M )  is normal in G, but 

M has trivial center. So CG(M) = 1, and G acts faithfully on M by conjugation. 

It is easily seen that 

Aut(M) = f l  Aut(Si) ~ Sym(n.i), 
i = 1  

where all wreath products are formed with respect to the natural permutation 

actions. 

A consequence of CFSG is the validity of Schreier's conjecture: the outer 

automorphism group of every finite simple group is soluble. This fact implies 

that 

G / M  ~ Sym(nl)  x . . .  x Sym(nr) ~ Sym(n) 
r where n = ~ i=1  ni = corn(M). 

LEMMA 2.1: Let A be a direct product of finitely many elementary abelian 

groups, and let [A I = p~l ~ . . .  p~;~ be the prime power factorization of IAI. Then A 

embeds into the symmetric group Sym(n) if and only if n >_ ~ '=1 eipi. 

Proof: This follows by induction on the number of orbits, using the fact that a 

transitive permutation group which is abelian acts regularly. | 
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LEMMA 2.2: Let G be a poly-E group. Then we have: 

(i) com(soc(V)) > 4 corn(G); 

(ii) if G admits a faithful permutation representation of degree n, then 

n _> 4 tom(G). 

Proo~ First we consider the special case when sol(G) _< 1. Burnside's famous 

pq-Theorem implies that the order of a non-abelian finite simple group is divisible 

by at least one prime p > 5. Since G = soc(G) is the direct product of corn(G) 

many non-abelian finite simple groups, it contains a subgroup A which is the 

direct product of corn(G) many cyclic groups, each of prime order at least five. 

If G embeds into Sym(n), so does A, and Lemma 2.1 shows that n > 5com(G). 

Now we are ready to consider the general case. 

(i) For brevity write r := sol(G), and for every i E { 1 , 2 , . . . , r }  put k~ := 

com(soc~(G)/soci_l(G)). If r = 0, write kl := 0 nonetheless. Suppose that 

1 < i < r - 1 .  Then, by the remarks just before Lemma 2.1, the group G~ soci(G) 

and thus soei+l(G)/soei(G) embeds into Sym(ki). The "special case" now yields 

ki _> 5ki+1. 

This implies 

r 

r-1 4 E k i =  4 4 E 5- ik l  > corn(G). com(soc(G)) = kl _> g _ g 
i = 0  i = 1  

(ii) Suppose that G and thus sot(G) admits a faithful permutation represen- 

tation of degree n. By the "special case" and (i) we get 

n _> 5com(soc(G)) _> 4corn(G). | 

As an immediate consequence of Lemma 2.2(i) we record 

COROLLARY 2.3: The socle length ofa  poly-E group G is at most 1+log 5 corn(G). 

3. G e n e r a t i n g  po ly -E  g roups  

In this section we prove 

PROPOSITION 3.1: Let C := 2/ log(5) .  Then every non-trivial poly-E group G 

satisfies 

d(G) <_ C log corn(G) + 2. 

Note that C = 2/log(~) < 3, so Proposition 1.1 follows. Apart from im- 

provements upon the constant C one cannot hope to do much better. This is 

illustrated by 
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Example 3.2: Let G = S x .. • x S be a direct power of some non-abelian finite 

simple group S. Then we have 

d(G) >_ logls I corn(G) = (log ISl)  - z  log corn(G). 

Indeed, put d := d(G) and k := com(G). Choose a minimal generating set 

{gil 1 _< i < d} for G, and for every j c {1,2 . . . . .  k} let 7rj: G -+ S denote 

the projection onto the j - th  factor of G. Then the tuples (917cj,g27rj . . . . .  gdTrj), 
1 <__ j _< k, are pairwise distinct. So we obtain the inequality ISI d >_ k. 

The sequence d(Gk), k C N - -  for any given (finite) group G has been 

studied extensively by Wiegold and others. For instance, in [10] it is shown that 

for every S E E and k E N one has d(S k) > logls / k + loglsllAut(S)l. 

