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S u m m a r y .  - -  The fact that  our present laws of physics admit of a formal 
extension to spaces of an arbitrary number of dimensions suggests that  
there must be some principle (or principles) operative which in conjunction 

with these laws entails the observed specificity of spatial dimensionality, 

n = 3. Generalizing from an approach suggested by the work of EHRENFEST 
(and independently by G. J .  WHITROW) on the Newtonian Keplerian 
problem in n dimensions, it, is proposed that  this principle may be ten- 
ta t ively summarized in the postulate that  there shall be stable bound 

orbits or ~ states ~ for the equations of motion governing the interaction 

of bodies (considered as ~ material  points ,~). This postulate is applied 

to the geodesic equations of motion obtained from a generalization of 
the Sehwarzsehild field to static systems with hyper-spherieal symmetry,  

and it is shown that  the bound state postulate uniquely entails the 
spatial dimensionality. This result is not entirely peculiar to general 

relat ivi ty because it also holds for Newtonian theory (Ehrenfest-Whitrow) 

if one also introduces an asymptotic condition to exclude cases n < 3. The 

SehrSdinger hydrogen atom in n dimensions is also briefly considered 

for which the postulate also excludes n > 3, ~nd in conjunct;ion with 

the asymptotic condition ,~ < 3. An a t tempt  is made to understand the 

logical origin of this postulate and it is argued that  if one assumes the 

basic representatives of a dynamics with a metric to be material  points, 

one needs such a postulate to construct Einstein's ~praetieally rigid 
rods ~, since point bodies in themselves do not provide us with a measure 

of distance. Some brief qualitative applications of these ideas are made 
to quantum eleetrodynamies. 
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1 .  - I n t r o d u c t i o n .  

I t  has been f requent ly  observed tha t  in the s ta tements  and ma thema t i c s  

describing the laws of na ture  there is a greater  general i ty  regarding the di- 
mensional i ty  of space than  space itself exhibits (1). This is readily seen upon 

examina t ion  of Newton ' s  laws of motion,  the Lagrangian  and Hami l ton ian  

formalisms,  the two principles underlying special relat ivi ty,  the principle of 
equivalence,  the principle of general covariance,  the geodesic principle, and 

the  principles of q u a n t u m  mechanics.  I n  none of the a.bove-cited cases do 

e i ther  the  s t a t ements  of the principles or the m a t h e m a t i c a l  machinery  restr ict  
us to three dimensions. 

Because of this ra ther  general and indeed remarkab le  p rope r ty  of our phys-  
ical principles on the one hand,  and the apparen t  specificity implied b y  the 
three dimensional i ty  of space on the other, there has developed, broadly  speak- 

ing, two ma jo r  t rends of thought  concerning the dimensional i ty  of space 
problem:  One t rend consists in the a t t e m p t  to enlarge the dimensionMity of 

space, such as in the mult idimensionM unified field theories, while the other 
t rend concentrates  on a t t emp t ing  to explain why space is three-dimensional .  

A]though the t rend towards  enlarging the dimensional i ty  of space has led 
to m a n y  i m p o r t a n t  ma.thema.tieal developments ,  i t  invar iab ly  encounters  
s tumbling block in the  appa ren t  lack of general i ty  displayed b y  na ture  in this 
problem. For  it is clear t ha t  even if we assume tha t  somehow we have  been 
deceived and tha t  space is not  three-dimensional ,  bu t  k-dimensional,  the pro- 

posit ion t ha t  spa.ce is k-dimensional introduces a new specificity whibh mus t  
be explained (~-) and this explanat ion mus t  also account  for the (( appa ren t  ~) 
thI:ee-dimensional specificity as well. 

We are therefore led to the second t rend of thought  which seeks to find a 

principle (or principles) f rom which the specificity of the spatial  dimensionMity 
m a y  be deduced in conjunction with other principles. I t  is p r imar i ly  to this 
la.tter t rend of thought  t ha t  the ideas presented in this pape r  belong. I n  the 
nex t  section we sha.ll briefly review some i m p o r t a n t  contr ibut ions to this 
p rob lem which will also serve to suggest an avenue of approach  within the 
f r amework  of general relat ivi ty.  

(1) In this paper we shall not enter into the dimensionality of time problem. We 
shall therefore assume the dimensionality of the space-time manifold to be r - - l - - n ,  
where n is the number of spatial dimensions, and is assumed to be an integer. In 

1 ~ xb terms of a many-particle formalism for which one assigns co-ordinates (t~, x i ,  x i ,  
per i-th particle, the dimensionality of space problem is: Why does one assign three 
spatial co-ordinates per particle? 

(~) Except possibly if ]c c~, since nature would then admit of as much generality 
as is compatible with the assumed countability of the number of dimensions. 
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2. - Historical note: the bound state postulate; relation to Mach's principle; summary. 

The  l ine of t h o u g h t  which  we shall  follow in  this  pape r  (3) or ig inates  wi th  

K a n t ' s  obse rvu t ion  t h a t  the  t h r e e - d i m e n s i o n a l i t y  of space m a y  be in  some 

w a y  re la ted  to ~ e w t o n ' s  inverse  square  law (4). This  of course became  c lear  

f rom Lap lace ' s  e q u a t i o n  and  Gauss ' s  t heo re m b y  m e a n s  of which  K a n t ' s  re- 

m a r k  m a y  be r e fo rmu la t ed  i n to  the  e l e m e n t a r y  p ropos i t ion :  I f  the  force in- 

tens i t ies  of a field are der iveab le  f rom a po ten t i a l ,  which  in  e m p t y  space satis- 

fies a genera l ized  Lap lace ' s  equa t ion ,  a n d  if this  force obeys an  inverse  square-  

law, space m u s t  be  3 -d imens iona l  (5). The importance o/ Kant 's  observation is 

that it leads one to study the dimensionality o/ space problem /rom the standpoint 

o/ /orce laws and their e//ects on the motion o/bodies. This  was done  b y  EHREN- 

FEST (~) in  a f u n d a m e n t a l  pape r  which  does no t  seem to have  a t t r a c t e d  m u c h  

~ t t e n t i o n  (7), a l t hough  i t  con ta ins  a k e y - c o n t r i b u t i o n  to the  p rob lem.  A n  es- 

sen t ia l  f ea tu re  of E h r e n f e s t ' s  idea has been  recen t ly  rediscovered b y  W]tITROW (s). 

