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ABSTRACT 

We prove that the Atiyah-Hitchin-Singer [1] and Eells-Salamon [6] 
almost-complex structures on the negative twistor space of an oriented 
Riemannian four-manifold are harmonic in the sense of C. Wood [17, 18] 
if and only if the base manifold is, respectively, self-dual or self-dual 
and of constant scalar curvature. The stability of these ahnost-complex 
structures is also discussed. 

1. I n t r o d u c t i o n  

Let  (N,  h) be  a connec ted  even-dimensional  R i e ma nn ia n  manifold.  An  a lmos t -  

complex  s t ruc ture  J on N is called a lmos t -Hermi t i an ,  if it  is h-or thogonal ,  i.e., 

h(JX, JY) = h(X, Y) for X,  Y C TN. If  (N, h) admi t s  an a l m o s t - H e r m i t i a n  

s t ruc ture ,  then  it has many,  and  i t  is na tu r a l  to  seek for "reasonable" c r i te r ia  

t ha t  d is t inguish  some of these s t ructures .  A n a tu r a l  way to ob ta in  such cr i ter ia  

is to consider  the  a lmos t -He rmi t i an  s t ruc tures  on (N, h) as sect ions of i ts twis tor  

bundle  T.  Recal l  t ha t  7- is the  bundle  over N whose fibre at  a po in t  p E N 

consists  of all  h -or thogona l  complex  s t ruc tures  on the t angen t  space TpN. If  

the  manifo ld  N is oriented,  the  twis tor  space 7- has two connected  componen t s  
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7-± whose sections are the almost-Hermitian structures compatible with 4- the 
orientation of N. 

E. Calabi and H. Gluck [3] have proposed to single out those almost-Hermitian 

structures J on (N, h), whose image J(N)  in 7- is of minimal volume with respect 

to the natural Riemannian metric h on 7- induced by h and the standard metric 

of the fibre. Considering the 6-sphere S 6 in this context, they have proved that  

its canonical almost-Hermitian structure defined by means of the Cayley numbers 

can be characterized by that  property. 

Motivated by the harmonic maps theory, C. Wood [17, 18] has suggested to con- 

sider as "optimal" those almost-Hermitian structures J: (N, h) -+ (T, ~t), which 

are critical points of the energy functional under variations through sections of 

7-. In general, these critical points are not harmonic maps, but, by analogy, 

in [17, 18] they are referred to as "harmonic almost-complex structures". The 

Euler Lagrange equation for a harmonic almost-complex structure J is [17, 18] 

(1) [J, V*VJ] = 0, 

where V*V is the rough Laplacian of (N, h), so the K~ihler structures are har- 

monic (in fact they are absolute minima of the energy functional). Moreover, 

several interesting examples of non-K£hler harmonic almost-complex structures 

J have been discussed in [17, 18] based on the observation [18, Theorem 2.8] 

that the Euler Lagrange equation takes an apparently simple form in the case 

when J is integrable or (1, 2)-symplectic ("quasi-K£hler" in the terminology of 

Gray-Hervella [9]). 
The main purpose of this paper is to study the harmonicity of the Atiyah- 

Hitchin-Singer [1] and Eells-Salamon [6] almost-complex structures J1 and J2 
on the negative twistor space (Z, ht), Z -- T-, of an oriented Riemannian four- 

manifold, where ht, t > 0, is the metric on Z obtained by rescaling h on the fibres 

by t. Our main result is the following theorem, which may be considered as a 

variational interpretation of the self-duality condition: 

THEOREM 1: Let (M,g) be an oriented Riemannian 4-manifold and (Z, ht) be 

its negative twistor space. Then: 

(i) The Atiyah Hitchin-Singer almost-complex structure J1 on (Z, ht) is har- 

monic, if and only if (M, g) is a self-dual manifold. 

(ii) The Eells-Salamon almost-complex structure J2 on (Z, ht) is harmonic, if 

and only if ( M, g) is a self-dual manifold with constant scalar curvature. 

