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1. I n t r o d u c t i o n  

The group of all MSbius transformations of the extended complex plane C = 

C (2 {c~} is isomorphic to PSL(2, C) = SL(2, C)/{:t:I}. The Poincar~ extension 

gives the action of this group (as the group of all orientation preserving isometries) 

on hyperbolic 3-space 

H 3 : { ( z , t ) l z e C ,  t > 0 }  

with the Poincar~ metric 
ds 2 - Idzl 2 + t 2 

t 2 

Study of two-generator subgroups of PSL(2, C) and discreteness conditions 

for them has a rich history (see [2, 7, 8, 11], [15]-[20] and references therein). 

Criteria for discreteness are known for elementary groups (see [1, 25]) and for 

two-generator groups with invariant plane (see [6, 12, 13, 24, 28, 29, 30] for 

Fuchsian groups and [23] for groups containing elements reversing orientation of 

invariant plane). 

As for non-elementary groups without invariant plane, in most papers either 

only necessary or only sufficient conditions for discreteness of such groups are 

given. 

It is well known that as parameters for two-generator subgroup ( f , g )  of 

PSL(2, C) one can take 

7) = 7( f ,  g)), 

where 3( f )  = t r 2 f -  4, 7 ( f , g )  = t r [ f , g ] -  2. Further, if 7 # 0 then ( f , g )  

is uniquely determined by the parameters up to conjugacy [8]. In [7], Gehring, 

Gilman, and Martin suggest the investigation of the class of two-generator groups 

with real parameters: 

n ' P  = {F = ( f ,g)[ f , g  e PSL(2, C); /~,~',7 e R}. 

The groups that belong to this class we call 7~P groups.  In [7] necessary 

conditions on the parameters for the discrete ~ P  groups are obtained. 

In Subsection 2.1 we obtain an exact geometric equivalent of the condition 

(fl, ill, 7) E R 3. Moreover, we characterize all non-elementary 7~P groups without 

invariant plane (Theorem 4). In Table 1 (Subsection 2.1) we distinguish 12 cases 

of such groups. Cases 1-6 were investigated earlier [17]-[20], and we include 

the list of parameters that correspond to the discrete groups in these cases (see 

Appendix: Table 2 and Remark 2). 



Vol. 128, 2 0 0 2  DISCRETENESS CRITERIA FOR R'P GROUPS 249 

Our main result is Theorem A in Section 3 which gives the complete description 
of the discrete TCP groups in Case 7 for an even order elliptic generator. Case 7 
with an elliptic generator of odd order is the topic of coming paper [21]. This will 
complete the full description of 7~P groups with non-~-loxodromic generators. 

(For the definition of ~-loxodromic see the third paragraph in Subsection 2.1.) 
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2. Preliminaries 

2.1 GEOMETRIC MEANING OF THE PARAMETERS. Let f and g be elements of 

PSL(2, C). Parameters (/~(f),/3(g),7(f, g)) have a definite geometric meaning 
that  we clarify in this section. 

All theorems in the section can be easily proved and, perhaps, are known. 

However, we have not come across them and include the proofs for the reader's 

convenience. 

Recall that an element f E PSL(2, C) with real ~(f)  is ell iptic,  parabol ic ,  

hyperbol ic ,  or 7r-loxodromic according to whether ~(f)  • [-4, 0), /~(f) = 0, 

~( f )  • (0, +c~), or fl(f) • (-cx~, -4) .  I f~ ( f )  ~ [-4, cx~), then f is called strictly 
loxodromic .  Among all strictly loxodromic elements only ~-loxodromics have 

real Z(f). 
Let f , g  • PSL(2, C), fl(f) # 0,/~(g) ¢ 0. Assume further that F ixf  # Fixg 

where Fixh denotes the fixed point set in C of a transformation h. The condition 

~(f)  • 0 (analogously, ~(g) # 0) is equivalent to the fact that  f (resp. g) has two 

fixed points in C. We normalize f and g (i.e., conjugate them by an appropriate 

element of PSL(2, C)) so that 0 and c~ are the fixed points of f in C; and g fixes 
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1 and z = x + iy, z # 1. Then (see [25]): 

aod ) f 

We compute 

Z Z 
~ ( f ' g )  - (z  - 1)5 (t - t - 1 ) ~ ( s  - s - l )  ~ - (z  - 1) 2 / ~ ( I ) / ~ ( g )  

Thus we have proved the following 

LEMMA 1: Let f , g  e PSL(2, C), /~(f)  ¢ 0,/~(g) ¢ 0, and Fixf  ¢ Fixg. Then 

Z 
(1) 7( f '  g) - (z - 1) 2/~(f)/3(g), 

where z C C \  { 1} is a fixed point of g when f and g are normalized as above. 