(3) Outside the scope of this paper are the well-known considerations of H. WEYL, 
based on demanding an invariance of the Lagrangian under g,~-~ 2g~,, since the theory 
contains serious difficulties as first pointed out by Einstein and fully recognized by 
Weyl himself. 

(4) See, for example, the very interesting monograph by R. WEITZENBSCK: Der 
Vierdimensionale Raum (Braunschweig, 1929). 

(5) A slightly different statement of this proposition is customarily at t r ibuted to 
J. I~BERWEG: System der JLogik (various editions, Bonn, 1857-1882), although it was 
probably known to G. GREEN and other mathematicians who studied problems in 
n dimensions somewhat earlier. 

(6) p. EHRENFEST: Prec. Amsterdam Acad., 20, 200 (1917); Ann. Physik, 61, 440. 
(1920). It  need not be emphasized that  abstract force laws and their effects on the 
equations of motion were of course studied for hundreds of years previously, e.g. Cotes' 
spirals (1722). But what is missing in these earlier investigations is an observation 
that  the results can be used to arrive at a physical principle that  may explain the three- 
dimensionality of space. For a discussion and useful references to the earlier work of 
LEGENDRE, STADER, KORTWEG, GREENItILL and BERTRAND see E. J. ROUTH: Dynamics 
o/ a Particle (Cambridge, 1898). Sections 356-367, 428-429. 

(7) For example, no reference is made to Ehrenfest 's work in the recent historical 
t reatment  of K. JAMMER: Concepts o/ Space (Cambridge, 1954); nor in the discussion 
of H. WEYL: Philosophy o/ Mathematics and Natural Science (Princeton, 1949), p. 136. 
However, Weyl makes the following important  observation with respect to this problem : 
(( The best chances for success seem to me to lie in theoretical physical construction. ~> 
In  addition to the monograph of Weitzenb6ck, reference is to be found in H. WEYL: 
Raum, Zeit, Materie (Berlin, 1923), p. 331. 

(s) G. J. WHITROW: The Structure and Evolution o/ the Universe (New York, 1959) 
Appendix. W~iTnow uses a classical gravitational argument similar to Ehrenfest 's  
for n > 3, but  for n < 3 invokes biological arguments based on the interesting topo- 
logical problems in designing nervous systems so that  arbitrary numbers of <( cells )~ 
can be connected in pairs without intersection of the connecting (~ nerves ~). This rules 
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EHR.ENFEST notes  t h a t  for  the  Ne wt on i a n -Kep l e r i an  problem,  general ized to  

n dimensions,  one obta ins  stable, b o u n d  non-col l id ing  orbi ts  if and  only  if  
n = 2, 3. I f  one requires t h a t  the  po ten t i a l  should  van i sh  a t  infinity,  the  
case n = 2 (and inc identa l ly ,  n ~ 1) is excluded,  so t h a t  wi th  two condi t ions  

imposed  on the  Kep le r i an  problem,  one can deduce  the  d imens iona l i ty  o f  

space. I n  add i t ion  to  these two condi t ions ,  in the  discussion of the  Kep le r i an  

p rob lem one in t roduces  the  idea of bodies r ega rded  as mater ia l  points .  The  

basic a s sumpt ions  m a y  be summar i zed  as 

A) The  (< bodies ~ used in fo rmu la t i ng  the  principles of mechan ics  m a y  be 

t r ea t ed  as mate r ia l  points .  

B) The  fields p r o d u c e d  b y  bodies a s y m p t o t i c a l l y  a p p r o a c h  a c o n s t a n t  

va lue  a t  (~ large dis tances  )) (Asym pto t i c  condit ion) .  

C) There  shall exist  s table  b o u n d  orbits  or (( s ta tes  )~ for  bodies inter-  
ac t ing  via  these fields. 

Assumpt ions  A) and  B) are used so f r equen t ly  t h a t  we m a y  regard  t h e m  

as p a r t  of our  p resen t  ax ioma t i c  s t ruc tu re  (9). On  the  o ther  hand ,  C) is custo-  

mar i ly  someth ing  we look for  in a dynamica l  t h e o r y ;  i t  is more  in the  nature.  

of a pos tu la te .  We  shall call it the  (~ b o u n d  s ta te  pos tu la te  ~> (10). 

On  the  basis of the  work  of EHRENFEST and  WI~ITROW, it follows t h a t  if 

we do no t  assume the  d imens iona l i ty  of space, b u t  append  the  b o u n d  s ta te  

pos tu la t e  C) to  the  principles of n-d imens iona l  N e w t o n i a n  d y n a m i c s  and  gra-  

v i t a t iona l  theory ,  inclusive of axioms A) and  B), t hen  the  p ropos i t ion  t h a t  
space is th ree -d imens iona l  becomes  a theorem,  r a the r  t h a n  an  axiom,  and  the  

obse rva t ion  of this specifici ty in na tu r e  an  expe r imen ta l  ver i f icat ion of t h e  
t heo ry  ! 

Since we k n o w  t h a t  N e w t o n i a n  g rav i t a t iona l  t h e o r y  m u s t  be rep laced  b y  

genera l  re la t iv i ty ,  the  ques t ion  arises as to whe the r  C) also leads to  the  dimen-  

s ional i ty  of space wi th in  this b roade r  f r amework .  There  is t he  wel l -known 

obse rva t ion  t h a t  if the  space- t ime mani fo ld  has  d imens iona l i ty  n ~ - 1 < 4 ,  the re  

is no g rav i t a t iona l  field for  m ~ t t e r  t h a t  satifies A) ,  i.e., G~,~ = O, implies t h e  

R i e m a n n  tensor  Ra,~ o = 0 .  Hence  if n <  3, we canno t  sa t isfy  C). W e  also 

out n - -  2,1. However, the argument breaks down if one assumes that  the if cells ~ 
are located, say, on multiply-connected surfaces, and one then needs additional as- 
sumptions. The fact that  Whitrow finds it necessary to introduce a new kind of 
argument for n < 3, is tacit recognition of a profound difference between the cases 
n > 3  and n < 3 .  

