DERIVED SUBGROUPS OF FIXED POINTS

ΒY

ROBERT GURALNICK*

Department of Mathematics, University of Southern California Los Angeles, CA 90089-1113, USA e-mail: guralnic@math.usc.edu

AND

PAVEL SHUMYATSKY**

Department of Mathematics, University of Brasilia Brasilia-DF, 70910-900 Brazil e-mail: pavel@ipe.mat.unb.br

ABSTRACT

Let A be an elementary abelian q-group acting on a finite q'-group G. We show that if A has rank at least 3, then properties of $C_G(a)', 1 \neq a \in A$ restrict the structure of G'. In particular, we consider exponent, order, rank and number of generators.

1. Introduction

Let q be a prime, and A be an elementary abelian q-group acting on a finite q'-group G. It has been known for some time that if $C_G(a)$ satisfies certain "smallness" conditions for each $a \in A^{\#}$ then the whole group G has a similar property. To exemplify this we cite the following results.

The first result is a celebrated theorem of Thompson [19].

1. If A is cyclic and $C_G(A) = 1$, then G is nilpotent.

^{*} This author was supported by the NSF.

^{**} This author was supported by CNPq-Brazil. Received April 6, 2000

The next result is an easy consequence of the classification of finite simple groups [20]. There is a somewhat more precise version of the result, but note that it is not true that if A is cyclic and $C_G(A)$ is solvable, then G is solvable (consider $L_2(2^q)$).

2. If B is a group of automorphisms of G whose order is coprime to that of G and $C_G(B)$ is nilpotent or has odd order, then G is solvable.

For the rest of the paper, we assume that A is noncyclic.

Let m be a positive integer.

3. If $C_G(a)$ has order at most m for each $a \in A^{\#}$ then the order of G is at most m^{q+1} .

This follows from the well-known facts that A normalizes some Sylow p-subgroup of G for any $p \in \pi(G)$ and if G is a p-group then $G = \prod_{a \in A^{\#}} C_G(a)$ ([6, Theorem 6.2.2, Theorem 5.3.16]). We also use that if A is of rank 2 then it has exactly q + 1 cyclic subgroups.

Recall that the rank of a finite group is the maximum number of generators required for any subgroup.

4. If $C_G(a)$ has rank at most m for each $a \in A^{\#}$ then the rank of G is $\{m,q\}$ -bounded.

This can be shown as follows. Let P be any A-invariant Sylow p-subgroup of G and H any A-invariant subgroup of P. Since $H = \prod_{a \in A^{\#}} C_H(a)$, we conclude that H is generated by at most d = m(q+1) elements. Let V be the intersection of kernels of all homomorphisms of P into $\operatorname{GL}_d(F)$, where F is the field with p elements. Set W = V if p is odd and $W = V^2$ if p = 2. Then any characteristic dgenerated subgroup of P contained in W is powerful [3, Proposition 2.12]. Since the Sylow p-subgroups of $\operatorname{GL}_d(F)$ are nilpotent of class d-1, it follows that $\gamma_d(P) \leq V$. We know that $\gamma_d(P)$ is d-generated so the image of $\gamma_d(P)$ in P/Whas order at most 2^d . Therefore P/W is nilpotent of class at most 2d-1 whence $\gamma_{2d}(P) \leq W$. Since $\gamma_{2d}(P)$ has at most d generators, it becomes clear that $\gamma_{2d}(P)$ is powerful. Thus we conclude that $\gamma_{2d}(P)$ has rank at most d [3, Theorem 2.9]. Since P has at most d generators, the rank of $P/\gamma_{2d}(P)$ is d-bounded. Then so is the rank of P. Let r be the maximum of ranks of Sylow p-subgroups of G, where p ranges through $\pi(G)$. Since A normalizes some Sylow p-subgroup of G for any $p \in \pi(G)$, it follows that r is $\{m, q\}$ -bounded. But the rank of G is at most r + 1 [10, 7, 14] and we are done.

