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Summary. — The fact that our present laws of physics admit of a formal
extension to spaces of an arbitrary number of dimensions suggests that
there must be some principle (or principles) operative which in conjunction
with these laws entails the observed specificity of spatial dimensionality,
# = 3. Generalizing from an approach suggested by the work of EHRENFEST
(and independently by G. J. WHiTROW) on the Newtonian Keplerian
problem in n dimensions, it is proposed that this principle may be ten-
tatively summarized in the postulate that there shall be stable bound
orbits or «states » for the equations of motion governing the interaction
of bodies (comsidered as « material points»). This postulate is applied
to the geodesic equations of motion obtained from a generalization of
the Schwarzschild field to static systems with hyper-spherical symmetry,
and it is shown that the bound state postulate uniquely entails the
spatial dimensionality. This result is not entirely peculiar to general
relativity because it also holds for Newtonian theory (Ehrenfest-Whitrow)
if one also introduces an asymptotic condition to exclude cases n < 3. The
Schrodinger hydrogen atom in n dimensions is also briefly considered
for which the postulate also excludes » > 3, and in conjunetion with
the asymptotic condition » < 3. An attempt is made to understand the
logical origin of this postulate and it is argued that if one assumes the
basic representatives of a dynamics with a metric to be material points,
one needs such a postulate to construct Einstein’s « practically rigid
rods », since point bodies in themselves do not provide us with a measure
of distance. Some brief qualitative applications of these ideas are made
to quantum electrodynamies.
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SCHWARZSCHILD FIELD IN 7 DIMENSIONS AND THE DIMENSIONALITY ETC. 637

1. — Introduection.

It has been frequently observed that in the statements and mathematics
describing the laws of nature there is a greater generality regarding the di-
mensionality of space than space itself exhibits (1). This is readily seen upon
examination of Newton’s laws of motion, the Lagrangian and Hamiltonian
formalisms, the two principles underlying special relativity, the principle of
equivalence, the principle of general covariance, the geodesic principle, and
the principles of quantum mechanics. In none of the above-cited cases do
either the statements of the principles or the mathematical machinery restrict
us to three dimensions.

Because of this rather general and indeed remarkable property of our phys-
ical principles on the one hand, and the apparent specificity implied by the
three dimensionality of space on the other, there has developed, broadly speak-
ing, two major trends of thought concerning the dimensionality of space
problem: One trend consists in the attempt to enlarge the dimensionality of
space, such as in the multidimensional unified field theories, while the other
trend concentrates on attempting to explain why space is three-dimensional.

Although the trend towards enlarging the dimensionality of space has led
to many important mathematical developments, it invariably encounters a
stumbling block in the apparent lack of generality displayed by nature in this
problem. For it is clear that even if we assume that somehow we have been
deceived and that space is not three-dimensional, but k-dimensional, the pro-
position that space is k-dimensional introduces a new specificity which must
be explained () and this explanation must also account for the « apparent »
three-dimensional specificity as well.

We are therefore led to the second trend of thought which seeks to find a
principle (or principles) from which the specificity of the spatial dimensionality
may be deduced in conjunction with other principles. It is primarily to this
latter trend of thought that the ideas presented in this paper belong. In the
next section we shall briefly review some important contributions to this
problem which will also serve to suggest an avenue of approach within the
framework of general relativity.

(') In this paper we shall not enter into the dimensionality of time problem. We
shall therefore assume the dimensionality of the space-time manifold to be r=1+=n,
where n is the number of spatial dimensions, and is assumed to be an integer. In
terms of a many-particle formalism for which one assigns co-ordinates (¢;, «}, 3, %)
per i-th particle, the dimensionality of space problem is: Why does one assign three
spatial co-ordinates per particle?

(2) Except possibly if k= co, since nature would then admit of as much generality
as is compatible with the assumed countability of the number of dimensions.

~
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638 F. R. TANGHERLINI

2. — Historical note: the bound state postulate; relation to Mach’s principle; summary.

The line of thought which we shall follow in this paper (*) originates with
Kant’s observation that the three-dimensionality of space may be in some
way related to Newton’s inverse square law (*). This of course became clear
from Laplace’s equation and Gauss’s theorem by means of which Kant’s re-
mark may be reformulated into the elementary proposition: If the force in-
tensities of a field are deriveable from a potential, which in empty space satis-
fies a generalized Laplace’s equation, and if this force obeys an inverse square-
law, space must be 3-dimensional (5). The importance of Kant’s observation is
that it leads one to study the dimensionality of space problem from the standpoint
of force laws and their effects on the motion of bodies. This was done by EHREN-
FEST (%) in a fundamental paper which does not seem to have attracted much
attention ("), although it contains a key-contribution to the problem. An es-
sential feature of Ehrenfest’s idea has been recently rediscovered by WHITROW (8).