(9) I t  is perhaps interesting to recall that  Newton went to great pains to establish 
that  axiom A) held in his gravitational theory, see also footnote (17). Our statement 
of axiom B) is not very (~ strong )) since we do not need a strong statement in this paper. 

(~0) Our use of this postulate will be confined to classical central forces and the 
binding between two bodies. 
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know tha t  in the weak-field approximat ion Newtonian theory holds, hence 

the Ehrenfest-Whitrow result certainly holds approximately in general rela- 

t ivity.  As we shall see i t  actually holds rigorously as well. 

Indeed,  if it were not possible to deduce the dimensionality of space in 

general relativity on the basis of a principle such as C), there would be a 

serious inconsistency with Mach's principle as formulated by EINSTEIbL Ac- 

cording to this principle we expect tha t  the properties of mat te r  should not  

only determine the geometry of the space-time m~nifold, but  its topological 

properties as well (~), in particular,  its dimensionality. I f  this were not the 

case, space would have absolute properties. The issue is therefore an extre- 

mely fundamenta l  one. 

Our approach to the problem in general relativity in the next  sections is 

quite straightforward. We generalize the Schwarzschild field to n dimensions 

and examine the generalized Keplerian orbital equation. I t  is clear tha t  as 

c -+ 0% we should (and do) obtain the generalized Newtonian orbital equation, 

~nd hence the Ehrenfest-Whitrow result, and the only question is whether 

the general relativistic correction alters the conclusion. As we indicated above, 

it does not. 
As a mat te r  of curiosity we have also generalized the Reissner-Nordstr6m 

solution, al though it must  be kept  in mind tha t  this solution is not  on the same 

footing as the Sehwarzsehild solution, since it is invalid at  the origin without  

a compensating energy-stress tensor for which we still do not have a generally 

accepted theory (~). 
For  comparison, we have also briefly, studied the SchrSdinger hydrogen 

a tom in n dimensions to see whether it also entails the dimensionMity of space 

as a consequence of C) and as one might  expect from the analogy with the 

classical Kepleri~n problem (inclusive of axioms A) and B)), n = 3 is the only 

admissible dimension. EIIRENFEST also considered this problem using Bohr- 

quantiz~tion arguments.  

Some additional results will be stated in the text  and we shall a t t empt  to 

analyse the basis of C) somewhat  further  in the concluding section. 

(11) The modern topological theory of dimensionality begins with PoinearCs 
essay (1912), Pourquoi l'Espace a Trois Dimensions, Derni~res Pens6es (Paris, 1926). 
For later developments see K. Mm,'GER: Dimension Theorie (Leipzig, 1926) Chapter II.  
W. HuREwlcz and H. WALL~AN: Dimension Theory (Princeton, 1941). Of interest 
to the physicist is perhaps the relativity o] dimensionality implied by the inductive 
definition given in the above treatments. This definition requires the fixing of the 
dimensionality of one set inductively connected to all spaces in order to be able to 
assign absolute values of dimensionality. This set is taken to be the null set and is 
given dimensionality --1.  Our discussion relies heavily on the metrical properties of 
space in fixing the dimensionality. Thus, the dimensionality of the space-time mani- 
fold is trace (g~) ~ d ~ =  1 + n. 

(~2) To be published in Yuovo Cimento. 
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3. - Field equations for static systems with hyper-spherical symmetry. 

We shall a d o p t  a co-ord ina te  sys t em t h a t  is an  obvious  genera l iza t ion  of the  

one used cus tomar i ly  in t r ea t ing  the  Schwarzschi ld  field; we h a y  efor the  line 

e l emen t  (we set c = 1 )  

(3.1) ds ~ = e~ dt 2 -  e~'dr 2 -  r2d[2 2 , 

where  goo = e ~, g n  = - -  e'~ and  

n--1 

(3.2) d~2~ = dz~ § sin2 z2dz~ + ... § 1-[ sin2 z~dz~ �9 
l~2 

Afte r  a s t a n d a r d  calculat ion,  the  field equa t ions  in mixed  f o r m  G ~ u = - - g T ~  

reduce  to 

(n - -  :l) exp [ - -  2] (n - -  1)(n - -  2) 
2 _ + -~-  . . . .  ~ y o  2r 2 

(3.3) 
(n- l )  exp[-2 ~][~ + n - - 2 1  2r 2 = - - u T I ~ ,  

exp [ - -  2] [ v '~ ).'v' ( n - -  3 ) ( n - -  2) 
2 ~v"+ 2 2 + r 2 

( n - -  2 ) ( n - -  3) _ uT~,  
2r  2 

~nd  we have  T,2, = T33 . . . . .  T :  because  of spherical  s y m m e t r y .  As a (~ check )> 

we no te  t h a t  the  equa t ions  reduce  to  wel l -known expressions if n = 3. W e  

also have  f rom the  con t r ac t ed  Bianch i  identi t ies  

(3.4) 1 d (r,,_~ T~) n - -  1 T2 v' 
r ~-1 dr - - ~  ~ = 2  (TO--T~)"  

A l t h o u g h  our  p r i m a r y  in teres t  lies in a genera l iza t ion  of the  Schwarzschi ld  

field, for  g rea te r  genera l i ty  we consider  energy-s t ress  tensors  for  which  

T ~  T~, as this includes the  ( (vacuum ~> as a special case. We  then  find, 

u p o n  a d o p t i n g  a sui table  no rma l i za t ion  googn = - - 1 ,  and  i n t roduc ing  the  scalar  

po ten t i a l  U, t h a t  (3.3) reduces  to  the  fol lowing pai r  of d e p e n d e n t  l inear equa t ions  

(3.5) 

n - - l d  
r ' - -  dr (rn-2 U )  = - -  ~ T o  ~ : - -  ~ T 1 1  , 

n - - 3 d  
V2U § r,,_ 1 d r ( r n - ~ U ) = - - ~ T 2  ~. 

