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ABSTRACT 

In this paper we obtain new topological restrictions on Lagrangian em- 
beddings into subcritical Stein manifolds. We also extend previous results 
of Gromov, Oh, Polterovich and Viterbo on Lagrangian submanifolds of 
C n to the more general case of subcritical Stein manifolds. 

1. I n t r o d u c t i o n  

This  p a p e r  is devoted  to topologica l  res t r ic t ions  on Lagrang ian  embeddings .  We 

ex tend  resul ts  of Oh, Pol terovich  and Vi t e rbo  to the  more  general  f ramework  of 

"subcr i t ica l  Stein manifolds" .  

The  s tudy  of res t r ic t ions  on Lagrang ian  embeddings  began  wi th  Gromov ' s  1985 

pape r  [Gr], in which he proved t ha t  C n admi t s  no closed exact  Lagrang ian  sub- 

manifold.  La te r  on, Pol terovich  [P] and  Vi t e rbo  [V-1] found res t r ic t ions  on the  
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Maslov class of closed Lagrangian submanifolds in C n , Polterovich for monotone 

Lagrangians, and Viterbo for Lagrangians that admit a metric of non-positive 

curvature. It is interesting to note that these results of the same nature were ob- 

tained by very different methods: Viterbo used Hamiltonian dynamics, whereas 

Polterovich used pseudo-holomorphic curves. Polterovich's result was generalized 

to split symplectic manifolds of the form X × C in [A-L-P]. The restriction found 

by Polterovich and Viterbo is that  closed Lagrangian submanifolds of C ~ (of the 

types just mentioned) have minimal Maslov number between 1 and n + l .  Viterbo's 

result gives an affirmative answer, in dimension 4, to Audin's Conjecture [A] that  

all Lagrangian tori in C n have minimal Maslov number 2. 

Monotone Lagrangian embeddings into C ~ were later studied by Oh [Oh-3] 

using the powerful technique of Floer homology. In particular, he confirmed 

Audin's conjecture for the case of monotone tori in C ~ for n < 24. Recently, 

Viterbo IV-2] applied Floer homology to obtain restrictions on the Maslov class 

on subcritical Stein manifolds. 

In this paper we extend some of the above results to a more natural class of 

manifolds called "subcritical split manifolds" (see Section 2). The main tools 

we use are a combination of Oh's analysis of the space of solutions to Floer's 

perturbed Cauchy-Riemann equation corresponding to isotopies of Lagrangian 

submanifolds [Oh-4], and some ideas developed by Polterovieh in [P]. These tech- 

niques, as it will turn out below, work particularly well in the framework of 

subcritical split manifolds. 

As application we obtain new restrictions on Lagrangian embeddings of 

manifolds L with Hi(L, Z) = 0 into subcritical split manifolds. 

Further applications will be given in a forthcoming paper [B-C] in which 

Lagrangian embeddings into closed manifolds will be studied. 

STEIN MANIFOLDS AND DOMAINS. A S te in  ma n i fo l d  is a triple (V, J, ~) where 

(V, J)  is an open complex manifold and ~: V --+ E is a smooth exhausting 

plurisubharmonic function. The term "exhausting" means that ~o is proper and 

bounded from below. "Plurisubharmonic" means that the 2-form w~ = -ddC~ 

is a J-positive symplectic form, i.e., -ddC(v, Jv) > 0 for every 0 ~ v E TV. We 

denote by g~(., .) = w~(., J .)  the associated K/ihler Riemannian metric. Unless 

explicitly stated, we do not assume that (V, J, ~) is complete in the Eliashberg- 

Gromov IF-G] sense. 

A S t e in  d o m a i n  is a subset V~o<c = {p C V I ~P(P) < c} of a Stein manifold 

(V, J, qo) for a regular value c C R. We will often denote Stein domains simply by 

V. 
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SUBCRITICAL STEIN MANIFOLDS. It is well known that  any plurisubharmonic 

Morse function ~: V --+ R must satisfy indexp(~) _< ½ dim~V for all critical 

points p. We call a Stein manifold/domain subc r i t i c a l  if these inequalities are 

strict, i.e., ~ is a Morse function all of whose critical points have indexp(~) < 

! dime V. Note that,  by definition, 0-dimensional manifolds (namely points) are 2 
not subcritical. 

The simplest subcritical Stein manifold is C k endowed with its standard com- 

plex structure and the plurisubharmonic function ~o(zi, . . . ,  zn) = IZll 2 + ' "  + 

Izn] 2. Note that the class of subcritical Stein manifolds is closed under several 

simple constructions such as taking products with any Stein manifold, attaching 

handles of index smaller than half of the dimension etc. 

It should also be remarked that in view of Eliashberg's theory of Stein mani- 

folds [E], subcriticality is essentially a topological condition in dimension 6 and 

above. 

APPLICATIONS TO LAGRANGIAN EMBEDDINGS WITH HI (L ;Z)  = 0. The fol- 

lowing two theorems illustrate some typical applications obtained from our main 

results in this paper. More general statements are given in Section 2. 

The first theorem gives a restriction on the topology of manifolds that admit 

Lagrangian embeddings into products of subcritical Stein manifolds with CP ~. 

Here and in what follows we endow CP n with its standard symplectic structure 

Crstd, normalized so that the area of a projective line is lr. 

THEOREM 1.1: Let (V, J ,~)  be a subcritical Stein manifold with dim~cV >_ 2 

and whose first Chern class (of its tangent bundle) vanishes on 7r2(V). Let n ~ 

!2 dim~ V - 1. Then every Lagrangian submanifold L C (V x CP n, w~o • astd) 

with Hi  (L; Z) = 0 must satisfy 

H i ( L ;  Z2) . . . . .  HdimL-i(L; Z2) ~- O. 

Note that  the statement of Theorem 1.1 is not empty. Indeed, the manifold 

C ~+l x CP '~ has a Lagrangian (2n + 1)-sphere L constructed as follows (see 

[A-L-P]). Denote by S 2~+i c C ~+l the unit sphere and by h : S 2'~+i --+ CP '~ the 

Hopf map. Then 

n = {(~, h(z))[z E S 2n+i} C C ~+i x CP n 

is a Lagrangian sphere. 

The second theorem shows that Lagrangian submanifolds with vanishing first 

homology do not exist at all if the size of the Stein factor is sufficiently small. 
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THEOREM 1.2: Let (V~<c, J, ~o) be a subcritical Stein domain with d i m V  > 0. 

Then there exists an ao > 0 such that for every closed symplectic manifold 

(X, wx) with [Wx] E H 2 ( X ; Z )  and for everyO < a ~_ ao, (V~<c x X,  aw~ ~ W x )  

does not admit any Lagrangian submanifold L with 111 (L; Z) -- 0. 

