
IL 

N U O V O  C I M E N T O  
O R G A N O  D E L L A  S O C I E T A  I T A L I A N A  D I  F I S I C A  

S O T T O  G L I  A U S P I C I  D E L  C O N S I G L I O  N A Z I O N A L E  D E L L E  R I C E R C H E  

VOL. I I I ,  N. 6 Serie decima 1 o Giugno 1956 

Introduction of ,, True Observables , ,  

into the Quantum Field Equations (*). 

P. G. BERGlgA~N 

Department o/ Physics, Syracuse University, N. Y. 

(ricevuto il 25 Luglio 1955) 

Summary (+). --- In connection with our work on the quantization of general 
relativity, we have investigated the equations of quantum electrodynamics, 
with the unrestricted gauge group, that  is without specializing to Lorentz or 
Coulomb gauge. Even before quantization, we formulate the theory in terms 
of , true observables ~) only. We define these as dynamical variables gene- 
rating canonical transformations leading from one permissible state to 
another;  a permissible state, in turn, is a set of values of all canonical 
variables that  obeys the gauge constraints. Similarly an observable in 
the quantized theory must be a Hermitian operator within the Hilbert 
space of permissible states; the latter are those obeying the gauge con- 
straints. Transition to the true observables not only eliminates the lon- 
gitudinal parts, of the vector potential and the scalar potential from the 
theory, but also the longitudinal components of the electric field strength. 
Likewise, the operators that  create and annihilate charged particles are 
not themselves observables, but one can construct product combinations 
that  arc. Such (gauge-invariant) products involve the product of a creator 
by an annihilator at different space points, multiplied by a functional 
that  depends on a line integral of the vector potential, the path of in- 
tegration being any curve connecting the two space points. It  turns out 
that  the Hamiltonian can in fact be written in terms of these observables 
only, and that  the infinite self-energy caused by non-transverse photons 
is eliminated automatically. 

(+) Editor's care. 

(*) This work was supported by the Office of Naval Reserarch and by the National 
Science Foundation, and was presented at the International Conference on Elementary 
Particles held at Piss, Ju,.le 1955. 
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I n  a previous pape r  (1) i t  was shown t h a t  in the  presence of constraint~ 

in the  Hamf l ton ian  version of a theory  the  usual  group of canonical t rans-  

fo rmat ions  in phase  space m a y  be replaced advan tageous ly  b y  a different 

group, whose infinitesimal commuta to r s  are closely re la ted to the  so-called 

Dirac  b racke t s  (3). The new group resembles the  group of canonical  t rans-  

fo rmat ions  insofar  as i t  also reproduces  the  fo rm of the  canonical equat ions  
of mot ion,  b u t  differs in t h a t  i t  leaves the  fo rm of the  constra ints  unchanged .  

I n  this t r ans fo rmat ion  group one can also define generators,  bu t  in the  pre-  

sence of first-class constra ints  the  relat ionship between infinitesimal t rans-  
fo rmat ions  and generat ing dynamica l  variables  is not  one- to-one.  Certain 

dynamica l  var iables  cannot  serve as genera tors ;  on the  o ther  hand,  there  are  

different t rans format ions  belonging to the  same generator .  In  f ac t ,  there exis ts  
a normal  subgroup of infinitesimal t ransformat ions  belonging to the genera to r  

zero. This subgroup represents  a group of t rans format ions  wi th  respect  to 

which t h e  theory  is invar iant ,  e.g. curvil inear coordinate  t ransformat ions ,  gauge. 
t r ans fo rmat ions  and the  like. I t  is character is t ic  for these groups t h a t  they  

depend on a rb i t r a ry  funct ions of the  t ime  coordinate,  unlike, for ins tance,  

the  Loren tz  group. I f  we fo rm the  fac tor  group with respect  to the normaI  

subgroup,  then  we obta in  a new (abstract)  group t h a t  possesses a one-to-one: 
re la t ionship to the  admissible generators .  The admissible generators  are those  
dynamica l  var iables  t h a t  are invar ian t  under  the  normal  subgroup.  The t rans -  
i t ion to the  fac tor  group eliminates all those generators  t h a t  are t r iv ia l ly  zero, 

i.e. the  const ra in ts  of the  theory.  We shall call these admissible, non- t r iv iaI  

var iables  (( t rue  observables  )). 
The t rue  observables  are the  physical ly  meaningful  var iables  of a theory .  