5. If $C_G(a)$ has exponent at most m for each $a \in A^{\#}$ then the exponent of G is $\{m, q\}$ -bounded.

This was proved in [9].

In this paper we impose conditions on the derived groups of $C_G(a)$ and investigate the effect on the structure of G'.

THEOREM 1.1: Let *m* be an integer, *q* a prime. Let *G* be a finite *q'*-group acted on by an elementary abelian group *A* of order q^3 . Assume that $C_G(a)$ has derived group of order at most *m* for each $a \in A^{\#}$. Then the order of *G'* is $\{m, q\}$ -bounded.

THEOREM 1.2: Let *m* be an integer, *q* a prime. Let *G* be a finite *q'*-group acted on by an elementary abelian group *A* of order q^3 . Assume that $C_G(a)$ has derived group of rank at most *m* for each $a \in A^{\#}$. Then the rank of *G'* is $\{m, q\}$ -bounded.

THEOREM 1.3: Let *m* be an integer, *q* a prime. Let *G* be a finite *q'*-group acted on by an elementary abelian group *A* of order q^3 . Assume that $C_G(a)$ has derived group of exponent dividing *m* for each $a \in A^{\#}$. Then the exponent of *G'* is $\{m, q\}$ -bounded.

Each of the above theorems fails if $|A| = q^2$. Indeed, let G be a finite q'-group admitting a non-cyclic automorphism group A of order q^2 such that $C_G(a)$ is abelian for each $a \in A^{\#}$. Ward showed that G is necessarily solvable [23]. The second author proved that if G has derived length k then G' is nilpotent of class bounded by some function of q and k [17]. However the derived length k can be arbitrarily large. For instance, for any odd prime p Khukhro constructed a *p*-group G of derived length bigger than $\log_2(p-1)$ acted on by a four-group A such that $C_G(a)$ is abelian for each $a \in A^{\#}$ [8, pp. 149–150]. Thus Theorems 1.1 and 1.3 fail in the case $|A| = q^2$. Direct products of such groups show that in this case G' can have arbitrarily large rank. So the assumption that $|A| = q^3$ is essential in each of the above theorems. This seems to be a part of a more general phenomenon: if a certain property of $C_G(a)$ for all $a \in A^{\#}$ implies a similar property for the whole group G then the property of $C_G(a)'$ for all $a \in A^{\#}$ implies a similar property for G' provided that the rank of A increases by 1. To illustrate this we mention the following results of Ward: if $|A| = q^3$ and $C_G(a)$ is nilpotent for each $a \in A^{\#}$ then G is likewise nilpotent [21]; if $|A| = q^4$ and $C_G(a)'$ is nilpotent for each $a \in A^{\#}$ then G' is nilpotent [22]. Both of these results have been extended in [16] to the case where G is allowed to be periodic solvable.

It is also worth noting that proofs of the results 3-5 mentioned above reduce very easily to the case of *p*-groups. This is no longer true for the results in this paper. We need to prove the following result of independent interest: THEOREM 1.4: Let q be a prime. Let G be a finite q'-group acted on by an elementary abelian group A of order q^3 . Let P be an A-invariant Sylow subgroup of G. Then $P \cap G' = \langle P \cap C_G(a)' | a \in A^{\#} \rangle$.

Our proof of this result involves the classification of finite simple groups. The fact we use is that any group of coprime automorphisms of a finite simple group is cyclic. Once Theorem 1.4 is proved we deal with the case of p-groups using Lie methods. The techniques developed by Zelmanov in his solution of the Restricted Burnside Problem are particularly helpful.

2. Preliminaries

The first two lemmas are well-known (see for example [6, 6.2.2, 6.2.4]).

LEMMA 2.1: Let A be a group of automorphisms of the finite group G with (|A|, |G|) = 1.

- 1. If N is any A-invariant normal subgroup of G we have $C_{G/N}(A) = C_G(A)N/N;$
- 2. If H is an A-invariant p-subgroup of G, then H is contained in an A-invariant Sylow p-subgroup of G;
- 3. $C_G(A)$ is transitive on the set of A-invariant Sylow p-subgroups of G;
- 4. If P is an A-invariant Sylow p-subgroup of G, then $C_P(A)$ is a Sylow p-subgroup of $C_G(A)$.