To prove Theorem 1, we observe first, by means of the WeitzenbSck formula, 

that  the Euler-Lagrange equation (1) is equivalent to the condition that  the 
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Laplacian of the K/ihler form and its image under the curvature operator have 

equal [(2,0)+(0,2)]-parts. In the case of the twistor space (Z, ht, Jn), n = 1, 2, we 

obtain explicit formulas for these 2-forms in terms of the curvature of the base 

manifold (M, g) and prove that the above condition is fulfilled for the horizontal 

vectors of Z, if and only if the base manifold is self-dual. Finally we show that if 

(M, g) is self-dual, the Euler-Lagrange equation for J1 is automatically satisfied, 

whereas, for J2, it is equivalent to (M, g) being of constant scalar curvature. 

In the last section of the paper we discuss the stability of the almost-complex 

structures J1 and J2. 
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the Research in Pairs Program supported by the Volkswagen Stiftung. They 
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2. Pre l iminar ie s  

Let M be a (connected) Riemannian manifold with metric g. Then g induces a 

metric on the bundle A~TM of 2-vectors by the formula 

1 X g(A" 1 A X2,-J(-3 A -~(4) = 5[6(. "1,-~k'3)g(~Jk'2, X4) - g(-J~l, X4)g(-~'2, X3)]. 

The Riemannian connection of M determines a connection on the vector bundle 

A2TM (both denoted by V) and the respective curvatures are related by 

R ( X , Y ) ( Z  A T) : R ( X , Y ) Z  A T + Z A R ( X , Y ) T  

for X, Y, Z, T E x(M);  x(M) stands for the Lie algebra of smooth vector fields 

on M. (For the curvature tensor R we adopt the following definition: R(X,  Y) = 

V[x,y] - [Vx, Vy].) The curvature operator 7¢ is the self-adjoint endomorphism 

of A2TM defined by 

g(Ti(X A Y), Z A T) = g(R(X,  Y)Z,  T) 

for all X , Y , Z , T  c x(M).  

If M is oriented and of dimension four, the Hodge star operator defines a 

self-adjoint endomorphism * of A2TM with ,2 = Id. Hence 

A2TM = A2+TM ® A2_TM, 
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where A ~ T M  are the subbundles of A2TM corresponding to the (+l)-eigen- 

vectors of *. Let (El,  E2, E3, E4) be a local oriented orthonormal frame of TM.  

Set 

(2) 
81 = E 1 A E 2 - E 3 A E 4 ,  

s2 = E1A E3 - E4 A E2, 

s3 = E1 A E4 - E2 A E3, 

Sl = E1A E2 + E3 A E4, 

s2 = E1 A E a + E4 A E2, 

g3 = E1A E4 + E2 A E3. 

Then (sl, s2, s3) (resp. (51,52, 83)) is a local oriented orthonormal frame of 

A2_TM (resp. A2+TM). The matr ix  of T~ with respect to the frame (~i, si) of 

A2TM has the form 

T~ = tB 

where the g x 3 matrices A and C are symmetric and have equal traces. Let 

B, l/Y+ and W_ be the endomorphisms of A2TM with matrices 

[0 °1 [°0 01 B = tB , 0 ' C -  gI ' 

where s is the scalar curvature and I is the unit 3 x 3 matrix. Then 

(3) T~ = 6Id  + B + W+ + W_ 

is the irreducible decomposition of ~ under the action of SO(4) found by Singer 

and Thorpe [16]. Note that  B and/42 = 142+ + IA2_ represent the traceless Ricci 

tensor and the Weyl conformal tensor, respectively. The manifold M is called 

self-dual (anti-self-dual), if W_ = 0 (W+ = 0). I t  is Einstein exactly when B = 0. 

The negative twistor space Z o f M  can be identified with the subbundle Z 

-of A2_TM consisting of all unit vectors. The Riemannian connection V of M 

gives rise to a splitting T Z  = 7-/® 12 of the tangent bundle of Z into horizontal 

and vertical components. More precisely, let rr : A2_TM ~ M be the natural  

projection. By definition, the vertical space at a e Z is ~2o =Kerrr,~ (ToZ is 

always considered as a subspace of T~(A2_TM)). Note that  l/o consists of those 

vectors of T~Z which are tangent to the fibre Zp = rr-t(p) N Z, p = 7r(c 0, of Z 

through the point a. Since Zp is the unit sphere in the vector space A2.TpM, 

12o is the orthogonal complement of a in A2_TpM. Let s be a local section of Z 

such that  s(p) = a. Since s has constant length, V x s  E 1/o for all X C TpM. 

