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Summary (*). — In connection with our work on the quantization of general
relativity, we have investigated the equations of quantum electrodynamics,
with the unrestricted gauge group, that is without specializing to Lorentz or
Coulomb gauge. Even before quantization, we formulate the theory in terms
of «true observables » only. We define these as dynamical variables gene-
rating canonical transformations leading from one permissible state to
another; a permissible state, in turn, is a set of values of all canonical
variables that obeys the gauge constraints. Similarly an observable in
the quantized theory must be a Hermitian operator within the Hilbert
space of permissible states; the latter are those obeying the gauge con-
straints. Transition to the true observables not only eliminates the lon-
gitudinal parts, of the vector potential and the scalar potential from the
theory, but also the longitudinal components of the electric field strength.
Likewise, the operators that create and annihilate charged particles are
not themselves observables, but one can construct product combinations
that are. Such (gauge-invariant) products involve the product of a creator
by an annihilator at different space points, multiplied by a functional
that depends on a line integral of the vector potential, the path of in-
tegration being any curve connecting the two space points. It turns out
that the Hamiltonian can in fact be written in terms of these observables
only, and that the infinite self-energy caused by non-transverse photons
is eliminated automatically.

(*) Editor’s care.

(*) This work was supported by the Office of Naval Reserarch and by the National
Science Foundation, and was presented at the International Conference on Elementary
Particles held at Pisa, June 1955.
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In a previous paper (') it was shown that in the presence of constraints
in the Hamiltonian version of a theory the usual group of canonical trans-
formations in phase space may be replaced advantageously by a different
group, whose infinitesimal commutators are closely related to the so-called
Dirac brackets (2). The new group resembles the group of canonical trans-
formations insofar as it also reproduces the form of the canonical equations
of motion, but differs in that it leaves the form of the constraints unchanged.
In this transformation group one can also define generators, but in the pre-
sence of first-class constraints the relationship between infinitesimal trans-
formations and generating dynamical variables is not one-to-one. Certain
dynamical variables cannot serve as generatcrs; on the other hand, there are
different transformations belonging to the same generator. In fact, there exists
a normal subgroup of infinitesimal transformations belonging to the generator
zero. This subgroup represents a group of transformations with respect to
which the theory is invariant, e.g. curvilinear coordinate transformations, gauge
transformations and the like. It is characteristic for these groups that they
depend on arbitrary functions of the time cocordinate, unlike, for instance,
the Lorentz group. If we form the factor group with respect to the normal
subgroup, then we obtain a new (abstract) group that possesses a one-to-one
relationship to the admissible generators. The admissible generators are those
dynamical variables that are invariant under the normal subgroup. The trans-
ition to the factor group eliminates all those generators that are trivially zero,
i.e. the constraints of the theory. We shall call these admissible, non-trivial
variables « true observables ».

The true observables are the physically meaningful variables of a theory
Their values (at a given time) are independent of the choice of the frame of
reference (including the gauge frame). Their values can be predicted from
one time to another by integration of the canonical equations of motion (or
canonical field equations, as the case may be). Any physical situation can
be characterized uniquely in terms of the true observables.

The Lie algebra of the true observables affords an improved access to the
task of quantizing theories with constraints. It would appear that particularly
in theories possessing general covariance the determination of the true observ-
ables is a necessary preliminary to their quantization. Unfortunately this
determination remains so far an unsolved problem. It was, however, con-
gidered a useful « practice » to test out the concept on a theory providing a
less formidable challenge, i.e. electrodynamics. That is the topie of this paper.

() P. G. Beramany and I. GoLDBERG: Phys. Rev., 98, 531, 544 (1955).
() P. A. M. Dirac: Can. Journ.-of Math., 2, 129 (1950); 3, 1 (1951).
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1. - The True Observables of Electrodynamics.

We begin by identifying the true observables of classical (relativistic)
electrodynamics in which the sources of the field are point charges. Ordinarily
such a field is described in the canonical formalism by the four electromag-
netic potentials ¢ and 4, (i =1, 2, 3), by the four momentum densities =%, ¢
and further by the coordinates and momentum components of the point
charges %.,;, Pm:, where the subscript » identifies the n-th particle. These
canonical coordinates are subject to two constraints at each space point,

1
(1) at =0, A p > end(x,, x) = 0.