Thei r  values  (at a given t ime) are indel~endent of the  choice of the  f r ame  of  

reference (including the  gauge frame).  Their  values can be predic ted  f rom 
one t ime  to ano ther  by  in tegra t ion  of the canonical equat ions of mot ion  (or 

canonical  field equations,  as the  case m a y  be). Any physical  s i tuat ion can 
be character ized uniquely  in t e rms  of the t rue  observables.  

The  Lie algebra of the  t rue  observables  affords an improved  access to t h e  

t a sk  of quant iz ing theories wi th  constraints .  I t  would apl0ear t h a t  par t icu lar ly  

in theories  possessing general covariance the  de te rmina t ion  of the  t rue  observ- 

ables is a necessary pre l iminary  to their  quant izat ion.  Unfo r tuna te ly  thi~ 

de te rmina t ion  remains  so far  an unsolved problem.  I t  was, however ,  con- 

sidered a useful (( pract ice  ~) to tes t  out  the  concept  on a theory  provid ing  

less fo rmidable  challenge, i.e. e lectrodynamics.  Tha t  is the  topic  of this paper .  

(1) p. G. BI~I~ANN and I. GOLDBERG: Phys. Rev., 98, 531, 544 (1955). 
(2) p. A. M. DIRAC: Can. Jouru.o/ Math., 2, 129 (1950); 3, 1 (1951). 
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1.  - T h e  T r u e  O b s e r v a b l e s  o f  E l e c t r o d y n a m i c s .  

We begin by  ident i fy ing the  t rue  observables  of classical (relativistic) 
e lec t rodynamics  in which the  sources of the  field are poin t  charges. Ordinari ly  

such a field is described in the  canonical formal i sm b y  the  four  electromag- 

netic potent ia ls  ~ and Ai (i = 1, 2, 3), by  the four  m o m e n t u m  densities ~t 4, ~ ' ,  
and fu r the r  by  the coordinates  and m o m e n t u m  componen t s  of the poin t  

charges x(~)~, p(,,)~, where the  subscr ipt  n identifies the  n- th  particle.  These 
canonical  coordinates  are subject  to two const ra in ts  a t  each space point ,  

(1 )  ~r 4 - -  0 , 
1 

~z" + e ~ e~(x , , ,  x) = 0 

The symbol  6 denotes  here the  three-dimensional  &function.  According to 

the  rules derived earlier (1), and because all the  const ra in ts  (1) are first-class 

constraints ,  the  t rue  observables  are those dynamica l  var iables  t h a t  are left  

over  af ter  we have  el iminated not  only the constraints  themselves,  bu t  also 
their  canonical conjugates.  More precisely, the t rue  observables  mus t  be com- 
binat ions of dynamica l  var iables  whose Poisson bracke!s  with all constra ints  

vanish.  This r equ i rement  is equivalent  to the one t h a t  the  observables  nms t  

be gauge invar iant ,  because the  constra ints  are ac tual ly  the  generators  of 
infinitesimal gauge t ransformat ions .  Under  an infinitesimal gauge transfor-  

mat ion  the  dynamica l  variables  t ransform as follows: 

(2) 6 A i  = ~,~, &f ~_ _ 1 ~ , bx(,,)i : 0, 6P(,,)i ---~ _e'~ ~(x,~)j , 
e o 

where ~ is a comple te ly  a rb i t r a ry  funct ion of the  space and t ime  coordinates 
and m a y  even depend on the  dynamica l  var iables  themselves.  This t rans-  

fo rmat ion  (2) is genera ted  by  the funct ional  

[ ]} (3) ~ = _  ~,~ + ~,~ + 1 -c ~ e,,6(x,~, x )  ~ dax.  