Given X E TpM, the vector X ) = s , X  - V x s  E ToZ depends only on p and c~. 

By definition, the horizontal space at a is ~ o  = {X h : X E TpM}. Note that  

the map X ~ X h is an isomorphism between TpM and 7/~ with inverse map 
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Let (U, Xl, x2, x3, x4) be a local coordinate system of M and let (El, E2, E3, E4) 

be an oriented orthonormal frame of TM on U. If (sl, s2, s3) is the local frame 

of A2_TM defined by (2), then 2i = x~ o ~r, yj(~r) = g(a, (sj o ~)(~)), 1 < i < 4, 

I _< j _< 3, are local coordinates of A2_TM on ~r-1(U). For each vector field 

4 

X = ~ X  i 0 

i=l 

on U the horizontal lift X h of X on ~-I(U) is given by 

4 . 

(4) Xh : E(xii= 1 o 7r) - 3 ,  ~= 1 y j g ( ~ x s j ,  .st:) o 7r i)yk" 

Let a C Z and 7r(a) = p. Using (4), and the standard identification T~,(A2_TpM) 
~- A2_TpM 
- , one sees that 

(5) IX h, = IX, + n p ( x  A 

for all (local) vector fields X, Y on M. 

Each point a C Z defines a complex structure Ko on TpM by 

(6) g(IC~X, Y)  = 2g(~, X A Y),  X,  Y • TpM. 

Note that  Ko is compatible with the metric g and the opposite orientation of M 

at p. The 2-vector 2o is dual to the fundamental 2-form of Ko. 

Denote by x the usual vector product in the oriented 3-dimensional vector 

space A2__TpM, p • M.  Then it is easily verified that 

(7) g(R(a)b, c) = -g(T~(a), b x c)) 

for a • A2TpM, b, c • A2__TpM and 

(8) g(a × V, X A l i l Y )  : g(a × V, K o X  A Y) = -g (V ,  X A Y)  

for V • Vo, X , Y  • TpM. 

Following [1] and [6], define two almost-complex structures dl and J2 on Z by 

J n V = ( - 1 ) ~ a × V  f o r V • Y o ,  

JnX  h = (K~X)~ for X • TpM, p -- 7r(a). 

It is well-known [1] that J1 is integrable (i.e., comes from a complex structure), 

if and only if M is self-dual. Unlike J1, the almost-complex structure J2 is never 

integrable [6]. 
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Let ht be the Riemannian metric on Z given by 

ht = ~*g + tg v 

where t > 0, g is the metric of M, and g" is the restriction of the metric of 

A2TM on the vertical distribution 1;. Then ~r: (Z, ht) --+ (M, g) is a Riemannian 

submersion with totally geodesic fibres and the almost-complex structures J1 and 

J2 are compatible with the metrics ht. 
Now denote by D (-- Dt) the Levi-Civita connection of the metric ht on Z. 

Let X, Y be vector fields on M and V be a vertical vector field on Z. Then it is 

easy to see that  at any point a C Z 

(9) (Dxhyh)o = (VxY)  h + ~R(X, Y)a, 

t (R(a x V)X)~. (10) (DvXh)o = 7-l(Dxh V)o = -~ 

Indeed, the first equality follows from (5) and the standard formula for the Levi- 

Civita connection in terms of inner products and Lie brackets. As to the second 

equality, let us note that  D v X  h is perpendicular to any vertical vector field W, 

since D v W  is a vertical vector field. Hence D v X  h is a horizontal vector field. 

On the other hand, [V, X hI is a vertical vector field, hence D v X  h = ?-lDxhV. 
Then ht(DyXh, y h) = ht(DxhV, yh) = _ht(V, DxhYh) and (10) follows from 

(7), and (9). 