41  - l l  Nuovo Cime~do. 
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The stress-equil ibrium (3.4) reduces to 

1 d (rn_ 1T~) n - -  1 Ti = 0 .  (3.6) . . . .  
r ~-1 d r  r 

Thus,  the simple linear character  noted previously for n = 3 continues to hold 

in spaces of higher dimension. This is to be expected on very  general grounds 

(principle of equivalence, general covariance) because of the d imension- invar iant  
charac ter  of the discussion we have  given elsewhere (13). 

We can use these equations to construct  ~ general izat ion of the po in t -mass  
tensor  (14). One finds readily 

(3.7) P ; " =  diag (1, 1, 1 1 / ms '  
n - - l '  " " '  n - - 1 / ~ o , , r  ~ -1 '  

co 

where e' is the (double) radial  ~-function f s ' d r = l ,  and o~ is the area of the  
o 

uni t  sphere in n dimensions, and is given by  

22"/: n / 2  

(3.s) ~'~- F(n/~) 

The point  mass has identical ly vanishing spat ial  t race T ~ =  0; there is a con- i 

panion tensor  to the point  mass tensor which also has this proper ty .  U p o n  
int roducing the requi rement  T i =  0 into (3.6), we obtain  i 

1 1 ) m 
(3.9) D ~ ' =  diag 1, 1 , - - n - - l '  " " ' - - n - - ~  (o,~r "~' 

where the normal izat ion is chosen for comparison.  This tensor, however,  pro- 

duces logari thmic divergences. 
For  a tensor,  Of ,  with vanishing tota l  t race (by analogy with the Maxwell  

energy-stress tensor for n = 3), we find as a solution to (3.6) 

(3.10) O v , : d i a g ( 1 , 1  ' 2 2 ) K 
n - -  l ' " "  n " l r '~+1' 

where K is an in tegra t ion constant .  In  bo th  (3.9) and (3.10) we have  ignored 

the  singular behavior  at  the origin. 

(,3) See Section 2 of the above paper, where it will be seen that the argument 
depends only on invarianee under transformation of the form t '  t'(r, t), r ' - - r ' ( r ,  t) 
and <, spherical ~> simmetry. On the other hand, our discussion of radial parity, Sec- 
tion 4, requires some qualification when n is even. 

(14) F. R. TANGHERLINI: Phys .  Rev.  Lett., 6, 147 (1961). 

} 
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Although 0/~ is propor t ional  to the Maxwell tensor for n =  3, this is not  
the case in genera]. Maxwell 's  equations in nonrat ional ized units in po]ar 
co-ordinates take  the fo rm 

1 d 
(3.11) r" 1 dr ( r n - l ~ ' ~  = COnJ~ 

and by  set t ing j o_  ee,/og,f,-1, we have  

(3.12) F ~  e/r "-1 . 

Hence,  since the  Maxwell  tensor M~" is propor t ional  to ( / ~ 0 1 ) 2 ,  o r  M ' o c  r2-~% 
we find M ' o c  O, ~, if and only if, 

(3.13) 2 n - - 2  = n §  

or n : 3. More generally, the Maxwell tensor 

(3.14) 

has ident ical ly-vanishing t race  only for n : 3, i.e., 

(3.15) o)~M = F~'~'F~z ( n 4-1 1) 
4 

Another  approach  to the dimensional i ty  of tile space prob lem might  conceiv- 
ably be based on this observat ion.  

On the other  hand,  we have  implici t ly assumed in eq. (3.11) t ha t  the re- 
o ?1 lat ion T o = I~  holds for the Maxwell tensor of a stat ic spherically symmet r i c  

charge dis tr ibut ion independent ly  of dimension. This is in fact  the case, since 

(3A6) 2(o~,M,/' diag [1, 1, - - 1 ,  ..., --1](F~ ~ , 

and hence M~ = M~. 

I t  is perhaps  interest ing to observe t ha t  for a two dimensionM electron, 
the t race of tile spat ial  stresses vanishes M ~ =  0, and hence the classical 
electron has vanishing self-stress, a l though of course nonvanishing self-force. 

Le t  us now write down the general solution to (3.5), bu t  for simplicity, 

we shall discard singular te rms a t  the origin. I t  proves convenient ,  for pur- 

poses of comparison,  to rewri te  Einstein 's  gravi ta t ional  constant  ~ in a form 

which introduces the Newtonian  constant  7. Since the  lef t -hand side of the  
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field equations has a factor  tha t  vanishes for n = 1 ,  we can insure a similar 

vanishing of the r ight-hand side, if we set n = ( n -  1)~o~; this yields the usual 

= 8zey for n = 3. With  this definition of ~ one finds 

(3.17) U - -  r ~-~Y (T~  
0 

An interesting feature of the field equations is tha t  unlike Newtonian gravita- 

tional theory, we do not  find the logarithmic potential for n = 2 ,  for a (( point 

mass. This is due to the fact  tha t  white V ~ U = 0 ,  r ~  0, admits of two solu- 

tions U =  Alnr~-Bs(r) ,  the fact tha t  we must  also have from the equation 

for T o , U.,----0, r ~ 0 ,  requires tha t  we set A = 0 .  Such a behavior  is to be 

expected, because for r ~ 0, the space must  be fiat, and for the solution U =  B 

(setting s(r) = 1, r ~ 0), the line element can be brought  into pseudo-Euclidean 

form by  changes of scale of t, r, and Z. The logarithmic solution of course can 

be obtained, but  it belongs to the point-mass companion energy-stress ten- 

sor (3.9). 
Returning now to (3.17), let us obtain the n-dimensional generalization of 

the Schwarzschild Reissner-Nordstr6m solution. We find, introducing (3.7) 
and (3.16) into (3.17) with F ~ in (3.16) given by (3.12) 

ym ye S r ~ O ,  n ~ 3 ,  
(3.18) U -- r,_~ -~ 2r~_~, 

where n is restricted to three or greater because of the logari thm tha t  occurs 

for n = 2, in the electromagnetic term, and we have assumed a compensation 

tha t  cancels the singularity obtained from integrating Mv" at the origin. We 

note, incidentally, tha t  if we use relativistic units for which ?. = 1 ,  we see 
tha t  the dimensions of mass and charge go as [m] = L "~-2, [e 2] = L ~-4, and 