The lemma above means, in particular, that if the axes of f and g are fixed, 

then 7(f ,  g)/(fl(f)/~(g))is a constant (it does not depend on the type of elements 

f and g). 
The next three theorems characterize the relative position of the axes or invari- 

ant planes of two elements with real/~(f) and fl(g). We start with non-parabolic 

elements. 

THEOREM 1: Let f and g be elements ofPSL(2, C), and let /3(f)  and/~(g) be 

non-zero real numbers. Then: 

(i) -y(f, g) is real i f  and only i f  the axes o f f  and g either lie in one hyperbolic 

plane or are mutually orthogonal skew lines. 

(ii) v ( f , g )  is real  and ~ ( / , g ) / ( / ~ ( f ) / 3 ( g ) )  > -¼ if and only iS there 
exists a hyperbolic plane containing the axes of f and g. Moreover, i f  

7( f ,  g)/(~(f)/~(g)) > 0 then the axes are disjoint, if  T(f ,  g)/(/3(f)13(g)) : 0 

then the axes of f and g are parallel or coincide, if - 1 / 4  < 
~/(f,g)/(~(f)j3(g)) < 0 then the axes intersect non-orthogonally, and if 

"y(f , g) / (/~(f )/3(g) ) = - 1 / 4  then they intersect orthogonally. 

(iii) ~(f ,  g) is real and ~(f,  g)/(fl(f)/3(g)) < - 1 / 4  if and only if  the axes of f 

and g are mutually orthogonal skew lines. 

Proof: The case that f and g have a common fixed point in C is equivalent to 

the condition tr[f,g] = 2, or ~/(f,g) = 0 (see [1], Theorem 4.3.5); and there is 

nothing to prove. Therefore, we assume that F ixf  and Fixg are disjoint. Using 

Lemma 1 for normalized elements, we have 

Z 
~/( f , g) (z - 1) ~ / ~ ( f ) / 3 ( g ) '  
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where z E C,  z ¢ 1. 

Taking into account  tha t  f l ( f )  and ~(g) are non-zero real numbers ,  we see tha t  

~/(f, g) is real if and only if z / ( z  - 1) 2 e R ~ y = 0 or Iz[ = 1 (z ¢ 1). 

Since y = 0 if and only if the axes of f and  g lie in a hyperbol ic  plane, and 

Izl = 1 if and only if the axes of f and g are mutua l ly  orthogonal ,  we conclude 

the proof  of  (i). 

I t  can easily be checked tha t  y = 0 (i.e., z = x is real) if and only i f z / ( z  - 1) 2 > 

- 1 / 4 .  To prove (ii) we note tha t  x > 0 (x = 0, x < 0, x = - 1 )  means  

tha t  the axes of f and g are disjoint (resp. parallel,  intersecting, or intersecting 

orthogonally) .  

Fur thermore ,  z / ( z -  1) 2 < - 1 / 4  if and only if [z[ : 1 and z ¢ +1.  This  

completes  the proof  of the theorem. | 

We next  take up the case tha t  one of two elements is parabolic.  

THEOREM 2: Let f and g be non-trivial elements of  PSL(2,  C)  such that f l( f)  

is non-zero real number ,  ~(g) = O, and 7 ( f ,  g) ¢ O. Then: 

(i) ~/(f, g) is real i f  and only if  there is an invariant plane of 9 which either 

contains the axis o f f  or is orthogonal to the axis o f f ;  

(ii) 7 ( f ,  g) is real and 7( f ,  g)//~(f) > 0 i f  and only if  the axis of f lies in an 
invariant plane of g; 

(iii) ~/(f, g) is real and ~/(f, g ) /~ ( f )  < 0 i f  and only i f  the axis o f f  is orthogonal 

to an invariant plane of g. 

Proof: The condit ion 7 ( f ,  g) ¢ 0 means  tha t  f does not  fix the fixed point  of 

g. We can normalize f and g so tha t  0 and 1 are fixed points  of f ,  and oc is the 

fixed point  of g. Then  we have 

( 0) (10 tl) f =  s - s  -1 s -1 and g =  

An easy computa t ion  now yields 

(2) 7 ( f ,  g) = t2~( f )  • 

The  rest of the proof  is left to the reader.  | 

Finally, we consider the case where bo th  elements are parabolic.  

