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ABSTRACT 

We consider the  solutions of the  First  Painlev~ Differential Equa t ion  w" = 

z + 6w 2, common l y  known as First  Painlev~ Transcendents .  Our  ma in  

resul ts  are the  sharp  order e s t ima te  )~(w) _< 5/2,  actual ly  an  equality, and  

sharp  es t ima tes  for the  spherical  derivatives of  w and  f (z)  = z - lw(z2) ,  
respectively: w#(z)  = O(Izl 3/4) and f # ( z )  --- 0(Izl3/2). We also deter- 

mine  in some detail  the  local a sympto t i c  d is t r ibut ion  of poles, zeros and  

a-points .  T he  me t hods  also apply  to Painlev~'s  Equa t ions  II and  IV. 

1. I n t r o d u c t i o n  

The Painlev~ transcendents are solutions of PainlevS's differential equations (I), 
(II) and (IV). Every local solution admits unrestricted analytic continuation, 
and hence is a meromorphic function in the complex plane. Recent proofs of 
this Painlev~ result [14, 15] can be found in the paper [9] by Hinkkanen and 
Laine for equations (I), (II), and, by different methods, in the author's paper 
[23] for equations (I), (II) and (IV). We will present our results in detail only for 

Painlev~'s first equation 

(I) w" = z + 6w 2, 

but note that the methods apply in cases (II) and (IV) as well; see Section 6 for 

more details and hints. 

Received August 23, 2000 

29 



30 N. STEINMETZ Isr. J. Math. 

In a remarkable paper which has appeared in two parts, P. Boutroux [3] has 

given a detailed description of the value distribution, and, in particular, of the 

distribution of poles of the Painlev5 transcendents. In a former paper [2] he had 

established estimates for the order of growth of the first and second transcendents. 

His papers, however, are hard to read, one reason certainly being that  they were 

written in the typical style of that  time, the beginning of the twentieth century. 

They also contain a lot of reasoning, which can hardly be understood. Thus, 

there is reasonable doubt about Boutroux's methods; details can be found in 

Appendix B. 

It  is thus small wonder that  several authors* made a t tempts  to prove, for 

example, an estimate like A(w) < 3 for the order of growth, although Boutroux 

had stated that  the exact order is 5/2**. We mention the book of Hille [8], the 

paper(s) of Schubart and Wittich [21], and Wittich [24]; see also Laine's book 

[11]. All these a t tempts  failed by different reasons. What  is definitely known for 

the first transcendents is the lower estimate A(w) > 5/2, which can be found in 

the paper [12] due to Mues and Redheffer. 

Our paper  is organized as follows. In Section 2 we describe the main tool, and in 

Section 3 the order estimate A(w) _< 5/2 is established. The methods developed 

there yield a lot of results about the value distribution of the first Painlev6 

transcendents and information on their spherical derivatives w # in Section 4. 

In Section 5 asymptotic  distribution of zeros and poles is discussed. In Section 

6 we describe how to adapt  the methods for the requirements of equations (II) 

and (IV). In Appendix A we discuss the differential equation y,2 = Q(y)  for the 

convenience the reader, while Appendix B is devoted to Boutroux's  papers. 

2. T h e  m a i n  t oo l  

In the present section we will describe our main tool. It  is always assumed, 

without further notice, that  w is some fixed solution of Painlev~'s first equation 

(I). If z0 ¢ 0 is a regular point of w, then we define a loca l  scale  with unit 

(1) r(zo) -- min{Iw(zo)l -~/2, Iw'(zo)I -~/3, Izol -~/4 } 

* Caution: A Zentralblatt check (July 4, 2000) for the period 1990-1999 yielded 
355 items having Painlev~'s name in the title. 

** Note, however, that Boutroux had no definition at hand for the order of a mero-  
morphic  function. The order was defined only 20 years later in R. Nevanlinna's 
fundamental paper Zur Theorie der meromorphen Funktionen, Acta Mathemat- 
ica 46 (1925). Boutroux himself only made statements about the order of certain 
entire functions, e.g., he showed that E in w -- - ( E ' / E ) ' ,  w a first transcendent, 
has order of growth ~ -= 5/2. 
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(0-1/2 7__ 0 - - 1 / 3  : -~-(X)). Then what we need is the following form of the theorem 

on analytic dependence on parameters and initial values: 

MAIN LEMMA: Suppose (Zn) is a sequence of regular points with z~ -+ oo and 

sequence of scaling units (rn), rn = r(Zn), such that the limits 

(2) Yo = lira r2w(z,,), y~ = lira r3wt(Zn) and a = lim r4z~ 

exist. Then, if y denotes the unique solution of the initial value problem 

(3) y" = 6y 2 + a, y(0)  = Yo, y'(0)  = y~, 

we have, with respect to the spherical metric, 

(4) r2w(z,~ + r,,z) ~ y(z) 

as n -+ cx~, locally uniformly in C. 

Remark: We note the trivial but important fact that the limit function y cannot 

vanish identically, since max(ly(0)l, ly'(0) l, lal} = 1. Also, the rate of convergence 

is O(lyn(O ) - -  y(O)l + ly~n(O) - y'(O)[ + la - r4znl + rh). 

Proof'. Set 

(5) 

so that 

(6) y" -- + + 

i 0 and max{ly~(0)l, lye( )1, Iz~r41} 1 hold. By analytic dependence on initial 

values and parameters we have 

y,~(z) -~ y(z) 

in a neighbourhood of z = 0, and locally uniformly in C by Poincar~'s result; 

see, e.g., Bieberbach [1], p. 14, or the books of Golubew [4], Hille [7, 8] and 

Ince [10]. | 

Remark: The "Ansatz" (5) is strongly suggestive of the Pang version of the so- 

called Zalcman or re-scaling Lemma (see [26], [16], [17]). It will, however, turn 

out that  the limit function y may be a non-zero constant, which is excluded by the 

Zalcman-Pang Lemma. There is thus reasonable doubt whether the Zalcman- 

Pang method applies in this case, but there is no doubt that I was inspired by 
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this method. It should also be mentioned that perhaps the first most successful 

application of re-scaling methods was performed by Painlev~ himself when classi- 

fying the second-order differential equations without movable singularities other 

than poles! 

3. T h e  o r d e r  o f  g r o w t h  

We start with a technical lemma. 

LEMMA 1: Let  (qn) be a sequence o f  zeros o f  w,  and (zn) be any other sequence 

such that Jz~ - q~l - o(r(z~)) .  Then r(z , )  = O(~(q~)).  