(3) Outside the scope of this paper are the well-known considerations of H. WEYL,
based on demanding an invariance of the Lagrangian under g,,— 1g,,, since the theory
contains serious difficulties as first pointed out by Einstein and fully recognized by
Weyl himself.

(4) See, for example, the very interesting monograph by R. WEITZENBGCK: Der
Vierdimensionale Raum (Braunschweig, 1929).

(5) A slightly different statement of this proposition is customarily attributed to
J. UBerwEG: System der Logik (various editions, Bonn, 1857-1882), although it was
probably known to G. GREEN and other mathematicians who studied problems in
n dimensions somewhat earlier.

(®) P. EHRENFEST: Proc. Amsterdam Acad., 20, 200 (1917); Ann. Physik, 61, 440
(1920). It need not be emphasized that abstract force laws and their effects on the
equations of motion were of course studied for hundreds of years previously, e.g. Cotes’
spirals (1722). But what is missing in these earlier investigations is an observation
that the results can be used to arrive at a physical principle that may explain the three-
dimensionality of space. For a discussion and useful references to the earlier work of
LEGENDRE, STADER, KORTWEG, GREENHILL and BERTRAND see E. J. RourtH: Dynamics
of a Particle (Cambridge, 1898). Sections 3586-367, 428-429.

() For example, no reference is made to Ehrenfest’s work in the recent historical
treatment of K. JAMMER: Concepls of Space (Cambridge, 1954); nor in the discussion
of H. WevL: Philosophy of Mathematics and Natural Science (Princeton, 1949), p. 136.
However, Weyl makes the following important observation with respect to this problem:
« The best chances for success seem to me to lie in theoretical physical construetion. »
In addition to the monograph of Weitzenbick, reference is to be found in H. WEYL:
Raum, Zeit, Materie (Berlin, 1923), p. 331.

(®) G. J. Waitrow: The Structure and Evolution of the Universe (New York, 1959)
Appendix. WHITROW uses a classical gravitational argument similar to Ehrenfest’s
for n > 3, but for n < 3 invokes biological arguments based on the interesting topo-
logical problems in designing nervous systems so that arbitrary numbers of « cells »
can be connected in pairs without intersection of the connecting « nerves ». This rules
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SCHWARZSCHILD FIELD IN 7 DIMENSIONS AND THE DIMENSIONALITY ETC. 639

EHRENFEST notes that for the Newtonian-Keplerian problem, generalized to
n dimensions, one obtains stable, bound non-colliding orbits if and only if
n=2,3. If one requires that the potential should vanish at infinity, the
case n=2 (and incidentally, n=1) is excluded, so that with two conditions
imposed on the Keplerian problem, one can deduce the dimensionality of
space. In addition to these two conditions, in the discussion of the Keplerian
problem one introduces the idea of bodies regarded as material points. The
basic assumptions may be summarized as

A) The « bodies » used in formulating the principles of mechanics may be
treated as material points.

B) The fields produced by bodies asymptotically approach a constant
value at «large distances» (Asymptotic condition).

C) There shall exist stable bound orbits or «states» for bodies inter-
acting via these fields.

Assumptions 4) and B) are used so frequently that we may regard them
as part of our present axiomatic structure (®). On the other hand, C) is custo-
marily something we look for in a dynamical theory; it is more in the nature
of a postulate. We shall call it the « bound state postulate » ().

On the basis of the work of EHRENFEST and WHITROW, it follows that if
we do not assume the dimensionality of space, but append the bound state
postulate C) to the principles of n-dimensional Newtonian dynamics and gra-
vitational theory, inclusive of axioms A) and B), then the proposition that
space is three-dimensional becomes a theorem, rather than an axiom, and the
observation of this specificity in nature an experimental verification of the
theory!