I t  follows, then, t ha t  ~r*, q, and the  longi tudinal  components  of A~ and :r ~ 

m u s t  be el iminated f rom the formula t ion  of the  theory.  Moreover,  the  cano- 

nical m o m e n t u m  components  P(n)~ mus t  be replaced by  the  so-called kinet ic  

m o m e n t a  P'(~)i, 

, e = 1 --- x(~) mni(~) (4) P'" = P(")--  c A(x . )  \ c2 / ' 

which are gauge invar iant .  
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We define the  longi tudinal  and t ransverse  components  of a vector  field 
~s follows: 

(5) 

A --~ Act) + A<t>, cur iA<.  = 0, 

A.> - -  4~ n grad '  (div'  A ' )dax  ' , 

div A(t~ -~- 0 , 

, ' - - I * - * ' I  �9 

I f  we in t roduce these quant i t ies  into the  cus tomary  Hami l ton ian  of the 

theory ,  we ob ta in  the  following expression:  

(6) H = ~ ~ (curl A(t~) 2 + 4~c2~t) d3x ~- 

r2 \ � 8 9  
~n P(n) \ 2 en en, + 1 + ~ l . ~ c  § 

m~c / ' I x(.,)! n<n '  i X ( n )  - -  

Because of the in t roduct ion  of the gauge- invar iant  quanti t ies,  the  Hamil -  

ton ian  appears  as the sum of t e rms  t h a t  refer  ei ther  exclusively to the  part icle 

var iables  or to the  (transverse) e lect romagnet ic  field. There  is no << inter- 

act ion ~> term.  The actual  in terac t ion  between field and part icles is b rough t  

abou t  by  the  c i rcumstance t h a t  the  Dirae  bracke ts  (identical in this ease with 
o rd inary  Poisson brackets)  be tween these two kinds of observables  do not  

all vanish.  We have,  in fac t :  

' - -  , r o = l x n - - x l .  (7) {=.,i(x), p,~.} C ~.~(x, x,o,) + ~ ~ . .  

In the  expression (6) we have  also el iminated the  self-energy t e rms  (Coulomb 

energy of a part icle  wi th  itself), which are infinite bu t  c-numbers  and, hence, 

w i thou t  effect on the  equat ions of mot ion  of the  system. I t  remains  to be 

seen whe ther  the  expression (6) is Lorentz- invar iant .  

2. Lorentz Invariance of the Formulation. 

I n  a consis tent ly Hami l ton i an  formula t ion  a four-dimensional  no ta t ion  is 
feasible only with the  in t roduct ion  of (( pa r ame te r s  ~ (a), i.e. a supe r -many  
t ime  formal ism.  Actually,  Lorentz  invar iance does not  depend on a four- 

(a) p. G. BERGMANN and J. It. M. BRUNIN(~8: Rev. Mod. Phys.,  21, 480 (1949). 
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dimensional notat ion,  and par t icular ly  not  in the  present  formulat ion,  in which 
the quanti t ies  employed are not  the  components  of four-vectors  or four-tensors.  
In  a Hami l ton ian  or quasi-Hamil tonian formula t ion  of a theory  i t  is much 
more  appropr ia te  to const ruct  the  generator  of an infinitesimal Loren tz  trans- 
format ion  (which is here a canonical or quasi-canonical t ransformation)  and 

to show tha t  the theory  is invar iant  with respect  to this t ransformat ion group. 
Tha t  means tha t  the generator,  or r a the r  generators,  must  be constants  of 
the motion.  In  view of the circumstance tha t  these generators are physically 
interest ing in themselves, representing the components  of the to ta l  linear and 
angular  momentum,  the energy, and the mot ion of the center  of mass of the 
whole system, this procedure of proof of Lorentz  eovarianee is doubly advan- 

tageon s. 
We formula te  the infinitesimal Loren tz  t ransformat ion in terms of the  

coordinates of an arb i t rary  world point  with the help of two constant  vectors  

0 and v, 
1 

(8) 6 x  - =  O x - -  v t  , ,~t : c~ v " x  . 