LEMMA 2.2: Let q be a prime, G a finite q'-group acted on by an elementary abelian q-group A of rank at least 2. Let A_1, \ldots, A_s be the maximal subgroups of A. If H is an A-invariant subgroup of G we have $H = \langle C_H(A_1), \ldots, C_H(A_s) \rangle$.

LEMMA 2.3: Let q be a prime, G a finite q'-group acted on by an elementary abelian q-group A of rank at least 3. If N is any A-invariant normal subgroup of G then $[N,G] = \langle [C_N(a), C_G(a)] | a \in A^{\#} \rangle$. If [N,G] is nilpotent then [N,G] = $\prod [C_N(a), C_G(a)]$, where the product is taken over all $a \in A^{\#}$.

Proof: Let A_1, \ldots, A_s be the maximal subgroups of A. By Lemma 2.2, $G = \langle C_G(A_1), \ldots, C_G(A_s) \rangle$ and $N = \langle C_N(A_1), \ldots, C_N(A_s) \rangle$. Consider the subgroup $R = \langle [C_N(A_i), C_G(A_j)] | 1 \leq i, j \leq s \rangle$. Obviously R is A-invariant so $R = \langle C_R(A_1), \ldots, C_R(A_s) \rangle$. To show that R is normal it is sufficient to establish that $y^x \in R$ for any $y \in C_R(A_i)$ and $x \in C_G(A_j)$. We have $y^x = y^x y^{-1}y$ and obviously both $y^x y^{-1}$ and y belong to R. Hence $y^x \in R$ and R is normal. Using that $G = \langle C_G(A_1), \ldots, C_G(A_s) \rangle$ and $N = \langle C_N(A_1), \ldots, C_N(A_s) \rangle$ it is now easy

to see that the image of N in G/R is central whence R = [N, G]. Since the intersection $A_i \cap A_j$ cannot be trivial (the rank of A is at least 3), it follows that any subgroup of the form $[C_N(A_i), C_G(A_j)]$ is contained in $[C_N(a), C_G(a)]$ for some $a \in A^{\#}$ so that $[N, G] = \langle [C_N(a), C_G(a)] | a \in A^{\#} \rangle$.

Assume now that [N, G] is nilpotent of class c. If [N, G] is abelian then the factorization $[N, G] = \prod [C_N(a), C_G(a)]$ is immediate so we assume that $c \geq 2$ and use induction on c. Set

$$M = [\underbrace{[N,G],\ldots,[N,G]}_{c-1}].$$

Then [M, [N, G]] is central in [N, G]. Let \overline{H} denote the image of any subgroup H of G in G/[M, [N, G]]. By the inductive hypothesis $[\overline{N}, \overline{G}] = \prod [C_{\overline{N}}(a), C_{\overline{G}}(a)]$. Since [M, [N, G]] is abelian, it is clear that

$$[M, [N, G]] = \prod [C_M(a), [C_N(a), C_G(a)]].$$

Using that each subgroup $[C_M(a), [C_N(a), C_G(a)]]$ is central in [N, G], the result follows.

COROLLARY 2.4: Assume the hypothesis of the previous lemma. If G' is nilpotent then $G' = \prod C_G(a)'$, where the product is taken over all $a \in A^{\#}$.

LEMMA 2.5: Let G be a finite group and N a normal perfect subgroup. Let P be a Sylow p-subgroup of G. Let $R = P \cap N$ and $H = N_G(R)$. Then $P \cap G' = R(P \cap H')$.

Proof: By the Frattini argument, G = HN and so G' = H'N. Thus, $H \cap G' = H'(H \cap N)$. Hence H'R contains a Sylow *p*-subgroup of $H \cap G'$. Since H'R is normal in $H \cap G'$, this implies it contains every Sylow *p*-subgroup of $H \cap G'$. In particular, $P \cap G' = P \cap H'R = (P \cap H')R$.