Since we know that Newtonian gravitational theory must be replaced by
general relativity, the question arises as to whether () also leads to the dimen-
sionality of space within this broader framework. There is the well-known
observation that if the space-time manifold has dimensionality n-+-1<4, there
is no gravitational field for matter that satifies 4), i.e., G, =0, implies the
Riemann tensor R, , =0. Hence if n<3, we cannot satisfy C). We also

vo
out » = 2,1. However, the argument breaks down if one assumes that the « cells »
are located, say, on multiply-connected surfaces, and one then needs additional as-
sumptions. The fact that Whitrow finds it necessary to introduce a new kind of
argument for n < 3, is tacit recognition of a profound difference between the cases
n>3 and n<3.

(*) It is perhaps interesting to recall that Newton went to great pains to establish
that axiom A4) held in his gravitational theory, see also footnote (17). Our statement
of axiom B) is not very « strong » since we do not need a strong statement in this paper.

('°) Our use of this postulate will be confined to classical central forces and the
binding between two bodies.

=
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640 F. R. TANGHERLINI

know that in the weak-field approximation Newtonian theory holds, hence
the Ehrenfest-Whitrow result certainly holds approximately in general rela-
tivity. As we shall see it actually holds rigorously as well.

Indeed, if it were not possible to deduce the dimensionality of space in
general relativity on the basis of a principle such as C), there would be a
serious inconsistency with Mach’s principle as formulated by BINSTEIN. Ac-
cording to this principle we expect that the properties of matter should not
only determine the geometry of the space-time manifold, but its topological
properties as well ('), in particular, its dimensionality. If this were not the
case, space would have absolute properties. The issue is therefore an extre-
mely fundamental one.

Our approach to the problem in general relativity in the next sections is
quite straightforward. We generalize the Schwarzschild field to » dimensions
and examine the generalized Keplerian orbital equation. It is clear that as
¢ — oo, we should (and do) obtain the generalized Newtonian orbital equation,
and hence the Ehrenfest-Whitrow result, and the only question is whether
the general relativistic correction alters the conclusion. As we indicated above,
it does not.

As a matter of curiosity we have also generalized the Reissner-Nordstrom
solution, although it must be kept in mind that this solution is not on the same
footing as the Schwarzschild solution, since it is invalid at the origin without
a compensating energy-stress tensor for which we still do not have a generally
accepted theory (*2).

For comparison, we have also briefly, studied the Schrédinger hydrogen
atom in » dimensions to see whether it also entails the dimensionality of space
as a consequence of () and as one might expect from the analogy with the
classical Xeplerian problem (inclusive of axioms 4) and B)), n =3 is the only
admissible dimension. EHRENFEST also considered this problem using Bohr-
quantization arguments.

Some additional results will be stated in the text and we shall attempt to
analyse the basis of ) somewhat further in the concluding section.

(*') The modern topological theory of dimensionality begins with Poincaré’s
essay (1912), Pourquoi U'Espace a Trois Dimensions, Derniéres Pensées (Paris, 1926).
For later developments see K. MENGER: Dimension Theorie (Leipzig, 1926) Chapter II.
W. Hurewicz and H. WarLmaN: Dimension Theory (Princeton, 1941). Of interest
to the physicist is perhaps the relativity of dimensionality implied by the inductive
definition given in the above treatments. This definition requires the fixing of the
dimensionality of one set inductively connected to all spaces in order to be able to
assign absolute values of dimensionality. This set is taken to be the null set and is
given dimensionality — 1. Our discussion relies heavily on the metrical properties of
gpace in fixing the dimensionality. Thus, the dimensionality of the space-time mani-
fold is trace (g,”)=0,=1+n.

(12) To be published in Nuovo Cimento.
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SCHWARZSCHILD FIELD IN 7 DIMENSIONS AND THE DIMENSIONALITY ETC. 641

3. — Field equations for static systems with hyper-spherical symmetry.

We shall adopt a co-ordinate system that is an obvious generalization of the
one used customarily in treating the Schwarzschild field; we hav efor the line
element (we set ¢=1)

(3.1) ds? = e’ diz — e*dr: — r2d 2,
where gy =¢€", g, =—€* and
n—1
(3.2) dQ? = dyd + sin? yodyl ... + [ sin® y,dyl .
=2
After a standard calculation, the field equations in mixed form G *=-—xT}*
reduce to
exp[— A} A  n—2 m—1)n—2)
(=1 =5 { PRI 2r2 =—#l,
exp[— Al  n—2] (n—1)n—2)
N
(3.3)
exp[— A, v v (n=3)n—2)  (n=2)A—»)]
2 " T2 re r
(n—2)n —3)
— e —
and we have T:=1T%= .. = T" because of spherical symmetry. As a « check »

we note that the equations reduce to well-known expressions if n=3. We
also have from the contracted Bianchi identities

1}/

1 —
: it .