The symbol 6 denotes here the three-dimensional dé-funection. According to
the rules derived earlier (1), and because all the constraints (1) are first-class
congtraints, the true observables are those dynamical variables that are left
over after we have eliminated not only the constraints themselves, but also
their canonical conjugates. More precisely, the true observables must be com-
binations of dynamical variables whose Poisson bracke!s with all constraints
vanish. This requirement is equivalent to the one that the observables nmust
be gauge invariant, because the constraints are actually the generators of
infinitesimal gauge transformations. Under an infinitesimal gauge transfor-
mation the dynamical variables transform as follows:
1

. €,
(2) 04, = f,i, (S(P = o &, Oy = 0, 5P(n>i = ; f(xn),i s

where £ is a completely arbitrary function of the space and time coordinates
and may even depend on the dynamical variables themselves. This trans-
formation (2) is generated by the functional

(3) g = —J {}0 wiE + [n 4 30 S e.8(%., x)] 5} ase .

It follows, then, that »*, ¢, and the longitudinal components of 4, and n*
must be eliminated from the formulation of the theory. Moreover, the cano-
nical momentum components p,; must be replaced by the so-called kinetic
momenta p’

2
X

, e “F
(4) Po = P — P A(xn) = (1 — ?) MnXin 5

which are gauge invariant.
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We define the longitudinal and transverse components of a vector field
as follows:

{ A = A(l) + A(;), CuI‘l A(I) - 0, diV A(“ = 0 ’

1 {1
= i LI ! 3!
(5) A ——~4—~fngrad (div’ A")d3x’,

1 ({1
Ay, = — f— curl’ curl’ A'd%z’,
4| r

If we introduce these quantities into the customary Hamiltonian of the
theory, we obtain the following expression:

1 1
(6) H= 5[{@ (curl A,)2 + 47z02n(2,,} dsy -

12 3 ,

5 —_—
mic n<n | Xy~ Xn" |

Because of the introduction of the gauge-invariant quantities, the Hamil-
tonian appears as the sum of terms that refer either exclusively to the particle
variables or to the (transverse) electromagnetic field. There is no «inter-
action » term. The actual interaction between field and particles is brought
about by the circumstance that the Dirac brackets (identical in this case with
ordinary Poisson brackets) between these two kinds of observables do mnot
all vanish. We have, in fact:

! n 1 1
(1) {7ni®)y Pos} = % 015 0(%, x(m)) + i (—)’”} ’ T = lxn -—x|

Ynl is

In the expression (6) we have also eliminated the self-energy terms (Coulomb
energy of a particle with itself), which are infinite but ¢-numbers and, hence,
without effect on the equations of motion of the system. It remains to be
seen whether the expression (6) is Lorentz-invariant.

2. Lorentz Invariance of the Formulation.
In a consistently Hamiltonian formulation a four-dimensional notation is

feasible only with the introduction of « parameters» (*), i.e. a super-many
time formalism. Actually, Lorentz invariance does not depend on a four-

(®) P. G. BErgMANN and J. H. M. BruniNGS: Rev. Mod. Phys., 21, 480 (1949).
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dimensional notation, and particularly not in the present formulation, in which
the quantities employed are not the components of four-vectors or four-tensors.
In a Hamiltonian or quasi-Hamiltonian formulation of a theory it is much
more appropriate to construct the generator of an infinitesimal Lorentz trans-
formation (which is here a canonical or guasi-canonical transformation) and
to show that the theory is invariant with respect to this transformation group.
That means that the generator, or rather generators, must be constants of
the motion. In view of the circumstance that these generators are physically
interesting in themselves, representing the components of the total linear and
angular momentum, the energy, and the motion of the center of mass of the
whole system, this procedure of proof of Lorentz covariance is doubly advan-
tageous.

We formulate the infinitesimal Lorentz transformation in terms of the
eoordinates of an arbitrary world point with the help of two constant vectors
8 and v,

(8) ' dx = Ox— vt, (5‘8:—%0-.@.