Proof  of Proposition 3.1: Let G be a non-trivial poly-E group. Note that 

M := soc(G) = N1 x . . .  x Nr, where Ni, 1 < i < r, are the minimal normal 

subgroups of G. Choose s C {1, 2 . . . . .  r} such that the normal subgroups 

H I : = N 1  x . . . x N ~ _ l ,  H 2 : = N ~ ,  H a : = N ~ + I  x . . . x N r  ~_G 

satisfy 

(3,1) com(H1) _< com(M)/2  and corn(H3) _< corn(M)/2. 

We distinguish two cases. 

CASE 1: com(H2) _< corn(M)/2. I fHIH2=G,  then clearly we have d(G/H1H2) 
<_ C logcom(G). Otherwise induction on com(G) shows that 

d(G/HIH2) <_ Clogcom(G/H1H2) + 2 

_< Clog(corn(G) - corn(M)/2) + 2 

<_ Clog(3com(G)/5) + 2 by Lemma 2.2(i) 

= C log corn(G) + C log(3/5) + 2 

= C log corn(G) by definition of C. 

Similarly, we obtain 

d(G/H2H3) <_ Clogcom(G) and d(G/HIH3) <_ Clogcom(G).  

Put  d := [Clogcom(G)] .  Then we find gt . . . . .  9a E G such that  G/M = 
(9tm . . . . .  gaM). By [5, Satz 1], we find hi~ , . . . ,  hid E Hi for i E {1, 2, 3} such 

that 
G/H1H2 = (glh31,... ,  9ahaa), 

G/H~H3 = < g l h l l , . . . ,  g d h l d > ,  

G/H1H3 = ( g l h 2 1  . . . .  , ggh2d). 
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For every i C {1, 2 . . . . .  s} choose ni E Ni \ {1}, and put 

h ~ : = n l . . . n s _ l  E H1, h~ :=n~ EH2.  

Now it suffices to show that  the subgroup 

U := <glhHh21h31,..., gdhldh2dh3d, h*l, h~) <_ G 

is in fact equal to G. By construction, we certainly have UHtH2 = UH2H3 = 

UH1H3 = G. So it is enough to show that  HIH2 C_ U, equivalently that  Ni C_ U 

for all i E { 1 , 2 , . . . , s } .  

Suppose that  i E {1,2 . . . . .  s - 1}, and choose mi e Ni such that  [ni,mi] ~ 1. 

Since UH2H3 = G, we find h C H2H3 = CM(H1) such that  mih  E U. Then we 

have [n~, m~] = [h~, m~h] e U, hence 

x~ = <{,, . ,nil> G = <[~ , . , i ]>~r"~"3  = <[~ , .~]>~r  c u .  

Similarly, one shows that  N8 C_ U. This finishes the proof in Case 1. 

CASE 2: com(H2) > corn(M)/2.  Write N :=/-/2. If N = G, then obviously we 

have d(G/N) <_ Clog corn(G). Otherwise induction on com(G) shows that  

d(G/N) < C log com(G/N) + 2 

< C log(com(G) - com(M)/2)  + 2 

< Clog(acorn(a)/5) + 2 

= c log corn(G) + C log(3/5)  + 2 

-- C log com(G) 

by Lemma 2.2(i) 

by definition of C. 

Put  d := [Clogcom(G)J .  Then we find gl . . . . .  gd E G such that  GIN = 

<gin . . . .  ,gdN>. Writing k := corn(N), we have N = $1 × . ' .  x Sk, a direct 

product of non-abelian simple groups. Moreover, conjugation induces a transi- 

tive action of GIN on {$1 . . . . .  Sk }. According to CFSG, every finite simple group 

is two-generated. Choose generators hi,  h2 for $1. Then G = <gl . . . .  , gd, hi, h2>, 

and d(G) < C log corn(G) + 2 as claimed. | 

4. Normal subgroups of poly-E groups 

The number of nornml subgroups of a poly-E group is very restricted. 
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LEMMA 4.1: Let G be a poly-E group, and put  k := cam(G). Let 

n E {0, 1 . . . . .  k}. Than the number of  normal subgroups N~_G with cam(N) = n 

is at mos  (b" 

This bound is sharp. Indeed, we have 

Example 4.2: If G = S k is the direct k-th power of a non-abelian finite simple 

group S, then the number of normal subgroups N <1 G with cam(N) = n is 

precisely (~). 