(3.4) g T —

Although our primary interest lies in a generalization of the Schwarzschild
field, for greater generality we consider energy-stress tensors for which
Ty=T}, as this includes the « vacuum » as a special case. We then find,
upon adopting a suitable normalization gyg,; = —1, and introducing the scalar
potential U, that (3.3) reduces to the following pair of dependent linear equations

r—1d (r—2U) = To_— T
1 dr )= —uT=—x=T,
{3.5)
n—3 d
2 n—2 —_ 2
VRO 4 ) = — TR

41 - Il Nuovo Cimento.
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642 F. R. TANGHERLINI
The stress-equilibrium (3.4) reduces to

1 d —1
. {pn—1 o2
(3.6) e I = = =0

Thus, the simple linear character noted previously for » =3 continues to hold
in spaces of higher dimension. This is to be expected on very general grounds
(principle of equivalence, general covariance) because of the dimension-invariant
character of the discussion we have given elsewhere (7).

We can use these equations to construct a generalization of the point-mass.
tensor (1*). One finds readily

1 1 me’
) *— di 1, — oy — |
(3.7) P = diag (1 1 - 1) =

where ¢ is the (double) radial d-function f &dr=1, and w, is the area of the

unit sphere in n dimensions, and is given by

an/Z
3.8 = e
(3-8) “n= Pn)2)
The point mass has identically vanishing spatial trace T7= 0; there is a con-
panion tensor to the point mass tensor which also has this property. Upon
introducing the requirement T¢= 0 into (3.6), we obtain

. 1 1 m
(3.9) D,# = diag (1, L= n—l) o

where the normalization is chosen for comparison. This tensor, however, pro-
duces logarithmic divergences.

For a tensor, 0% with vanishing total trace (by analogy with the Maxwell
energy-stress tensor for n=23), we find as a solution to (3.6)

(3.10) 0," = diag (1,1,_~,3 . _,,37,) K
n

— 17— 1)’

where K is an integration constant. In both (3.9) and (3.10) we have ignored
the singular behavior at the origin.

(13) See Section 2 of the above paper, where it will be seen that the argument
depends only on invariance under transformation of the form ¢'= t'(r, ), v'= v'(r, 1)
and «spherical » simmetry. On the other hand, our discussion of radial parity, Sec-
tion 4, requires some qualification when n is even.

(**y F. R. TANGHERLINI: Phys. Rev. Left., 6, 147 (1961).
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SCHWARZSCHILD FIELD IN % DIMENSIONS AND THE DIMENSIONALITY ETC. 643

Although O is proportional to the Maxwell tensor for n =3, this is not
the case in general. Maxwell’s equations in nonrationalized units in polar
co-ordinates take the form

1 d
- n—1 F01) — ¢ 40
(3.11) g ) = o

and by setting j°=¢&¢'/w,r""!, we have
(3.12) Fo1 = efyr—1.

Hence, since the Maxwell tensor M * is proportional to (F°1)2, or M *oc r2—27,
we find M “oc 0% if and only if,

(3.13) 2n—2 =n+1

or n=23. More generally, the Maxwell tensor

. 1 ,
(3.14) w, M= F"F 4 ;6;‘ F*F ;.
has identically-vanishing trace only for n =3, 1.c.,
(3.15) w,M = F*F,, (44—— —1

Another approach to the dimensionality of the space problem might conceiv-
ably be based on this observation.

On the other hand, we have implicitly assumed in eq. (3.11) that the re-
lation T)= T, holds for the Maxwell tensor of a static spherically symmetric
charge distribution independently of dimension. This is in fact the case, since

(3.16) 20, M,* = diag[1, 1, —1, ..., —1](Fo1)2,

and hence M= M;.

It is perhaps interesting to observe that for a two dimensional electron,
the trace of the spatial stresses vanishes M!=0, and hence the classical
electron has vanishing self-stress, although of course nonvanishing self-force.

Let us now write down the general solution to (3.5), but for simplicity,
we shall discard singular terms at the origin. It proves convenient, for pur-
poses of comparison, to rewrite Einstein’s gravitational constant » in a form
which introduces the Newtonian constant y. Since the left-hand side of the

o
e
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641 F. R. TANGHERLINI

field equations has a factor that vanishes for » =1, we can insure a similar
vanishing of the right-hand side, if we set » = (n —1)w,y; this yields the usual
»x=8my for n=23. With this definition of » one finds

(3.17) U=— ”_f 0w, =1 dr .

