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ABSTRACT
The ‘hole probability’ that a random entire function

0 k
=Y G,
24 7n

where (g, (1, ... are Gaussian i.i.d. random variables, has no zeroes in the
disc of radius r decays as exp(—cr?) for large r.

We consider the (random) set of zeroes of a random entire function ,: C =
G,

o0 k
z
0.1 Z,w) = (W) —,
(0.1) Y(z,w) kE:OCk( )\/H
where (x, £ = 0,1,2,... are independent standard complex-valued Gaussian

random variables, that is the distribution N¢(0,1) of each (; has the density
7~ lexp(—|w|?) with respect to the Lebesgue measure m on C. This model is
distinguished by invariance of the distribution of zero points with respect to the
motions of the complex plane

zaz+b, ol =1,b€C;
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see [6] for details and references.
Given large positive r, we are interested here in the ‘hole probability’ that ¢
has no zeroes in the disc of radius r,

p(r) = B((z,) # 0,2 < 7).

It is not difficult to show that p(r) < exp(— constr?); see the Offord-type esti-
mate in [5]. Yuval Peres told one of us that the recent work [4] led to conjecture
that the actual hole probability might have a faster decay. In this note, we
confirm this conjecture.

The right order of decay of p(r) can be guessed using one of the simple toy
models discussed in [6]. Consider the random perturbation of the square lattice
S = {/r(k+il)+ (,y: k,I € Z}, where the perturbations (i, are independent
standard complex Gaussian random variables. Asymptotic similarity to the zero
set of ¢ was achieved by inventing special correlations between perturbations
Ck,; but this is inessential for our purposes here. It is not difficult to see that
the probability that SN {z : |z| < r} = 0 decays like exp(— constr*). This
prediction is correct:

THEOREM 1: exp(—Cr*) < p(r) < exp(—cr?).

Throughout, by ¢ and C we denote various positive numerical constants whose
values can be different at each occurrence.
It would be interesting to check whether there exists the limit

lim log™ p(r)

=00 rd ’

and (if it does) to find its value.

The lower bound in Theorem 1 will be obtained in Section 1 by a straight-
forward construction.. The upper bound in Theorem 1 follows from a large
deviation estimate which has independent interest.

THEOREM 2: Let n(r) be the number of random zeroes in the disc {|z| < r}.
Then for any 6 € (0, ] and sufficiently large r,

(0.2) IP’(’%(;—) - 1‘ > 5) < exp(—c(6)r?).

Throughout, by ¢(§) we denote various positive constants which depend on §
only. Since our argument seems to be too crude to find a sharp constant c(é) in
(0.2), we freely change the values of ¢(§) from line to line.
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There is a fruitful analogy between random zero sets and one component
Coulomb system which consists of charged particles of one sign in R? embedded
in a uniform background of the opposite sign (see [2] and references therein).
Theorems 1 and 2 are consistent with the corresponding results for Coulomb
systems [3].

ACKNOWLEDGEMENT: Yuval Peres brought our attention to the problem con-

sidered here. Fédor Nazarov spotted an error in the first draft and suggested
how to fix it. We thank both of them.

1. Proof of the lower bound in Theorem 1

In what follows, we frequently use two elementary facts: if ¢ is a standard
complex Gaussian variable, then

(1.1) P(|¢| > \) = /y e~ dmw /' gt = e N,

|w|>A
and for A <1
I L N )‘_4 \? 2
(1.2) UGS =1-eV =X =St [2A]
By €, we denote the following event: (i) |Co| > 2; (i) |¢x| < exp(—2r?) for
1 < k < 4872, and (iii) |(x| < 2% for k > 48r2. Since () are independent,

P(,) = P(i) - P(ii) - P(ii).

Evidently, the first and third factors on the RHS are > const. By (1.2), the prob-
ability of the event |(] < exp(—2r?) is > Fexp(—4r?). Since the events within
the second group are independent, the probability of all of them to happen is
> (%exp(—4r2))48r2 = exp(—192r* — Cr?). Thus, P(Q,) > exp(-Cr?).