hence [e~/m] = L ~-2, thus only for n = 3, is the classical electron (( radius ~> a 

length. I t  also follows tha t  the fine structure constant  is not  dimensionless 

n v~ 3, since the definition of ]/ is such tha t  ~/m always has the dimensions of 

a length. 
One can readily superimpose a cosmological term onto (3.18), al though 

there is some ambigui ty  with regard to the dimension factor. We believe it 

is preferable to adopt  a definition based on the form of the Riemann tensor 

for a space of constant  curvature,  i.e., R~,~e =--A' (g~vg,Q--g~g,~ ). Upon con- 

traction, this expression yields 

(3.19) G~ -- n(n - -  1) A ' ~ / .  
2 
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The above expression agrees to within a factor  of 3 with the usual definition 
G ~ ' = - - A 3 ~  ~ for a three-dimensional  mat te r - f ree  space. However ,  (3.19) has 
the advan tage  of au tomat ica l ly  vanishing for n = 0, 1, jus t  as the  lef t -hand 
side of the field equations.  The expression (3.18) with the de Sit ter  t e r m  

becomes 

y m  y e  s z l ' r  2 
(3.20) U - -  r n-~ ~- 2 r  2n-~ - -  --2 

I n  the discussion t ha t  follows in the nex t  section, we shall set bo th  e, and A'  

equal  to zero, and consider only the ease of a pure  Sehwarzschild field. 

4. - Orbital equation for the generalized Schwarzschild field. 

In  this section, we shall show tha t  there do not  exist s table bound orbits  
in the Schwarzschild field for n > 3. We shall t emporar i ly  ignore the Schwarz- 

schild s ingulari ty and re turn  to it  below. 

The geodesic equat ions of mot ion are obtained f rom 3fds = 0, where 

(4.1) d. 2= ( 1 _  dt2-- r d02 
\ r'~-~/ 

in which we have  set d%2 = d0, d%3 . . . . .  d%~ = 0. We introduce the energy, 
a n d  angular  m o m e n t u m  constants  defined by  

dt d0 
(4.2) goo ~ = ko , r2 d s  = ko . 

Upon introducing u = l / r ,  w e  m a y  rewrite (4.1) as 

l(du   1 2 k o--1 
(~.3) ~J\dO] +~u--~:~ rmu'~-- 2k~ ' 

for comparison with the Newtonian  expressions. F r o m  (4.3), we obtain 
simple generalization of the usual Schwarsehild orbi tal  equat ion 

(4.4) d2u ~m 
~10~ + u = k-~- (n - -  l )u  '~-3 + n y m u  "-~ . 

To s tudy  the question of stable bound orbits, i t  is ac tual ly  more  convenient  

to use (4.3), and to consider the effective orbital  potent ia l  defined by  

('4.5)- V =  �89  ~ -  7 m u  ~-~ k o  ~ -  y m u ' .  
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W e  shall assume n >  3, since the  case n = 3  has been discussed in detail .  

The  loca t ion  of s table points  m a y  be ob ta ined  di rec t ly  f rom a p lot  of V; how- 

ever,  the  analysis  is readi ly  carr ied out.  W e  set ~ V / ~ u =  O, and  find for  

u :/: O, 

(4.6) ( n -  2)ymUo-~ko 2-a nymuo-~= 1 ,  (n>~ 4). 

W e  note  the  equa t ion  has only  one posi t ive  roo t  (~5) and  t h a t  it is a po in t  
of ins tab i l i ty  since 

(4.7) ~u 2 ]~. 1 - -  ( n -  3) - -  2nymUo ~-~- < 0 . 

Thus ,  the  essential  results of the  E h r e n f e s t - W h i t r o w  inves t iga t ion  are un-  

changed ,  and  hence the  condi t ion  t h a t  there  be s table  b o u n d  orbi ts  for  the  

Kep le r i an  p rob lem is sufficient to exclude n > 3 in general  r e l a t iv i ty  as well 

as in N e w t o n i a n  theory .  

I n  the  above  discussion we have  ignored  for  s impl ic i ty  the  Schwarszehi ld  

s ingular i ty .  The ques t ion  na tu r a l l y  arises as to whe the r  the  uns tab le  po in t  

is inside or outs ide  the  radius  of the  s ingular i ty ,  i.e., whe the r  r 0~-2 > r~'-2, 
where  r~-2= 2ym. We have  f rom (4.6) t h a t  

(4.8) nymUo*-" <~ 1 , 

t he  equa l i ty  sign holds for  the  ease of the  uns tab le  s ta te  of a l ight  r ay  (or 

s y s t e m  wi th  zero rest  mass)  t rave l l ing  a round  on a circular  orbit .  I t  follows 
t h a t  ~-2 ~-2 rn-~ r o ~ n y m  and  hence  r o > ~ . 

I t  is also tac i t  in the  above  discussion t h a t  the  predic t ions  of the  geodesic 

equa t ion  coincide wi th  those  of a de t e rmina t ion  of the  equa t ions  of m o t i o n  

f r o m  the  field equa t ions  and  the  con t r ac t ed  Bianchi  identit ies.  Since we k n o w  

f r o m  the  E i n s t e i n - I n f e l d - H o f f m a n n  m e t h o d  (or t h a t  of Foek)  t h a t  this is 

cer ta in ly  the  case u n d e r  reasonable  assumpt ions  for  the  case n = 3, the  only  

ques t ion  is whe the r  or no t  these me thods  general ize to  n >  3. I t  is easily 

verified t h a t  t h e y  do in the  l~ewtonian a pp rox ima t ion ,  which  as we have  a l ready  

seen is sufficient, to  fix the  d imensional i ty .  

I t  is a curious fea ture  of the  p e r t u r b a t i o n  me thod ,  however ,  t h a t  if we 

app ly  it  to  the  case n =  2, in the  absence  of ax iom B), t hen  we can be led 

to  an  infinite series for  g,~ even t h o u g h  we k n o w  t h a t  if ax iom A) is fulfilled, 

t he  space- t ime  mani fo ld  outs ide the  bodies is flat i n d e p e n d e n t l y  of whe the r  

one ' s  choice of co-ordina tes  fulfills B). 