3. P r o o f  o f  T h e o r e m  1 

Let us note first that the Euler Lagrange equation (1) for an almost-Hermitian 

structure J on a Riemannian manifold (N, h) can be written in the form 

V*V~(A, B) = V*V~(JA,  JB) 

for every A, B E T N  where ~ is the K~hler form of J.  Further on we shall freely 

identify the 2-forms on N with the corresponding 2-vectors under the standard 

isomorphism A2T*N ~- A2TN induced by the metric h. By the WeitzenbSck 

formula for 2-forms (cf., e.g., [5]) we have 

A~(A, B) - V*V~t(A, B) = 7~(12)(A, B) + Ric(d, JB) - Ric(Jm, B), 

where A is the Laplacian and Ric is the Ricci tensor. Therefore, J is harmonic 

if and only if 

(11) A~(A, B) - A~2(JA, JB) = 7~(~)(d, B) - n (~ ) ( Jd ,  JB) 
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for every A, B E TN. 
Since the vertical spaces of the twistor space Z are 2-dimensional and J~- 

invariant, both sides of (11) vanish on all vertical vectors. Therefore, it is enough 

to consider (11) only in the cases when A and B are horizontal vectors, or A is 

vertical and B is horizontal. 

Denote by gtn,t(A, B) -- ht(JnA, B), n -- 1, 2, the K/~hler form of the almost- 

Hermitian structure Jn on (Z, ht). 

LEMMA 1: Let V be a vertical vector of Z at a point a and X , Y  E TpM, 
p = 7r(~). Then 

(12) A~n,t(xh,  yh)o = g(4__~_~ + 2(_l)nT~(a), X A Y)  + tg(R(X A Y)a,R(cr)a) 

and 

(13) Af~n,t(V, xh)~ = (-1)n+ltg(6Tt(X), V) - tg((VxR)(a),  a × V) 

where A is the Laplacian of the metric h t. 

Proof: Let (El,  E2, E3, E4) be a local oriented orthonormal frame of TM near 

p such that for the local frame (Sl, s2, s3) of A2_TM defined by (2) we have 

sl(p) = a. Let yj(v) = gO-, (sj o 70(v)) , T E A2_, 1 < j _< 3, and set 

(14) 

Then 

(15) 2 0 
0 ÷ y 2 Y 3 £ _ ( l _ Y 3 ) ~ y 3 )  j i  G ---_ (y2 ~_ y22)--1/2(ylY3~y 1 

and (~U,  ~tJ ,  U) is a ht-orthonormal frame of the vertical bundle V near the 

point a such that 

(16) (DuU)a = (DgxuJiU)c~ -- O. 

First we shall prove that 

( 4 a  ) 
(17) 5ea 't(xh' z h ) °  = g T + X A g . 

To do this we shall use the fact (of. [15]) that the differential of f~n,t is given by 

dan,t(X h, yh, V) = g(2V + ( - 1 ) n t ~ ( V ) ,  X A Y); 

(18) d~ , t (A ,  B, C) = 0 

if A, B, C are horizontal vectors, or at least two of them are vertical. 
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This formula, together  with (9), (10), (7), and (16), implies 

4 
•dan,t(X h, rh)a = _ E(DE~di2n,t)(Eh ' X h, yh)o 

i=1 

_ 1 (DaledFt,~ t)(J1U, X h, yh)o (Dvd~n't)(U'xh'Yh)° 7 

_ _ 1 a . ( d a . , , ( U ,  X h, y h ) )  _ l ( j ,U) . (da . , , ( j ,U  ' X ~  yh)) 
t 

= - 7 ( ~ y 2 ) o ( g ( U , ( X A Y ) o T r ) ) + ( - 1 ) n + l  o(g(U,T~(XAY) o~r)) 

(£) t (g(J1U,(XAY) "n')) - ( - 1 )  n+l o o(g(J1U, Ti(X A Y) o 7r)) 
° 

=4g(s,, X A Y) + 2(-1)ng(TC(s,) ,  X A Y), 

in view of (14) and (15). 

To compute  dhgtn,t(X h, Y") we need the following formula (el. [15]): 

(19) (%'tn,t(E) = - tg(YE,  R(a)a) for any E G T~,Z. 

Therefore,  by (5), 

(20) de~n,t(X h, yh) = _(j~n,t([Xh, yh]a ) = tg(R(X A Y)a, R(a)a), 

and then (12) follows from (17) and (20). 

Now let s be a local section of Z such tha t  s(p) = a and VSlp = 0. If V is a 

vertical vector field on Z and X is a vector field on M,  it follows easily from (4) 

tha t  

(21) [X h, V]o = Vx~(V o s), 

where V o s is considered as a section of A2TM. Since D v X  h is a horizontal 

vector field (cf. (10)), we have 

(22) VDx~ v = v x ~ ( v  o ,). 

