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A B S T R A C T  

The  'hole probabi l i ty '  tha t  a random entire function 

oo zk  

where ~o, ~1,. .  • are Gaussian i.i.d, r andom variables, has no zeroes in the  

disc of radius r decays as e x p ( - c r  a) for large r. 

We consider the (random) set of zeroes of a random entire function ~ :  C -+ 

C, 

zk  
(0.1) ¢(z, w) = ~k (w) V~.V, 

k----0 

where ~k, k = 0 ,1 ,2 , . . .  are independent standard complex-valued Gaussian 

random variables, that is the distribution Arc(0, 1) of each ~k has the density 

~-lexp(-Jwl 2) with respect to the Lebesgue measure m on C. This model is 

distinguished by invariance of the distribution of zero points with respect to the 

motions of the complex plane 

z ~ a z  + b, Ja{ = l , b  E C; 
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see [6] for details and references. 

Given large positive r, we are interested here in the 'hole probability' that ¢ 

has no zeroes in the disc of radius r, 

p(r) = I?(¢(z, .) ¢ 0, [z[ < r). 

It is not difficult to show that p(r) <_ e x p ( - c o n s t  r2); see the Offord-type esti- 

mate in [5]. Yuval Peres told one of us that the recent work [4] led to conjecture 
that the actual hole probability might have a faster decay. In this note, we 

confirm this conjecture. 

The right order of decay of p(r) can be guessed using one of the simple toy 

models discussed in [6]. Consider the random perturbation of the square lattice 

S = {v~(k  + il) + ~k,l : k, l  E Z}, where the perturbations ~k,~ are independent 

standard complex Gaussian random variables. Asymptotic similarity to the zero 

set of ~ was achieved by inventing special correlations between perturbations 

~k,l but  this is inessential for our purposes here. It is not difficult to see that 

the probability that  S N {z : Izl _< r} = O decays like exp ( -cons t r4 ) .  This 

prediction is correct: 

THEOREM 1: e x p ( - C r  4) ~ p(r) <_ exp(-cr4) .  

Throughout, by c and C we denote various positive numerical constants whose 

values can be different at each occurrence. 

It would be interesting to check whether there exists the limit 

lira log- p(r) 
r--+oo /,4 ' 

and (if it does) to find its value. 

The lower bound in Theorem 1 will be obtained in Section 1 by a straight- 

forward construction. The upper bound in Theorem 1 follows from a large 

deviation estimate which has independent interest. 

T H E O R E M  2: Let n(r) be the number of random zeroes in the disc {[z[ _~ r) .  

Then for any 5 E (0, ¼] and sufficiently large r, 

(0.2) IP( n r ( ~ -  1 > 5 ) <  exp(-c((~)r4). 

Throughout, by c(5) we denote various positive constants which depend on/~ 

only. Since our argument seems to be too crude to find a sharp constant c(5) in 

(0.2), we freely change the values of c(5) from line to line. 
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There is a fruitful analogy between random zero sets and one component 

Coulomb system which consists of charged particles of one sign in l~ 2 embedded 

in a uniform background of the opposite sign (see [2] and references therein). 

Theorems 1 and 2 are consistent with the corresponding results for Coulomb 

systems [3]. 

ACKNOWLEDGEM E N T :  Yuval Peres brought our attention to the problem con- 

sidered here. F~dor Nazarov spotted an error in the first draft and suggested 

how to fix it. We thank both of them. 

1. P r o o f  o f  t he  lower b o u n d  in T h e o r e m  1 

In what follows, we frequently use two elementary facts: if ~ is a standard 

complex Gaussian variable, then 

(1.1) ~(1~[ -> A) = _1 e _ l W l 2 d m ( w )  = e - t d t  = e , 
7F 2 

and for )~ < 1 

(1.2) ~(l¢l < ~ )=  1 - e  - ~ -  - ~2 A4 [ ~  ] _ -~+. . . c  V,x 2. 

By ~ we denote the following event: (i) I~0] ___ 2; (ii) ]~k] _< exp(-2r2) for 

1 < k < 48r2; and (iii) I~kl <-- 2k for k > 48r 2. Since {k are independent, 

~(~r)  = F(i)" F(ii). ]~(iii). 

Evidently, the first and third factors on the RHS are _> const. By (1.2), the prob- 
ability of the event lik] _< exp(-2r2) is > ½exp(-4r2). Since the events within 

the second group are independent, the probability of all of them to happen is 
lexp 4r 2 ) 4s~2 >_ (~ ( -  ) = exp(-192r  4 - C r 2 ) .  Thus, l~(~r) >_ exp(-Cr4) .  