An interesting feature of the field equations is that unlike Newtonian gravita-
tional theory, we do not find the logarithmic potential for n=2, for a « point »
mass. This is due to the fact that while V:U =0, r> 0, admits of two solu-
tions U= Alnr- Be(r), the fact that we must also have from the equation
for T3, U,=0, r> 0, requires that we set 4 =0. Such a behavior is to be
expected, because for r > 0, the space must be flat, and for the solution U= B
(setting &(r) =1, r > 0), the line element can be brought into pseudo-Euclidean
form by changes of scale of ¢, 7, and y. The logarithmic solution of course can
be obtained, but it belongs to the point-mass companion energy-stress ten-
sor (3.9).

Returning now to (3.17), let us obtain the n-dimensional generalization of
the Schwarzschild Reissner-Nordstrom solution. We find, introducing (3.7)
and (3.16) into (3.17) with F°! in (3.16) given by (3.12)

m e?
(3.18) v=—12 4+ 0, r>0, n>3,

where n is restricted to three or greater because of the logarithm that occurs
for m =2, in the electromagnetic term, and we have assumed a compensation
that cancels the singularity obtained from integrating M * at the origin. We
note, incidentally, that if we use relativistic units for which y =1, we see
that the dimensions of mass and charge go as [m]= L 2, [e*]= L* %, and
hence [e?/m] = L2, thus only for n=3, i3 the classical electron « radius» a
length. It also follows that the fine structure constant is not dimensionless
n# 3, since the definition of # is such that #/m always has the dimensions of
a length.

One can readily superimpose a cosmological term onto (3.18), although
there is some ambiguity with regard to the dimension factor. We believe it
is preferable to adopt a definition based on the form of the Riemann tensor
for a space of constant curvature, i.e., R, =—A4'(¢,,9,,— 929,,)- Upon con-
traction, this expression yields

(3.19) Q.= _ﬁ(nz;l) A'8,- .
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The above expression agrees to within a factor of 3 with the usual definition
G =—A8" for a three-dimensional matter-free space. However, (3.19) has
the advantage of automatically vanishing for » =0, 1, just as the left-hand
side of the field equations. The expression (3.18) with the de Sitter term
becomes

. ym yer Ay
(3.20) U= —7-_n—_1 + 5-2%—4 - _42 T

In the discussion that follows in the next section, we shall set both e, and A’
equal to zero, and consider only the case of a pure Schwarzschild field.

4. — Orbital equation for the generalized Schwarzschild field.

In this section, we shall show that there do not exist stable bound orbits
in the Schwarzschild field for » > 3. We shall temporarily ignore the Schwarz-
schild singularity and return to it below.

The geodesic equations of motion are obtained from 8Jﬁs= 0, where

2ym
(4.1) ds?= (1 — ?Z_2> diz—g ;P dr2—r2d6?,
in which we have set dy,=4df, dy;=...=dy,=0. We introduce the energy,

and angular momentum constants defined by

dt do
y2 —

(4.2) goo&:kov &41&’6-

Upon introducing #=1/r, we may rewrite (4.1) as

1 {du\z 1 ym ky—1
4.3 — | — g2 ogm—2___ fT—
(3) 3 (dé)) P T T Y= e

for comparison with the Newtonian expressions. From (4.3), we obtain a
simple generalization of the usual Schwarschild orbital equation

dzu ym
4.4 b= (n—1)ur3 ne1
(4.4) g T v W (n—1)u"=3 + nymu

To study the question of stable bound orbits, it is aetually more convenient
to use (4.3), and to consider the effective orbital potential defined by

(4.5) V= }u?— ymu2? k> — ymu" .

)
R
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646 F. R. TANGHERLINI

We shall assume » > 3, since the case » =3 has been discussed in detail.
The location of stable points may be obtained directly from a plot of V; how-
ever, the analysis is readily carried out. We set 0V/du= 0, and find for
%0,

(4.6) (n — 2yymul ky* + nymul t =1, (n>4).

We note the equation has only one positive root (*) and that it is a point
of instability since

(4.7) (BZV

aug)u.,: 1— (0 —3) — 2nymu,™=2 < 0 .
Thus, the essential results of the Ehrenfest-Whitrow investigation are un-
changed, and hence the condition that there be stable bound orbits for the
Keplerian problem is sufficient to exclude » >3 in general relativity as well
as in Newtonian theory.