THEOREM 3: Let f and g be two parabolic elements ofPSL(2 ,  C) ,  that is, f and 

g are non-trivial and/~(f) = fl(g) = O; and let V(/,  g) ~ O. Then: 
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(i) ~/(f,g) is real i f  and only if  either f and g have a common invariant plane 

or one of the invariant planes of f is orthogonal to all invariant planes of 

g. Moreover, 

(ii) ,),(f, g) is a positive real number i f  and only if  f and g have a common 

invariant plane; 

(iii) ~/(f, g) is a negative real number if and only if g has an invariant plane that 

is orthogonal to all invariant planes of f .  

Remark 1: Conclusion (iii) implies that f has an invariant plane orthogonal to 

all invariant planes of g if and only if g has an invariant plane orthogonal to all 

invariant planes of f .  

Proof: Since 7(f ,  g) ~ 0, f and g have different fixed points. Normalize f and 

g so that 

where t E C\{0}.  Notice that ~ is the fixed point of f ,  and 0 is that of g. 

Moreover, invariant planes for f are Euclidean half-planes that are parallel to 

the radius-vector with end point z = t, and invariant planes for g are the plane 

{Imz = 0} and all Euclidean hemispheres which are tangent to this plane at 0. 

We compute 

7(f ,  g) : t2. 

Hence 7 ( f ,g )  is real if and only i f t  is real or t = is, s C R. I f t  is real then 

{Imz = 0} is a common invariant plane for f and g; if t = is (s C R), then 

{Imz = 0} is orthogonal to all invariant planes of f .  Moreover, if t 2 ~ R then 

f and g have no common invariant plane, but each invariant plane of f (except 

that passing through the fixed point of g) is orthogonal to only one invariant 

plane of g. 

To conclude the proof it remains to note that -y(f, g) > 0 if and only if t is 

real, and 7(f ,  g) < 0 if and only if t = is, s • R .  | 

We now consider 7~P groups (two-generator groups with real parameters, 

see Section 1). Their generators are various combinations of elliptic, parabolic, 

hyperbolic, and ~r-loxodromic elements (real ~ and ~t determine the type of the 

generators). Conclusions (i) in Theorems 1-3 show us what it means for ~ also 

to be real. 

We conclude this section with characterization of those 7~P groups that are 

"truly spatial" (i.e., non-elementary without invariant plane). One can easily 

obtain the complete list of such groups by analyzing conclusions (ii) and (iii) in 
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Theorems 1-3 for various types of generators. We distinguish 12 cases listed in 

Table 1. 

Table 1. Non-elementary 7¢7' groups without invariant plane 

# 

1 (-4,0) 

2 (-4,0)  

3 0 

4 0 

5 (0, + ~ )  

6 (-4,0) 

7 (-4,0) 

8 ( - ~ , - 4 )  

9 (-oc,  -4)  

10 (-co,  -4)  

11 ( - o o , - 4 )  

12 ( - o o , - 4 )  

/3' 7 

(-4,0)  (-oc,-¼/3/3') 

0 (-~,0) 

o (-~,0) 

(0, +~) (-~, o) 

(o, +~) ( -~ , -¼~' )  

(0, + ~ )  (-oc, 0) 

(0, +~) (o,- ¼##') 

0 (o, +~) 

(o,+~) (1##,,+~) 

( - o c , - 4 )  (-oc,  -¼#/~') 

( -4 ,0 )  1 , (-~#/3,0) 

(-4, 0) (0, + ~ )  

An easy modification of the table yields the following. 

THEOREM 4: Let F = (f ,g} be an R P  group. F is a non-elementary group 

without invariant plane if and only if 

(-1)k7 < (-1)k+l/~#'/4, 7 # 0, # # -4,  and #' # -4 ,  

where k E {0, 1, 2} is the number of Tr-loxodromic elements among f and g. 

2.2 POLYHEDRA AND LINKS. A plane divides H 3 into two components; we will 
call the closure of either of them a half-space in H 3. 
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A connected subset P of H 3 with non-empty interior is said to be a ( convex)  

p o l y h e d r o n  if it is the intersection of a family 7-I of half-spaces with the property 

that  each point of P has a neighborhood meeting at most a finite number of 

boundaries of elements of 7-/. 

Del~nition: Let P be a polyhedron in H 3 and let OP be its boundary in t t  3. In 

(1)-(3) below we define the link for different "boundary" points of P (cf. [3]). 