The commuta to r  of two such t ransformations (8), with different sets of 
values for  the  two vectors  0 and v, is a law of the same form. For  the group 
character  of the Lorentz  transformations,  i t  is necessary to re ta in  both  of  
these vectors,  even though the vector  0 describes a purely  spatial ro ta t ion  
of the coordinate  s y s t e m .  On the other  hand, the inhomogeneous terms are 
not  necessary to obtain a Lie grol;p. In what  follows, we shall omit  reference 
to 0, as we need not  make explicit  use of the group character  of the Lorentz  
t ransformation.  

Wi thou t  spatial ro ta t ion  the infinitesimal t ransformat ion law for the co- 
ordinates of a particle, and for a fixed value of the t ime coordinate (not << a t  
the same t ime >~!) is 

( v - ~ )  ( v . x ~ )  p,: 
(9)  gx~ = - -  v t  - ~ ~t  = - -  v t  + ~ :i~ = y r .  

I t  follows immediately,  t h a t  the generator  of an infinitesimal Loren tz  
t ransformation,  /P, must  contain te rms of t h e  fo rm 

v . x ~  v 'm~c~ + p'~  ( v . p ) t  ( l o )  2 . . . .  - -  - -  . 
o 

In  addition, we must  co~sider the t ransformat ion law for the electromagnetic  
variables. W e  have for the electromagnetic  potentials  the t ransformat ion 
laws: 

" '>  ~ = 
cq~, 6~v -A . 



1182 P.G. BERGMANN 

For  a po in t  wi th  fixed space and t ime  coordinates  (not the same world point),  
we obta in  

(12) 
(v) )( 

~ _ 1 B § t(v. V ) ~ - -  ~ .x curl 
4~c 

r 

P.  j = ~ e . k .  = ~e , ,  
. . m . v / 1  + - - ( p . ' / m ~ . e ~ )  

F r o m  these  individual  t r ans fo rma t ion  laws for the  mechanical  and the  field 

quant i t ies  one can derive the  comple te  fo rm of the  genera tor  of an infinite- 

s imal  Loren tz  t ransformat ion .  I t  is: 

(13) ~ = v 
X 

This genera to r  is gauge- invar iant .  I t  furnishes correct ly  the  t rans format ion  

laws of any  gauge- invar iant  quant i ty ,  bu t  not  t h a t  of o ther  variables,  such as 

e lec t romagnet ic  potentials .  Actually,  the  law (11), for instance,  is not  unique ~'. 
I t  is based on a convent ion  as to wha t  is m e a n t  by  <( the  same gauge f rame )) 

in two different Lorentz  frames.  I f  we wish to produce a genera to r  t ha t  yields 

also Eqs.  (11), then  we mus t  add to the  expression (13) t e rms  which contain 
the  const ra in ts  (1) as factors  and which, therefore,  vanish.  