Let d(H) denote the minimal size of a generating set for H. Let the rank of H be the maximum of d(K) as K ranges over all subgroups K.

The following result is an immediate consequence of a result obtained independently by the first author [7] and Lucchini [14]. It depends on the classification of finite simple groups. The result for solvable groups was obtained by Kovács [10]. THEOREM 2.6: Let G be a finite group.

- (a) $d(G) \leq 1 + \max_{p} \{ d(P) | P \text{ a Sylow } p \text{-subgroup of } G \}.$
- (b) $\operatorname{rank}(G) \le 1 + \max_{p} \{\operatorname{rank}(P) \mid P \text{ a Sylow } p \text{-subgroup of } G\}.$

Proof: The theorem cited above is precisely (a). Applying this to every subgroup proves (b). ■

We need one further result that is dependent upon the classification of finite simple groups.

LEMMA 2.7: Let S be a finite simple group and T a group of automorphisms of S with (|T|, |S|) = 1. Then T is cyclic.

Proof: If S is alternating or sporadic, then Out(S) has order dividing 4, and |S| has even order.

If S is a Chevalley group, then Out(S) has a normal series $N_1 < N_2 < Out(S)$ with N_1 consisting of diagonal automorphisms, N_2/N_1 cyclic (corresponding to field automorphisms) and with the final quotient being the group of graph automorphisms. Only, N_2/N_1 can be divisible by primes not dividing |S|. Thus, T embeds in N_2/N_1 and is cyclic.

We point out some easy consequences of the previous result. See [20]. We will not be using these results in the remainder of the article.

COROLLARY 2.8: Let A be a group of automorphisms of the finite group G with (|G|, |A|) = 1.

- 1. If $C_G(A)$ is solvable and has no section isomorphic to S_3 , A_4 or $S_2(2)$, then G is solvable;
- 2. If A is not cyclic of prime power order and $C_G(a)$ is solvable for all $a \in A^{\#}$, then G is solvable.

Proof: The first statement follows by an elementary standard reduction argument. Taking G to be minimal, we may assume that G is a direct product of simple groups and that A acts transitively on the simple direct factors. If B is the normalizer of one of the factors L, then $C_G(A) \cong C_L(B)$ and so we are reduced to the case that G is simple. It follows that A is a cyclic group of field automorphisms. The only cases where $C_A(G)$ is solvable is when $G = L_2(r^e)$ with r = 2 or 3, $U_3(2^e)$ or $S_2(2^e)$ and A is the full group of field automorphisms. Inspection of these cases yields the result.

We now prove the second statement. Let G be a minimal counterexample. Let N be a minimal normal A-invariant subgroup of G. If N is solvable, we may pass

to G/N. So N is a direct product of simple groups and A permutes the simple direct factors transitively. Thus, G = N.

Let L be one of the factors. Suppose that $a \in A$ has prime order q and does not normalize L. Then $L \cong \{xx^a \cdots x^{a^{q-1}} | x \in L\} \leq C_G(a)$ is not solvable. So every element of prime order fixes L (and each A-conjugate of L). By the simple case, we see that $N_A(L)$ must be cyclic of prime order q (because for any proper subgroup of $N_A(L)$, the centralizer would not be solvable). It follows that A is a q-group and is either cyclic (q odd) or generalized quaternion (if q = 2). Since we are assuming that A is not cyclic of prime power order and has order relatively prime to |L|, we have a contradiction.

The second part of the previous result can be proved without the classification if A is abelian of rank 3 by results on solvable signalizer functors. See [4], [5], [2].

3. A generation result

Throughout this section, let G be a finite group and A an elementary abelian q-group of order q^e , q a prime not dividing the order of G.

Our goal is to prove Theorem 1.4 which we restate for convenience.

THEOREM 3.1: Assume $e \ge 3$. Let P be an A-invariant Sylow subgroup of G; then $P \cap G' = \langle C_G(a)' \cap P | a \in A^{\#} \rangle$.