(1) Let p E OP. Let S be a sphere in H 3 with center p, whose radius is chosen 

small enough so that  it only meets faces of P which contain p. Such a sphere 

exists by the local finiteness property we claim in the definition of a polyhedron. 

There is a natural  way to endow S with a spherical geometry identifying S with 

S 2 as follows. Map conformally n 3 onto the unit ball B 3 -- {x E R 3 [ I x] < 1} so 

that  p goes to 0 and after that  change the scale of the sphere to be of radius 1. The 

l ink of p in P is defined to be the image of S n P under the above identification 

(it is well-defined up to isometry). 

(2) Let OP be the closure of OP in ~ 3  = H3 U C. Suppose OP\OP ¢ 0, and 

let p E OP\OP. Then p E C (i.e., it is an ideal point). Let S be a horosphere 

centered at p that  only meets those faces of P whose closures in ~ 3  contain p. 

We can identify S with Euclidean plane E 2 using an isometry of H 3 that  sends 

p to c~. The image of S A P under such identification is called the l ink  of the 

ideal boundary point p in P.  Note that  such a link is defined up to similarity. 

(3) Suppose that  there exists a hyperbolic plane S orthogonal to some faces 

F1,..., Ft of P,  and suppose that  the other faces of P lie in the same open half- 

space which is bounded by S. If t > 3 then we say that  S corresponds to an 

i m a g i n a r y  v e r t e x  p of P; and we define the l ink of p in P to be S M P.  

Notice that  the link of a proper (lying in I-I3), ideal, or imaginary vertex p in 

P is a spherical, Euclidean, or hyperbolic polygon, respectively. 

The surface S in the definition of a link is orthogonal to all faces of P that  

meet S; hence the group generated by reflections in these faces keeps S invariant 

and can be considered as the group of reflections in sides of spherical, Euclidean, 

or hyperbolic polygon in accordance with the type of the vertex. 

We denote the triangle with angles 7r/p, 7r/q, and 7r/r in any of spaces S 2, E 2 

or H 2 by (p, q, r). 

3. M a i n  T h e o r e m  

We give here a criterion for discreteness of the 7~P group ( f ,g) ,  where f is an 

elliptic element of even order n > 2, g is a hyperbolic element and their axes 

intersect non-orthogonally (Theorem A). 
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It  is easy to see tha t  if f is a non-pr imit ive  elliptic element of order n, i.e., 

ro ta t ion  through an angle of 27rq/n (1 < q < n /2 ) ,  then  there exists an integer 

r _> 2 such t ha t  f r  is a pr imit ive elliptic element of the same order n (such an r 

satisfies the condit ion rq = 1 ( m o d n )  and exists because (n, q) = 1). I t  is clear 

tha t  ( f , g )  = ( f r , g ) .  Therefore,  we assume wi thout  loss of generali ty tha t  f is 

primitive.  

THEOREM A: Let f be a primitive elliptic element of even order n (n >_ 4), g 

be a hyperbolic element, and let the axes of  f and g intersect non-orthogonally. 

Then: 

(1) there exist elements hi ,h2 • PSL(2,  C) such tha t  h21 = g f g - l f ,  h22 = 
fn/2g--l f g f - n / 2 g f - l g - 1 ,  ( f h ~ l )  2 __ 1, (h2gfg-1) 2 -- 1; and 

(2) F = ( f  , g) is discrete if  and only if  one of the following conditions is satisfied: 

(i) hi is hyperbolic, parabolic or a primitive elliptic element of even order 

m (1/n + 1 /m  < 1/2), and h2 is hyperbolic, parabolic or a primitive 

elliptic element of order I > 3; 

(ii) hi is a primitive elliptic element of odd order  m (1/n + 1 / m  < 1/2) 

and h2hl is hyperbolic, parabolic or a primitive elliptic element of 

order k > 3; 

(iii) n -- 4, hi is a primitive elliptic element of odd order  m >_ 5, and h2hl 

is the square of  a primitive elliptic element of the same order m. 

Proof." Our  proof  proceeds in three stages. In par t  1, we construct  a group I?* 

where F and F* are s imultaneously discrete or non-discrete; in pa r t  2, we show 

tha t  (i) implies the discreteness of  F*; and in pa r t  3, we assume tha t  (i) does not  

hold. 

1. We s ta r t  with construct ion of a group F* containing F as a subgroup of 

finite index. Our  dis tant  goal is to work with a group genera ted by reflections in 

faces of some polyhedron.  Of  course, the group we find to work with should be  

discrete if and only if F is. 