Proo£" We apply the Main Lemma to the sequence (q,~) with scaling unit 

Pn = r(qn), where we assume that  the limits Y0 = limn-~oo p2w(qn) = 0, ~ = 
limn--,oo 3 t pnw (q~) and ~ lim~-~oo 4 = Pnq~ exist (choose a subsequence, if neces- 

sary). Then, besides the asymptotics (4) with r~ = r(Zn), we also have the 

asymptotic relation p2nw(qn + pnZ) --+ ~I(Z). Note that ~) is non-constant, this 

following from ~)(0) = 0. This is also true for y, since with ~,~ = (qn - z,~)/r~ --~ 0 

we have y(0) = l i m n ~  r2w(zn)  = limn--,oc r2nw(zn + r n e n ) =  0 by uniform con- 

vergence. Since both functions are non-constant, they have poles w and ~-, say 

(see Appendix A), of smallest modulus, and so by Hurwitz' Theorem w has poles 

at zn + rnWn and qn + pn7"n, Wn --~ w and W~ -+ T, respectively. Thus, 

~,~Io, I <Iz~ - (q.  + p ~ ) !  + o (~ . )  + o(p,,) 
<p~I~I + o(r,,) + o(p~), 

and hence r(z,)  < 2 I~l,t-  ~ _ - Io~l-~nj, n > no, follows. I 

Let (q~) denote the sequence of zeros of w, and let ~ > 0 be any positive 

number. Then Q(e) will denote the neighbourhood 

Q(e) = U { z :  [ z -  q~l < er(qn)} 
n 

of the sequence (q,~). Our first application of the Main Lemma will be 

PROPOSITION 1: Let  w be a solution o f  (I). Then given e > 0, the expression 

lw' (z) l]w(z)1- 3/2 is bounded outside Q(e). In particular, the spherical derivative 

w # ( z )  = Iw'(z)l(1 + lw(z)]2) -1 is bounded there. 

Proo~ Suppose (zn) is any sequence such that 0 < Izn] -~ c~ and 

2 < l~/(z~)II~,(z.)I -~/2 -~ oo 
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as n -+ co. We note tha t  zn is not a pole of  w. Then,  choosing a subsequence of 

(zn), still denoted (z,~), we may  assume tha t  the limits (2) exist. Then  the Main 

L e m m a  applies wi th  y0 = 0, this following from r ~ w ( z n )  = o((Iwt(z ,~) lr3)  2/3) = 
! o(1), and hence, by Hurwi tz '  Theorem,  there exists z~ -+ 0 with W ( Z n + r ~ z ~ )  = O. 

We thus obta in  for the zero qn = Zn + rnz~n of w tha t  IZn -q ,~l  = o(rn)  = o(r(~n)) 

by L e m m a  1. This  proves Proposi t ion  1, since the s t a t ement  on the spherical 

derivative follows immediately.  | 

R e m a r k :  The  Main L e m m a  works like a search algori thm. If  a cer tain inequali ty 

or a sympto t i c  relat ion has to be proved, which should be valid outside some 

(possibly unknown) except ional  set, one chooses a sequence (z,~), z~ --+ oc, such 

tha t  the inequali ty is not  valid on (zn). Then,  apply ing  the Main Lemma,  it 

turns  out tha t  the sequence (zn)  approaches au tomat ica l ly  the exceptional  set. 

The  inequali ty thus proves valid outside this set, which, moreover,  is detected by 

the t e s t - s e q u e n c e  (z,~). 

One more example  for this me thod  is 

PROPOSITION 2: Given  ~ > 0 we have  

lzl = o ( I w ( z ) l  and -a  = o(1=1 

as z -+ oc ou t s ide  Q(e). 

Proof'. The  second s t a t ement  follows from the first one and Proposi t ion  1. To 

prove the first assert ion we again consider a sequence (z,~), 0 < Iz,  I --+ oc, such 

t ha t  I w ( z , ) l  = o(1z~11/2), hence I w ( z , ) l  = o(r(z,~)-2). We may  assume, as we 

always do, tha t  with r ,  = r (z , )  the corresponding limits (2) exist. In par t icular  

we again have Y0 = 0, so tha t ,  as was the case in the proof  of Proposi t ion  1, 

Iz~ - (~nl = o(r~)  = o(r(~,))  holds for some sequence (qn) of zeros of w. | 

Before we come to our next  proposit ion,  which plays the central  role, some 

comments  are in order. Equa t ion  (I) has a first integral  

(7) w t2 = 2 z w  + 4w 3 - 2 U  w i t h U  ~ = w .  

At a pole p, w has the Laurent  expansion 

1 1 (s) w(z)- (z_p)2 (z-p)3+h(z-p)4+ 

The  coefficient h cannot  be determined from (I). The  subsequent  coefficients are 

(universal) polynomials  in p and h. I t  turns out tha t  14h is the l oca l  c o n s t a n t  
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of  integration,  

- 1  (9) U(z)  - 
z - - p  

1 h 
-- - -  + 1 4 h -  ~ 0 ( z - p ) 3 -  ~ ( z - p ) 4  + ~ ( z - p ) 5  + . . . ,  

and tha t  the value of 

(10) V = 2U - w ' / w  

at z = p is the crucial mlmber V(p)  = 28h. 

PROPOSITION 3: Given a > 0 and ~ > 0 there exists K > O, such that  for 

z • C \  Q(e) either IV(z) l lw(z) l  -~ _< Klzl ~i2 or else Iw(z)l -~ _< alzl  -~ hoSds. In 
any case we have 

IV(z)l < + Klzlll2 _ _  ~ l V ( z ) l  

I~ (~)12-  
outside Q(e). 

Remark:  It  is indispensable tha t  the exceptional set Q(¢) is independent of the 

choice of a > 0. It  is just  K which depends on a (and c). 

Proof:  

tha t  

Suppose (z~) is any sequence with 0 < Iz~l -+ ~ and z~ ~ Q(e), such 

IV(z~)l 
O <  ---~ +oc  

I~(zn)121~.l~l 2 
as ~ ~ oo. Note that  z ,  is not a pole of ~ .  Also, I~,<1 = O ( l ~ ( z n ) l  2) holds by 

Proposi t ion 2. From 

w '2 = 2zw + 4w 3 - V - w ' / w  

it then follows tha t  

IV(z~)l I~'(zn)l ~ 41~(z~)l 21z~l ~I~ I~'(z~)l 
I~(zn)121znl ~i2 <-- I~(z,,)l~'lz~l ~/2 + Iz,~l ~ i ~  + Iw(~.)~ + t~(z,,)131~,~l ~12" 

The right hand  side of this inequality is O(Iw(zn)llz ,d -W2)  by Proposi t ions 1 and 

2, and hence we have Izn[Iw(z,~)[ -2 --+ 0 as n -~ oc. This proves Proposi t ion 3. 
| 

So far our arguments  were completely local. But  it is obvious tha t  one cannot  

prove any global proper ty  of a single solution by purely local cons idera t ions--  

this was one reason why former a t tempts  failed. These local results have to be 

connected, and one possible link is the linear differential equation for V, 

Y ' -  z w ' ( z )  _ _ 1  V = a ( z ) + b ( z ) V ,  
~(z )  ~ ( z )  3 ~ ( z )  2 
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Iv( )l _< IV(zo)l + 

> 0 arbitrary and K = K(a ,  ~) > 

z0 with z outside O(e). 

and the resulting integral equation 

V(z) = V(zo) 4- f r  (a(t) 4- b(t)V(t))dt, (11) 

where F is any pa th  of integration joining z0 with z and avoiding the zeros of w. 