Then  formulas (18) and (22) imply tha t  

adan,t(V, xh)°  = -- S.pEi(d~n,t( Ei h, V, xh)  ) q- dan,t( (V EiEi) h, V, xh)°  

+ dan,t(Ei h, V x ( V  o s), Xh)o + dfln,t(E, h, 17, ( V & X ) h ) o  

(23) =(-1)n+ltg(aTi(X), V). 
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On the other hand, by (19) and (21), we have 

d~an,dV, X %  = -s.pX(~an,dV)) - ~an,d[< Xh]~) 

= t x O ( v  o 8), n ( s ) ~ ) )  - O ( V x ( V  o ~), R(~)a) 

and using (7) we obtain 

(24) d6ftn,t(V, Xh)o = - tg ( (VxT4) (a ) ,  a x V). 

Thus, (13) follows from (23) and (24). | 

Let Rt be the curvature tensor of (Z, ht). An explicit formula for the sectional 

curvature of (Z, ht) in terms of the curvature of (M, g) was obtained in [4]. Using 

this formula and the well-known expression of the Riemannian curvature tensor 

by means of sectional curvatures (cf., e.g., [10]), one gets easily the following 

lemma. 

LEMMA 2: Let V , W  be vertical vectors of Z at a point ¢r and X , Y  C TpM, 
p = rr(a). Then 

T~t(~n,t)(X h, Yh)G =2[1 + (-1)n+l]g(T~(o'), X A Y) - tg(R(X A Y)o', 1r~(o')o ") 

~Trace{Z  - --+ g ( n ( X  A Z)¢, n ( Y  A IGZ)a)} 

t n (25) ~(-1) Trace{V~ 9 7- --+ g(R(T)X, R(,, x ",-)Y)}, 

where the latter trace is taken with respect to the metric g on )2o, 

n d ~ n , ~ ) ( v ,  x %  = t g ( ( v x n ) ( ~ ) ,  ~ x v ) v  ( 2 6 )  

and 

"]'~t(~n~t)( IV', W)c~ =2[( -1)  n+l + tg(T~(o'), (7)]g(V, (7 × W) 

t 2 
+ F T r a c e { Z  --+ g(R(a  x V ) K o Z ,  R(~r x W)Z)}.  

Now we are ready to prove the theorem. According to (11), and Lemmas 1 

and 2, the almost complex structure Jn is harmonic if and only if the following 

two conditions are satisfied: 

(27) 

4g(T4(a), X A Y - I ( o X  A K a Y )  = 

tTrace{Z -+ g ( R ( X  A Z)a,  R ( Y  A K~Z)cr) 

- g(R(IGx A z)~, R(K~Y A IGZ)~)} 
+ t(-1)nTrace{)2~ 9 v -+ g(R(T)X,R(~r × r )Y)  

- g(R(~)/Gx, n(a x ~)K~}~)} 
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and 

(28) g(~n(KoX),o × V) = (-1)ng(6n(X), V) 

for every o • Z,  V • Vo and X , Y  • T~(o)M. 

We shall prove tha t  condition (27) is equivalent to (M, g) being a self-dual 

manifold. For tha t  purpose first we show tha t  the identity (27) can be expressed 

in terms of the self-adjoint opera tor  

8 
P =  ~ I d + 1 4 _ .  

Note tha t  X A Y - K o X A K o Y  • l;o for every 0 6 Z and X , Y  • T~(o)M, which 

implies tha t  

R ( T ) K a X  = K o R ( r ) X  + g(P(a  × 7), T)K~-X - g ( P ( r ) ,  T)Ko×~-X 

for any T • 1;o, 17] = 1. Let  us note also tha t  Ko o Kr  = - K o × ~ .  Using these 

facts it is easy to see tha t  condit ion (27) is equivalent to the identi ty 

(29) 

t ( l+( -1 )n+l )g (P(v ) ,  o × T)g(P(T),  0) = 

g(P(a) ,  0 × T)[4 + t(--1)n+lg(p(T),  T) -- tg (P(a  × T, 0 × 7)] 

for every o • Z,  7- • 12o, ITI = 1. Replacing (a, T) consecutively by (T, o × T) and 

by (0, 0 × T) in (29), and then adding the identities obtained,  we get 

(30) g ( p ( o ) , ~ ) [ g ( ~ , ( o ) , o )  - g ( p ( ~ ) , T ) ]  = 0, o • z ,  T • v o ,  ITI = 1. 