Now, we show that for w € 2, the function ¢ does not vanish in the disc
{|z| < r}. For such z and w we have

rk T‘k ' "
MO 1641 =75 - > |Ck|ﬁ=\Co‘—Z—Z :

1<k<4872 k>48r2
Then

< e /482 .

1<k<48r2
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if r is sufficiently large. At the same time,
" (m) k/2 k/2 _
Yy 2@ T ) <=
k>4872 k>48r

(we used inequality k! > (k/e)* which follows from Stirling’s formula). Putting
both estimates together, we get

®

[ 216l -121, |z <,

proving that ¢ does not vanish in the closed disc {|z| < r} for w € Q.

2. Large deviations of log M (r,vy) — r%/2

Let ) be the random entire function (0.1) and let M(r,+) = max, <, [¢(2)|. In
this section we shall prove the following

LEMMA 1: Given § € (0, 1] and sufficiently large r,

P(lw—)— - %| > 5) < exp(—c(8)r?).

r2

The proof is naturally split into two parts. First we show that

2.1) P(E’W > % +5) < exp(-c(B)r),
and then that
(2.2) lP’(I—Og—AﬁT—’d})— 3 5) < exp(—c(8)r?).

Proof of (2.1): We use an argument similar to the one used in Section 1. We

S o+ Y Jalm= 5

0<k<der? k>4er?

have

M(r, %) < (

Consider the event A, which consists of such w’s that (i) |(x| < exp(26r?/3) for
0 < k < der?; (i) || < (V2)F for k > der?. If A, occurs and r is sufficiently
large, then

(e (2. w)

0<k<4er? 0<k<4er?

Cé) 4er? - exp(46r? /3 +1%) < exp((l + 25) 7‘2),
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and

(i) k k/2 (vV2)*
Y.< Y lal(gr) < X st
k>4er? k>4er?
Thus

M(r,¢) < exp((% + 5)r2).

It remains to estimate the probability of the complementary set AS = (\ A,.
If AS occurs, then at least one of the following happens: 3k € [0,4er?): || >
exp(26r2), or 3k € [der?, 00): |(x| > (V2)¥. Therefore

P(AS) < 4er2exp( - exp(%&ﬁ)) + Z exp(—2*) < exp(—exp(0r?))

k>4er?

provided that r > r9(d). This is much stronger than (2.1). ]
Proof of (2.2): Suppose that

(2.3) log M (r, ) < (% - 5)7”2‘

Then we use Cauchy’s inequalities and Stirling’s formula:

_ ™ (0)] M(r,¢)
Kkl - \/-kj < \/E rk

< Ckl/“exp(glogk - g + (% ——6)r2 - klogr).

Observe that the exponent equals

g((l —25)%; —log% _ 1).

We note that

2 2

T T
(1-26) —log = = 1< =3
when 72 /k is close enough to 1, whence for (1 — €)r? < k < 72,

(6 < Ok exp( = ).

By (1.2), the probability of this event is < exp(—c(8)k). Since () are indepen-
dent, multiplying these probabilities, we see that
exp( —¢(é) Z k) = exp(—c;1 (§)7%)
(1—e)r2<k<r?

is an upper bound for the probability that event (2.3) occurs. ]
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3. Mean lower bound for log |¢(z)| — |2|2/2

Lemma 1 gives us a sharp upper bound for the ‘random potential’
log [/(z)| — 3|2|*> when w does not belong to an exceptional set in the prob-
ability space. Here, we give a mean lower bound for this potential.

LEMMA 2: Given 6 € (0, %] and sufficiently large r,

1 1
P(T—z / loglwldu < ; - 6) < exp(=c(3)rt).

Here, we denote by 7T the circle {|z| = r}; u is a normalized angular measure
on rT.
The proof uses the following

CLAIM 1: Given é € (0,1], sufficiently large r, and z, 3r < |2o| < 7, there
exists { € zp + drD such that

1 2
log [¥(¢)] > (5~ 36) 0l
unless w belongs to an exceptional set of probability exp(—c(d)r?).