By Propositions 2 and 3 fi'om (11) then follows 

fv  \( ]V(t)]ltl 4-Kl t l l /2 ) [d t l  ' 

0, whenever F is a path  of integration joining 

To proceed further we will ignore the exceptional set Q(e) for one moment  and 

show by a Gronwall-like argument that  IV(z)llz1-3/z is bounded outside Q(e), 

which we ignore. Suppose that  N is a bound for tV(zo)l on Izol = R0 > 1, and 

set M(R) = max{IV(z)llzl-3/2: Ro <_ Izl <_ R ,z  ~ Q(c)} for R > R0. Assume 

also that  the maximum is attained at zl = pe i~, Ro < p <_ R. Choose (7 = 1 and 

assume that  the straight line segment F joining z0 = Roe i~ and Zl does not meet 

Q(~). Then oil F we have IV(t)lIt[ -1 <_ M(R)It[ 1/2. From this it immediately 

follows that  

M(R) < N + (M(R) 4- K)]zl1-3/2 fF Itll/21dtl <- N 4- ~(M(R) + K),  

and hence M(R) <_ 3N + 2K. 
This is the manner in which we will prove Proposition 4 below. We have, 

however, to ensure that  the disks Iz - qnl < cr(qn) do not form barriers like 

the G r e a t  B a r r i e r  Reef .  This will be done in Lemma 2 below by a slight 

modification of the exceptional set Q(e). 

LEMMA 2: Given any set Q(e), e > 0 sut~ciently small, there exists Ro > 1 
and an open set A(Q, such that Q(c) N {z: [z I > R0} c A(e). The connected 
components of A(~) are some of the disks 

An(e ) = { z :  Iz-qnl<eOnr(qn)}, 1<_0n <_3. 

Proofi First we will show that  there exists 5 > 0 with the following property: 

given three zeros of w, then at least one of them has distance at least ~ from the 

other ones, distance measured in local scale--in other words, the set Q(e) consists 

of atoms and 2-molecules only, provided e is sufficiently small. For suppose to the 

contrary that  there exists some sequence of disks Dn = {z: Iz - z,~] < ~/nr(zn)}, 

0 < ~l,, --+ O, such that  Dn contains three (or more) zeros of w, one being zn itself. 
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Then the Main Lemma applies to the sequence (zn), and by Hurwitz'  Theorem 

the limit function y has at least a triple zero at z -- 0, which is impossible for 

u(z) o. 
We increase the radius of each disk En = {z:  Iz - qnI < er(qn)} by the factor 

3 and set E~ = {z :  ]z - qnl < 3er(qn)). If  we first take e sufficiently small and 

then n sufficiently large, we see that  each E~ intersects at most one disk Erm, 

m ~ n. In case E n N E m  = 0 for m ~- n we set An(e) = En. Now suppose 

En N E m  ¢ 0 and note that  m is uniquely determined. Then if rn > rm we set 

An(e) = E~, and An(e) = E ~  otherwise. Then, obviously, Lemma 2 is true with 

A(e) : Un An(e)" I 

PROPOSITION 4: Given e > 0 sufficiently small we have V(z) = O(]z] a/2) outside 

A(e) and, in particular, 

(12) V(pn) = a s  n 

where (iOn) denotes the sequence of poles of w. 

Proof." We proceed as before where we ignored the set Q(e). Let R0 > 1 and 

the set A(e) be chosen as in Lemma 2, and define M(R)  for R > Ro as was done 

above, but now taking into consideration the exceptional set A(e) D Q(e): 

M(R)  = max{lV(z)llzl-3/2: Ro < Izl <_ R, z ~t A(e)}. 

This maximum is attained at zl = pe i~, Ro < p <_ R. Let L be the radial line 

segment joining zo = Roe i~ with zl. If  L intersects some disk An(e), we replace 

part  of L by part  of the boundary of An(e). Also, if Zo is in some disk Am(e), we 

replace Zo by the point of L N Am(e) with largest absolute value. In this way we 

obtain the pa th  of integration F. It  is obvious that  fr Itll/21dtl < 711z113/2" Also, 

for [V(zo)[ there exists an upper bound N which is independent of R. Since on 

F we have [Y(t)[It[ -1 <_ M(R)Itl  1/2, we finally obtain, choosing 7ra = 1/2 and 

proceeding as before, the inequality M(R)  <_ 2(N + K;r), and hence 

v(z) = O(Iz?/2) 

as z -~ c~ outside A(e). 

The centers of the disks An(e) are zeros qn of w, and the Main Lemma applies 

to (a sub-sequence of) the sequence (qn), yielding a limit function y(z) with 

y(0) = 0. Thus y is non-constant, and the poles of y have euclidian distance 
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r > 0 f rom the origin, and so, for n sufficiently large and e sufficiently small,  the 

disks A,~(e) contain no poles of w, i.e., (12) is valid. | 

More or less a corollary of Proposi t ion  4 is 

THEOREM 1: Let w be any Painlevd I transcendent with sequence of poles (pn). 

Then 
Ip.I -a12 = O ( r  2) as oo, 

O<lP.l<r 

and the Nevanlinna functions satisfy 

N(r ,w)  = 0(r5/2), T(r ,w)  = 0@ 5/2 ) and m(r ,w)  = O( log r ) .  

Remark: For no ta t ion  in Nevanl inna Theory  see the monographs  of Nevanl inna 

[13] or H a y m a n  [6]. 

Proof  Let p be a pole of w, [p[ > 1, say. Then  w has the Laurent  series 

expansion (8) with 28h = V(p), and hence [hi = O([p[ 3/~) as p --+ c~. Also, the 

coefficients cn = c,~(p, h) satisfy the recurrence relation 

n - 4  

(n 2 - n - 12)en = 6 E e v e n - v - 2  

vm2 

for n _> 5, f rom which it is easily deduced tha t  Ic~l <_ M '~+2 for n _> 5, where 

M -- max{Ipl 1/4, Ihl 1/6} -- 0(Ip11/4). Thus  the series for w converges in I z - P l  < 

clp1-1/4, where c an absolute constant .  Hence the disks ] z - p . ]  < lc]p~]-1/4 are 

mutua l ly  disjoint, and a simple geometr ic  a rgument  then  gives the first assert ion 

of Theorem 1. From this the inequalities n(r, w) = counting function of poles 

= O(r 5/2) and g( r ,  w) = O(r 5/2) follow. Since m(r, w) grows like the Nevanl inna 

error te rm,  see Wit t ich  [25, p. 80], we finally obta in  T(r ,w)  = O(r 5/2) and 

= O ( l o g  . 