Now, we show that  for w E ft~ the function ¢ does not vanish in the disc 

{H -< r}. For such z and w we have 

r k r k 

i (z)l >_ I ol - E E = 14ol- E ' -  E" 
l < k < 4 8 r  2 k>48r 2 

Then 

.. r k  

l < k < 4 8 r  2 

?-2k 7 r e _ 2 r 2 + O . h r  2 1 

1 < k < 4 8 r  2 
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if r is sufficiently large. At the same time, 

/_k  k/2 
Z - ( ~ )  Z x/~. ~\48] < ~ ( k . k ) k / 2  < ~ 2 _  k 1 

-- k>48r 2 " k>48r 2 k>l ~ ~ 

(we used inequality k! > (k/e) k which follows from Stirling's formula). Putting 
both estimates together, we get 

(i) 
I (z)l _> I¢01-1 _> 1 ,  Izl _< r, 

proving that ¢ does not vanish in the closed disc {Izl < r} for w C ~ .  

2. Large deviat ions of logM(r ,¢)  - r2/2 

Let ¢ be the random entire function (0.1) and let M(r, ¢) = maxlzl< r [¢(z)t. In 
this section we shall prove the following 

LEMMA 1: Given 5 e (0, ¼] and sufficiently large r, 

it~( logM(r,~)r 2 1 _(f) _< ~] > exp(-c((f)r4). 

The proof is naturally split into two parts. First we show that 

]?(logM(r,¢)  > 1 5) <_ exp(-c(5)r4), 
r 2 - ~ +  (2.1) 

and then that 

(2.2) ~ ( logM(r ,~ )  < 1 - 5 )  < exp(-c((f)r4). 
r 2 - 2 - 

Proof of (2.1): We use an argument similar to the one used in Section 1. We 
have 

M(r ,¢)  _< + I~kl~.  ~-- Z 1  + Z 2 "  
O<k<4er 2 k~4er 2 

Consider the event Ar which consists of such w's that (i) ]~kl --< exp(25r2/3) for 
0 <_ k < 4er2; (ii) ](k] _< (V~) k for k >_ 4er 2. If Ar occurs and r is sufficiently 

large, then 

Z21< ( E  '~k]2)" ( E  r 2 k ~  

- 0_<k<4er~ 0_<a<4~r2 k! ] 
(i) 
<_4er 2.exp(46r2/3+r 2) <exp 1 +  5 r 2 , 
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and 

Thus 

e)k/2 (v )k 
k > 4 e r  2 k>_4er 2 

M(r,¢) <exp( ( l+a)r2) .  

It remains to estimate the probability of the complementary set A c = ~ \ At. 
If Ac~ occurs, then at least one of the following happens: 3k • [0,4er2): I~kl > 
exp(}Sr2), or 3k • [4er 2, ~) :  I~kl > (V~) k. Therefore 

~(A c) < 4er2exp( - e x p ( ~ S r 2 ) )  + E exp(--2k)< exp(--exp(ar2)) 
4 

k > 4 e r  2 

provided that r >_ ro(5). This is much stronger than (2.1). | 

Proof of (2.2): Suppose that 

(2.3) logM(r,¢) < ( 1 - 5 ) r  2. 

Then we use Cauchy's inequalities and Stirling's formula: 

]¢(k)(0)[ _< ~.M(r--~]¢) 

k 1 5)r 2 logr).  <Ckl /4exp(k logk-~+(-~  - k  

Observe that the exponent equals 

k r2 r2 - 1) 
~ ((1 - 251-ff - log -~- , . 

We note that 
T2 1.2 

(1 - 25) T - t ° g T  - 1 < - 5  

when r2/k is close enough to 1, whence for (1 - e)r z < k < r 2, 

Iffkl < cki /aexp(-  k-~2 ). 

By (1.2), the probability of this event is < exp(-c(5)k). Since {k are indepen- 
dent, multiplying these probabilities, we see that 

e x p ( - c ( 5 )  E k) =exp(-cl(6)r4) 
( 1 - - e ) r 2 ( k < r  2 

is an upper bound for the probability that event (2.3) occurs. | 
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3. M e a n  lower  b o u n d  for log I~b(z)l- Izl2/2 

Lemma 1 gives us a sharp upper bound for the 'random potential' 
logiC(z)[ - x 2 ~lzl when w does not belong to an exceptional set in the prob- 
ability space. Here, we give a mean lower bound for this potential. 

LEMMA 2: Given 5 E (0, ¼] and su~ciently large r, 

< 1 _ 6) < exp(-c(6)r4).  , ( ~ f  log,¢ ,du_ ~ _ 

Here, we denote by rT the circle {]z] = r}; # is a normalized angular measure 
on rT. 

The proof uses the following 

CLAIM 1: Given 6 e (0, ¼], sufficiently large r, and Zo, ½r <_ [zo[ < r, there 

exists ~ E zo + 6rD such that 

l o g l ¢ ( ~ ) [ > ( ~ - 3 6 ) [ z 0 [  2, 

unless w belongs to an exceptional set of  probability exp(-c(6)r4) .  