Note that  if X is taken to be a point then the theorem is true without the 

rescaling factor. The existence of Lagrangian spheres in C P  n x C ~+1 (discussed 

after Theorem 1.1) shows that  in general Theorem 1.2 is false without the scaling 

factor a.  In this example, for V~<I = IntB2n(1),  we can choose a0 = 1 (see 

Section 2). 

Other examples in which the theorem fails without the factor a come from [Bi]. 

Consider X C C P  n x C P  n+r (n _> 1, r _> 0) with homogeneous coordinates 

[z0 : . . .  : zn], [w0 : . . .  : Wn+r] and symplectic form w -- gstd • (rstd. Let X be the 

hypersurface given by the equation 

n - -  1 n + r  

i=0 j = l  

The complement V -- CP  n x CP  '~+r \ X is a subcritical Stein manifold (of finite 

volume) in a natural  way. Let L be circle bundle over X obtained as the boundary 

of a tubular neighbourhood of X in CP  ~ x CP  n+~. Then Hi (L;  Z) = 0, and L 

has a Lagrangian embedding into (V x X,/~w[v • w[x) for every/~ > 1. 

2. Main results 

SUBCRITICAL SPLIT MANIFOLDS. We say that  a product W = V × X ,  w W = 

w~ ~ wx,  Jw = ,Iv @ J x  is subcritical split if 

• (V, Jv,  ~) is either a subcritical Stein manifold or a subcritical Stein do- 

main. We require that  dim V > 0. 

• (X, Wx, Jx )  is either g e o m e t r i c a l l y  b o u n d e d  in the sense of [A-L-P] or 

c o n v e x  a t  in f in i ty  in the sense of [E-G]. 

We allow X to be zero dimensional. The class of manifolds X satisfying the 

hypothesis includes: closed symplectic manifolds, Stein manifolds / domains, and 

interiors of compact symplectic manifolds with Jx-convex boundary. 

MASLOV CLASS RIGIDITY. We start  with a generalization of results by 

Polterovich [P, A-L-P] and Viterbo [V-2]. 

Consider a Lagrangian submanifold L of a symplectic manifold (M, w). The 

M a s l o v  i n d e x  # : lr2(M, L) -4 Z is defined as follows: Let D C M be a disk 

with OD C L. Symplectically trivialize the bundle TMID. The image of the 
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subbundle TLIoD under the trivialization is a loop of Lagrangian subspaces of 

C ~ whose homotopy class depends only on [D] C Ir2(M,L). Define #([D]) to be 

the Maslov index of this loop (see [M-S]). 

Given a symplectic manifold (M, w), we denote by c M E H2(M; Z) the first 

Chern class of T M  viewed as a complex vector bundle (by endowing it with any 

w-compatible almost complex structure). 

THEOREM 2.1: Let (W  = V × X , w  W, Jw)  be a subcritical split manifold and 

L C W a closed Lagrangian submanifold. Then at least one of  the following two 

statements holds: 

1. There exists a nonconstant reduced Jw-holomorphic disk D C W with 

OD C L and 

#([D]) _< dim L + 1. 

2. There exists a nonconstant reduced Jw-holomorphic sphere S C W with 

2cW([s]) _< d imL + 1. 

Remarks: 

1. In case (X, w x) is exact it immediately follows that the Lagrangian L cannot 

be exact. For X = pt and V = C n this is Gromov's celebrated result [Gr]. 

It was generalized in [A-L-P] to X, L geometrically bounded and V = C. 

2. For X = pt and cYl~2(y) = 0, Theorem 2.1 has been proved by Viterbo 

in [V-2]. 

3. If L is monotone (see below) the positivity of w on holomorphic curves 

implies #([D]) > 1 and 2cW([s]) > 2. For monotone L, Theorem 2.1 has 

been proved in [A-L-P] under the assumptions X, L geometrically bounded, 

wx 1~2(x) = 0 and V = C. The case L monotone, X = pt and V = C n was 

proved in [P]. 

4. The theorem remains true if Jw  is replaced by any w W-compatible almost 

complex structure J that  coincides with Jw outside a compact set. 

5. If Jw is replaced by a generic J as in 4. we also get the lower bound 

#([D]) _> 3 - dimL. 

This will be shown in the proof of Theorem 2.1. 

SHARPER BOUNDS FOR MONOTONE MANIFOLDS. Using the method in [Oh-3], 

we can replace the upper bound dim L + 1 by dim L for monotone manifolds. 

A symplectic manifold (M, w) is called m o n o t o n e  (resp. sp h e r i c a l l y  m o n o -  

tone )  if [w] = Ac M in H2(M; •) (resp. [w] -- Ac M on 7¢2(M)) for some constant 
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> 0. A Lagrangian submanifold L C (M, w) is called m o n o t o n e  if [w] = )~# 

on 7r2(M,L) for some constant A > 0 (cf. [Oh-2]). Note that  if (M,w) admits  

a monotone Lagrangian submanifold then (M,w) is automatically spherically 

monotone. 

THEOREM 2.2: Let (W = V x X, ww, Jw) be a subcritical split manifold and 

L C W a closed Lagrangian submanifold. Assume in addition that L is monotone 

and dimR W > 4. Then at least one of the following three statements holds: 

1. There exists a nonconstant reduced Jw-holomorphic disk D C W with 

OD C L and 

#([D]) < d imL.  

2. There exists a nonconstant reduced Jw-holomorphic sphere S C W with 

2cW([s]) <_ dim L. 

3. H I ( L ; Z 2 )  . . . . .  H d i m L - I ( L ; Z 2 )  ---- O. 

The following corollary generalizes a result due to Oh [Oh-3] in the case X = pt 

and V = C n (n > 2). 

COROLLARY 2.3: Let W and L be as /n Theorem 2.2. Assume further that 

(X, w x) is exact. Then there exists a nonconstant reduced J-holomorphic disk 

D C W with OD C L and such that 

1 < p([D]) <_ d imL.  

Proo£" Since both (V,w~) and (X, wx) are exact so is also (W, ww), hence it 

does not admit  any J-holomorphic spheres. By Theorem 2.1 there exists a J -  

holomorphic disk in W with boundary on L. As (W, Ww) is exact this implies 

that  H I ( L , Z )  # 0. In particular HI (L ; Z2 )  # 0 and so the existence of the 

desired disk follows from Theorem 2.2. | 

Remark: The upper bound in Corollary 2.3 cannot in general be improved: 

Polterovich ([P], based on constructions in [A]) constructed closed monotone 

submanifolds of C ~ of minimM Maslov index k for any 2 < k < n. 

RESTRICTIONS ON HOMOLOGY. N o w  we  describe some assumptions on the sym- 

plectic manifold under which the first two cases of Theorem 2.2 cannot occur, 

thus obtaining restrictions on the homology of a Lagrangian submanifolds. 