(15) Tile ease n = 4  exhibits three possibilities as in Newtonian theory, for one of 
these cases there is a positive root, for the other two cases OV/Ou ~ O, unless u =0 .  
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5 .  - S c h r S d i n g e r  ~ h y d r o g e n  a t o m  ~ i n  ~ d i m e n s i o n s .  

I n  his t r e a t m e n t  of the  general ized Kep le r i an  problem,  EHRENFEST did no t  

confine himself  solely to  classical theory ,  bu t  also appl ied B o h r  q u a n t i z a t i o n  

to  the  circular  orbi ts  of <~ general ized h y d r o g e n  ~>. As one m i g h t  expec t  f r o m  

effective po ten t i a l  considerat ions ,  he ob ta ined  a s p e c t r u m  for  n ; - 5  for  which  

the  energy  increases to inf ini ty  for increasing q u a n t u m  n u m b e r s  and  for  which  

the  orbits  d raw closer and  closer to  the  nucleus  (~G). A difficulty is of course 

t h a t  these foree-equi l ibr ium orbi ts  are no t  classical s table s ta tes :  U n d e r  small  

var ia t ions ,  the  e lectron spirals into the  p r o t o n  or spirals off to infinity.  Le t  

us therefore  briefly consider  the  p rob lem f rom the  s t a n d p o i n t  of wave  mech-  

anics. F o r  s impl ic i ty  we shall ignore re la t ivis t ic  correc t ions  excep t  as no ted  

below. We  shall also assume n > 3 because  of our  prev ious  r emarks  and  on 
the  basis of the  a s y m p t o t i c  condi t ion  B). Af te r  separa t ing  ou t  the  center-of-  

mass  m o t i o n  for  the  p r o t o n  and  electron,  we have  the  e igenvalue  equa t ion  

~2 

(5.1) 2m 

where  V - - e / ( n - - 2 ) r "  ~, V~) is the  Euc l idean  Lapl~c ian  in n-d imens ions  and  

the  o ther  quant i t ies  have  their  usual  i n t e rp r e t a t i on  (17). 

I f  we now t r a n s f o r m  to n -d imens iona l  polar  co-ordinates ,  i n t roduce  n-di-  

mens iona l  spherical  ha rmonics  and  f ac to r  ou t  the  angu la r  dependence  (18), the  
radial  wave  equa t ion  takes  the  fo rm 

d2R n - - l d R  2 m [  h 2 l(1-~ n - - 2 )  e 2 
(5.2) dr  2 + ~ d r  + ] T I E  ~- R = 0  2.~ r~ [n • 2)r"-~ ' 

where  1 is the  angu la r  m o m e n t u m  eigenvalue,  and  we no te  the  genera l iza t ion  

of the  t e r m  l ( l + l ) .  I t  is i m m e d i a t e l y  clear t h a t  for  the  eases n >  5 the  
ene rgy  levels trove a po in t  of a c c u m u l a t i o n  a t  minus  inf in i ty :  i.e., r = 0  is 

no t  a regular  po in t ;  and  hence  there  are no s table  b o u n d  states.  The  case 

n = 4, can also be exc luded  by  s t a n d a r d  a rgumen t s .  A l t e rna t ive ly ,  if we use 

(14) The radii of the Ehrenfest orbits are given by r--(me2/r2t~-') 1Ir (n > 2, n ~4), 
and hence draw closer for increasing angular-momentum quantum number r, '~t 2> 5. 
For the energy levels see Ehrenfest 's paper---to be found in his Collected Scientific 
Papers (Amsterdam, 1959), p. 400. 

(17) Because of Born's interpretation of ~v as the amplitude for finding the electron 
at a point, we ll~ve not violated axiom A). I t  would be very inferesting if one could 
deduce Born's interpretation of q,, from axiom A). 

(18) See, e.g., A. SO~IMERFELD: Partial Di]]ere~ttial Equation, s itt Physics (New 
York, 1949), Appendix IV. 
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t h e  r e l a t i v i s t i c  S c h r S d i n g e r  e q u a t i o n ,  we h a v e  a r a d i a l  e q u a t i o n  of t he  f o r m  

(5.3) 
d~R n - -  1 d R  - - +  + 
dr 2 r dr 

[E ~ + m ~ l(1 + n -  2) 2Ee ~ e ~ ] 
+ h2 r 2 + h2(n_2)r,~_~ + h2(n__-2)2r~,_4] R = 0 ,  

f r o m  w h i c h  i t  is c lear  t h a t  a l r e a d y  for  n = 4, r = 0 is n o t  a r e g u l a r  po in t .  

Thus  t h e  b o u n d  s t a t e  p o s t u l a t e  a p p l i e d  to  t h e  K e p l e r i a n  p r o b l e m  serves  to  

exc lude  spaces  in q u a n t u m  m e c h a n i c s  as wel l  as in  c lass ica l  o r b i t  t h e o r y  (~9). 

I n  c o n j u n c t i o n  w i th  th is  sec t ion  i t  is a p p r o p r i a t e  to  t a k e  a c c o u n t  of pos-  

s ib le  gene ra l  r e l a t i v i s t i c  effects as  d i scussed  b y  CALLAWAY (20) a n d  PERES (21) 
which  m i g h t  a t  f i rs t  a p p e a r  to  ru le  ou t  n = 3 !. W e  confine ourse lves  to  t h e  

e x a m p l e  of PERES. Cons ider  t h e  q u a n t u m  m e c h a n i c a l  p r o b l e m  for  n = 3 of 

a n e u t r a l  p a r t i c l e  i n t e r a c t i n g  w i th  a (< h e a v y  )> p o i n t  source  of mass  m b y  m e a n s  

of a g e n e r a l l y  c o v a r i a n t  f o rm  of t h e  S c h r S d i n g e r  or  D i r a c  equa t i on .  One f inds  

t h e  or ig in  is n o t  a r e g u l a r  p o i n t  a n d  t h e  p a r t i c l e  (~ fal ls  )). This  r e su l t  is to  be  

e x p e c t e d  f r o m  eq. (4.3), s ince we see t h a t  t h e r e  is t he  q u a n t u m - m e c h a n i c M  

p o s s i b i l i t y  for  t h e  p a r t i c l e  to  t u n n e l  t h r o u g h  t h e  cen t r i f uga l  b a r r i e r  a n d  ge t  

i n to  t h e  u 3 reg ion  a n d  fall .  H o w e v e r ,  such q u a n t u m - m e c h a n i c a l  c o n s i d e r a t i o n s  

b a s e d  on a non reco i l i ng  p o i n t  nuc leus  a re  r e a s o n a b l e  on ly  if, c rude ly ,  t h e  