Before we prove Theorem 1.4, we note some easy consequences including the proof of Theorem 1.1.

COROLLARY 3.2: Assume $e \ge 3$. Let P be an A-invariant Sylow subgroup of G; then $P \cap G' = \langle [x, y] \in P | x \in C_P(a), y \in C_G(a), a \in A^{\#} \rangle$.

Proof: This follows from the theorem and the Focal Subgroup Theorem [6] which describes $P \cap C_G(a)'$.

COROLLARY 3.3: Assume $e \ge 3$. Then $\pi(G') = \bigcup_{a \in A^{\#}} \pi(C(a)')$.

COROLLARY 3.4: If $e \ge 3$, then $G' = \langle C_G(a)' | a \in A^{\#} \rangle$.

Since a rank 3 elementary abelian q-group has $q^2 + q + 1$ nontrivial cyclic subgroups, the next result follows immediately.

COROLLARY 3.5: If $e \ge 3$ and $C_G(a)'$ can be generated by at most m elements for each nontrivial $a \in A$, then G' can be generated $m(q^2 + q + 1)$ elements.

We can now prove a somewhat more precise version of Theorem 1.1. Note that there is an analogous result for the order of a Sylow *p*-subgroup of G' in terms of the maximal order of a Sylow *p*-subgroup of $C_G(a)'$.

THEOREM 3.6: Let *m* be an integer, *q* a prime. Let *G* be a finite *q'*-group acted on by an elementary abelian group *A* of order q^3 . Assume that $C_G(a)$ has derived group of order at most *m* for each $a \in A^{\#}$. Then $|G'| \leq m^{2(q^2+q+1)}$.

Proof: Let P be an A-invariant Sylow p-subgroup of G. Let Δ denote the set of nontrivial cyclic subgroups of A. For each $B \in \Delta$, let $m_B = |C_G(B)'|$ and $m_B(p)$ be the order of the Sylow p-subgroup of $C_G(B)'$. By Lemma 2.1, $m_B(p) = |P \cap C_G(B)'|$.

By Lemma 2.3, $|P'| \leq \prod_{B \in \Delta} m_B(p)$. By Theorem 3.1,

$$|P \cap G'| \le |P'| \prod_{B \in \Delta} m_B(p) \le \prod_{B \in \Delta} m_B(p)^2$$

Thus,

$$|G'| \le \prod_{p,B \in \Delta} m_B(p)^2 \le \prod_B m_B^2 \le m^{2(q^2+q+1)}.$$

In order to prove the other main theorems, we will need to consider the *p*-group case more closely.

We now prove the theorem. We first handle the case of direct products of simple groups. Let H^{∞} denote the final term in the derived series for H.

LEMMA 3.7: Assume that G is a direct product of nonabelian simple groups. Let P be an A-invariant Sylow p-subgroup of G. If e > 2, then

$$P = \langle C_G(a)^{\infty} \cap P | a \in A^{\#} \rangle.$$

Proof: We may assume that A is transitive on the direct factors of G. Consider the stabilizer of one these factors L. If this stabilizer has order at least q^2 , then as the Sylow q-subgroup of Aut(L) is cyclic by Lemma 2.7, it follows that there is a nontrivial subgroup A_0 of A which centralizes L. Since A is abelian, A_0 centralizes L^a for all $a \in A$. Since A is transitive on the direct factors of G, this implies that A_0 centralizes G, whence the result is clear.

So there exists a subgroup B of A of order q^2 which fixes no direct factor $L^a, a \in A$. Let H be the direct product of these q^2 factors. We will show that $P \cap H = \langle P \cap C(a)^{\infty} | a \in B^{\#} \rangle$ which implies the result.

Identifying the various direct factors by the action of B, we may assume that B acts by permuting the coordinates of the q^2 copies of L. Then we see that for

353

 $1 \neq a \in B$, $C_H(a)$ is just q copies of L (one copy for each a-orbit). In particular, $C_H(a)$ is perfect.