Given a monotone symplectic manifold (M, w) denote 

N H2 = min{clM(B)lB E H~(M; Z) and w(B) > 0}. 
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Similarly if (M, w) is spherically monotone we write 

N ~  = min{cM (B)I B E 7r2(M) and w(B) > 0}. 

COROLLARY 2.4: Assume that (W = V × X,  ww, Jw)  is subcritical split and 

satisfies the following two conditions: 

1. Cl v = 0 in H2(V;Q) (resp. cV l  (v) = 0); 

1 direr W 2. ( X,  w x) is monotone (resp. spherically monotone) with 2N g2 > 5 
1 dim~ W).  (resp. 2N~ 2 > 

Then any closed Lagrangian submanifold L C (W, w W ) with H1 (L; Z) = 0 (resp. 
L simply connected) must satisfy Hi(L ;  Z2) . . . . .  HdimL-l(L; Z2) = 0. 

Proo~ For dim~ W --- 2 there exists no closed (Lagrangian sub-) manifold with 

Hi(L; Z) = 0, so assume dim~ W > 4. The assumptions of the corollary imply 

that  H2(W; Z) -+ H2(W, L; Z) (resp. ~r2(W) --+ ~r2 (W, n)) is surjective. Therefore 

the assumption on c y and the monotonicity of (X, w X) imply that L C (W, w e )  

is monotone. Finally, from the inequality on N H2 (resp. N~: 2) we see that the 

first two possibilities in Theorem 2.2 cannot occur. Therefore, H i (L; Z2) . . . . .  
Hdimn-l(L;Z2) = O. | 

Proof of Theorem 1.1: Theorem 1.1 follows immediately from Corollary 2.4 and 
H2 N~p~ = n + l .  | 

R E S T R I C T I O N S  COMING FROM DISPLACEMENT ENERGY.  In Section 3 we define 

the d i s p l a c e m e n t  e n e r g y  0 < e(V, Jr ,  qP) < oo of a subcritical Stein domain. 

It has the scaling property 

e(V, Jv,  A~) = Ae(V, Jv,  ~) for A > 0. 

THEOREM 2.5: Let (W = V x X,  ww ,Yw)  be suberitieal split, where V is a 

subcritical Stein domain with displacement energy e(V, Jr ,  ~). Then the Jw-  

holomorphic disks D and spheres S in all previous results may be assumed to 

satisfy 

0 < w([D]),w([S]) < e(V, Jy ,~ ) .  

COROLLARY 2.6: Let (W = V × X,  ww,JW ) be subcritical split. Assume that 

[wx] E H2 (X;Z)  is an integral class, and V is a subcritical Stein domain with 

displacement energy e(V, Jv,  ~) < 1. 

Then (W, w W ) has no dosed Lagr~ngian submanifold L with HI(L;  Z) = 0. 

Proo~ In view of the hypotheses of the corollary and Theorem 2.5, Jw- 

holomorphic spheres cannot occur in the conclusion of Theorem 2.1. So there 
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exists a Jw-holomorphic disk (D, OD) C (W,L) with 0 < Ww([D]) < 1. If 

HI (L ;Z )  = O, OD bounds a surface E C L. But then 0 < Ww([Dt3oD El) < 1, 

contradicting the integrality of [Wx]. | 

Remark: Corollary 2.6 remains true if the integrality of [Wx] is replaced by the 

weaker hypothesis 

A := inf{w×(a)la e H 2 ( X ; Z ) , w x ( a  ) > 0} > 0, 

and e(V, Jy,  ~) < 1 is replaced by e(V, Jy,  ~) < A. 

Proof of Theorem 1.2: Simply choose a = e(V, Jy,  ¢)-1. | 

For example, let B2m(r) be the closed 2m-dimensional ball of radius r. 

COROLLARY 2.7: For m >_ 1 and r < 1, CP n × B2m(r) has no closed Lagrangian 

submanifold L with Hi(L; Z) = 0. 

Proo~ This follows directly from Corollary 2.6 because the symplectic form ~s~d 

on CP n is integral, and e(B2m(r)) = 7rr 2 by a result of Hofer [H-Z] (in fact, here 

we only need the easy inequality e(B2m(r)) < 7rr2). | 

Remarks: 
1. For m = n + l  and r > 1, C.P '~ × B2m(r) has the Lagrangian (2n+l)-sphere  

described in the remark following Theorem 1.1. 

2. For m > n + 1 no examples are known to us. 

NON-LINKING WITH HYPERSURFACES. Here we generalize a result of Mohnke 

[M] on the non-linking of Lagrangian submanifolds with complex hypersurfaces. 

In analogy to algebraic geometry we call a (properly embedded and with- 

out boundary) complex hypersurface E C (X, Jx )  of an almost complex mani- 

fold sphe r i ca l l y  n e f  ("nef" stands for "numerically effective") if for every J x -  

holomorphic sphere C C (X, Jx ) ,  E .  C > O. Of course, if (X, Jx)  has no 

Jx-holomorphic spheres then any hypersurface E is automatically nef. 

THEOREM 2.8: Let (W = V × X,  w w , J w  ) be subcritical split and L C W a 

closed Lagrangian manifold. Let E C X be a properly embedded Jx-complex 

hypersurface which is spherically nef and lies in the complement to pr x ( L ). 

Then the Jw-holomorphic disks D and spheres S in all previous results may 

be assumed to lie in the complement of V × E. 

This implies the following generalization of Mohnke's result in [M]. 
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COROLLARY 2.9: Let (W = V × X, w w , J w  ) be subcritical split. Let E C 

(X, Jx)  be a properly embedded Jx-complex hypersurface which is spherically 

ne£ Let L C (W, Ww) be a Lagrangian submanifold which lies in the complement 

of V x E in W. 

Then there exists a disk (D, OD) C (W, L) in the complement of V x ~ with 

ww ([V]) > O. In particnlar, i fdimH2(W, L; Q) = 1 the linking homomorphism 

ekL,v×~: H2(W,L;Z) --+ Z 

(defined by intersecting with V × E) vanishes. 

Proo~ By Theorem 2.8 there exists in the complement of V x E either a 

nonconstant Jw-holomorphic disk D with boundary on L, or a nonconstant 

Jw-holomorphic sphere S. In case of a disk, denote by A E H2(W,L;Z) its 

relative homology class. In case of a sphere S, put A to be the image of 

[S] C H2(W;Z)  under the homomorphism H2(W;Z)  -+ H2(W,L;Z).  Since 

w(A) > 0, A E H2(W,L;Z) is not torsion. So gkL.v×~(A ) = 0 implies that 

gkL. v × ~ vanishes on the non-torsion subgroup, and therefore vanishes altogether.. 
| 

Remark: In the case X = V = C and E = pt, Corollary 2.9 easily implies 

that a Lagrangian embedding of the Klein bottle into C 2, if it exists, must be 

homologicatly unlinked with every real plane of dimension 2 (see [M]). 