C o m p t o n  w a v e  l e n g t h  of t h e  nuc leus  is sma l l e r  t h a n  t h e  S c h w a r z s c h i l d  r a d iu s ,  

i.e., h /m  ~ 2ym, so t h a t  t h e  nuc leus  w o u l d  h a v e  to  possess  a m a s s  m )  (~/2~) + 

10 -5 g - - a  f a m i l i a r  q u a n t i t y  in  such cons ide ra t ions .  S ince  al l  t he  (( pa r -  

t ic les  )> t h a t  we k n o w  of w i th  such  a m a s s  a re  h i g h l y  compos i t e ,  one shou ld  

conc lude  t h a t  t h e  b o u n d  s t a t e  p o s t u l a t e  serves  to  i m p o s e  some  r e s t r i c t i o n s  on  

t h e  specif i t ies  of o t h e r  p h y s i c a l  p a r a m e t e r s  bes ides  t h e  d i m e n s i o n a l i t y  of space .  

A m o r e  t h o r o u g h  i n v e s t i g a t i o n  shou ld  i n v e s t i g a t e  t he  a p p r o p r i a t e n e s s  of t h e  

class  of r e p r e s e n t a t i o n s  wh ich  one now uses in  a t t e m p t s  to  d iscuss  ge ne ra l  

r e l a t i v i s t i c  co r rec t ions  to  q u a n t u m  m e c h a n i c s - - a n d  in p a r t i c u l a r ,  d iscuss  cri-  

t i c a l l y  t h e  r e m a r k s  of ]~. CARTAN (22). 

(19) I t  may be of interest  to supplement these investigations with a similar analysis 
for spinor wave equations in n dimensions as given by R. BaAUF, R and H. W~VL: 
Am. Journ. Mat., 57. 425 (1935). However, if we <~ square >> the generalized Dirae 
equation we have terms such as (5.3) plus the spin interaction with the generalized 
electro-magnetic field, and it is diiticult to see how there could be any cancellation 
which makes the  equation regular at  the origin, since the square of the potent ial  is 
more singular than its gradient  for n > 3. 

(~0) J. CALLAWAY: Phys. Rev., 112, 290 (1958). 
(21) A. PERES: Phys. Rev., 120, 1044 (1960). 
(:2) ]~. CARTAN: Oeuvres Completes (Paris, 1952), par t  I, vol. I, p. 112. 
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6. - C o n c l u d i n g  r e m a r k s .  

The preceding analysis shows tha t  the requirement tha t  there be stable 
bound orbits for the Keplerian problem is sufficient to fix the dimensionality 

of space within the framework of general relativity, under the restrictions and 

assumptions noted in the text. However,  we have also seen tha t  this result 

is not  merely a feature of general relativity but  is reproduced in classical theory 

as well as in quan tum mechanics (in conjunction with axiom B)). I f  we ask 

what  general mathemat ical  feature is common to all these theories, we see 

tha t  it is the notion of distance based on a differential quadrat ic  form (53). 

If  we adopt  the viewpoint of Mach's principle, this notion is not something 

independent  of bodies but  is based on relations between bodies considered as 

material  points. Moreover, these relations possess the impor tan t  proper ty  of 
being numerical, and hence the distance relation between body ~ and body fl 

can be compared with tha t  between body ~ and body y - - a t  least in principle. 

However,  if we ask how a comparison could ever be made, or (~ observed ,), we 

recognize tha t  there must  be the possibility of point bodies maintaining dis- 

tance relations tha t  are invariable (in a given frame), since point bodies in 

themselves do not provide us with a measure of distance. Thus we are led 

to the conclusion tha t  the bound state requirement is necessary in order tha t  

a comparison of relative distances between (point) bodies be physically pos- 

sible, and hence a metrical dynamics constructed with such bodies as repre- 

sentatives, self-consistent. Given a set of bodies tha t  fulfill C) one can con- 
struct Einstein's (( pratically-rigid )> rods within the theory (~4). 

I t  is perhaps of interest to illustrate briefly how we contemplate the bound 

state postulate may  be used as a (( building-up principle ~) in arriving at other 
specificities in nature. For  example, an impor tan t  prediction of quan tum 

electrodynamics is tha t  positronium is unstable. I t  would appear tha t  we 

have reached a contradiction with C), and tha t  C) must  be given up. However,  

if we stick to the postulate, we are led to conclude tha t  quan tum electrodyna- 

mics does not  provide us with a complete set of (~ bodies ~) or representatives 

tha t  interact  with the electrodynamic field. Most simply, there must  be posi- 

t ively (negatively) charged bodies tha t  form stable bound states with electrons 

(positrons). We know experimentally tha t  there are such bodies, i.e., protons (~5), 

although, to be sure, the postulate in its present form is mathemat ical ly  too 

qualitative to assure us tha t  its (( predicted ,) protons are actual protons. 

(23) Ehrenfest emphasizes the importance of investigating the quadratic nature 
of ds 2 in the concluding paragraph of his second article. 

(24) A. EINSTEIN: Geometry and Experience, to be found, for example in Ideas and 
Opinions (New York, 1954). 

(.,5) At least to within the limits set by the proton stability experiment of C. C. GIA- 
)IITI and F. REINES: Phys. Rev., 126, 2178 (1962). 
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As a fur ther  justification for the postulate ,  we observe tha t  i t  is quite im- 
possible to carry  out the type  of exper iments  envisaged by  BOHR and ROSEN- 
FELD solely with the electrons, positrons and photons of q u a n t u m  electro- 

d y n a m i c s - - a s  BOHR has emphasized one needs (~ massive ~) classical appara tus .  