Proof of Lemma 4.1: If G is trivial, there is nothing to prove. So suppose that 

G ¢ 1. Let M_minG be a minimal normal subgroup, and write m := cam(M). If 

N~_G, then either (i) N D M or (ii) IN, M] = 1, i.e., N C_ C a ( M )  ~G.  Note that  

both G / M  and C a ( M )  are poly-E groups. Moreover, we have com(G/M)  = k - m  

and cam(Ca(M))  < k - m; the latter inequality follows from C a ( M )  N M = 

Z ( M )  = 1. 
k--rn By induction, we know that there are at most (n-m) subgroups N with M _< 

k--m N ~ G and cam(N) = n. Similarly, there are at most ( n ) subgroups N with 

N ~ G, N <_ Cc;(M) and cam(N) = n. 

So altogether there are at most 

( n k - m ) +  ( k n m ) <  ( ~ - 1 1 )  + ( k n l ) _  - (,~) 

normal subgroups N _~ G with cam(N) -- n. | 

For completeness we also state 

PROPOSITION 4.3: Let G be a poly-E group. Then there exists g E G such that 

c = (g ia .  

Proof: For G -- 1 the claim is trivial; so assume that G ~ 1. Let M _<]min G be a 

minimal normal subgroup. Then M is the direct power of a non-abelian simple 

group, in particular Z ( M )  = 1. 

By induction we find gl E G such that G = (gl}aM. If [M,g~] 7 ~ 1, then 

M C (gl)G; we are done. So suppose that [M, gl] -- 1. Choose any g E M \ {1} 

and put g2 := gig. Then G = (g2)CM and [M, g2] ~ 1, so as before M _C (g2} G, 
and (g2} C = G. | 
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5. Permutat ion representations of  poly-~, groups 

In this section we bound the number of permutat ion representations of a poly-~ 

group. To render the text more readable we sometimes omit terms like "up to iso- 

morphism" or "up to equivalence". Our first observation is that  Proposition 1.2 

readily follows from 

P R O P O S I T I O N  5.1: There exists C E R>I such that for all n E N every non-trivial 

poly-~, group G admits (up to equivalence) at most C ~(l°g com(G)+log ~) transitive 

permutation representations of degree n. In fact, one may take C = 223. 

Proposition 5.1 implies Proposition 1.2: Choose Ctr C R>I such that  for all n E 

N every non-trivial poly-S group G admits at most C~r 0°g com(G)+logn) transitive 

permutat ion representations of degree n, and put C :-- 2Ctr. 

Let G be a non-trivial poly-~ group and n C N. Up to rearrangement of 

letters, a choice of orbits for a representation G --+ Sym(n) corresponds to an 

additive parti t ion of n. Clearly, n has less than 2 n-1 such partitions, and if 

n nl  + 4- nr then ~ ni _ n. . . . .  ~ i = l  n~ log < n log This shows that  G has at most 

r 

a l l  p a r t i t i o n s  i = 1  
nl+. , -+nr=n 

permutat ion representations of degree n. | 

Next we state a technical lemma whose verification is a mat ter  of routine and 

hence omitted. 

LEMMA 5.2: Let n E N>5, and C E R>_4. Put  A := logc(2 ). Then the functions 

f l ,  f2: [2, n/2] -+ R defined by 

n n n 
f l ( x ) : = - + x + A x + 3 A x l o g x  and f 2 ( x ) : = - 4 - x ÷ 2 A x + A  

X , 27 

satisfy the following properties. 

(1) Both f l  and f2 take their global maximum at Xma× := n/2. 

(2) I f C  > 220 then fl(Xm~x) <_ n and f~(Xma×) _< n - A. 

With this we are ready to embark upon the 

Proof of Proposition 5.1: We show that  C : =  223 is large enough. The proof is 

divided into three steps, the last being the most complicated. 