The genera tor  (13) is gauge- invar iant ,  bu t  it  does not  as ye t  contain only 
t rue  observables.  In  order  to accomplish this purpose we mus t  separa te  the 
vec to r  field ~ into its longitudinal  and its t ransverse  par ts .  I f  we do so, we 
ob ta in  the  new expression:  

(14) 

,2 t ' -L U 4 J r ~ - - t e u r l B  
. \,e 

d a x  , 

- - ~ = ~ ,  e~ ~ (x ,  x . )  
4ge ~" rn ' n 

I n  this expression there  is one obviously indefinite t e rm:  f U(2zt/c)xadax. Unlike 

in the  expression for  the  Hami l ton ian ,  Eq.  (6), the  <( self-energy )) t e r m  here 
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is multiplied by  the coordinate of the charge and will, therefore, make an 
(infinite) contr ibut ion to the Lorentz  t ransformation.  The reason is the fol- 
lowing: I f  a charge is a t  rest, then  its electric field s t rength  has precisely the 
Coulomb type  of infinity, which may  be subtracted off simply by  separating 
the  t ransverse f rom the longitudinal  electric field (the magnetic field is purely 
Cransverse to begin with). But  when the point  charge is in motion,  then even 

the t ransverse electric field, as well as the magnetic  field, possess singularities, 
which depend on the veloci ty  of the point  charge. Hence a Lorentz  trans- 
format ion  changes the transverse fields by  an amount  which is infinite a t  the 
locat ion of each point  charge. Accordingly the generator  must  have a similarly 
infinite t e rm of its own. I t  is conceivable t ha t  this singularity may  be avoided 
if the  to ta l  field is not  simply separated into longitudinal and transverse par t  
b u t  in such a manner  t ha t  the quasi-longitudinal pa r t  (which will now also 
have  a magnet ic  component)  subtracts  off exact ly  the  singulari ty of each point  
charge. The quasi-transverse par t  would still have  a vanishing divergence, 
and the quasi-longitudinal par t  would be determined completely by  the par- 
ticle coordinates and kinetic momenta .  This possibility has not  ye t  been 
decided. 

As for the Lorentz  invariance of the Hamil tonian  (6), it  is sufficient to 
show tha t  the functional  (13) is a constant  of the mot ion under  the laws of 
mot ion determined by  the Hamfl tonian (6). This calculation is somewhat  
lengthy  and will not  be reproduced here; the result  is, however, satisfactory. 

3.  - D i r a c  E l e c t r o n  T h e o r y .  

A more realistic version of quan tum electrodynamics starts  out  not  with 
po in t  charges, bu t  with expressions for current  and charge densities tha t  are 
furnished by  the Dirae theory  for a single electron. Field quantizat ion of the 
part icle  wave functions as well as the electromagnetic field quantit ies then 
leads to the si tuation involving many  electrons and the creation and annihi- 
lat ion of pairs. 

F r om the point  of view of a (~ t rue observables ~ formalism, the wave func- 
tioI~s of charged particles are not  gauge-invariant.  Hence i t  becomes neces- 
sary to search for combinations tha t  are. A complete theory  has not  ye t  been 
carried out.  Bu t  instead of the creation and annihilation operators,  we must  
introduce gauge-invariant  (~ transit ion operators ~), which may be defined as 
follows: 

i ef ] (15) ~(x2,xj) : ~v*(x2) exp ~ (A-d/) ~v(x~). 

x I 
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They  depend not  only on the two end points bu t  also on the pa th  of in- 
tegrat ion tha t  connects the two points x~ and x2. However,  the ratio between 
two transi t ion operators with the same end points bu t  different connect ing 
points is a purely  electromagnetic and gauge-invariant quant i ty ;  it  is an expo- 
nential  funct ion of the magnetic flux through the surface bounded by  the two 
paths  of integration.  Naturally,  the transit ion operator  has two spinor indices~ 
of which one t ransforms contragredient ly to the other.  If  we interchange the 
two end points of a transit ion operator  as well as ist two spinor indices with 
the same pa th  of integration, then we obtain the hermit ian conjugate of the 
original operator .  

Regardless of whether  the transit ion operator  field ~(x~, x2) is to describe 
a Boson or a Fermion field, i t  always satisfies the same commuta t ion  (never 
an t icommuta t ion)  relations. These are: 

(16) [e(x~, Xl), e(x, ,  x3)] = 6(Xl, x,)e(x~, x ~ ) -  6(x2, x~)e(x,, xO . 