DISCUSSION. Let us briefly explain the main geometric ideas behind the proofs 

of the theorems above. The main phenomenon standing behind most of our result 

is the breakdown of the symplectic principle of Lagrangian intersections. 

Since the beginning of symplectic topology it was conjectured that in some 

situations a Lagrangian submanifold cannot be disjoined from itself via a Hamil- 

tonian isotopy. This was indeed confirmed in many cases (such as the zero section 

in cotangent bundles) via various methods and techniques, most notably pseudo- 

holomorphic curves (see [Gr]). 

An important and conceptual progress in understanding the nature of these 

intersections was made with the introduction of Floer homology [F-2]. This ho- 

mology theory detects (and counts) intersections between pairs of Hamiltonian 

isotopic Lagrangians L and h(L). Floer proved [F-2] that essentially the only 

thing that  might fail this invariant to detect intersections is the existence of 

pseudo-holomorphic disks (or spheres) with boundary on the Lagrangian L oc- 

curring in a process called bubbling (see [Ch] for a more delicate analysis of the 

situation). 
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When bubbling does occur, these disks come in finite dimensional families 

and it is possible to estimate their dimensions in terms of the Maslov index. 

Consequently, whenever it is possible to disjoin a Lagrangian submanifold from 

itself via a Hamiltonian isotopy one obtains restrictions on the Maslov index 

corresponding to this Lagrangian as in Theorem 2.1. 

The key point leading to our main results is that due to their special symplectic 

nature, subcritical split manifolds allow to disjoin every Lagrangian submanifold 

from itself via a Hamiltonian isotopy. In other words, the (global) phenomenon 

of Lagrangian intersections never occurs in this class of manifolds. 

The rest of the paper is organized as follows. In Section 3 we prove that  every 

compact subset of a subcritical Stein manifold can be disjoined from itself by 

a Hamiltonian isotopy, and define the displacement energy of a Stein domain. 

Section 4 contains the proof of the theorems. We study the space of solutions 

of a perturbed Cauchy Riemann equation as in [Oh-4], and show how bubbling 

leads to the proof of Theorem 2.1. Theorem 2.2 is based on the vanishing of 

Floer homology, Theorem 2.5 on an area estimate for holomorphic curves, and 

Theorem 2.8 on positivity of intersections of complex submanifolds. 

ACKNOWLEDGEMENT: We wish to thank Laurent Lazzarini for sending us his 

manuscript [La] and for useful explanations on reduction of holomorphic disks to 

simple disks. We also thank the referee for several useful comments that improved 

the quality of the exposition. 

Part  of this work was carried out during the second author's visit to Tel- 

Aviv University in June 2000. He would like to thank the Minkowski Centre for 

Geometry for supporting this visit. 

3. H a m i l t o n i a n  t r a n s l a t i o n s  on  s u b c r i t i c a l  S t e i n  m a n i f o l d s  

Following [E-G] we say that a Stein manifold (V, d, ~) is c o m p l e t e  if the flow of 

gradient vector field X~ = grad~ ~ exists for all positive times. 

LEMMA 3.1 (Completion [E-G]): Let (V, J, ~) be a Stein manifold. Then for 

every R E ]R there exists an exhausting plurisubharmonic function qoR: V --> R 

with the following properties: 

1. ~R = ~ on V~<_R. 

2. (V, J, ~R) is a complete Stein manifold. 

3. Crit(~R) = Crit(~) and for every p E Crit(~R), indexp(~R) = indexp(~). 

In particular, the inclusion (V~<R, w~) C (V, w~o~) is a symplectic embedding. 
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Proof: Let h: ]R --+ ]R be a smooth function with h' > 0, h" >_ 0, and h(r) = r 

for r < R. Set ~R := ho  ~. Then 

h' 
w~R = h'w~ + h"d~ A A~, X~R -- h' + ]X~ol2h ';X~" 

The first formula shows that ~R is plurisubharmonic. Now assume, in addition, 

that h"(r) >_ h'(r) for r > R +  1. Then by the second formula, IX ~[  <_ 1 for 

r > R + l .  Denote b y X  t the flow of X~R. Since - -  ¢PR 

d 
o Ix. ? _< 1 

whenever ~ o X t ~R(x) > R + 1, the function ~ o X t R ( x )  grows at most linearly 

as t --+ oc, so the flow X t is complete. ~oR 

An explicit example of a function h satisfying all the conditions is 

h(r) = r for r ~ R, 
hn(r) > O f o r R < r < R + l ,  
h(r) = e ar f o r r _ > R + l  

with a >_ 1. | 

LEMMA 3.2 (Hamiltonian translations): Let (V, J, ~) be a complete subcritical 

Stein manifold. Then for every compact subset A C V there exists a compactly 

supported Hamiltonian isotopy ht: (V, w~) --~ (V, w~) such that hi(A)  N A = 0. 

Proof: Denote by A~ C V the union of the stable submanifolds of the gradient 

vector field X~ = gradg, ~, namely 

d 
pECrit(~p) 

We shall first prove the lemma under the assumption that  A~ is a CW-complex, 

and then show how to reduce the general case to this assumption. 

Suppose indeed that A~ is a CW-complex. Since V is subcritical we have 

1 dimR V and so there exists a Hamiltonian isotopy kt: (V,w~) --+ dim A~ < 

(V, w~), compactly supported in an arbitrarily small neighbourhood of A~, such 

that kl(A~) N Av = O. Since A~ is compact there exists a small neighbourhood 

U of A~ so that kl(U) n U = O. 

Denote by X~ (t C l~) the flow of Xv. Fix T so large that x ~ T ( A )  C U. Since 

kl moves U away from itself we have 

X f  o kl o x ~ T ( A )  ~ A = {~. 
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Since Lx~w~ = w~, the flow X~ is conformally symplectic, (X~)*w~ = etw~. 
This implies that 

ht = X tT° o kt o X ~  tT° 

is a symplectic isotopy of (V,w~) with hi(A) n A = 0. A straightforward cal- 

culation shows that  ht is generated by the compactly supported time-dependent 

Hamiltonian 
Ht = e t T (x g t T )* (g t  + Gt). 

Here Kt is a compactly supported Hamiltonian generating the isotopy kt. Gt is 

the unique compactly supported function satisfying 

dGt = A~ - k*_tA ~ 

for every t, where Av = -dC~ • The function Gt is given explicitly by 

) at(x)  = Ks - dKs(X~) k_s(x)ds. 