STEP 1: Reduction to faithful representations. Let G be a non-trivial poly- 

P, group and n E N. If com(G) -- 1, then G is simple and has precisely two 
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normal  subgroups. Now suppose tha t  com(G) >_ 2. We claim tha t  G has 

at most  2 n log com(a) normal  subgroups N _<1 G such tha t  G I N  ~ Sym(n) .  If 

~: G --4 Sym(n)  is a permuta t ion  representation with kernel N :=  ker(~), then 

Lemma 2.2(ii) shows tha t  n >_ 4 com(G/N) .  By Lemma 4.1 the group G has no 

more than 

[n/4J kn/nJ 
com(G)J < com(G)n = 2nl°gc°m(G) 

j =0 j =0 

normal  subgroups N __ G such tha t  corn(G/N) < n/4.  This yields the desired 

bound and shows that ,  writing Cfa :=  C/2 = 222, it suffices to justify the 

following 

CLAIM: For all n E N every non-trivial poly-E group G admits (up to equiva- 

lence) at most Cf~a (l°g com(G)+|og.3 faithful transitive permutation representations 

of degree n. 

Put  Cch := C/8  = 22°; the meaning of the subscript-notat ion will become 

clear later, For more flexibility it is convenient to continue the argument  with 

reference to Co E {Cch, Cfa}- 

STEP 2: The case when G is simple. Let G E E and n E N. Then G is two- 

generated by CFSG,  and clearly ISym(n)l  _< n ~. So there are at most  4 ~l°gn 

homomorphisms  from G to Sym(n).  As Co >_ 4, we are okay. 

STEP 3: The case when G is not simple. Let G be a poly-E group with corn(G) 

2 2, and let n E N. Choose a minimal normal  subgroup N --~min G, and put  H :=  

G/N.  Put  d :=  d(H), and choose hi . . . . .  ha E G such tha t  G = (hi . . . .  , hd}N. 

By Proposi t ion 1.1 we have d < 3 l o g c o m ( H )  + 2. 

Suppose tha t  ~: G --+ Sym(n)  is a faithfifl transit ive permuta t ion  representa- 

tion; in particular,  this presumes tha t  n > 5. Then the G-space f] :=  {1, 2 . . . . .  n} 

falls into r separate N-orbi ts  ftl  . . . .  , f tr ,  say. They  form a system of blocks 

for qo: the N-spaces f~ l , - . . ,  ft~ are pairwise isomorphic, and they are pernmted  

transitively by the induced H-act ion.  In particular,  r divides n, and since N is 

non-trivial and acts faithfully on ~2, we have 1 < r < n/2. 

To recognise the action p of G on ft u p  t o  e q u i v a l e n c e ,  it is enough to know 

• the number  'r of N-orbi ts  on ~ - -  there are no more than  n possibilities; 

o at this point we may assume without extra-cost that we also know the 

partition of ft into N-orbits ~ l , . . . , f t ~ ,  and for each i E {1,2 . . . . .  r} we 

may choose a reference point c~i E f~i ; 
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the act ion of N on one (and hence, after rearrangement ,  on all) of its 

orbi ts  - -  by induction (on the composi t ion length) there are no more  than  
C (n/r)(l°gc°m(N)Tl°g(n/r)) possibilities; 

the induced action 99H of H on {ftl  . . . . .  f tr} - -  this need not be faithful, 

bu t  based upon  our considerations in Steps 1 and 2 induction (on the com- 
posit ion length) shows tha t  there are a t  most  2 ~ log com(H)c0(l°g com(H)+log r) 
possibilities; 

finally, for all i E {1,2 . . . .  , r }  and j C {1,2 . . . . .  d} the images aihj E fti-ftj 
of our reference points  under  the chosen generators  for G modulo  N - -  

there are no more than  (n/r) rd possibilities. 

Indeed, suppose t ha t  we know all the da t a  listed above. Then  first of all, we 

know the induced act ion 9~N of N on ft. Since G = (hi . . . . .  hd)N, in order to 

recognise ~ it is enough to know how h i , . . . ,  hd act on ft. So let j E {1, 2 , . . . ,  d} 

and w ~ ft. Then  w E fti for some i E {1, 2 . . . . .  r}. Because we know 9~u, we 

find g E N such tha t  a ig  = w, and we also know the act ion of h-flghj E N on 

ft. Since o~ihj is given, we can successfully compute  whj = o~hj(h719hj). 

Unfortunately,  the es t imates  given above are not quite sufficient to deal with 

the s i tuat ion r = 1, i.e., when N acts transitively. To resolve this problem,  

we first condsider faithful t ransi t ive representat ions G --+ Sym(n)  with N act- 

ing intransitively, then with N act ing transitively. In each case the number  of 

representat ions is bounded by !r~n0°gc°m(C)+l°g~)" this will finish the overall 2 ~ f a  

proof. 