Proof of the claim: The distribution (of probabilities) of the random potential 
1 ]z[2 is shift-invariant (see [6, Introduction]). Writing the lower log ]¢(z)] - 

bound (2.2) in Lemma 1 as 

P(mar~(log [ ¢ ( z ) [ -  1[z[2 ) < -Cr 2) < exp(-c(6)r  4) 

we can apply it to the function z ~-~ log [¢(Zo + z)[ - ½tzo + z[ 2 on 6rD. We get 

P (  max (log [~b(Zo + z ) l -  z l[z° + z[2) < -6(6r)2)  < exp(-c(6)(Cr)4)" 
zEbrD -- -- 

Assuming that w does not belong to the exceptional set, we obtain z C 6rll) such 

that  
1 _ _63r2. log I¢(z + z0)[ - ~lz + z0l 2 > 

Taking into account that ]z[ < 261zo I we get ½[z0 + z] 2 > ½]Zo[2(1 - 26)2; 

1 
log [~b(z + z0)l _> ~[Zo[2(1 - 26) 2 - 63r 2 

1 (1)26(2]zoD2 1 2 > 5[zoi2 - 261zol 2 - _ _ >  ~lzol - 361zol 2, 

which yields the claim. | 
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Proof  of Lemma 2: Now, we choose t~ = 1 - 51/4, take N = [27r5-1], and 

consider N discs (see Fig. 1) 

/ 27rij zj+hr~), zj=arexp~--~--), j = 0 , 1 , . . . , g - 1 .  

========================================================================================================= 
Figure 1. Small discs near the large circle 

Claim 1 implies that if w does not belong to an exceptional set of probability 

Nexp(-c(5)r 4) = exp(-c l (5)r4) ,  then we can choose N points Q E z 3 + 5rid 

such that 
1ogl~(~j) I ~ ( ~ -  3~)lZj12 ~ ( 1 ,  C51/4)T2 

Let P(z,~) be the Poisson kernel for the disc rD, Iz[ = r, I~1 < r. We set 

Pj(z) = P(z, Cj). Then 

1 (~--C51/4)r2 ~ 

We have 

N--1 N-1 

j=o T j=o - 

: /  l o g ] ~ ] d # + f r T ( l ~ l p j - 1 )  log]~p'd# . 
j=0 

N-1 N-1 
f ~ v ( 1 E P j - I )  l ° g ] ¢ l d # < m a x  N E P j - 1  . ~  [log,¢,[d#. 

j=0 -- zErT j : 0  T 

The next two claims finish the job. 1 

CLAIM 2: 
N--1 

maXzc~T 1 E p j _  1 _<C61/2" 
j=O 
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CLAIM 3: 

f IloglClld# <_ 10r 2 
T 

provided that r > 1, and w does not belong to an exceptional set of probability 
exp(-cr4) .  

Proof of Claim 2: We start with 

£ P(z , i )du(i)  = 1, 
rT 

and split the circle nr'il? into a union of N disjoint arcs Ij of equal angular 

measure lz(Ij) = 1/N centered at zj. Then 

N--1  N--1  

j=o j=0 

and 
IF(z, 4) - P(z, 4j)l < m_ax I~ - 4yl. max IVCP(z, 4)1 

- -  ~E~j z,~ 

<_ C16r. C2r _ C~ = C~1/2, 
(r-141) 2 al/~ 

proving the claim. I 

Proof of Claim 3: By Lemma 1, we know that unless w belongs to an ex- 
ceptional set of probability exp(-cr4) ,  there is a point ~ E lrql? such that 

logl¢(~)l >_ 0. Fix such a 4- Then 

0 <_ f P(z, ~) log I¢(z)ld~(z), 
Jr  

and hence 

ry P ( z , ~ ) l o g - I ¢ ( z ) l d , ( z )  < f r  P ( z , ; ) l o g +  I~b(z)ld#(z). 

It remains to recall that for Izl = r and 141 = ½r, 

1 
-~ < P(z ,  4) < a, 

and that 

f r  log+ l¢ld# log M(r, ¢) < r 2 _< 
T 

(provided w is non-exceptional). Hence 

f~v log- I¢ ld#  < 9r 2, 
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f~v I l°g I¢lld# _< 10r 2, 
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4. P r o o f  of  T h e o r e m  2 

We shall prove that  

(4.1) F(nr(-~ _> 1 + 6)<_ exp(-c((~)r4). 

The proof of the lower bound for n(r) is practically the same and is left to the 

reader. 
Fix ,~ = 1 + x/~. Then by Jensen's formula [1, Chapter 5, Section 3.1] 

whence by Lemmas 1 and 2 

n(r) 1 (~  5) 1 In2-1 + 1  
r2 < logn(,~ 2 _  + -- ( ~ - - 5 ) )  -- 2 ~og,~ +~n2logn < I + C v ~ , _  

provided that  w does not belong to an exceptional set of probability exp(-c(~)ra). 

This proves estimate (4.1). 
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