Let f be a pr imit ive  elliptic element of even order n _> 4, g be a hyperbol ic  

element,  and let their  axes intersect non-orthogonally.  We denote elements  and 

their  axes by the same let ters when it does not lead to any confusion. Let  w 

be a plane containing f and g, and let e be a half- turn with the axis which is 

or thogonal  to w and passes through the point  of intersection of f and g (see 

Figure 1). 

Let e]  and eg be half- turns such tha t  f = eye and g -- ege. Axes ef  and 

e lie in some plane, denote it by e, and intersect at  an angle of  ~r/n; e and 
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are mutually orthogonal; eg is orthogonal to w and intersects g, moreover, the 

distance between eg and e is equal to half of the translation length of g. 

Figure 1. 

Consider e and (e, el} (see Figure 1). The group contains elements e, e I = fe ,  
f2e,  f3e,  . . . .  Each element fke ,  k = 0, oc is a half-turn with axis lying in ~. 

Since n is even, in (e, el)  there exist elements 

el = f'~/2-1e and e2 -- f'~/ee, 

and the axis of e2 coincides with the line of intersection of w and c (because the 

line is orthogonal to e). 

Note that  f -= R~Rc~, where ~ is the plane through f and el (we denote the 

reflection in a plane ~ by R~). It  is clear that  c~ intersects w at an angle of 7r/n. 

Define F = <f, g, e) and F* = (f,  g, e, R~). It  is easy to show that  F = F t.J Fe. 

If  e E F then F = F, and if e ¢ F then F is a subgroup of index 2 in F. As 

we will see, both possibilities are realized. Since, moreover, F is the orientation 

preserving subgroup of index 2 in F*, the groups F, F, and F* are either all 

discrete or all non-discrete. 

Consider F*. It  is clear that  

F* -- ( f ,g ,e ,  Rw> =- <el,e2, eg, R~> -- <eg, R~ ,R~ ,R , ,  >. 

2. We now prove that  (i) implies discreteness of F* and, consequently, discrete- 

ness of F. More precisely, we first construct a polyhedron P which under some 

additional hypotheses is a fundamental polyhedron for F*. Then we reformulate 

the hypotheses concerning P in terms of some conditions on elements of F. 
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I t  is easy to see that  there exists a plane 5 which is orthogonal to planes (~, 

w, and eg(a). Such a plane passes through the common perpendicular to f and 

eg(f) orthogonally to w. I t  is clear that  eg C 5. Let P be a polyhedron bounded 

by c~, w, eg(c~), 5, and e. Note that  P can be compact or non-compact. Figure 2 

shows P under the assumption that  it is compact. 

n 

Figure 2. 

If a polyhedron has a dihedral angle of 7rip (p is not necessarily an integer), 

we label the corresponding edge by p in figures; if p = 2 we omit it. Our P has 

five right dihedral angles, two angles (formed by w with c~ and eg(a)) of 7r/n, 
where n is the order of f .  Planes c~ and eg(ct) as well as c and eg(a) can either 

intersect, or be parallel, or disjoint. Denote the angle between c and eg(c~) by 

7r/l, where l • (2, oc) t2 {oo, ~ }  (we use the notation rr/oc and 7 r / ~  for parallel 

and disjoint planes, respectively). The angle between c~ and eg(a) we denote 

by 2Trim, where m • (2, co) t2 {oo ,~ } ,  1In + 1/m < 1/2. One can see that  

such a polyhedron P can be constructed in H 3 for all values of m and l under 

consideration. Moreover, P is uniquely determined by its dihedral angles in case 

when m ~ ~ ,  1 ~ ~ .  Otherwise, if in addition we specify the distance between 

the disjoint planes corresponding to m = ~ or 1 = ~ ,  we obtain uniqueness. 

I t  is clear that  i l l  and m/2 are integers, oo or-~, then P and elements eg, 
R•, Ra, R~, and R~ --- egRaeg satisfy the conditions of the Poineard Theorem 
[3] and F* is discrete. 

We now seek to rewrite the above conditions as conditions on the generators of 

F. This must be carefully done. It might seem that,  for example, the condition 

"m/2  is an integer" is equivalent to the condition "R~Ra is a primitive elliptic 

element". However, this is not true. If  the dihedral angle of P formed by c~ and 
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eg(a) is equal to ( p -  1)~/p, then R~Rc, is a rotation through the angle 2~/p; 
i.e., it is a primitive elliptic element, but m/2  = p / (p  - 1) is not an integer. 