CASE 1: N acts  intransitively. Then  the range of r is restr icted by 2 < r < n/2. 
P u t  A := logco (2). Then  mult iplying all the es thnates  given above, we find t ha t  

the number  of faithful t ransi t ive representat ions G --+ Sym(n)  with N act ing 

intransi t ively is bounded above by Cfo (n), where 

2<r<~/2 r l o g c o m ( N )  + log 

n + [Ar logcom(H) + r(logcom(H) + log r)] + [Ardlog r]" 
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Recall that  d <_ 3 logcom(H)  + 2. With Lemma 5.2 we obtain 

f ( n )  _< 2<m<~x/2 In  l o g c o m ( N ) +  (1 + A +  3Alog n ) r l o g c o m ( H ) ]  

+ [  A l ° g n + n l ° g n + r l ° g r + 2 ) w l ° g n ] r  

_< max + r + X r + 3 A r l o g  n logeom(G) 
2<r<n/2 

+ r + r + 2 A r + A  logn 

_<n log com(G) + (n - A) log n 

<_ - A + n(logcom(G) + log n), 

as wanted. 

CASE 2: N acts transitively. First we finish the overall proof in the special case 

where G is characteristically simple, that  is when G ~ S k for suitable S C E and 

k E N. This is quite easy. Read all previous occurrences of Co as Cch, and suppose 

that  G ~ S k with S E E and k E N. Since N is a minimal normal subgroup, we 

have N TM S, C a ( N )  ~ S k- t ,  and G = N x Ca(N) .  Since N acts transitively, 

its centraliser C a ( N )  acts semi-regularly. This implies ICa(N)I <_ n _< IN I, and 

since N # G, we must have C a ( N )  ~ N.  Thus corn(G) = 2. By CFSG the 

group G is four-generated, and there are at most 16 n log n homomorphisms from 
1 iQ, n (log com(G)+log n) G to Sym(n); el. Step 2. Since 16 nl°g~ < 7~¢h , we are okay. 

We have shown: for all n C N every non-trivial characteristically simple 
r:n(logcom(C)+logn) faithful transitive permuta- poly-E group G admits at most ~ch 

tion representations of degree n, up to equivalence. 
Finally, we return to the general case. Read all occurrences of Co prior to the 

beginning of Case 2 as Cfa, and recall the general set-up introduced before the 

argument divided into cases. Since N is a minimal normal subgroup of G, it is 

characteristically simple. Since N acts transitively on 12, we have r = 1 and the 

action of H on {f~l} is necessarily trivial. To recognise the action of G on f~ up 

to equivalence, it is therefore enough to know 

• the action of N on f~ - -  we just proved that  there are no more than 
/~n(log com(N)-I-log n) 
t~,ch possibilities; 

• for each j C {1, 2 , . . . ,  d} the image Ozlhj of the single reference point a l  

under hj - -  there are at most n d possibilities. 

Write A := logc~(2 ) = 1/22 and p := logcf~(C~h ) = 20/22. As n _> 5, we have 

log n _< n/2 and thus 

3A _ (5.1) p n + 3 A l o g n _ < 2 0 A n + ~  n < n .  
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Multiplying the estimates given above, we find that the number of faithful 

transitive representations G -+ Sym(n) with N acting transitively is bounded 

above by C[ (n), where 

f (n )  := [~n(log com(N) + log n)] + [~d log n]. 

Recall that d _< 3 log corn(H) + 2. With the inequality (5.1) we obtain 

f(n) < [~n log com(N) + 3A log n log corn(H)] + [(~n + 2A) log n] 

_< (#n + 3~ log n) log com(G) + (pn + 2~) logn 

_< n log corn(G) + (n - )~) log n 

_< -A + n(log corn(G) + log n). 

As indicated just before Case 1, this finishes the overall proof. | 

We note that Corollary 1.3 follows immediately from Proposition 1.2 and 

Lemma 2.2(ii). 

6. Enumerating poly-E groups: an  u p p e r  bound 

This section is entirely devoted to the proof of the upper bound in Theorem A: 

we claim that  
g~(n) < n 531°gl°gn for all n E N.* 

As in the previous section we freely omit the expressions "up to isomorphism" 

or "up to equivalence" where adequate. 