It remains to show how to reduce the general case to a situation in which A~ 

is a CW-complex. By the results of [Bi] (see Theorem 8.1.B there), there exists 

a plurisubharmonic Morse function ~ :  V ~ R that coincides with ~ on {~ >_ R} 

for some R and such that A~, is a CW-complex of the same dimension as the 

cellular space A~, namely 

1 
dimA~, = max indexp(~) < dim•V. 

peCrit(~p) 

Since ~1 and ~ are both plurisubharmonic functions for the same complex struc- 

ture J and coincide at "infinity" it follows from Moser's argument that w~ is 

symplectomorphic to w~, via a compactly supported diffeomorphism of V. 

Thus replacing ~ by ~ we may assume that A~ is a CW-complex. | 

Following Hofer (cf. [H-Z]), define the norm of a compactly supported time- 

dependent Hamiltonian H(t,  x) on a symplectic manifold (M, w) as 

/o 1 I lgl l  == (~a~n(t,z)- xeMminH(t'x))dt" 
Define the d i s p l a c e m e n t  e n e r g y  of a subset A C M as 

{[[HII h i (A )N  A = 0} ,  e(A) i~/f 

where hi is the time-1 map of the Hamiltonian flow of H,  and the infimum is 

taken over all compactly supported time-dependent Hamiltonians. 
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Lemma 3.2 can be restated as saying that  every compact subset of a complete 

subcritical Stein manifold has finite displacement energy. 

Now consider a subcritical Stein domain (V = V~<c, J, ~). By Lemma 3.1, V 

is contained in a complete subcritical Stein manifold (V, J,  ~5) such that  ~ly -- 

and ~ has no critical points outside V. Define the d i s p l a c e m e n t  e n e r g y  

e(V, J, ~) to be the displacement energy of V in (V, w~). This definition is inde- 

pendent of the choice of the completion because any two completions (l ~', J ,  ~), 

(V, J ,  ~) are symplectomorphic [E-G]: For every n C N pick a constant Tn such 

that 

X~ ~" (V~<_~) C V, 

and define 
f .  := X T'~ o X~  Tn on V~<.. 

Since fn = fm on V~<_n N V~<_m, these maps fit together to a symplectomorphism 

f :  (P', w~) -+ (V, w~). 

In view of Lemma 3.2, the displacement energy of a subcritical Stein domain 

satisfies 

0 < e(V, J, ~) < c~. 

It has the scaling property 

e(V, J, ~ )  =/ke(V, J, ~) for A > 0. 

4. P r o o f  o f  T h e o r e m s  2.1, 2.2, 2.5 a n d  2.8 

Proof of Theorem 2.1: The proof is based on ideas from [Oh-3] and [Oh-4]. 

Let W -- V × X and L be as in Theorem 2.1. Choose c < sup y ~o large enough 

so that V~<c × X contains L and all the critical points of ~. Let ¢ = ~c be 

the plurisubharmonic function obtained from Lemma 3.1, making (V, Jv ,  ¢) a 

complete Stein manifold. Clearly (V, Jy, ¢) is also subcritical. Put  W -- V × X, 

J ~  = Jy G Jx  and w~_ = we G w X • Clearly, the inclusion 

(v <c × x ,  = • c (w,  % )  

is a symplectic embedding. 

Fix a neighbourhood U(L) of L with U(L) C V¢<c. 

Denote by jo~  the space of two-parametric families of smooth almost complex 

structures J -- (Js,t}(s,0e~×[0,1] on W that  have the following properties: 

1. Js,t is an almost complex structure compatible with w~ for every s, t. 
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2. Js,t does not depend on (s, t) for Isl large enough or when t = 0, 1. 

3. Js,t - JW on W \ U(L) for every s, t. 

In what follows we shall call an element J • j oo  a u t o n o m o u s  if it does not 

depend on (s, t). 

Fix a family {PR}0<R<oo of smooth cut-off functions PR: R ~ [0, 1] that  

depends smoothly on the parameter R • [0, co) and such that 

1. PR = 1 on I -R,  R] and supp(p.) C [ - R  - 1, R + 1] for every R >_ 1. 

' ( R , R + I )  andpR > 0 ° n  - 2. PR < 0 ° n  r ( - R  1 , - R )  for e v e r y R > l .  

3. PR = Rpl for every 0 < R < 1. 
Let H: W x [0, 1] -+ R be a given compactly supported Hamiltonian function 

on W. For every J • ,7 ~ and R _> 0 consider smooth maps u: R x [0, 1] --+ W 

that satisfy the following perturbed Cauchy Riemann equation: 

[, O~u + J~,t(u)Otu = pR(s)J~,t(u)~n(t,u) s • R, t e [0, 1] 
(1) ~, u(s, 0), u(s, 1) • L for every s • R 

and have finite energy 

fR dsdt < co. Ej(u) = ×I0 ,1 ]  

Here ~g stands for the Hamiltonian vector field corresponding to the func- 

tion H. Using a conformal change of coordinates (N x [0, 1], R x {0, 1}) 
(D 2 " .{-1,  1}, OD 2 \ { - 1 ,  1}) we get from each solution u of the above prob- 

lem a finite energy map (D 2 "-{-1, 1}, OD 2 "-{-1, 1}) --~ (W, L) which is J- 

holomorphic near -1 ,  1 • D 2 for some autonomous almost complex structure J.  

By the removal of singularity theorem of Oh [Oh-l] this map extends to a smooth 

map, which we still denote by u: (D 2, OD 2) --+ (W, L). We write [u] • zr2(W, L) 

for the homotopy class of this map. 

Let J C ~7 °° be a Banach space of smooth perturbations of JW as defined 

in IF-l]. Let WI'P(IR x [0,1],W) (p > 2) be the Banach manifold of Sobolev 

(1,p) maps as defined in [Sc] (i.e., with a nonstandard measure on R). 

For A • ~r2(W, L) and R • N denote by 

.MH,R(A;,.7) C Wk'P(R x [0, 1],W) x , ]  

the space of all pairs (u, J) for which u is a finite energy solution of 

equation (1) (with parameter R), and [u] = A • ~r2(W,L). Finally, write 

PA,R: .MH,R(A; J )  ~ (7 for the natural projection. 

The following are all standard facts: 
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1. The space ./~H,R(A;,7) does not depend on p > 2, and every 

u E MH,R(A; (f) is smooth. 

2../~H,R(A; ,7) is a smooth Banach manifold, and the projection PA,R is 

Fredholm of index #(A) + dim L. 

3. For every R E R the subset ,Treg,n C ,7 consisting of all J ' s  that  are regular 

values of PA,R for every A E ~r2(W, L) is of second category. Note that this 

implies that there exists a second category subset ,Treg C ,7 and a dense 

subset ~ C R such that for every J E ,7 and R E T£ we have J E ~'reg,R. 
4. In particular, for every J E `Treg,R the space MH,n(A; J) = PA,~(J) of 

finite energy solutions of (1) is either empty or a smooth manifold of 

dimension tt(A) + dim L. 