Proof of the claim: The distribution (of probabilities) of the random potential
log|y(2)| — 5|2|* is shift-invariant (see [6, Introduction]). Writing the lower
bound (2.2) in Lemma 1 as

Lo o _ 4
P( max(log [¥(2)| - 512I?) < ~6r?) < exp(—c(6)r*)
we can apply it to the function z — log |1(20 + 2)| — 3|20 + 2|? on érD. We get
P max (log [1(z0 + )] — 21z +2I°) < ~8(6r)?) < exp(-c(d)(3r)*).
z€8rD 2 - -

Assuming that w does not belong to the exceptional set, we obtain z € érD such
that
1 2 3,2
log [¥(2 + z0)| — §]z + zo|* > =8°r*.

Taking into account that |z| < 26]z0| we get 1|20 + z|* > 1|z|2(1 — 26);
1
log [(z + 20)| > 5l20[*(1 - 20)* — &°r
L o 2 _ (1)? 2o 1 2 2
> 5lz0l? = 20120l - () 8(2l20)? > 50l — 3820,

which yields the claim. |



Vol. 147, 2005 RANDOM COMPLEX ZEROES, III 377

Proof of Lemma 2: Now, we choose k = 1 — §'/4, take N = [276~'], and
consider N discs (see Fig. 1)

27ij )
z; + 6rD, zjzm”exp(ﬂ), j=0,1,...,N ~1.

e e

Figure 1. Small discs near the large circle

Claim 1 implies that if w does not belong to an exceptional set of probability
Nexp(—c(é)r?) = exp(—c1(6)r?), then we can choose N points ¢; € z; + érD
such that 1 ‘ .

log [v(¢;)| > (5 = 30) Izl 2 (5 — C8/4)r”
Let P(z,{) be the Poisson kernel for the disc rD, |z| = r, [{| < 7. We set
Pj(z) = P(z,{;). Then

(5-c8r)r < NZ log (6,1 < [
3=0 T

1
= [ toglwidu+ | (
rT rT
We have

N-1 N-1
1 1
_ - < il 1! - .
/TT<N§:P] 1)10glw|du_rzré%‘N3§_oP] 1‘ /Mrlloglwlldﬂ

j=0

1 N-1
(5 X 1) tostvidn

T =

N-1

P, - 1) log /.

J=0

The next two claims finish the job. |

CLAIM 2:
N-1

ZP —1' < 062,

z€rT
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CLAIM 3:

/ | log [%ldu < 10r2
T

provided that r > 1, and w does not belong to an exceptional set of probability
exp(—cr?).

Proof of Claim 2: We start with
[ PeOdu) =1,
krT

and split the circle k7T into a union of N disjoint arcs I; of equal angular
measure p(l;) = 1/N centered at z;. Then

1N
=33 P z<]+2/ (5,¢) = P(2))du(0),
3=0

and
[P(2,0) = P(2,G)| < max|c = G| -max [VcP(z, )
C2T' 05 1/2
< - =
e G e
proving the claim. 1

Proof of Claim 3: By Lemma 1, we know that unless w belongs to an ex-
ceptional set of probability exp(—cr?), there is a point { € 3rT such that
log |¥(¢)} > 0. Fix such a ¢. Then

0< / P(2.0) log [9(2)|du(z),
T
and hence
/ P(z,0) log™ [$(2)]du(z) < / P2, ) log* [(2)ldu2).
rT T

It remains to recall that for |z| = r and |¢| = 3r,

< P(z,() <3

[

and that
/ log* [v]du < log M(r,¢) < 1’
rT

(provided w is non-exceptional). Hence

/ log™ [¢|dp < 972,
rT
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and

| Ttogtvlida < 10,
rT

proving the claim. ]

4. Proof of Theorem 2
We shall prove that

(4.1) P(% > 145) < exp(—c(d)r?).

The proof of the lower bound for n{r) is practically the same and is left to the
reader.

Fix & = 1+ v/6. Then by Jensen’s formula [1, Chapter 5, Section 3.1]

n{r)logk < /TM @dt = </f;r’11‘_/r'll’) log [¢{du,

whence by Lemmas 1 and 2

oG- (o) - Pt e 10

provided that w does not belong to an exceptional set of probability exp(—c(&)r?).
This proves estimate (4.1).
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