The commutator of two such transformations (8), with different sets of
values for the two vectors @ and v, is a law of the same form. For the group
character of the Lorentz transformations, it is necessary to retain both of
these vectors, even though the vector 6 describes a purely spatial rotation
of the coordinate system. On the other hand, the inhomogeneous terms are
not necessary to obtain a Lie group. In what follows, we shall omit reference
to 0, as we need not make explicit use of the group character of the Lorentz
transformation.

Without spatial rotation the infinitesimal transformation law for the co-
ordinates of a particle, and for a fixed value of the time coordinate (not « at
the same time »!) is

9)  dx, = — vt — &0 = — vt + (”'f") %, = {”'x;‘) P
‘ et VT )

-— vt .

It follows immediately, that the generator of an infinitesimal Lorentz
transformation, £, must contain terms of the form

{(10) L= . %\/mﬁcﬂ +pl—(v-p).
In addition, we must consider the transformation law for the electromagnetic

variables. We have for the electromagnetic potentials the transformation
laws:

(11) oAd=—"¢g, &p:——(E-A).
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For a point with fixed space and time coordinates (not the same world point),
we obtain

6B — — (%E> + v -V)B — (%x) curl E,

(12) o = — 1 (BB> + tv-V)rn— 1 (v )(curl B—-— ])

dne

From these individual transformation laws for the mechanical and the field
quantities one can derive the complete form of the generator of an infinite-
simal Lorentz transformation. It is:

(13) If[ ( B2 + 2nc21t> t(Bn)} d3x +

|

This generator is gauge-invariant. It furnishes correctly the transformation
laws of any gauge-invariant quantity, but not that of other variables, such as
electromagnetic potentials. Actually, the law (11), for instance, is not uniqu(’?.
It is based on a convention as to what is meant by «the same gauge frame »
in two different Lorentz frames. If we wish to produce a generator that yields
also Eqgs. (11), then we must add to the expression (13) terms which contain
the constraints (1) as factors and which, therefore, vanish.

The generator (13) is gauge-invariant, but it does not as yet contain only
true observables. In order to accomplish this purpose we must separate the
vector field = into its longitudinal and its transverse parts. If we do so, we
obtain the new expresgion:

(14) = v If[ ( Bz - 27;0-1\:2) + (. B)| d3x +

—— 27
+3> (x—c" \/m302 + pli— tpé) -#fU (%T x0 — 4nrm,—t curl B) dsr,
1 €a .
= e 2. o = g €n (%, %) .

In this expression there is one obviously indefinite term: f U(2n/c)xodx. Unlike
in the expression for the Hamiltonian, Eq. (6), the «self-energy » term here
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is multiplied by the coordinate of the charge and will, therefore, make an
(infinite) contribution to the Lorentz transformation. The reason is the fol-
lowing: If a charge is at rest, then its electric field strength has precisely the
Coulomb type of infinity, which may be subtracted off simply by separating
the transverse from the longitudinal electric field (the magnetic field is purely
transverse to begin with). But when the point charge is in motion, then even
the transverse electric field, as well as the magnetic field, possess singularities,
which depend on the velccity of the point charge. Hence a Lorentz trans-
formation changes the transverse fields by an amount which is infinite at the
location of each point charge. Accordingly the generator must have a similarly
infinite term of its own. It is conceivable that this singularity may be avoided
if the total field is not simply separated into longitudinal and transverse part
but in such a manner that the quasi-longitudinal part (which will now also
have a magnetic component) subtracts off exactly the singularity of each point
charge. The quasi-transverse part would still have a vanishing divergence,
and the quasi-longitudinal part would be determined completely by the par-
ticle coordinates and kinetic momenta. This possibility has not yet been
decided.

As for the Lorentz invariance of the Hamiltonian (6), it is sufficient to
show that the functional (13) is a constant of the motion under the laws of
motion determined by the Hamiltonian (6). This caleulation is somewhat
lengthy and will not be reproduced here; the result is, however, satisfactory.

3. — Dirac Electron Theory.

A more realistic version of quantum electrodynamies starts out not with
point charges, but with expressions for current and charge densities that are
furnished by the Dirac theory for a single electron. Field quantization of the
particle wave functions as well as the electromagnetic field quantities then
leads to the situation involving many electrons and the creation and annihi-
lation of pairs.