Therefore, we proceed as follows. Instead of the element 

R~Ra = R(~R,~R~R~ = f ' f ,  (3) 

where 

(4) f !  ! = R~R~ = egR,~egR,~ = egR~R~eg = eg f - l eg  = egefeeg = g fg -1  

t we consider the element hi = R~R~ = RaRe, where ~ is the bisector of (~ and 

eg(a) which passes through e 9. Note that  ~ is orthogonal to w. Clearly, 

(5) h21 = R~R~ and h l f  -1 = R~R~. 

From equations (3) (5), it follows that hi satisfies two conditions: 

(6) h 2 = g f g - l f  and (hi f - l )  2 = 1. 

Conversely, conditions (6) uniquely determine the element hi C PSL(2, C) which 

maps c~ N P into eg(a) A P.  Now hi is a primitive elliptic element of even order 

m (1In + 1/m < 1/2) if and only if the dihedral angle of P corresponding to 

the edge (~ n eg(a ) is equal to 2u/m,  where m/2  is an integer; a and eg(o~) are 

parallel (disjoint) if and only if h~ is parabolic (hyperbolic, respectively). 

Consider the dihedral angle of P between eg(OZ) and s. Since the angle is 

acute (it is equal to ~r/l, where l > 2), the condition " / i s  an integer, oc or ~ "  

is equivalent to the condition R~R,~ is a primitive elliptic element". Denote 

h2 = R~R~ and find its relation to the generators of F. 

h 2 =(R~R~) 2 = (R~R,~R~R~) 2 = (e2f ' - l )  2 

= f n / 2 e g f - l g - ~  f n / 2 e g f - l g - 1  = f n / 2 g - l f g f - n / 2 g f - l g - 1 .  

Condition 

(7) h~ = f n / 2 g - l f g f - , # 2 g f - l g - 1  

determines h2 non-uniquely. Note that h2f'  -- R~R~, therefore, 

(8) (h2gfg-1) 2 = 1. 

It is clear that the other square root (not h2) from the right-hand side of (7) does 

not satisfy (8). Thus, h2, which is responsible for the dihedral angle between 

eg(a) and c, is uniquely determined by (7) and (8). 
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The above shows that P and elements eg, R~, R~, R~ and Re satisfy the 
hypotheses of the Poincar~ Theorem if condition (i) in item (2) of Theorem A 
holds. Therefore, discreteness of F follows from (i). 

Simultaneously we have proved the existence of hi and h2; see conclusion (1) 

of the theorem. 

3. Assume that condition (i) does not hold, but F (and F*) is discrete. Then 

it suffices to investigate two cases: 

(a) m/2 E Z U {e~, ~ } ,  where 1/n + 1/m < 1/2, and l is fractional; 

(b) m/2  is fractional (1/n + 1/m < 1/2); 

and to select all the discrete groups which occur in each of these cases. 

(a) Suppose that m/2 E Z U { c c , ~ } ,  1/n + 1/m < 1/2, and l is fractional. 

Since we suppose that F* is discrete, each of its subgroups is also discrete. Hence 

(R~,R~,R'~) is discrete. The intersection of w, c and eg(a ) forms a vertex V~ 

of P (see Figure 2). Its link in P is either a spherical, Euclidean, or hyperbolic 

triangle (2, n, l) according to whether V1 is a proper, ideal, or imaginary vertex. 

Since the surface S (see the definition of link in Subsection 2.2) is invariant under 
! (R~, R~, R~), we can consider the restriction of the action of this subgroup to S. 

Thus, (R~, R~, R~) acts as the group generated by three reflections in the sides 

of triangle (2, n, l). But there is no such group with n even and 1 fractional that 

is discrete (for E 2 it is a trivial exercise, for H 2 and S 2 see [24, 5]). Thus we 

arrive at a contradiction. Thus, there are no discrete groups F in case (a). 

(b) From here on we assume that m/2  is fractional (1/n + 1/m < 1/2). Since 

F* is discrete, its subgroup (R~, Ra, R~) is also discrete. The latter acts as the 

group of reflections in the sides of hyperbolic triangle (n, n, m/2), which is the 

upper face of P in Figure 2. From the list of all triangles with two primitive 

angles (an angle is said to be primitive if it is of the form 7~/p, where p C Z) that 

generate a discrete group [24], we have that m/2 is fractional if and only if m is 

odd. 

Therefore, F* contains the reflection R~ in ~ that bisects the dihedral angle of 

P at the edge a N eg(a). Moreover, ~ passes through eg; since eg = R~R~, R~ 
also belongs to F*. It is clear that F* is generated by R~, Rh, R~, R~, and R~. 