In the above discussion we have ignored for simplicity the Schwarszchild
singularity. The question naturally arises as to whether the unstable point
is inside or outside the radius of the singularity, i.e., whether 777> ¢"7*

s !
9

where 777" = 2ym. We have from (4.6) that
(4.8) wymuy <1,

the equality sign holds for the case of the unstable state of a light ray (or
system with zero rest mass) travelling around on a circular orbit. It follows
that 7;*>nym and hence ry > r"%

It is also tacit in the above discussion that the predictions of the geodesic
equation coincide with those of a determination of the equations of motion
from the field equations and the contracted Bianchi identities. Since we know
from the Einstein-Infeld-Hoffmann method (or that of Fock) that this is
certainly the case under reasonable assumptions for the case n =3, the only
question is whether or not these methods generalize to n>>3. It is easily
verified that they do in the Newtonian approximation, which as we have already
seen is sufficient, to fix the dimensionality.

It is a curious feature of the perturbation method, however, that if we
apply it to the case n=2, in the absence of axiom B), then we can be led
to an infinite series for g, even though we know that if axiom 4) is fulfilled,
the space-time manifold outside the bodies is flat independently of whether
one’s choice of co-ordinates fulfills B).

('3) The case n=4 exhibits three possibilities as in Newtonian theory, for one of
these cases there is a positive root, for the other two cases oV/ou == 0, unless u =0.

g
-
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5. — Schrodinger « hydrogen atom » in » dimensions.

In his treatment of the generalized Keplerian problem, EHRENFEST did not
confine himself solely to classical theory, but also applied Bohr quantization
to the circular orbits of « generalized hydrogen ». As one might expect from
effective potential considerations, he obtained a spectrum for » >- 5 for which
the energy increases to infinity for increasing quantum numbers and for which
the orbits draw closer and closer to the nucleus (¥). A difficulty is of course
that these force-equilibrium orbits are not classical stable states: Under small
variations, the electron spirals into the proton or spirals off to infinity. Let
us therefore briefly consider the problem from the standpoint of wave mech-
anics. For simplicity we shall ignore relativistic corrections except as noted
below. We shall also assume »n >3 because of our previous remarks and on
the basis of the asymptotic condition B). After separating out the center-of-
mass motion for the proton and electron, we have the eigenvalue equation

he '
(5.1) —%vé)w—eI"W:E‘P,

where V=¢/(n—2)r"~2, V? is the Euclidean Laplacian in n-dimensions and
the other quantities have their usual interpretation (7).

If we now transform to n-dimensional polar co-ordinates, introduce n-di-
mensional spherical harmonics and factor out the angular dependence (18), the

radial wave equation takes the form

d2R n—1dR
(5.2 - o
(5-2) dr2 - r dr

2m A2 U1+ n—2) e?
7 s PE— =0,
fi2 2m r? + (h—2)r"2 E=0,

%,

where [ is the angular momentum eigenvalue, and we note the generalization
of the term [({+1). It is immediately clear that for the cases »>5 the
energy levels have a point of accumulation at minus infinity: i.e., r=20 is
not a regular point; and hence there are no stable bound states. The case
n =4, can also be excluded by standard arguments. Alternatively, if we use

(*$) The radii of the Ehrenfest orbits are given by » = (me2/r2a2)Y™ ™ (n > 2, n #4),
and hence draw closer for increasing angular-momentum quantum number 7, n > 5.
For the energy levels see Ehrenfest’s paper—-to be found in his Collected Scientific
Papers (Amsterdam, 1959), p. 400.

(17) Because of Born’s interpretation of y as the amplitude for finding the electron
at a point, we have not violated axiom A). It would be very interesting if one could
deduce Born’s interpretation of ¢ from axiom A4).

(®) See, e.g., A. SoMMER¥ELD: Partial Differential Equations in Physics (New
York, 1949), Appendix IV.
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648 F. R. TANGHERLINI

the relativistic Schrodinger equation, we have a radial equation of the form

dLR+n—1d_lif
dr2 r dr
Emt U+ n—2) 2Fe? e

Rz 72 fir(n —2)rn—2 1 fiz(n — 2)2pen—t

(5.3) +

R=0,

from which it is clear that already for n =4, r=0 is not a regular point.
Thus the bound state postulate applied to the Keplerian problem serves to
exclude spaces in quantum mechanics as well as in classical orbit theory ().