From the point of view of a « true observables » formalism, the wave func-
tions of charged particles are not gauge-invariant. Hence it becomes neces-
sary to search for combinations that are. A complete theory has not yet been
carried out. But instead of the creation and annihilation operators, we must
introduce gauge-invariant « transition operators », which may be defined as
follows:

Z‘E
ie

(15) 0(x:; %) = p¥(x.) exp {hcf(A'dl)} p(xr) .

xy
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They depend not only on the two end points but also on the path of in-
tegration that connects the two points 2; and x,. However, the ratio between
two trangition operators with the same end points but different connecting
points is a purely electromagnetic and gauge-invariant quantity; it is an expo-
nential function of the magnetic flux through the surface bounded by the two
paths of integration. Naturally, the transition operator has two spinor indices,
of which one transforms contragrediently to the other. If we interchange the
two end points of a transition operator as well as ist two spinor indices with
the same path of integration, then we obtain the hermitian conjugate of the
original operator.

Regardless of whether the transition operator field o(x,, x,) is to describe
a Boson or a Fermion field, it always satisfies the same commutation (never
anticommutation) relations. These are:

(16) [o(xz, x1); 0(%4, 25)] = (%1, %) 0(%2, %5) — O(x,, &3) JCAEN

When we have to deal with a Fermion field, we have, however, the following
additional relationship:

(17) 0(%2y %1) 0(%, %5) == O(xy, %) (2, %3)
as well as its Hermitian conjugate,

(18) Q(x27 %) Q(xu %) = (S(x“ x,) Q(xzy xy) .

It is not clear at present whether the relationships (17), (18) are sufficient to
characterize a Fermion field completely. It is possible to set up an algebraic
relationship that differentiates between Fermion and Boson fields, of which
the relationships (17), (18) are special cases. Provided we normalize the path
of integration so that it leads from one end point uniquely to some fixed refe-
rence point (say the origin of the coordinate system) and thence to the other
end point, these relationships are:

(19) 0(%y5 %2) 0(%3y %) — 0%, 23) 0(%1,y X4) =
= + [0(xs, %) 0(x1, %s) — O(%1, %) 0(%5, %4)] =

= + [Q(xu x,) o3, %) — O(x3, x4) o(xy, x,)] .

The plus sign applies to Bosons, the minus sign to Fermions.

With the help of the electromagnetic field variables and the transition
operators, the Hamiltonian of the electron-photon system can be formulated.
This system of observables is closed insofar as the time derivative of each
(in Heisenberg representation) is a function of these variables only.
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RIASSUNTO (%)

In connessione col lavoro che stiamo svolgendo sulla quantizzazione della relati-
vitd generale, abbiamo investigato le equazioni della elettrodinamica quantistica col
gruppo di gauge non ristretto, vale a dire senza specializzarsi al gauge di Lorentz e
di Coulomb. Noi formuliamo la teoria, anche prima della quantizzazione, in termini
solo di « vere osservabili». Queste ultime sono definite come variabili dinamiche che
generano trasformazioni canoniche che trasformano uno «stato permesso » in un altro,
intendendosi per «stato permesso » un insieme di valori di tutte le variabili canoniche
che rispettano i vincoli di gauge. Similmente, nella teoria quantizzata, un’osservabile
dev’essere un operatore hermitiano nello spazio hilbertiano degli stati permessi. La
transizione alle vere osservabili non solo elimina dalla teoria il potenziale scalare e le
parti longitudinali del potenziale vettore, ma anche le componenti longitudinali del
campo elettrico. Ovviamente, gli operatori che creano e distruggono particelle cariche
non sono di per sé osservabili, ma se ne possono costruire combinazioni (in forma di
prodotti) che lo sono. Tali prodotti (gauge-invarianti) involvono il prodotto di un
creatore per un distruttore in punti differenti dello spazio, moltiplicati per un funzio-
nale che dipende da un integrale di linea del potenziale vettoree calcolato su una qual-
siasi curva che connette i due punti suddetti. Ne segue che I’hamiltoniana pud essere
espressa in termini soltanto di dette variabili e che la selfenergia infinita causata dai

Iy

fotoni non trasversali & automaticamente eliminata.

(*) 4 cura della Redazione.