Le t / 5  be the polyhedron bounded by a, 5, 4, ~, and w; ~/k  be the dihedral 

angle at the edge ( N e, k E (2, oc) U {oc, ~ } .  The other angles of /5  are of the 

form ~/p, where p is an integer (see Figure 3, where dashed lines can be lacking). 
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a 5 

Figure 3. 

If k is also an integer (k >_ 3), co or ~ ,  then F* is actually discrete and /5  is 
! t its fundamental polyhedron. In other words, since ReR~ = R~R~R~R~ = h2hl, 

the discreteness of F* follows from condition (ii) of the theorem. 
It remains to determine if there exist discrete F*'s with k fractional. 

If k is fractional then there are reflections of F* in planes through the edge 

n c which decompose/5. 

Consider the face of /5  lying in w. Planes 5, ~, and ~ are perpendicular to w; 

the plane r I through e and f is Mso perpendicular to w. Reflections R6, R~, R~, 

and R n are elements of F* (Rn = f'#2R~). 
As above, the subgroup (R6,R~,R~,Rn} of F* is discrete. Note that 

(R6, R~, R~, Rn) keeps w invariant, thus reflections in the sides of the hyper- 

bolic quadrilateral with angles ~r/2, 7r/2, 7r/2, and 7r/k must generate a discrete 

group. From [4] there exists a unique reflection line through the vertex with the 

acute angle of the quadrilateral which decomposes it into two symmetric trian- 

gles. Therefore, there exists a bisector ~ of the dihedral angle at ~ n ~ which is 

orthogonal to w and passes through the vertex V2 = c~ N w N 5. 

The link of vertex V3, which is formed by a, ~, and ¢, is a triangle (2, m, k). 

From [24, 5], we could have two different possibilities for the link of V3: 

(P1) each of the triangles with k = m/2, where m > 5 is odd; 

(P2) a triangle with m = 3 and k = 5/2. 

However, case (P2) is impossible, because the reflection plane ~ cuts the triangle 

(2, n, 5/2) off from the link of V2 and since n is even, reflections in the sides of such 

a triangle generate a non-discrete group [5], i.e., (R~, R~, Re) is a non-discrete 

subgroup of F*. We have a contradiction. 
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Consider case (P1). One can see tha t  the link of V2 is divided by two reflection 
planes into three triangles (2, 3, n), whence it follows tha t  n = 4. Further, /5 
is divided into three te t rahedra T[2, 2, m; 2, 3, 4] (see Figure 4). Each of those 
tetrahedra can be taken as a fundamental  polyhedron for F*. 

n = 4  

2 ~ ~ k  = m__.2 

\ \  ! 

Figure 4. 

Thus, in the case that k is fractional we have a unique series of  discrete groups 

corresponding to condition (iii) of the theorem. 

Since we have checked all possibilities for P and selected all the discrete groups, 
Theorem A is completely proved. | 

In terms of parameters (/3,/3', 7), Theorem A can be reformulated as follows 
(see also Remark 2). 

THEOREM B: Let  f , g  C PSL(2, C) , /3  = -4sin2(Tr/n),  n > 4, (n, 2) = 2,/3' > 0, 
1 t and 0 < ~/ < -~/3/3 . 

Then F = ( f ,  g) is discrete i f  and only i f  one o f  the following conditions is 

satisfied: 

(1) 3/ = 2 cos m + c o s  and /3' = 4c°s2(~/0 - 
7 f l '  

1 / n + l / m <  1 / 2 , 1 c Z ,  a n d l > 3 ;  

 (cos +cos ) and /3t > _ ~ ~ , where (m, 2) = 2 and 1 / n +  1/rn < 4_ _ 4~ 

1/2; 

(3) 7 _ > 2(1 + cos ~ )  a n d / 3 ' =  4c°s2(~/0~ - ~ ,  where l C Z and l _> 3; 

( (4) 7_>2 l + c o s  and/3'_> ~ ~ ,  

(5) 2 cos ~ + cos and /3t 4(7-/~)c°s2(~r/k) 4")' where (m ,2 )  = 1, 

1 / n + l / m < l / 2 ,  k E Z ,  a n d k _ > 3 ;  
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(6) y = 2 ( cos ~-2~ ~_ cos ~ )  ~/'ld /~1 _> 4('7-/3)'7 4"7/3, where ('/T/,, 2) = 1 and 

1/n + 1/m < 1/2; 
(7) fl = - 2 ,  "7 = 2 cos(27r/m), and ~ '  = .72 + 47, where m > 5 ~nd (m, 2) = 1. 