This in turn  requires, if axiom A) holds for the bodies composing the appa-  

ra tus  as well as the measured quant i ty ,  t ha t  the bound s ta te  postula te  also 
holds. Thus,  in its present  form, q u a n t u m  electrodynamics does not  contain 
a subset  of bodies and their  (( motions ~> tha t  can play the role of measur ing 
appara tus  while another  set of bodies and their  motions play the role of quan- 

tities to be measured.  
Perhaps  pa r t  of the difficulty lies in the fact  t ha t  the a sympto t i c  condition 

in q u a n t u m  field theory  is too strong since it  excludes bound states (:6). On 

the other hand,  the renormalizat ion criterion of q u a n t u m  elect rodynamics  

appears  to be too weak, for a l though it excludes spaces with dimensionMity 
n >  3, as is well-known, it admits  spaces with dimensional i ty n <  3. Thus  

if we denote the number  of vertices by  v, external  electron lines by  E~ and 

external  pho ton  lines by  P~, by  a purely  formal  generalization, the degree of 
divergence is 

(6.1) D = ( ! + n 4  l )  2 v - - ~ E - - n  n - - l P ~ 4 - 2  ( l + n ) .  

and hence AD/Av > O, n > 3, and AD/Av < 0, n < 3. However ,  since the co- 
efficient of v is linear and vanishes for n =  3, there is some hope of estab- 
lishing the  dimensional i ty  of space uniquely within this f ramework,  a l though 
it  is clear t ha t  the renormMizat ion criterion itself is not  quite sufficient (~). 

I n  conclusion, the above remarks  suggest t ha t  i t  is logically advantageous  
to regard the dimensional i ty of space as a specificity to be derived f rom physical  
principles ra ther  than  s imply inserted into the theory  f rom the beginning. 
Wi th  fur ther  work, we m a y  come to regard n = 3 as un eigenvMue. 

The au thor  wishes to t hank  Professor E. R. CAIANIELL0 and Professor  F. R. 

HALPERN for some provoca t ive  discussions on the dimensional i ty-of-space prob- 

lem a few years  ago a t  the I s t i tu to  di Fisiea Teorica in Naples.  

(26) H.  LEHMANN, K.  SYMANZIK &rid W.  ZIMMERMANN : ~-UOVO Cimento, 1, 1425 (1955). 
For a recent discussion see W. TItIRRING: Phys. Rev., 126, 1209 (1962). 

(27) Note that the same remark applies to the bound state postulate if we do not 
stay within the framework of the exact field equations of general relativity, that is, 
as we have seen to eliminate the cases n < 3 in Newtonian theory we require axiom B). 
I t  would be very interesting to know to what extent axiomatic field theory deter- 
mines the dimensionality of space. 
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R I A S S U N T 0  (*) 

I1 f a t t o  che  le a t t u a l i  leggi fisiche a m m e t t o n o  u n a  es t ens ione  fo rma le  a spazi  con 
u n  n u m e r o  a r b i t r a r i o  di d imens ion i ,  suggerisce che deve  es is tere  qua l che  pr inc ip io  
(o a lcun i  pr inc ip i )  o p e r a t i v i  che  in un ione  con ques te  leggi imp l i ch ino  l ' o s s e r v a t a  spe- 
cif ici t~ del la  d imens ional i t ' s  spaziale ,  ~t 3. Gene ra l i zzando  uno  s p u n t o  sugger i to  dal  
l avoro  di EHRENFEST (ed i n d i p e n d e n t e m e n t e  da  G. J .  WItITROW) Slll p r o b l e m a  di 
Kep le ro  ~t d imens iona le ,  si p r o p o n e  di r i a s sumere  in v ia  di t e n t a t i v o ,  ques to  pr inc ip io  
nel  p o s t u l a t o  che devono  es is tere  delle o rb i t e  o (( s t a t i  ~> lega t i  s tab i l i  nel le  equaz ion i  
del  moto  che g o v e r n a n o  l ' i n t e r az ione  dei corpi  cons ide ra t i  come  p u n t i  ma te r ia l i .  Si 
app l ica  ques to  p o s t u l a t o  alle equaz ion i  geode t i che  del mo to  o t t e n u t e  da  u n a  genera-  
l izzazione del campo  di Schwarzsch i ld  a s i s temi  s ta t i c i  con s i m m e t r i a  ipers fer ica  e si 
d i m o s t r a  che il p o s t u l a t o  degli s t a t i  l ega t i  impl ica  u n i c a m e n t e  la d imens iona l i t 'h  spa- 
ziale. Questo r i su l t a to  non  5 a f fa t to  pecul ia re  del la  r e l a t i v i t h  genera le  perch~  vale  a n c h e  
pe r  la t eo r i a  n e w t o n i a n a  ( E h r e n f e s t - W h i t r o w )  se si i n t r o d u c e  u n a  cond iz ione  a s i n t o t i c a  
che  esc luda  i casi con t~,~ 3. Si cons idera  b r e v e m e n t e  a n c h e  l ' a t o m o  di id rogeno  di 
SchrSd inger  in n d imens ion i ,  per  cui il p o s t u l a t o  esclude u ~ 3 e, in u n i o n e  con 
la cond iz ione  as in to t i ca ,  n ~ 3. Si cerca di c o m p r e n d e r e  l 'o r ig ine  logica di ques to  
p o s t u l a t o  e si suggerisce the ,  se si suppone  che i r a p p r e s e n t a n t i  f o n d a m e n t M i  di u n a  
d i n a m i c a  a v e n t e  u n a  m e t r i c a  s iano p u n t i  mate r ia l i ,  si h a  b isogno di u n  t a l e  p o s t u l a t o  
per  cos t ru i re  le << s b a r r e  p r a t i c a m e n t e  r igide ~> di E ins t e in ,  in q u a n t o  i corpi  p u n t i f o r m i  
di pe r  s5 non  ci forn iscono u n a  m i s u r a  della d i s t anza .  Si f anno  a lcune  b rev i  appl i -  
caz ioni  q u a l i t a t i v e  di ques te  idee Mla e l e t t r o d i n a m i c a  quan t i s t i c a .  

(*) T r a d a z i o n e  a c u r a  d e l l a  l C e d a z i o n e .  