Let n E N. I f n  < 60, then g~(n) -- 1. Hence let us assume that  n ~_ 60. 

Although we make no at tempt to optimise the constants in our bounds, we are 

going to compute everything quite explicitly; for this purpose we record the 

following basic estimates. For every poly-E group G with IGI _< n we have 

1 
com(G) _< log60 n _< ~ log n, 

1 
(6.1) sol(G) < 1 + log 5 com(G) < ~ log logn (by Corollary 2.3), 

d(G) ~_ 31ogcom(G) + 2 <_ 31oglogn (by Proposition 1.1). 

Next we introduce the notion of socle type , in addition to the basic definitions 

given already in Section 2. A finite socle t y p e  is just a tuple of finite groups 

each of which has socle length one. Note that a finite group has socle length one 

* For n = 1 the reader should interpret n 531°gt°gu  a s  l imx_~l+  x 531°gl°gx ---- 1. 
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if and only if it is a non-trivial direct product of finite simple groups. Let G be 

a finite group and M = (Ms . . . .  , Mr) a finite socle type. The group G rea l i zes  

M,  if sol(G) = r and for a l l /  e { 1 , 2 , . . . , r }  we have soci(G)/soci_l(G) ~- Mi. 

If each component of M is poly-E, we say that  M is poly-E. So, if G realizes M,  

either both  are poly-E or none of them. The t o t a l  o r d e r  of M is the product 

1-I~=~ IM, I of the orders of its components. Thus, if G realizes M,  the order of G 

equals the total order of M.  

Now, returning to the proof of our claim, we divide the argument into 

STEP 1: the number of poly-E socle types of total  order at most n which can 

be realized by suitable poly-E groups is no more than n (3/2)l°gl°g n; 

STEP 2: any particular poly-E socle type of total  order at most n is realized 

by no more than n '511°g log n poly-E groups. 

This will certainly imply gs (n )  _< n 531°gl°g', as wanted. 

STEP 1: The socle length of a poly-E group of order at most n is bounded by 

1 loglogn; see (6.1). So we only have to consider socle types up to that  length. 

According to [12, Lemma 2.3], the number of poly-E groups of socle length one 

and order at most n is less than or equal to n 3. Thus no snore than n (3/2) loglogn 

poly-E socle types of total  order at most n are actually realized. 

STEP 2: Fix a poly-E socle type M = (Ms . . . . .  Mr) of total  order fi <_ n. If 

fi = 1, only the trivial group realizes M.  So let us assume that  fi > 1, and write 

M := M1. Note that  m := I MI ¢ 1 divides ft. 

Suppose that  G is a poly-E group realizing M. Then M ~ soc(G) is the direct 

product of non-abelian simple groups, say 

M~-Skl ' x . - .xSs  k~, S i c E f o r i c { 1 , 2 , . . . , s } ,  

where Si ~ Sj if and only i f i  = j .  The factor group H := G / M  is again 

poly-E and realizes the socle type (M2 , . . . ,  Mr) of total order IH I = f i /m < ft. 

We can view G as an extension of M by H,  and conjugation in G induces a 

coupling holnomorphism X: H --+ Out(M).  Clearly, M has trivial centre, and 

so by [14, §11.4.21] the extension 1 -+ M --+ G --+ H --+ 1 is determined up to 

equivalence by 

(1) the isomorphism class of M ~ M1, 

(2) the isomorphism class of H,  

(3) the coupling homomorphism ~: H --+ Out(M).  

Of course, the same data  then determine the group G up to isomorphism. 
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So we can bound the number of poly-E groups realizing M by estimating the 

number of possible choices in (2) and (3). By induction the number of poly-E 

groups H realizing the socle type (M2 . . . . .  Mr) is at most (n/m) 511°gl°g(n/rn). 
Now suppose that such a group H is fixed; it remains to estimate the number 

of possible homomorphisms X: H --+ Out(M) as in (3). In Section 2 we saw 

that Out(M) = T ~ < B ,  whereT=~ ~ a n d B = I I i = l  So Hi=l  Sym(ki) ~ s Out(Si)ki. 
every homomorphism ~(: H --+ Out(M) induces a permutation representation 

~: H --+ T ~ 1-I~=l Sym(ki). Clearly, it suffices to bound 

(3a) the number of actions ~: H --+ 1-[~=1 Sym(ki), up to equivalence in each 

factor, 

(3b) for every permutation representation ~ as in (3a), the number of liftings 

?(: H --+ Out(M).  