Proo~ To prove the theorem it suffices to obta in  values of pa ramete r s  (fl, 3~, ~/) 

corresponding to all discrete groups described in Theorem A. Recall t ha t  we know 

the form of a fundamenta l  po lyhedron  for each discrete group. 

Since f is a pr imit ive elliptic element of order n, we have /~ = t r 2 f  - 4 = 

- 4  sin2(~r/n), where r /n  is the dihedral  angle between w and a.  

Then  we calculate % Note t ha t  t r [ f ,  g] = tr (gf-ag-l f ) .  Moreover,  f -- R~Ra 
and f rom (5) it follows tha t  gf - lg -1  = Ro~R~ = Ra.Ro~, where c~* = Ro~(eg(a)). 
Note tha t  c~* passes through ff  and makes  the angle 7r/n with w symmetr ica l ly  

to how ea(a ) does. Therefore,  g f - l g - l f  = R~.R~ is a hyperbolic element,  and 

7 = t r [ f ,9]  - 2 = 2 ( c o s h d -  1), where d is the distance between ~ and (~*, and 

can be measured  in ~ (we took t r [ f ,  g] = +2  coshd,  because 7 = t r [ f ,  g] - 2 is 

posit ive in case 7, see Table 1 in Subsection 2.1). So, ~ /depends  only on n and 

m. 
Finally, we compute  fl~ = tr  2 g - 4 = 4 sinh 2 T, where T is the distance between 

e and eg which can be measured  in w. 

By s t ra ightforward calculation, using Figure 2, we obta in  cases (1)-(4) from 

Theo rem A(i); using Figure 3, we obta in  (5)-(6) from Theorem A(ii); and finally, 

(7) follows from (iii) of Theorem A. | 

4. Appendix 

The  main  results of [17]-[20] are gathered together  in Table 2. 

Remark 2: For simplicity, in the formulat ion of Theorem B and in Table 2 

all elliptic generators  are assumed to be primitive.  One can use Theorem 2.3 

of [10] for non-pr imit ive  f .  The  theorem says tha t  if f and g are Mbbius 

t ransformat ions  and f is not parabolic,  then ~ ( f r )  = Pr(t3(f)) and "y(ff ,9)  = 

P~ (~(f))~/(f, g)/~(f),  where P~ (z) are shifted Chebyshev polynomials .  

Applying this to our case, we see tha t  when (/~,fll ~/) are pa ramete r s  for a 

group F = (f,g), where ~/ ¢ 0 and ~ = -4sin2(q~r/n) (1 < q < n/2), then 

(~, fl ', ~) are the pa ramete r s  for the same group F, where ~ = -4s in2(Tr /n)  and 

= ( ~ / ~ ) 7  by Gehring and Mart in .  
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T a b l e  2. Non-e lementa ry  discrete  7~P groups wi thou t  invar iant  plane;  

Cases 1 6. Here all  p a r a m e t e r s  n, m, l, p are integers.  

263 

3 - 5  

--4sin ~ ~,  --4sin 2 ~-,~ _4cos 2 ~,  
n_>3 m_>3 cos ~>s in  ~ sin 

- 4  sin ~ ~, - 4  si .  ~ ~ ,  ( - o c ,  - 4 ]  
n>_3 m>3 

--4 sin 2 ~,  
n>_7, (n ,2)=l  ~ - 4  - 2/~ 

--4 sin 2 ~ ~' 0 -4c°s2 ~ T, 
n>3 l>3 

-4s in2  ~ '  0 ( - -00~--4]  
n_>3 

[0,-~-OO) [0, ~-(:X~) - 4  cos 2 ~-, 
l>3 

[0, +oc )  [0, +oc )  ( - o c , - 4 ]  

--4 sin2 ~ '  (0,-~-00) --4 c°s2 ~ '  
n>3  l>3 

- 4  sin 2 ~,  (0, +OC) (--OC, --4] 
n~3  

--4 sin 2 ~,  4(/3+4) cos 2 ~--4,  - 4  - 2/~ 
n>5, (~,2)=1 p_>4 

--4sin ~ ~, 
. > 5 ,  (n,2):1 [4(9 + 3),  + ~ )  - 4  - 2/3 

2~r - 3  cos 2 p/(1--cos  ~)2--4, - 4  cos 2 5 
p_>3 

27r -3 [ 1 / ( 1 -  cos ~)2 - 4 , + o c )  - 4 c o s  2 
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