5. Given two pairs (Jo, Ro), (J i ,  Ri)  such that J0 E Jreg,no and J1 E `Treg,R1 

there exists a second category subset ~reg in the space of smooth paths 

{(J~,R~)}o<~<i that connect (Jo, Ro) with ( J i , R i )  such that for every 

{(J~, R~)}o<~<i E Preg the space 

AtH(A;{(J~,R~)}) = {(u,J~,Rx, A)tu E A4H,n~(A; J~) V0 < A < 1} 

is either empty or a smooth manifold of dimension #(A) + dim L + 1 with 

boundary consisting of the disjoint union 

A4H, no (A; Jo) × {(Ro, 0)} I_[ Jt4g, n, (A; J1) x {(Ri, 1)}. 

m 

PROPOSITION 4.1: Let H: W x  [0, 1] --~ R be a compactly supported Hamiltonian 
function. Then there exists a compact subset K C V such that for every J E ,7 
and R E ~ all finite energy solutions u of equation (i) must lie entirely inside 
K × X .  

Proof: Put  

Me = max(¢{Prv(U(L)osupp(H)) ) + 1, 

and take K to be the compact subset V¢<_M¢. 

Suppose that  u is a solution of (1) that goes outside of K × X. From the 

definition of the space ,7 it follows that u must be Jw-holomorphic at points 

that go outside K × X. Note that the image of u cannot be entirely outside 

K × X  because u sends  R ×  {0,1} to L c K x X .  Thus, there exists a d i s k  

Do C Int (R x [0, 1]) such that U]Do is Jw-holomorphie, u(ODo) C K x X,  but 

u(Int Do) is not contained in K × X. The projection prv o u(Do) is therefore a 

Jy-holomorphic disk on which the restriction of ¢ has a maximum at an interior 
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point. By the maximum principle ¢ must be constant on prv o u(Do) which is a 

contradiction because prv o u(ODo) lies in K.  I 

The following proposition is also standard and can be proved using similar 

methods to [F-1,Oh-3,P]: 

PROPOSITION 4.2: 

1. (cf. [Oh-3]). Every autonomous J E f f  is a regular value of Po,o. In 

this case, every u E J%4H,O(0; J)  is constant, hence J~H,o(O; J) is naturally 

diffeomorphic to L, and in particular it is compact. 

2. (cf. [P]). For every autonomous J E ,7 there exists neighbourhood Bj of 

(J, O) in f l  × R so that the projection 

{ (u , J ' ,R ) i u  • JVIH,R(0; J ' ) )  ~ ( u , J ' ,R )  ~-+ ( J ' ,R)  • B~ 

is proper. In particular, for every (J ' ,  R) E Bj the space J~H,R(0; jr) is 

compact; moreover it is not empty. 

The next proposition, due to Oh (see also Chekanov [Ch]), will play a crucial 

role in the rest of the proof. 

PROPOSITION 4.3 (cf. [Oh-4]): Suppose that the time-1 map F: W --+ W of the 

flow generated by the (compactly supported) Hamiltonian H: W x [0, 1] -+ R 

satisfies F(L)  M L = 0. Then for every J • f l  there exists RI  > 0 such that for 

every R >_ RI  equation (1) does not admit any finite energy solutions in the class 

0 • r e ( W , L ) ,  that is MH,R(0; J)  ~- q). 

We now bring the subcriticality of V into the play. By Lemma 3.2, there exists 

a compactly supported Hamiltonian diffeomorphism f : (V, we) --+ (V, we) such 

that 

f (p r  v (n)) A prv (L) = 0. 

Let Hv: V × [0, 1] --+ R be a compactly supported Hamiltonian function that  

generates f as its time-1 map. Pick two neighbourhoods U" D U t D pr x (L) 

of pr x (L) with compact closure in X and such that  U" D U ~. Consider now a 

Hamiltonian function H = W × [0, 1] -+ ]R that has the following properties: 

• supp(H) C supp(gv )  × U". 

• H ( v , x , t )  = H v ( v , t )  o n  V × U' .  

Finally, denote by F the time-1 map of H. Clearly F coincides with f × Id on 

V x U' and since L C V × U' we have F(L)  A L  = 0. 

Let J be any autonomous almost complex structure in ft. Choose a pair 

(J0, R0) • Bj such that Jo • ~'reg and R0 • T~. Next, fix a pair (J1,R1) with 
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J1 E ~'reg and 0 < R1 E 7¢ large enough, according to Proposition 4.3, so that 

7~4H,R1 (A; J1) is empty. Due to these choices we can connect the pairs (J0, R0), 

(J1, R1) by a path {(Jx, Rx)}o<~<l belonging to "Prig. 

Our choice of the initial pair (Jo, Ro) and the fact that  ./~H,R1 (0; J l )  is empty 

imply that the manifold MH(0; {(J~, R~)}) cannot be compact (see [Oh-3]). We 
now apply Gromov's compactness theorem [Gr]. In view of Proposition 4.1, 

Gromov's compactness theorem still applies in our setting although the manifold 

W is not compact. 

It now follows from Gromov's compactness theorem that  there exists 0 <_ A. _< 

1 for which bubbling must occur. Again, due to our choice of (J0, Ro) this A. 

must be strictly positive. Thus there exist a sequence An with A~ --+ £. and a 

sequence (u~, R~.) with u~ E J~H,Rx~ (0; J ~ )  such that u~ weakly converges to 

a cusp curve 

(2) 

where: 

1. 

P q 

: + E v: + E 
i=1 j : l  

( p + q > l , p , q > O ) ,  

vo: (R x [0,1],R × {0,1}) -+ (W,L) is a finite energy solution of (1) 

for the pair (J~. ,R~.) .  To describe the other components write J~. = 

{Js,t } (s,t)ER × [0,1]. 
t 2. For every 1 < i _< p, v i : (D 2,0D 2) -+ (W,L)  is a nonconstant Js,o- 

holomorphic disk (recall that J,,o = J8,1 does not depend on s). 
l !  3. For every 1 < j < q, vj : CP 1 -+ W is a nonconstant Jsj,t~-holomorphic 

sphere for some (sj , t j )  C R × [0, 1]. 

Note that it is possible that we have only disks or only spheres in the sum (2); 

however, at least one of these two possibilities must occur. Moreover, the total 
sum of homotopy classes in r2(W, L) is preserved, namely: 

P q 

(3) 0 = = [ oo] = [vo] + + Z 
i----1 j----1 

Here, [u~], [Uoo], [vo], [v~] e Ir2(W, L) stand for the homotopy classes of the cor- 

responding disks, Ivy'] E r2 (W) for the homotopy classes of the corresponding 

spheres and i.: ~r2 (W) --+ 7r2 (W, L) for the obvious homomorphism. 