If m = fi and consequently H = 1, all estimates become trivial. So assume 

k that m < ft. Since ~ i=1  "i _< logm, Proposition 1.2 together with (6.1) shows 

that the number of representations as in (3a) is bounded above by 

224(1og m)(log log(fi/rn)+log log rn) ~ m24(log log(n/m)+log log rn). 

The number of liftings as in (3b) is at most IB[ d(H). By CFSG every finite 

simple group S is two-generated, so I Aut(S)l <_ ISI 2 and I Out(S)l < tSt. Thus 

[B[ _< [M[ = m, and (6.1) shows that d(H) < 31oglog(fi/m). So the number of 

liftings as in (3b) is at most m 31°gl°g(n/rn). 

Combining our estimates, we find that the number of poly-E groups realizing 

g is at most 

( n / m ) 5 1  log log(n/rn) . m24(log log(n/rn)Tlog log rn) . rn3 log log(n/rn) ~_ n51 log log n. 

This finishes Step 2 and the overall proof. 

7. Enumerating po ly -S  g roups :  a lower  b o u n d  

Throughout this section let S C E. In the following context, it is convenient 

to regard an ac t i on  of a group G on some set f~ as a map (I): ~ × G --+ ~t 

corresponding to a homomorphism ~: G --+ Sym(ft). Two actions 4h: f~l × G1 

f~t and (I)2:gt2 × G2 --+ gt2 are said to be i s o m o r p h i c  if there exist a bijection 

a: ~1 --+ ~2 and a group isomorphism t: G1 --+ G2 such that the diagram 

f~2 x G2 ~ ft2 
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commutes. 

For any permutation action ~5: ~ × H --~ ~ of a poly-S group H on some finite 

set ~ we define the pernmtational wreath product 

G¢ := S ~ H = H ~< 1-[ S~, 
wE~t 

where S~ = S for all w • ~ and H permutes  the various factors according to ~.  

The  next  l emnm is easily checked. 

LEMMA 7.1: (1) I f  ~: ~ × H -+ fl describes a faithfid permutation action of a 

poly-S group H on some set ~, then G¢ is a poly-S group of  composition length 

com(G~)  -- corn(H) + lal and soc(a~) = 1-L~a s~. 
(2) I f  ~1: f21  × H I  -+ f~l and q52:ft2 × //2 ~ f~2 are faithful permutation 

actions of poly-S groups HI and H2, then G,~ is isomorphic to Ge~ i f  and only 

if  ¢bl is isomorphic to g)2. 

The problem of construct ing a sufficient number  of po ly-S  groups wi th  pre- 

scribed composi t ion length thus reduces to the p rob lem of const ruct ing faithful 

pe rmu ta t i on  actions. We show 

LEMMA 7.2: There exists d • N (depending on S) such that for every k • N the 

group H = S k+l has a t  least k k pairwise non-isomorphic faithful permutation 

actions on dk points. 

Proof: Since S • E, we can fix faithful t ransi t ive pe rmu ta t i on  actions of S 

on ~1, ~2 and ~3, say, such tha t  I~11 < 1~21 < 1~31. We put  di := I~i] for 

i • {1, 2, 3}, and d := (dl + d2)d3. 

Write H = Ho × - - -  × Hk as a p roduc t  of  its minimal  normal  subgroups  H ,  ~ S, 

0 < n < k. For every n • {0, 1 . . . . .  k} fix t ransi t ive pe rmu ta t i on  actions of H ,  

on ~1, ~2 and ~t3 respectively. 