Combining  Theorem 1 with the result of  Mues and Redheffer [12] we obta in  

THEOREM 2: The first Painlevd transcendents have order of growth 

A(w) = lim sup log T(r, w) _ 5/2. 
r--*~ l o g r  

Remark :  From (8) it follows tha t  w has the form w = - ( E ' / E ) ' ,  where E is 

an entire function with simple zeros a t  poles of w. Since the canonical  p roduc t  

P having these zeros has order of growth 5/2, and since E = Pe Q, Q entire, it 

follows easily f rom w = - ( P ' / P  + Q')~ tha t  the Nevanl inna proximi ty  function 
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of Q" is re(r, Q") = O(logr),  and hence Q is a polynomial. In fact it was shown 

in [12] that the degree of Q is at most [A(w)] = 2; see also Boutroux [3]. Hence 

A(E) = 5/2 and 
oo 

= [ ( z  - - p f f ]  + c o ,  
n = l  

provided z -- 0 is not a pole of w; otherwise the term z -2 has to be added. 

Similarly, U has the partial fraction expansion 

V(z)  : - ~  [ ( z - p n )  -~ + z ; ;  ~ + p S i ]  + c o z + e ,  
n = l  

4. Value dis tr ibut ion of w and U 

In Proposition 1 we have shown that the spherical derivative w # is bounded 

outside small disks {z : Iz - q,~l < er(qn)} about the zeros of w. We will now 

complete this result by proving a sharp estimate for w # inside these disks. This 

estimate shows that a sharp order estimate cannot be obtained by just estimating 

w # . 

Before estimating w # we extend the Main Lemma to sequences of poles. Noting 

that min{[p[ -1/4, ]hi -1/6} is a (good) lower bound for the radius of convergence 

of the series (8), it would be quite natural to define a local scale at a pole p by 

r(p) -- min(Ipl -U4, ]hl-U6 }. Since, however, by Proposition 4, ]h I = O([p[ 3/2) 

holds, we (may as well and) will define r(p) -- Ip1-1/4. The Main Lemma is valid 

in this case, too: 

MAIN LEMMA FOR POLES: Let (Pn) be a sequence of poles, such that for rn = 

]p~1-1/4 the limits a = l im~_~ p , r  4 and ~/= l i m u ~  h~r6n exist (note that the 

sequence is bounded). Then 

r2w(pn + rnz) --+ y(z)  

as n -+ cx~, where y is the unique solution of 

y " = 6 y  2 ÷ a ,  l a l = l ,  

with pole at z -- 0 and Laurent series expansion 

y ( z )  = z - 2  a 2 - ~ z  + ~ z  4 + c 6 z  6 + . . - .  
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Remark: Note that ,  in general, ~ is a free parameter!  The first integral of the 

differential equation above is 

y~2 = 4y3 + 2ay -- 2871 . 

From the above result it is easy to deduce the following technical lemma: 

LEMMA 3: Let (qn) denote tile sequence of  zeros of  w. Thei1 r(qn) ~ [qn1-1/4. 

Remark:  Here and in the sequel an x b~ means an = O(LGI) and b~ = O(lanl) 
aS n---~OO. 

Proof'. Applying the Main Lemma to (a subsequence of) the sequence (qn) with 

r,~ = r(q~) we obtain the asymptot ic  relation 

r2nW(qn q- rnZ) --+ y ( z ) ,  y(O) =- YO =- O. 

Then y has a pole z = co, say, of smallest absolute value, which by Hurwitz '  

Theorem gives rise to a pole Pn = q,~ + rnw~ of w, Wn --+ w. Now the modified 

Main Lemma applies to the sequence (p,~) with local scaling unit Pn = IP,~] -1/4 

and limit function ?)(z) = z -2 + - . .  satisfying ~" = 6t) 2 + a, [al = 1. This 

has a zero z = r of smallest absolute value (see Appendix A), giving rise 

to a zero q" = pn + p,~rn of w, "c~ -+ r. We thus may conclude that ,  with 

,on = Ip,~l -* /4 ~ Iqn1-1/4, 

ITIpn -<lq" - p,~l + o(p,~) <_ Iq,, - p,~l + o(,o,~) + o(~(q,~)) 

=r(qn)l~ol + o(p,3 + o(r(q~)), 

which gives 

r(qn)>_l~w~[lqn] -U4 for n > n0. 

On the other hand we have r(qn) _< Iq~1-1/4 by definition, and so r(qn) × Iq~1-1/4 

follows. II 

Remark: One can prove a similar result for any sequence (zn), provided (Zn) 

stays away from the sequence of poles in a certain way; see Proposi t ion 5 below. 

Lemma 3 and the fact tha t  r(p~) = ]phi -1/4 lead us to introduce the Riemann- 

ian metric 

ds  = rzl l l41dzl;  
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the distance d(a, b) between a and b then is the infimum of the lengths f~ ds, 

where ~/ranges over all paths joining a and b, and the disks 

D(a , r )  = {z: d(z ,a)  < r} 

are comparable with the euclidian disks ]z - a] < rla] -1/4,  provided ]a I is large 

compared with r. 

Besides the sequences (p,)  and (qn) of poles and zeros of w and the sets P and 

Q, we introduce two more sets and sequences: 
S: set of zeros of w / (sn): sequence of zeros of w' 

T: set of zeros of U (tn): sequence of zeros of U 
Then the distances between different poles of w are bounded away from zero, 

and the distance d(P, Q) between P and Q is positive. Also, given e > 0, the set 

Q(e), say, is approximately the e-neighbourhood of Q with respect to the metric 

d. We thus r e - d e f i n e  

Q(e) = {z:  d(z,Q) < e}, 

and similarly for other sets like P, S, T. 

Before proceeding further we will complete Proposition 2 and Lemma 3 in a 

certain way. 

PROPOSITION 5: Given e > 0 we have ]w(z)[ x [Z[ 1/2 outside Q(e) u P(e), and 

l~'(z)l = O(Izl 3/4) outside P(~). 

Proof." We have already shown in Proposition 2 that  Izl = O(Iw(z) l  2) as z --~ 

outside Q(e). Now suppose (z~) is a sequence outside P(e), such that  z,~ --~ oc 

and r,~ -= r(z~) : o([z,~l-1/4). Then the usual procedure yields r2w(zn  + rnz)  --+ 

y(z), where y solves y~t _- 6y2. Since y ~ 0, y is non-constant, and thus has a 

pole z = w, say (see Appendix A). By Hurwitz'  Theorem, w has a pole Pn -- 

zn + raw ~- o(rn),  so that  Izn - Phi = [cairn ~- o(rn) = o( Izn[  - 1 / 4 )  = o(Jpnl-1/4),  

which contradicts our hypothesis zn ~ P(e). We thus have r,~ ~ [z,~] -1/a,  and 

so ]w(z.)] -- 0(Iz.11/2), thus iw(z~)t × tz~] ~/2, and Iw' (Zn) l  = O(]z~] 3/4) by 
definition of r(z~). | 

Remark:  Note that  we may not conclude [w'(z)[ × [zl 3/4 outside S(e) U P(e) 

by the following reason: if we suppose ]w'(Zn)l = o(Iz,~l 3/4) on some sequence 

(z~), then the Main Lemma applies, leading to y" -- 6y 2 + a, y'(O) = y~ -= O. 