(3o+4~ 4o=3~ ~ in (30) and using again this identity, Replacing the p a i r ( a , T )  b y \  y , 5 J 

we obtain 

[g(P(c~), 0) - g(P(T),  T)] 2 = 4[g(P(a), r)] 2, 

which, together  with (30), gives 

g ( p ( o ) , o )  = g ( p ( T ) , ~ ) ,  g ( p ( o ) , T )  = 0. 

Thus 

g ( W _ ( a ) , a )  = g ( W _ ( r ) , v )  and g ( W _ ( a ) , T )  = 0  

for every o , r  6 A2TpM,  0 _k T, ]O I = IrI ---- 1,p E M.  Since Trace14_ = 0, this 

implies l/Y_ = 0. 

Conversely, it is obvious tha t  (29) is satisfied, if 14_ -- 0. 
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To analyse condition (28) we recall that 57~ = 25B (-- -dRic) (cf., e.g., [2]), 

so it follows from (3) that  

1 
5Ti(X) = - ~  grad s A X + 26W(X), X E TM. 

Suppose W_ = 0. Since 6W+(X) C A2+TM, we have 

1 
g( 6T~( X ), V) = -~9( X A grad s, V) 

for any V E A2_TM. The latter formula and (8) imply that  condition (28) is 

equivalent (for self-dual manifolds) to the identity 

g(V, X A grad s) = ( -1) '+ lg(V,  X A grad s). 

Obviously, this identity is satisfied if n = 1; for n = 2 it holds, if and only if the 

scalar curvature s is constant. | 

4. R e m a r k s  on the  s tab i l i ty  of  t he  a lmos t - complex  s t r u c t u r e s  J1 and J2 

A harmonic almost-complex structure J on a Riemannian manifold (N, h) is 

called stable if the second variation of the energy functional is non-negative for 

all compactly supported deformations of J through sections of the twistor space 

of (N, h). In [18], C. Wood has given various sufficient conditions for stability of 

a harmonic almost-complex structure. In particular, it follows from [18, Lemma 

4.3 and the proof of Theorem 2.8(4)] that if a harmonic almost-complex structure 

J is integrable and cosymplectic (i.e., 5J  = 0) (resp., (1, 2)-symplectic), then it 
is stable provided the image 7t(~) of the K~ihler form t2 under the curvature 
operator 7~ is a non-negative (resp., non-positive) (1, 1)-form. Moreover, under 

these hypotheses, J is a local minimum of the energy functional on any compactly 
supported variations of J through sections of the twistor space. 

Consider the Atiyah Hitchin-Singer almost-complex structure J1 on the 

twistor space (Z, ht) of an oriented Riemannian four-manifold (M,g). By 

Theorem 1, J1 is harmonic iff (M, g) is self-dual, in which case J1 is integrable 

[1] and cosymplectic (see (19)). Next we shall discuss the non-negativity of the 

(1, 1)-form 7~t(~tl,t) on the twistor space of a self-dual manifold. It is easy to see 

that, in the notations of Lemma 2, we have 

T~t (~l. t)(X h, J1Xh)~ = 4g(T/(c~), X A KoX) 

(31)  [llR(w)Xll2 + IIR(  × w)xll  2 - 2g(R(w)X, KoR(  × T)X)], 
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where r E 12~ is an arbitrary gV-unit vector, 