Put Ao = [Vo] C ~r2(W,L). By our choice of the path {(J~,R~)}o<x<l the 

space A/[H(Ao; {(J~, R~)}) is either empty or a smooth manifold of dimension 

#(Ao) + dim L + 1. But clearly this space is not empty because (vo, J~. ,  R~., A.) 

lies in it. We thus have 

#(Ao) + dim L + 1 _> O. 
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Applying # to the sum in (3) we obtain 

P q 
I W"  I I  

(4) E #([vi]) + 2 E cl ([vj l) -< 1 + dimL. 
i=1  j = l  

Now choose a sequence {(j(n), R(~))}o<~<l of regular paths as above converg- 

ing to a path { ( J~ ,  R~)}0<~<l such that J ~  = {Jw} is the constant path given 

by the autonomous complex structure JW" Here we can achieve convergence of 

the paths R (n) because, by the same indirect proof as in [Oh-4], the constant R1 

in Proposition 4.3 can be chosen uniformly for a neighbourhood of {Jw}" 
The corresponding sequence of cusp curves (v(('~) v '!(~) ~ has uniformly bounded 

area. So again by Gromov compactness, it will have a subsequence that converges 

to a Jw-holomorphic cusp curve (v~,...,Vp, Vl , . . .  , !  " Vq'). Here the number of disks 

and spheres in the sequence of cusp curves may increase, but it remains finite 

because the areas of the disks and spheres are uniformly bounded from below. 

Moreover, the inequality (4) still holds in the limit. 

Consequently, either there exists 1 < i0 _< p with #([V~o]) < 1 + dim L, or there 

exists 1 <_ Jo <- q with 2cW([v~'o]) < 1 + d imn.  If the first possibility occurs 

denote by D the Jw-holomorphic disk v~ and in the second case write S for the $o 

Jw-holomorphic sphere v" By Proposition 4.1 we have that in both cases D 
J0" 

and S must lie entirely inside V~<c × X. 

Note that either of D and S might not be reduced. Let us deal first with the 

case of a sphere S. If S is not reduced then it is well known that it must be 

multiply covered. Let Sred be the reduction of S. Then IS] is just a positive 

multiple of [Sred], SO if 2cW([s]) _< dim L + 1 then the same inequality will hold 

also for [Sred]. In other words, replacing S by its reduction will not destroy the 

upper bound on the first Chern number. 

The case when D is not reduced is much more complicated since such a disk 

might not be multiply covered (see [K-O, La] for examples of this phenomenon). 

However, using the techniques of either Kwon and Oh [K-O] or Lazzarini [La] it is 

possible to decompose the disk D into a sum of multiply covered Jw-holomorphic 

disks, namely there exist reduced Jw-holomorphic disks D1,... ,  D~ with bound- 

ary on L and m l , . . . , m ~  E N such that: 

1. The union of images of the Di's equal to the image of D. 

2. [D] = ~i~=lmi[Di] in H2(W,L). 
Since #[D] _< d imL + 1 there exists 1 _< io ~ r such that #[D~o] ~ d imL + 1. 

Summarizing the above, replacing S by Sre d or  D by Dio we may assume from 

now on that  both of S and D are reduced. 
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It remains to prove the lower bound #([D]) > 3 - d i m  L in case we have a disk D. 

For this purpose denote by J ,  C ,7 the space of all autonomous almost complex 

structures J = {Js,t --- J}. Note that our definition of the space J allows us to 

vary J arbitrarily inside U(L) (as long as it remains compatible with w-w) , and 

every nonconstant J-holomorphic disk with boundary on L must pass through 

U(L). A standard transversality argument shows that there exists a second 

category subset ~'*,reg C J ,  such that for every J E J*,reg and B E 7r2(W , L) 

the space .A.Ij(B) of non-parametrized somewhere injective J-holomorphic disks 

v: (D 2, OD 2) ~ (W, L) that  represent the class B is either empty or a smooth 

manifold of dimension #(B) + d imL - 3. Fix such a J C J*,reg. 

Now repeat the argument above with JW replaced by J. We obtain either 

a reduced J-holomorphic sphere S or a reduced J-holomorphic disk D with 

#([D]) ___ d imL + 1. Assume we obtain a disk D. Since the disk D is reduced it 

follows from our choice of J that Mj ( [D] )  is a non-empty manifold. Therefore 

#([D]) + d imL - 3 > 0. | 

Proof of Theorem 2.2: Let Uo(L) be a Weinstein neighbourhood of L with 

Uo(L) C U(L). Consider the completed manifold (W,w~_) as in the proof of 

Theorem 2.1. By Lemma 3.2, L can be disjoined from itself by the time-1 map 

of a compactly supported Hamiltonian H. 

Consider the "local" Floer cohomology HFloc(L,L;Uo(L);Z2 ) and the 

"global" Floer cohomology HF(L, L; W; Z2) as defined in [Oh-3]. Here for the 

global Floer cohomology we allow only deformations generated by Hamiltonians 

whose Hofer norm is at most the Hofer norm of H. It is proved in [Oh-2] that 

there exists a constant c, depending only on the Hofer norm of H,  such that all 

gradient trajectories in the Floer complex have energy uniformly bounded by c. 

Now assume that there exists a regular almost complex structure J that agrees 

with JW outside U(L) and such that 

1. For every nonconstant J-holomorphic disk (D, OD) C (W, L) of area < c, 

#([D]) >_ d imL + 1. 

2. For every nonconstant J-holomorphic sphere S c W of area < c, 2c1([S]) > 

dim L + 1. 

Under this assumption the global Floer cohomology is well defined and invariant 

under (compactly supported) Hamiltonian deformations because dim L + 1 > 3 

(see [Oh-2,Oh-3]). Moreover it follows from [Oh-3] that under the above assump- 

tion the global Floer cohomology is isomorphic to the local Floer cohomology 

except maybe for dimensions k = 0, dimL. More precisely, HF(L, L; W; Z2) is 
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isomorphic either to 

dim L dim L -  1 

(5) ( ~  HFlkoc(L,L;Uo(L);Z2), or to ~]~ 
k-----O k = l  

H Flkoc( L, L; U0(L); Z2). 

Let us briefly outline the main ideas behind this (precise details can be found in 

Sections 4 and 5 of [Oh-3]). Recall that  the local Floer cohomology is defined 

as follows: pick a C2-small Morse function G on L and let LG C Uo(L) be the 

Hamiltonian image of L obtained using G (i.e., Lc  is the graph of the 1-form 

dG in Uo(L) viewed as a neighbourhood of the zero section in T'L). The Floer 

complex is generated by the points of L N LG which are precisely the critical 

points of G. The differential for the local Floer homology however takes into ac- 

count only trajectories that lie entirely inside Uo(L). The resulting cohomology, 

HFloc(L , L; U0(L); Z2) (is independent of G and) is called the local Floer coho- 

mology. If, the first possibility described in (5) does not hold then for any choice 

of G as above there must be a Floer trajectory u of (relative) index 1 connecting 

two critical points x, y • Crit(G), but such that u goes outside of Uo(L). If in 

addition, the second possibility of (5) does not hold either, then there exist x, y 

as above with 

(6) 1 _< indu G - ind, G _< dim L - 1. 