If Hurwitz'  Theorem would apply we would, of course, obtain d(z,~, S) --+ 0 as 

n --+ oo. The limit function y, however, could be a non-zero constant, so that  

Hurwitz '  Theorem would not apply to the sequence of derivatives (y~). 

The result already announced is now 



Vol. 128, 2002 VALUE DISTRIBUTION OF THE PAINLEVlB TRANSCENDENTS 41 

THEOREM 3: Given e > 0, the spherical derivative of w satisfies w e ( z )  = 

O(Iz13/4) inside Q({), and we(~)  = O(Izl-,/~) outside. 

Proo~ In Proposi t ion 1 we have already proved boundedness of w e outside 

Q({). Moreover, from Proposi t ion 5 it easily follows tha t  w # ( z )  = O(Iz1-1/4) 

outside Q({) u P({). It  is, however, easily seen tha t  the neighbourhood P(e) of 

poles is not  really exceptional for tha t  inequality. Finally, from Proposi t ion 5 it 

follows w#(z)  < tw'(z)l = O(rzU 4) for d(~, q~) < ~. . 

Remark: The exponent 3 /4  is sharp, except when we are in the quadrat ic  case 

(see Appendix  A): we(q)  = Iw'(q)[ × lql 3/4 holds at any s i m p l e  zero q of w. In 

the quadrat ic  case, however, the zeros of w occur in pairs very close to zeros of 

w', so tha t  the effect on w e could be we(q)  = o(Iql3/4). 

It  is obvious tha t  the estimate given in Theorem 3 leads to T(r, w) = o(r 7/2) 

in the best case. On the other hand, it is not  hard to see tha t  f ( z )  = z - l w ( z  2) 

has spherical derivative f e ( z )  = O(Izl3/2), which gives T(r  2, w) = T(r, f )  + 

O(logr )  = O(r5),  but  only a p o s t e r i o r i .  

We now prove a result on the spherical derivative of U which is similar to 

Proposi t ion 1. 

PROPOSITION 6: Given e > O, the spherical derivative U e is bounded outside 

the d-neighbourhood T(e) of the sequence of zeros of U. 

Proof'. Let z~ be any sequence such tha t  u e ( z ~ )  --~ oo. Then from U#(z )  = 

[w(z)l(l+lU(z)[2) -1 it follows tha t  Iw(zn)[ --+ e~ and IU(zn)[ = o([w(z,~)ll/2). As 

before, the Main Lemma applies to the sequence (z~), and from w ' 2 - 4 w  3 - 2 z w  = 

- 2 U  and yn(z) = r~w(z,~ + r~z) it then follows tha t  y~n 2 - 4y 3 - 2ayn --+ 0 as 

n -+ oo. Also, 

r~U(zn) = o(r~lw(z~)l 1/2) = o(lY,~(O)U ~) -~ 0 

as n -+ cxD, this giving 

r , U  ( z ,  + r , z )  -~ yoz + y'oz2 /2 + " . ,  

t ! I and so U(z~ + rnz) has a zero z , ,  z~ -+ 0 as n --~ oc. Thus, for tn = z~ + rnz~ 

there follows d(z,~,t,~) ~ Iz~ll/41Zn - t ~  I = [Zn[1/arnlz~[ < ]z~nl, this showing tha t  

U e is bounded outside the union of  disks D(tn, {). | 

To identify the zeros of U, we have to discuss two different cases. 
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PROPOSITION 7: Let  p denote  any pole of U with IPl sufficiently large and asso- 

ciated number h. Then the following is true: 

1. There exists a > O, such that for Ipl _< or]hi4 the image under U of the 

disk T = {z :  [z - ( p +  (14h)-1)1 < (10[h[)- l} ,  say (the radius is less than 

~/~]p]-1/4), covers the disk ]u] < 8]hi. In particular, U has a zero in T. 

2. I f  lhl < Clpl 1/4 for some C > O, then there exist c2 > cl > O, depending 

only on C, and a zero t of  U with cl < d( t ,p)  < c2. Also, given ~ > O, 

the image under V of the disk T = {z: Iz - t I < elp1-1/4} covers some disk 
< p(£ tC) [p[1 /4}  . 

Proof: Both  assertions will be proved by contradiction.  We assume tha t  for some 

sequence of poles (pv) with associated sequence (hv) the assert ion is false, and 

ext rac t  an appropr ia te  sub-sequence, again denoted (pv), such that ,  in the second 

case, the respective l imits e = 1 4 1 i m . ~  hvlp, 1-1/4 and a = l imv-~o~p,/Ip,  l 

exist. 

In the first case we consider the re-scaled function z ~-+ h~lU(pv + h~lz ) ,  

which is close to M ( z )  = 14 - 1/z  for u, and hence Ihvl, large. This  Mhbius 

t rans format ion  M maps  the disk Iz - ~41 < ~ to the complement  of the disk 

I?j, __ 34312 - '~ ~-25" Since ~ > ~ + 8, U maps  the disk Iz - (p,  + (14hv) - l ) l  < 

(10]hvl) -1 onto a domain  which covers the disk ]u I < 81h~l, provided av = 

lpvl]h,1-4 is sufficiently small. The  proof  of the first pa r t  is thus finished. 

To prove the second par t  we re-scale by the factor r .  = lpv1-1/4 tO obtain,  as 

p -+ oc, the limit function - ~ ( z )  + c  = z -1 + C + C l Z + . . . ,  where Icl _< 14C. The  

derivative of this l imit  is some Weierstrass P-funct ion satisfying p"  = 6go 2 +a ,  and 

from Ih,  I = O(Ipv[  1/4) : o(Ipvl 3/2) it follows tha t  p also solves p,2 = 4p  3 _]_ 2ap; 

see Appendix  A. Thus p with associated Zeta-funct ion ~ has a quadrat ic  period 

latt ice ~(Z × Z). I ts  mesh-size 17/I depends only on a, and hence from [a[ = 1 it 

follows tha t  it is uniformly bounded and bounded away from zero. Now - ~ ( z ) +  c 

has a zero z = r of smallest  absolute value, depending only on the per iod latt ice 

and on c, and ~- corresponds to a zero t ,  , -  p ,  + r~,w of U. This  proves existence 

of a lower bound cl and an upper  bound c2 for d ( t~ ,p , ) ,  these bounds depending 

only on C. Finally, the image under z ~-+ - ~ ( z )  + c of the disk {z: Iz - ~-[ < ~} 

covers some disk {u: [u I < 2p}, where p has a lower bound p(e, C) only depending 

on e and C. Hence the disk T is mapped  by U onto some domain  which covers 

the disk lul < [pvll/4p, provided u is sufficiently large. | 

Remark: In  the second case the posit ion of the zero t depends  on the constant  

c. I t  is asympto t ica l ly  associated with the pole p in the same sense as is the zero 
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T of --~(Z) + C with the pole z = 0. 

We do not know whether bo th  alternatives in Proposi t ion 7 actually may occur, 

and, if not  both,  which one will occur in general. The first one indicates tha t  

value distr ibution of U takes place very close to the poles of w (and U). In the 

second case nothing can be said about  the positions of zeros. Of course, there 

are many  zeros, this following from N(r,  1/U) ~ T(r, U) ~ ½T(r, w). 