For every j • {1, 2 . . . . .  k} define 

(1) 
Fj :-- {(X,j, wl,w3)l wl e i l l ,w3 • ~t3}, 

(2) 
r j  :-- {(2, j ,  w2,w3)l w2 • a2 ,w3 • a3},  

and put r := U{F~ ~) u F( 2)J 1 _< j _< k}. Note that  r has cardinality dk. 
For every k- tuple  7r C {1, 2 . . . .  , k} k we are going to define a faithful pe rmuta -  

t ion act ion ~ of H on F; then  we will show tha t  these pe rmu ta t i on  actions are 

pairwise non-isomorphic.  
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Let rr E {1, 2 . . . .  , k} k, and define ~ E {0, 1 . . . . .  k} k as follows: 

~ ( J ) : = { 0  (j) ififTr(j) CJ'rr(j)=j. 

Clearly, if p E {1, 2 , . . . ,  k} k with ~ = ~, then p = ~r. 

For every n E {0, 1 , . . . ,  k} we now define a non-trivial action of Hn on F; it is 

easily checked that these actions mutually commute and thus induce a faithful 

action ¢I?.: F x H --+ F. 
Let n E {0 ,1 , . . . , k} ,  and let h E Hn. For every j E {1,2 . . . .  ,k} and all 

coi E f~i, i E {1,2,3}, define 

(1,j,  wl,w3) i f j C n a n d ~ ( j )  C n ,  
(1,j, wl,w3) h := ( l , j ,  wh,w3) iffi-(j) = n, 

(1,j,  wl,w3 h) i f j = n ,  

(2,j ,  w2, co3) i f j C n a n d j T ~ n + l ,  
(2, j, w2, w3)h:= (2, j,  w 2 h , w 3 ) i f j = n + l ,  

(2,j, w2,wa h) i f j = n .  

For later use we remark that ¢I)~ has 2k orbits on F: there are k orbits of size 

did3, namely r~ 1), 1 _< j _< k, and k orbits of size d:da, namely p~2), 1 _< j <_ k. 

Moreover, we make the following 

OBSERVATION: For all n E {0, 1 . . . .  , k} and j E {1, 2 . . . .  , k} we have 

~(j)  = n e-~ j ¢ n and Hn acts non-tivially on F~ 1) under ~ . .  

It remains to show that the actions defined are pairwise non-isomorphic. So 
let zr, p E {1 ,2 , . . . , k}  k, and suppose that (a,t) E Sym(r) x Aut(H)  is an iso- 

morphism from (I), to (I)p. 
Then t induces a permutation t* of {H0, H1 , . . . ,  Hk}, and a induces permuta- 

tions a~ of {F~I)[ 1 _< j < k} and a~ of {F~2)[ 1 _< j < k}. 

$ CLAIM: All three permutations l*, c~, a 2 are in fact trivial. 

Subproo~ In both actions, ~ and q~p, the only minimal normal subgroup of H 

which has no orbits of length da is H0; hence Hot* = Ho. 
Now suppose that j E {1 ,2 , . . . , k}  with Hj_~t* = Hj_~. In both actions 

H j - t  has orbits of length d2, and their union is _~1 "(-2)', thus r~2)o-~ = F~ 2). In 

both actions, the only minimal normal subgroup of H which acts on F~ 2) with 

orbits of length d3 is Hi; so Hit* = Hi. Finally, in both actions Hj has orbits 
of length d3 outside F~ 2), and their union is F~I); thus tj~'(1)a,* = F~ 1). The claim 

now follows by induction. 
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The Claim and the Observation show that  ~ = fi, and hence rr = p, as required. 
| 

Proof of the lower bound in Theorem B: We want to find B E X>o such that  

for all k E N, 

~s(k) >_ k ~k 

Lemmata  7.1 and 7.2 yield d C N such that  for every k E N we have 

~s(dk + k + 1) > k k. This and the fact that  g s  is a non-decreasing function 

are enough to verify our claim. 

Indeed, choose B1 C ~:>0 such that  for all k C {1, 2 , . . . , 2 ( d  + 1)} we have 

~s(k)  >_ k thk. Next put B2 := log(d + 1)/2(log(2(d + 1)). Then for every k E N 

with k > 2 ( d +  1) we get 

k - d - 1  l o g ( k - d - l )  
> B2, 

k log k 

and so 

~s(k)  > (k - d -  1) k-d-1 = 2 (k-d-1)l°g(k-4-1) >_ 2 B~kl°gk = k B2k. 

Thus B := rain{B1, B2} does the trick. | 
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