In conjunction with this section it is appropriate to take account of pos-
sible general relativistic effects as discussed by CArraway (*) and PERES (1)
which might at first appear to rule out » =3!. We confine ourselves to the
example of PErES. Consider the quantum mechanical problem for n=3 of
a neutral particle interacting with a « heavy » point source of mass m by means
of a generally covariant form of the Schrodinger or Dirac equation. One finds
the origin is not a regular point and the particle « falls ». This result is to be
expected from eq. (4.3), since we see that there is the quantum-mechanical
possibility for the particle to tunnel through the centrifugal barrier and get
into the u? region and fall. However, such quantum-mechanical considerations
based on a nonrecoiling point nucleus are reasonable only if, crudely, the
Compton wave length of the nucleus is smaller than the Schwarzschild radius,
i.e., #i/m < 2ym, so that the nucleus would have to possess a mass m > (f/2y)! ~
A 10~% g—a familiar quantity in such considerations. Since all the « par-
ticles » that we know of with such a mass are highly composite, one should
conclude that the bound state postulate serves to impose some restrictions on
the specifities of other physical parameters besides the dimensionality of space.
A more thorough investigation should investigate the appropriateness of the
class of representations which one now uses in attempts to discuss general
relativistic corrections to quantum mechanics—and in particular, discuss cri-
tically the remarks of B. CARTAN (22).

(*9; It may be of interest to supplement these investigations with a similar analysis
for spinor wave equations in n dimensions as given by R. Braurr and H. WryL:
Am. Journ. Mat., 57, 425 (1935). However, if we «square» the generalized Dirac
equation we have terms such as (5.3) plus the spin interaction with the generalized
electro-magnetic field, and it is difficult to see how there could be any cancellation
which makes the equation regular at the origin, since the square of the potential is
more singular than its gradient for = > 3.

(+°) J. CaLLaAwAY: Phys. Rev., 112, 290 (1958).

(') A. PERES: Phys. Rev., 120, 1044 (1960).

(2) K. CarrTaN: Qeuvres Complétes (Paris, 1952), part I, vol. I, p. 112.
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6. — Concluding remarks.

The preceding analysis shows that the requirement that there be stable
bound orbits for the Keplerian problem is sufficient to fix the dimensionality
of space within the framework of general relativity, under the restrictions and
assumptions noted in the text. However, we have also seen that this result
is not merely a feature of general relativity but is reproduced in classical theory
as well as in quantum mechanics (in conjunction with axiom B)). If we ask
what general mathematical feature is common to all these theories, we see
that it is the notion of distance based on a differential quadratic form (23).
If we adopt the viewpoint of Mach’s principle, this notion is not something
independent of bodies but is based on relations between bodies considered as
material points. Moreover, these relations possess the important property of
being numerical, and hence the distance relation between body o and body j
can be compared with that between body « and body y—at least in principle.
However, if we ask how a comparison could ever be made, or « observed », we
recognize that there must be the possibility of point bodies maintaining dis-
tance relations that are invariable (in a given frame), since point bodies in
themselves do not provide us with a measure of distance. Thus we are led
to the conclusion that the bound state requirement is necessary in order that
a comparison of relative distances between (point) bodies be physically pos-
sible, and hence a metrical dynamics constructed with such bodies as repre-
sentatives, self-consistent. Given a set of bodies that fulfill C) one can con-
struct Einstein’s « pratically-rigid » rods within the theory (24).

It is perhaps of interest to illustrate briefly how we contemplate the bound
state postulate may be used as a « building-up principle » in arriving at other
specificities in nature. For example, an important prediction of quantum
electrodynamics is that positronium is unstable. It would appear that we
have reached a contradiction with (), and that ) must be given up. However,
if we stick to the postulate, we are led to conclude that quantum electrodyna-
mics does not provide us with a complete set of « bodies » or representatives
that interact with the electrodynamic field. Most simply, there must be posi-
tively (negatively) charged bodies that form stable bound states with electrons
(positrons). We know experimentally that there are such bodies, i.e., protons (2%),
although, to be sure, the postulate in its present form is mathematically too
qualitative to assure us that its « predicted » protons are actual protons.

(?*) Ehrenfest emphasizes the importance of investigating the quadratic nature
of ds? in the concluding paragraph of his second article.

(2%) A. EINSTEIN: Geometry and Experience, to be found, for example in Ideas and
Opinions (New York, 1954).