By analogy with the Weierstrass Zeta function the first case should occur, as 

it does in the degenerate case. One more reason to believe this is tha t  in the 

second case ]h I has to be very small compared with IPl- 

From Proposit ions 6 and 7 there easily follows 

THEOREM 4: Given e > O, the ,spherical derivative of U is bounded outside T(e), 

and satisfies U#(z )  = O(IzI 3) inside. I f  the zero t is bounded away from the set 

of poles, i.e., if  d(t, P) > ~ (this is the second case in Proposition 7), then we 
have U#(z )  = O(Iz[ 1/2) in D(t, e). 

Proo~ Boundedness outside T(e) was already proved. If  the zero t~ is close to 

some pole p~, i.e., if t~ = p,~ + 1/(14h,J + o(Ih,~l-1), we then have r(t~) -1 = 

m a x { I w ( t n ) l  1/2, Iw'( tn)l  1/3, Itnl 1/4} = O(Ih~l ) = O(Ipn13/2), and the Main 

Lemma then yields U#(z )  <_ I w(z)l = O(r(t~) -2)  = O(Ipn] 3) = O(Iz13). 

Otherwise, for d( t~ ,P)  _> 5, from r(t,,) -1 × Itnl~/e then U#(z )  = O(Izll/2) 
follows. | 

5. A s y m p t o t i c  d i s t r ibut ion  o f  po les  and  zeros  

It  is not  hard to draw a loca l  p i c t u r e  of the asymptot ic  distr ibution of poles and 

zeros by using a variant of the Main Lemma.  We note tha t  it is not  necessary for 

the scaling factor r~ to be real and positive. Suppose (ion) is a sequence of poles 
{ 2pn'~-l /4 ' with associated sequence (hn). If we re-scale by the factor p,~ = ~ - 5  J say, 

y . ( z )  = + 

6 and assume tha t  7 /= 28 l i m ~ _ ~  p~h,~ exists, we always arrive at 

y" 6y 2 3/2,  y~2 = _ = @3 _ 3y - ~1 

and 

 tz)=z 2÷ z2+ z4÷ 
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Hence, in any neighbourhood d(z, Pn) < R ofpn, n large, the distribution of poles 

and zeros of w is approximately the image of the distribution of poles and zeros 

of y about ( = 0, under the map 

To be more precise we have to consider two cases: A = 27(1 - r l  a) ¢ 0 and A = 0, 

i.e., r/3 = 1; see Appendix A. In the first case let L denote the period lattice of 

y (including the trivial period 0), while in the second case L denotes the integer 

multiples of a primitive period of y. Then we have 

PROPOSITION 8: Given any radius R > 0 and any tolerance ~r > O, there exist 

K > 0 with the following property: i f p  is any pole o f w  with IPl > K,  then 

for D = D(p, R) the Hausdorff distance (measured with respect to the metric d) 

between P n D and £(L,p) N D, for some suitably chosen L, is less than a. The 

corresponding result is also true for the set Q of zeros of w, and for the set S of 

zeros of w ~. 

Remark: We note that  the a-points of w are contained in small disks D(q, e) 

about  the zeros. Thus, value distribution of w takes place in Q(e), as is also 

indicated by Theorem 3. The poles, however, are separated from the a-points. 

We would of course have obtained the same result if we would have started 

with a sequence of zeros. If, in some large unbounded domain S, the limit 
h 6 r / =  28 lirn~-~oo nP~ were to exist, the above local picture would asymptotically 

be a global one in S. In particular, for r / =  0, the poles of w in S then would 

asymptotically form a square grid, distances measured with respect to the metric 

d. 

What  happens in regions which contain no zeros or poles? A complete answer 

can be given for large regions. 

PROPOSITION 9: As z --+ oo and d(z, P) --+ oo the following asymptotic relations 

hold, for some suitably chosen branch of z ~-+ z-1/4: 

w(z)z  -112 -+ i ~ / 6 ,  w'(z)z  -314 -~ 0 and U(z)z -312 -+ iV/~27. 

Remark: We do not know whether large pole-free (or zero-free) regions exist, 

this probably depending on initial values. A similar remark applies to the degen- 

erate case--asymptot ic  distribution of zeros and poles along lines. 

Proof: Let (z,~) be any sequence with d(z,~, P) -+ eo. We then re-scale by 

the complex factor Pn -- ( - ~ z n )  -1/4 and obtain a limit function y satisfying 
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y" = 6y ~ - 6 .  I f y  were non-constant  it would have a pole z = w, and so w 

would have a pole Pn ~ zn + p~w with d(zn,p~)  × Iwl, which is against  our 

hypothesis.  Thus  y is constant ,  hence y2 = 1 and w(zn)2zg  t --+ - 1 / 6  and 

w'(Zn)2Z,~ 3/2 = o(Ipnl-alZn1-3/2) --+ 0 as n --+ oe follow. Finally, the relat ion 
- 2 U  = w '2 - 4w 3 - 2zw gives U ( z n ) z ;  3/2 -+ 2 v / Z T / 6 .  1 

We conclude this section with several remarks,  which also throw some light on 

our me thod  and its connection with Boutroux 's .  

1. To describe the asympto t i c  dis t r ibut ion of poles and zeros it is also conve- 

nient to use the Riemannian  metr ic  ds = IzlU41dzl. Denote by H the half-plane 

Re 4 > 0, say. Then  ¢(¢) = e ia (5 ; )4 /5  maps  H conformally  onto some sector 

S of angle width  47r/5, the posit ion of S depending on a .  The  geodesics in S 

are the images under ¢ of s t raight  line segments  in H. Then  ¢: (H, ].l) > (S, d) 

is a conformal  isometry,  and the same is t rue if ]~ is replaced by an euclidian 

disk D = {4: IC - 40] < R} c H (or any convex domain)  wi th  image domain  

¢(D)  = D(¢(40), R).  Then,  in the s i tuat ion of Proposi t ion  8, we place the set L 

to the 4-plane. Given a pole p = ¢(p ' )  of w with sufficiently large absolute  value, 

the euclidian disk D(p' ,  R)  is m a p p e d  by ¢ onto the disk D(p, R),  and the image 

of some L N D, p, c L, coincides approx imate ly  with the set P N D. 

We consider the sector S = {z: I a rgz l  < 2 r / 5 } ,  say, which is the image of H 

under z = ¢(¢) = (54)4/s.  Since Iz l -1/2w(z)  is bounded outside P(e), it is quite 

na tura l  to introduce new coordinates 4 = } z  5/4 and W ( ; )  = z -1 /2w(z ) .  This is 

actual ly  what  Bout roux  did, the result in N being the differential equat ion 

24 W(4)  W' (¢ )  
W "  = 6W 2 + 1 + 

25 42 

Since W and W '  are bounded  outside the set [5(e) = ¢ - l ( p ( e )  A S), we may  

regard 
24 W(~)  W' (~)  

A ( ~ ) -  25 ~2 

as a known function of 4, a coefficient which satisfies 

A(~) = O(1~1 -~)  

as ~ -~ oc in H outside P(e). The  euclidian distance between any two poles of 

W is bounded  away from zero. Wi th  this a priori knowledge it will p robab ly  be 

easier to verify Bout roux ' s  a rguments  (see also Appendix  B). 