When we have to deal with a Fermion field, we have, however,  the following 
addit ional  relationship : 

(17)  ~o(x~, xl) o~(x2, x3) - -  r x2) Q(x2, x3) , 

as well as its Hermi t ian  conjugate,  

(18) ~o(x2, x0  ~o(x,, x0  = ~(x,,  Xl)~(x~, Xl). 

I t  is not  clear at  present  whether  the relationships (17), (18) are sufficient to 
characterize a Fermion field completely.  I t  is possible to set up an algebraic 
relationship tha t  differentiates between Fermion and Boson fields, of which 
the  relationships (17), (18) are special cases. Provided we normalize the l>ath 
of in tegrat ion so tha t  i t  lea~ls f rom one end point  uniquely to some fixed refe- 
rence point  (say the origin of the coordinate system) and thence to the o the r  
end point,  these relationships are: 

(19) e(xl, x~)e(x~, x , ) -  ~(x~, x~)e(xl,  x~) = 

- ~: [e(x~, x2)e(xl, x , ) -  ~(xl, x2)e(x~, x,)] = 

= ~ [ o ( x ,  x,)~(x3, x ~ ) -  ~(x~, x~)~(x~, x~)]. 

The plus sign applies to B0sgns, the minus sigJl to Fermions.  
Wi th  the help of the electromagnetic  field variables and the t ransi t ion 

operators ,  the Hamfl tonian of the  electron-photon system can be formula ted .  
This sys tem of observables is closed insofar as the t ime der ivat ive of each 
(in Heisenberg representat ion)  is a f unc t i on  of these variables only. 
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R I A S S U N T O  (*) 

In  connessione col lavoro  che s t iamo svolgendo sulla quant izzaz ione  della relati-  
vi t~ generale, abbiamo inves t iga to  le equazioni  della e le t t rod inamiea  quant is t ica  col 
~'ruppo di gauge non r is t ret to ,  vale a dire senza specializzarsi al gauge di Lorentz  e 
di Coulomb. Noi formul iamo la teoria,  anche pr ima della quantizzazione,  in te rmini  
solo di <, vere  osservabili  ~). Queste u l t ime sono definite come var iabi l i  d inamiche che 
generano t rasformazioni  canoniche che t rasformano uno <(stato permesso ,~ in un a l t ro ,  
in tendendosi  per  <~ s ta to  permesso ~> un insieme di valori  di tutt 'e le variabil i  canoniche 
che r i spet tano i vineoli  di gauge. Similmente,  nella teoria  quant izzata ,  un 'osservabi le  
dev 'essere un operatore  hermi t iano  hello spazio hi lber t iano degli s ta t i  permessi.  La  
t ransizione alle vere osservabili  non solo el imina dalla teor ia  il potenziale  scalare e le 
par t i  longi tudinal i  del potenziale  vet tore ,  ma  anche le component i  longi tudinal i  del 
eampo elet tr ico.  Ovviamente ,  gli o],~eratori che creano e dis truggono part ieel le cariche 
non sono di per  sb osservabili ,  ma  se ne possono costruire  combinazioni  (in forma di 
prodot t i )  che lo sono. Tall  p rodo t t i  (gauge-invarianti)  involvono il p rodot to  di un 
creatore per  un d is t ru t tore  in pun t i  differenti  dello spazio, molt ipl icat i  per un funzio- 
nale ehe dipende da un integrale  di l inea del potenziale  ve t to re  e calcolato su una qual- 
siasi curva  che connet te  i due pun t i  suddet t i .  Ne segue che l ' hami l ton iana  pub essere 
espressa in te rmini  sol tanto di det te  variabil i  e e h e l a  selfenergia infinita causata  dai 
fotoni  non t rasversal i  8 au toma t i eamen te  e l iminata .  

(*) . t  cura  della Redaz ione .  