1 Repeating this argument for KG and L~G we get a sequence of Floer trajectories 

u~ of relative index 1 connecting two points xn, Yn • Crit(~G) = Crit(G) that  
satisfy (6) and such that  none of the u~'s is entirely contained inside Uo(L). 
Passing to a subsequence if necessary we obtain in the limit as n ~ oc a cusp 

trajectory u ~  connecting two critical points x', y' • Crit(G) satisfying (6). This 

cusp trajectory consists of possibly some J-holomorphic discs Di with boundary 

on L, some J-holomorphic spheres Sj and some gradient trajectories lying on L. 

Since none of the u , ' s  was contained inside Uo(L) the same holds also for uoo. 

Therefore uoo must contain at least one J-holomorphic disc or sphere. An index 

computation (see [Oh-3] Section 5) gives: 

0 < ~ #([D,])+ Z 2cl([Sj]) = 1 - ( i n d . ,  a -  indy, G) _< dimL, 

where the leftmost inequality follows from monotonicity, while the rightmost one 

is due to the fact that x I, yl satisfy (6). Let D be one of the discs or spheres 

appearing in u~ .  Since we are in the monotone situation we conclude that  

#([D]) < dimL. This gives a contradiction to our assumptions 1,2 above. Thus 



Vol. 127, 2002 LAGI:tANGIAN EMBEDDINGS 241 

one of the possibilities described in (5) holds. We refer the reader to lOb-3, Oh-5] 

for more details on the isomorphisms (5). 

Let us return now to the present situation. Since L is disjoined from itself by 

the time-1 map of H,  HF(L,  L;W; Z2) = 0. On the other hand, by [Oh-3] we 

know that HFI*c(L , L; U0(L); Z2) ---- H*(L; Z2). Therefore, by (5) we infer that 

Hk(L; Z2) = 0 for every 1 < k < d imL - 1 (note that by assumption d imL > 2). 

If the assumptions 1 and 2 do not hold, then there exists a sequence of almost 

complex structures Jn converging to JW and nonconstant Jn-holomorphic curves 

(disks or spheres) u~ of area < c such that  tt([un]) < dimL. By Gromov compact- 

ness, un converges to a cusp curve that contains a nonconstant Jw-holomorphic 

disk or sphere of Maslov index _< dim L. | 

P roof  of Theorem 2.5: By the definition of displacement energy, since L is 

contained in the interior of V x X, we can choose the Hamiltonian H in the 

proof of Theorem 2.1 that  displaces L from itself to satisfy 

[[H[t _ e(V, Jv, ¢). 

It is shown in [Oh-4] that  the energy of every solution u of equation (1) is bounded 

by 

Ej (u) <_ e(V, gy, ¢). 

Therefore, this energy estimate holds for every component of the cusp curves. 
| 

Proof of Theorem 2.8: Let E C X be a properly embedded Jx-complex 

hypersurface which is spherically nef. Choose the neighbourhood U(L) from 

the beginning of the proof of Theorem 2.1 small enough so that its closure is 

disjoint from V x E. Let uoo v0 -I- P ' x-~q ,! = ~i=1 v~ + ?--,j=l vj be a cusp curve as in 

equation (2) in the proof of Theorem 2.1. We claim that  for every 1 < i _< p and 

1 _< j < q we have: 

1. [Y x E]. [v~] > 0 with equality if and only if the image of v~ is disjoint from 

V x E .  

2. [Y × El.  [v~'] _> 0 with equality only if either v~ is disjoint from V x E or is 

completely contained inside V x E in which case it must be Jw-holomorphic. 

3. [V × E]. [v0] _ 0 with equality if and only if the image of v0 is disjoint from 

V x E .  

Indeed, by our definition of the space J every J E J coincides with the 

autonomous structure JW = Jv @ Jx  outside of U(L). Therefore, all of 
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v~, . . . .  ., Vp, v~,. , Vq " must be Jw-holomorphic at points that  go through the com- 

plement of U(L). As V x E is Jw---holomorphic too, any intersection between V x E 

and v~ must contribute positively to the total  intersection [Y x E]-[v~], unless v~ 

is totally contained inside V x E. But clearly, none of the disks v~ is contained 

in V x E, because their boundaries are on L. This proves 1. A similar argument 

shows that  if v~ p is not contained inside V x E then [V x E]. [v~ p] _> 0 with equality 

if and only if v~' is in the complement of V x E. In case v~! is contained inside 

V x E it is Jw-holomorphic and the assumption that  E is spherically nef assures 

that  we still have [Y x E] • [v~] _> 0. This proves 2. 

For statement 3, recall that  Hamiltonian function H that  we use in the proof 

of Theorem 2.1 to disjoin L from itself had support  inside V x U p', where U" 

could be taken as an arbitrary neighbourhood of pr x (L). Since the hypersurface 

E is disjoint from pr x (L) we can choose U" to be disjoint from E. Thus we may 

assume that  the Hamiltonian vector field ~H(t, ") vanishes in a neighbourhood 

of V x E. Since v0 is a solution to equations (1), this implies that  it is JW~ 

holomorphic near V x E. Therefore v0 must intersect V x E non-negatively 

unless pr× o v0 is entirely contained inside of E. The latter possibility however 

cannot occur because the boundary of v0 lies in L and pr x (L) is disjoint from 

Z by assumption. Finally, if we have [V x ~ ] .  [v0] = 0 then as before, since 

each intersection point between v0 and V x ~ contributes positively to the total  

intersection, the image of v0 must be disjoint from V x ~. This proves 3. 

Summing up all the above we see that  all components of the cusp curve uoo 

intersect V × ~ non-negatively. On the other hand, from equation (3) we get that  

the total  sum of these homological intersections is zero. Therefore the homological 

intersection of each component of our cusp curve with V × Z is zero. 

Now, as in the proof of Theorem 2.1, we take a sequence of regular paths 

converging to the constant pa th  {Jw}" Since the homology classes converge, the 

resulting Jw-holomorphic disks and spheres also have homological intersection 

zero with V x ~. By what we have just proved this implies that  each of the disks 

v~ lies in the complement of V x ~ and each of the spheres v~' is either in the 

complement of V x Z or entirely contained inside V x ~. Finally, recall that  cusp 

curves must be connected, hence it is impossible to have some of the spheres 

above entirely contained inside V × Z while all the other components are disjoint 

from V x ~. Thus all the components of our cusp curve are in the complement 

of V x ~ .  I 
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