Suppose ( ~ )  is a sequence in H, 14~1 --~ oc. We set zn = ¢ ( ~ )  and assume 

tha t  ei ther zn = Pn is a pole or else d(z,~, P) > 5 > 0. Then,  for Izl < R, say, we 
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have 

÷ z )  - + ) (zo ÷ i zol-  4z ÷ ) 

~z;lJ w(z  + 

i.e., W ( ~  + z) is approximately w re-scaled. We finally remark that  W # is 

bounded in H. 

2. The class of first Painlev5 transcendents is invariant under the transfor- 

mation w(z)  ~-~ a2w(az ) ,  a 5 -- 1. There are also one-dimensional invariant 

subclasses: one of them consists of solutions w0(z,#) with wo(O,#) = 0 and 

w~(0, #) = #, and the other one is formed by solutions w ~ ( z ,  h) = z -2 - z3/6 + 

hz  4 + . . . .  Of particular interest should be the fix-points of the a-transformation,  

namely w0(z, 0) and w ~ ( z ,  0). 

3. The value distribution of the Painlev4 transcendents from the viewpoint 

of Nevanlinna Theory is almost completely understood, due to work of Wittich 

and Schubart, see [19, 20, 24, 25], and also [22] for equation (IV). One problem, 

however, is still open: Are there any solutions of (I) with finite ramified values? 

All is known is that  the ramification index satisfies #(a) _< 1/6 for every a ~ oo. 

We can ' t  give any answer to that  problem, but note the following: suppose (z~) 

is any sequence tending to infinity, such that  (w(z~))  and (w'(z~))  are bounded 

(this is, in particular, the case if w has a finite ramified value). Then the usual 

procedure leads to the following situation: the limit case is y" = 6y 2 + 1, say, 

with y(0) = y'(0) = 0, so that  we are in the quadratic case y,2 = 4y3 + 2y. The 

point z,~ is approximately the center of a square, whose vertices Zn ± 7-~ i iT~ are 

poles of w, and w' has zeros approximately at zn, z,, ± Tn and z,~ ± i ts ,  where 

~-~ ~ const.[z~[ -1/a. Of course, our method cannot distinguish between doubly 

a-points of w and points where w and w' are simultaneously uniformly bounded. 

6. T h e  s e c o n d  a n d  f o u r t h  t r a n s c e n d e n t s  

The methods in Sections 3 to 5 also apply to the second and fourth transcendents. 

Most details are left to the reader; we just note the changes which have to be 

made to adapt  the method. We start  with Painlev4's second equation 

(I) w" = ~ + zw + 2w 3, 

with first integral 

w ' 2 = w  4 + z w  2 + 2 ( ~ w - U ,  w h e r e U ' = w  2. 



Vol. 128~ 2002  V A L U E  D I S T R I B U T I O N  O F  T H E  P A I N L E V I ~  T R A N S C E N D E N T S  

The local unit of scale at a regular point z = z0 now is 

r (z0)  = min{Iw(zo)l - i ,  Iw'(zo)l -i l2, Izo1-1/2}. 

The re-scaling "Ansatz" 

~(~) = r ~ ( z ~  + r ~ ) ,  

r~ -- r(z~), leads to the differential equation 

y~ : 2y 3 + r 2 znyn + r 3 z y n  + r 3 (~, 

with limit equation 

47  

y " = 2 y  3 + a y ,  y'(O) = yo, y'(O) = y~o, 

2 a---- lim rnzn, Yo = lim r n w ( Z n ) a n d  y~ = lira r~w'(zn) ,  
n - - 4 o o  n - - ~  P c  n--~( :x)  

and max{lal, lYol, lY~I} = 1. 

At a pole p, w has the Laurent series expansion 

ep o~ + ~. 
w(z )  = , ( z - p ) - 1  _ ~ - ( z - p ) -  ~ { z - p ) 2  + h ( z - p ) 3  + . . .  

e = ±1; the coefficient h remains undetermined. 

Our function V is now 

V = U - w'/w 

with corresponding linear differential equation 

a w' V 
V I - 

W W 3 W 2 

and 
7 2 Y(p )  = 1 0 e h -  ~ p  . 

The scaling unit at a pole p is min{Ip1-1/2, Ih1-1/4} ~ Ip1-1/2, provided the goal 

[Y(p)l = O(Ip12), i.e., Ihl--  O(Ip12), is reached. Then 

Z Ipn1-1 = ° (r2) ,  

and hence T(r ,  w) = O(r3). To reach this goal one has to show that  Izl = o(1~12)  

and IU[lwl -~ _< ~lUllz1-1 +~;[zl  outside q(~). The proof is the same as in I-case. 
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There are, however, particular solutions of order 3/2, see Schubart and Wittich 

[20], namely solutions which also satisfy one of the Riccati equations 

W/ Z / Z W2" = ~ + w  2 and w -  
2 

These solutions have order of growth 3/2 and solve (II) with a = ±1/2.  

Painlev~'s fourth equation is commonly written as 

(IV) 2 w w "  : w '2 + 3w 4 + 8 z w  a + 4(z = - a ) w  2 + 2/~; 

a and/5 are fixed parameters.  Since w = 0 is a singularity of (IV), it is advisable 

to work with w ( z )  + z rather than w itself. This is also indicated by the Laurent 

series expansion at a pole of w. Set 

rn = r(zn) = min{[Zn1-1, [w(zn)[ -1, Iw'(Zn)[ -1 /2  } 

and 

y,~(z) = rnW(Z~ + rnz )  + rnzn  + r2 z 

to obtain, in the limit with a = lim,~_.~ rnz~ ,  Y0 = lim,~_~ r ~ w ( z , )  + a and 

y~ = l i m ~ o ~  r ~ w ' ( z n ) ,  the differential equation 

2 ( y  --  a ) y  '! : y,2 _~ 3 ( y  --  a )  4 4- 8a(y  - a) 3 + 4a2(y - a) 2. 

I t  is obvious (and important)  that  y does not vanish identically, since we have 

max{lal, lYol, lY~I} > 0. Differentiating, dividing by 2 ( y - a )  and integrating again 

finally yields, after re-arranging terms, 

y " = 2 y  3 - 2 a 2 y + b ,  y ( O ) = y o ,  y '(O)=Y~o, Y ~ O ,  

where b is some constant of integration. 