(*%) At least to within the limits set by the proton stability experiment of C. C. G1a-
miTt and F. REINES: Phys. Rev., 126, 2178 (1962).
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As a further justification for the postulate, we observe that it is quite im-
possible to carry out the type of experiments envisaged by BoHR and ROSEN-
FELD solely with the electrons, positrons and photons of quantum electro-
dynamics—as BOHR has emphasized one needs « massive » classical apparatus.
This in turn requires, if axiom A4) holds for the bodies composing the appa-
ratus as well as the measured quantity, that the bound state postulate also
holds. Thus, in its present form, quantum electrodynamics does not contain
a subset of bodies and their « motions » that can play the role of measuring
apparatus while another set of bodies and their motions play the role of quan-
tities to be measured.

Perhaps part of the difficulty lies in the fact that the asymptotic condition
in quantum field theory is too strong since it excludes bound states (*¢). On
the other hand, the renormalization criterion of quantum electrodynamics
appears to be too weak, for although it excludes spaces with dimensionality
n>3, as is well-known, it admits spaces with dimensionality » < 3. Thus
if we denote the number of vertices by v, external electron lines by FE, and
external photon lines by P,, by a purely formal generalization, the degree of
divergence is

(1 4mn n n—1
(6.1) D;(-Aél—1>2v—~—2~E~—2-Pe—l—(1+n).

and hence AD/Av> 0, n>3, and AD/Av< 0, n< 3. However, since the co-
efficient of v is linear and vanishes for n =3, there is some hope of estab-
lishing the dimensionality of space uniquely within this framework, although
it is clear that the renormalization criterion itself is not quite sufficient (*).

In conclusion, the above remarks suggest that it is logically advantageous
to regard the dimensionality of space as a specificity to be derived from physical
principles rather than simply inserted into the theory from the beginning.
With further work, we may come to regard » =3 as an eigenvalue.

The author wishes to thank Professor E. R. CATANIELLO and Professor F. R.
HALPERN for some provocative discussions on the dimensionality-of-space prob-
lem a few years ago at the Istituto di Fisica Teorica in Naples.

(2%) H. LEamaxy, K. Symanzik and W. ZIMMERMANN : Nuovo Cimento, 1, 1425 (1955).
For a recent discussion see W. THIRRING: Phys. Rev., 126, 1209 (1962).

(27) Note that the same remark applies to the bound state postulate if we do not
stay within the framework of the exact field equations of general relativity, that is,
as we have seen to eliminate the cases n < 3 in Newtonian theory we require axiom B).
It would be very interesting to know to what extent axiomatic field theory deter-
mines the dimensionality of space.
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RIASSUNTO (%

11 fatto che le attuali leggi fisiche ammettono una estensione formale a spazi con
un numero arbitrario di dimensioni, suggerisce che deve esistere qualche principio
(o alcuni principi) operativi che in unione con queste leggi implichino 'osservata spe-
cificitd della dimensionalitd spaziale, » == 3. Generalizzando uno spunto suggerito dal
lavoro di EHRENFEST (ed indipendentemente da G. J. Wuitkow) sul problema di
Keplero n dimensionale, si propone di riassumere in via di tentativo, questo principio
nel postulato che devono esistere delle orbite o «stati» legati stabili nelle equazioni
del moto che governano l'interazione dei corpi considerati come punti materiali. Si
applica questo postulato alle equazioni geodetiche del moto ottenute da una genera-
lizzazione del campo di Schwarzschild a sistemi statici con simmetria ipersferica e si
dimostra che il postulato degli stati legati implica unicamente la dimensionalitd spa-
ziale. Questo risultato non ¢ affatto peculiare della relativita generale perche vale anche
per la teoria newtoniana (Ehrenfest-Whitrow) se si introduce una condizione asintotica
che escluda i casi con n < 3. Si considera brevemente anche l'atomo di idrogeno di
Schrodinger in n» dimensioni, per cui il postulato esclude » > 3 e, in unione con
la condizione asintotica, n << 3. Si cerca di comprendere l'origine logica di questo
postulato e si suggerisce che, se si suppone che i rappresentanti fondamentali di una
dinamica avente una metrica siano punti materiali, si ha bisogno di un tale postulato
per costruire le « shbarre praticamente rigide » di Einstein, in quanto i corpi puntiformi
di per st non ci forniscono una misura della distanza. Si fanno alcune brevi appli-
cazionl qualitative di queste idee alla elettrodinamica quantistica.

(") T'raduzione a cura della Itedazione.