(32) ~'~t(~l,t)(V, A~h)° : 0 

and 

ts ts 2 

Suppose that  the (1, 1)-form T~t(~l,t) is non-negative. Then it follows from (31) 

and the Cauchy-Schwartz inequality that  g(T~(a), X A K ~ X )  > 0 for every a E Z 

and X E T~(o)M which is equivalent to the Ricci operator Ttic = ~sId + 13 being 

non-negative. In particular, s > 0 and next we shall consider only the cases 

when s = 0, or s > 0 everywhere on M. If s -- 0, then the self-adjoint operator 

13 is non-negative, and so B = 0, since Trace13 = 0. Thus M is a self-dual Ricci 

flat manifold and, by a result of Hitchin [11], if it is compact,  then either M is 

flat or its universal covering is a K3-surface with a Calabi-Yau metric. If  s > 0 

everywhere on M and M is compact,  then by a result of P. Gauduchon [8] (see 

also [14]) either M is diffeomorphic to the connected sum nCIP 2, 0 < n _< 3 

(nCP 2 -- S t for n = 0) or its universal covering is the Riemannian product 

R× S 3. Moreover, if the Ricci operator ~ i c  is positive, then (M, g) is conformally 

equivalent to S 4 or CP 2 with their standard metrics. 

The aforementioned results lead us to consider the question, whether the 

(1, 1)-form ~T~t(~l,t) is non-negative in the following cases: 

(a) (M, g) is a self-dual Einstein manifold with non-negative scalar curvature. 

In this case, by (31), (32) and (33), 7~t(~l,t) is non-negative, if and only if 

0 <_ ts < 12(1+v~) .  Thus, if s = 0, the Atiyah-Hitchin Singer complex structure 

J1 is stable harmonic with respect to any metric ht, t > 0, on the twistor space 
12 v/2). In Z; if s > 0, then J1 is stable with respect to ht provided 0 < t < 7 ( 1  + 

both cases J1 is a local energy-minimizer. 

By a result of Hitchin [12] and Friedrich-Kurke [7], the only compact self-dual 

Einstein manifolds with positive scalar curvature are S 4 and CP 2 with their stan- 

dard metrics. The respective twistor spaces (Z, J1) are the complex projective 

space C~ 3 and the complex flag manifold F1,2, and the metrics ht for t = 12/s 

coincide with their standard K/ihler metrics. So it seems interesting to find all 

t > 0 for which the complex structures of C~ 3 and F1,2 are stable harmonic with 

respect to the metric hr. 

(b) The universal covering of (M, g) is R × S 3 with the product metric. 

We may assume, without loss of generality, that  M = ]R × S 3, where S 3 is 

endowed with the round metric of scalar curvature s = 6. Let a E 27 and 
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zr(~r) ---- (r,a).  For X C T~(~)(R x $3), denote by X '  the projection of X on the 

space TaS u A K o T a S  3. Then it is easy to compute by means of (31) that 

T~t(~l,t)(~h, j1 xh)  = 2 ( 2 -  ~)  [[X'[[ 2. 

Therefore, in view of (32) and (33), T~t(~l,t) is non-negative, if and only if 

0 < t _< 2(1 + x/2), so for these values of t, J~ is stable harmonic with respect to 

the metric ht (in fact, a local minimum of the energy functional). 

(c) M is diffeomorphic to 2CIP 2 o r  3C~ r2 . 

In [13], C. LeBrun has associated a conformal class Cp~ ..... p~ of self-dual metrics 

on nCP 2 to any configuration of points {Pl . . . .  ,Pn} in the hyperbolic 3-space. 

Each of these classes has a representative of positive scalar curvature [13]. More- 

over, by a result of LeBrun-Nayatani-Nit ta  [14], every conformal class C re,p2 on 

2 C ~  2 contains a metric with strongly positive Ricci curvature and non-negative 

Rieci operator T~ic. It is not known to us, however, whether 2CI? 2 and 3CP 2 ad- 

mit self-dual metrics for which the (1, 1)-forms 7~t(~a.t) on their twistor spaces 

are non-negative. 

As is well-known, the Eells-Salamon almost complex structure J2 is never 

integrable and it is (1, 2)-symplectic with respect to ht, if and only if the base 

manifold (M, g) is Einstein and self-dual. Moreover, if such a manifold is compact 

and st = 6, then (M, g) is isometric to S 4 or Cl? 2 ([12, 7]) and J2 is a nearly- 

Kiihler structure on C]? 3 or F1,2 such that Tit(~t2,t) = ~ ~ Having in mind "~ 2,t" 

that the standard almost-complex structure of S 6 has similar properties and is 

unstable harmonic [17], it is tempting to ask whether the same holds for the 

Eells Salamon almost complex structure J2 on ~ 3  and F1,2. 
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