Equation (IV) has first integral 

w '2 = w 4 + 4 z w  3 + 4(z 2 - a ) w  2 - 2/5 - 4 w U  

with U'  = w 2 + 2zw.  At a pole z = p we have 

w ( z )  + z = e(z - p ) - I  + ~(ep2 + 2 c a -  1 ) ( z - p )  + h ( z  - p)2 + . . . ,  

e = =kl, and again h is unknown resp. free. The value h occurs in V ( z )  = 

V ( z )  - + a t  z = p ,  

V ( p )  = 2ap  + 2h - 2ep. 
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The differential equation for V is, almost  surely, 

- w' + 4az  z2 2w - 2z V. V ' -  4 z w ~  2w' z 4 + 4 a z  2 + 2 / 3 + _  

(w + z)  a (w + z) 2 w + z (w + z) 2 

The goal now is to prove the estimate IV(p)[ = O(Ip13), this showing tha t  the 

series expansion for w(z)  + z about  z = p has radius of convergence at least 

clp1-1, c > 0 an absolute constant.  From this it then easily follows tha t  

1; , , I  = o ( r 2 ) ,  
O<lpnl<," 

and hence n(r )  = O(r4),  N(r ,  w) = O(r  4) and T(r ,  w) = O(r4).  To reach the 

goal one has to prove, similar to case I, tha t  Izl = O(]w + zl), Iw~l = O(Iw + zl 2) 

and 
12w - 2zl 

IVl <_ , - ,  + KIz? 

as z -+ oc outside the e-neighbourhood Q(c) of the zeros of w + z. 

We note, however, tha t  (IV) has also solutions of order A = 2; see [22]. One 

example is given by the solutions of the Riccati  equations 

w' = 2zw + w 2 or w r = - - 2 Z W  - -  W 2, 

which have order of growth A = 2, and which solve equation (IV) with parameters  

a = T1 and/3  = 0. A second example is due to Gromak  [5]: every solution of 

w '2 + 4w' - w 4 - 4w 3 -- 4(Z 2 -- a )w  2 + 4 = 0 

solves also (IV) with parameters /3  = 2, c~ ¢ 0, and has order of growth A = 2. 

A p p e n d i x  A :  T h e  d i f f e r e n t i a l  e q u a t i o n  yr2 = Q(y)  

We will give a short  course on the differential equation 

yl2 = Q(y) ,  Q a polynomial  of degree 3 or 4, 

for the convenience of the reader. By a simple t ransformat ion of type  v(z)  = 

M ( y ( a z ) ) ,  M a suitably chosen MSbius t ransformat ion and a some appropriate  

constant ,  it may  be brought  to the Weierstrass normal  form v r2 = 4v 3 - g2v - g3, 

ignoring the cases (equivalent to) v ~2 = v and v ~2 = 1 - v 2. 

We remark tha t  local solutions clearly exist by the Picard Existence Theorem, 

and tha t  they admit  unrestr icted analytic continuat ion by a theorem of Painlev~, 
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so tha t  the whole theory of elliptic functions can be built  upon cer tain algebraic 

differential equations; see Rellich [18]. 

The  solutions are constants ,  or non-constant  rat ional,  s imply periodic or doubly 

periodic, this depending on whether  the discriminant  A = g3 _ 27g2 vanishes or 

not. We briefly discuss these cases now: 

1. C o n s t a n t  solutions are of course zeros of the polynomial  Q(c)  -- 4c 3 - 

g2 c -- g3. 

2. Rational non-constant  solutions occur if and only if g2 = g3 -- 0. They  

have the form v ( z )  = (z  - z0) -2.  

3. In the degenerate case A = 0, but  g2g3 ~ O, simply periodic non-constant  

solutions occur. For v '2 = 4(v + 2 c ) ( v -  c) 2, c ~ 0, the general non-constant  

solution is v ( z )  = - 2 c -  3ctan2(z0 + v / -L~  z). 

4. In  the g e n e r i c  case, the solutions are elliptic functions, Weierstrass p- 

functions; they  occur for A ~ 0. We ment ion two cases of par t icular  

interest: 

(a) The  quadratic case g3 = 0. The  periods (poles) of every solution 

form a square grid. Given any period para l le logram ("per iod square" ) 

with vertices 0, 2v, 2(1 + i)7, 2iT, say, then  v ' has zeros at  v, iT and 

(1 + i)T, which is also a (doubly) zero of v itself. 

(b) The  hexagonal case g2 -- 0. The  poles may  be viewed as the vertices 

of a t r iangula t ion of the plane by equilateral  triangles.  Each pole is 

surrounded by six poles which form the vertices of a regular  hexagon.  

In any case, a t  the pole z = 0, say, v has the Laurent  series expansion 

g2z2 + ~ z  4 + c 6 z  6 + . . . .  v(z)  = z -2 + 20 z~ 

We remark  tha t  we have spent  much work in Section 3 to show tha t  the hexa- 

gonal case cannot  occur as limit case. The  es t imate  A(w) < 5/2 depends on the 

es t imate  Ihl = 0(Ip t3 /2) ,  while the hexagonal  case occurs as a l imit  if and only if 

Ipl = o ( t h l 2 / 3 )  • 

Appendix B: The Boutroux papers 

The  paper  [2] (127 pages) consists essentially of four par ts ,  only the first two 

being of interest  for us. In the first pa r t  Bout roux  develops a theory  of entire 

functions of finite order, based on H a d a m a r d ' s  Theorem;  in the second par t  he 

considers logari thmic derivatives of these functions, with applicat ions to the first 

and second Painlevd equation. He shows tha t  for w = - ( E R I E )  ' in the first case, 

E has genus 2 and order 5/2, with an es t imate  of the counting function of zeros 
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of E as follows: r 5 / 2 / l o g r  < n(r)  <_ r5/20(r), with 0(r)  unbounded and slowly 

increasing. This  par t  is not easy to read, e.g., when Bout roux  derives es t imates  of 
3 3/2 type  If(z)] < c# r I , where " ... # un nombre qui sera fixe dans cette couronne, 

mais qui devicndra inf iniment grand en m~me temps que r l . "  

The pape r  [3] appeared  in two parts;  of par t icular  interest  for us is the first 

one (122 pages, second par t  61 pages),  where Bout roux  develops some kind of 

a sympto t i c  integrat ion for non-linear differential equations.  Painlev~'s  equat ion 
4X5/4 y" --- 6y 2 - 6x (we use Bout roux ' s  terminology) is t ransformed by X = g , 

Y = x -1 /2y  into 
y r  4 Y 

Y "  + - 6Y 2 - 6. 
X 2 5 X  2 

For IX[ large, the solution is compared  with  an appropr ia te  solution of the equa- 

t ion Y~ = 6Y02 - 6. Considering ra ther  compl ica ted a sympto t i c  integrat ion meth-  

ods via analyt ic  cont inuat ion of local inverse functions, and with a considerable 

amount  of technique, Bout roux  is able to show tha t  the poles of Y are a sympto t -  

ically d is t r ibuted in the same way as are the poles of Y0- This  dis t r ibut ion can 

be pulled back to the z-plane. Since the poles of Y0 form a latt ice or are equally 

spaced on a line, Bout roux ' s  conclusion is tha t  the counting function of poles of Y 

is O(r2) ,  and hence the counting function of poles of y is O(r  2x(5/4)) = 0(r5/2) .  
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