By Lemma 2.2, we know that

$$P \cap H = \langle P \cap C(a) | a \in B^{\#} \rangle = \langle P \cap C(a)^{\infty} | a \in B^{\#} \rangle.$$

We now complete the proof of Theorem 3.1.

Proof of Theorem 3.1: Set $B = \langle C_G(a)' \cap P | a \in A^{\#} \rangle$. Clearly, $P \cap G' \geq B$. So we only need the opposite inclusion.

Let G be a counterexample of minimal order.

If G' = 1, there is nothing to prove. Let N be a normal subgroup of G which is A-invariant and which is minimal with respect to these properties. So N is characteristically simple.

By Lemma 2.1, $C_{G/N}(a)' = C(a)'N/N$. Thus, by minimality $PN \cap G' = \langle C(a)'N \cap PN | a \in A^{\#} \rangle$. Since a has order prime to |G|, it follows that $C(a)'N \cap P \leq C_P(a)N$. It also follows that $C_P(a)$ is a Sylow *p*-subgroup of C(a) and so $P \cap C(a)'$ is a Sylow *p*-subgroup of C(a)'.

First suppose that N is a p'-group. Thus, $P \cap C(a)'$ is a Sylow p-subgroup of C(a)'N and so $PN \cap C(a)'N = (P \cap C(a)')N$. So

$$PN \cap G' = \langle (C(a)' \cap P)N | a \in A^{\#} \rangle = BN,$$

whence $P \cap G' = B$.

Next suppose that N is perfect and $R := P \cap N$ is nontrivial. Let $H = N_G(R)$. Then H is a proper subgroup of G and is A-invariant. So by minimality, $P \cap H' \leq B$. By Lemma 2.5, $P \cap G' = (P \cap H')R$. By the previous result, $R \leq B$ and so $P \cap G' \leq B$ as required.

So we may assume that N is a p-group and so is contained in P. Indeed, it follows that every minimal normal subgroup is a p-group. Moreover, we may assume that N is contained in G' (otherwise G' = 1 and there is nothing to prove).

Thus, $PN \cap C(a)'N = (P \cap C(a)')N$ and $(P \cap G') \leq B(P \cap N)$. So it suffices to prove that $N \leq B$.

If N is not central in G, then by Lemma 2.3,

$$N = [N,G] = \langle [C_N(a), C_G(a)] | a \in A^{\#} \rangle \le B$$

and the result holds.

If G is not perfect and $G'' \neq 1$, then we may choose $N \leq G''$. By minimality, $N \leq B$ and the result follows.

If G'' = 1, then G' is an abelian p-group. Then Lemma 2.3 implies that $P \cap G' = G' = \prod_a [C_G(a), C_G(a)] \leq B$.

So we are reduced to the case that G is perfect.

If $N \leq \Phi(P)$, the Frattini subgroup of P, then $P = P \cap G' = B\Phi(P) = B$ as required.

If N is not disjoint from $\Phi(P)$, then we can choose an A-invariant complement to $N \cap \Phi(P)$ in N, contradicting the minimality of N.

Now choose $Z \leq N$ of order p. Since Z is not contained in the Frattini subgroup of P, it follows that $P = Z \times M$ for some maximal subgroup M of P; i.e. the sequence

$$1 \rightarrow Z \rightarrow P \rightarrow P/Z \rightarrow 1$$

splits.

Consider the sequence

$$1 \to Z \to G \to G/Z \to 1.$$

This corresponds to an element $\beta \in H^2(G/Z, Z)$. The fact that the sequence above splits indicates that $\beta = 0$ in $H^2(P/Z, Z)$. Since P/Z is a Sylow *p*-subgroup of G/Z, the restriction mapping from $H^2(G/Z, Z)$ to $H^2(P/Z, Z)$ is injective and so $\beta = 0$ in $H^2(G/Z, Z)$, whence Z is complemented in G. This implies that Z is not contained in G', a contradiction, since $Z \leq N \leq G'$.

4. Some Lie-theoretic machinery

Let L be a Lie algebra over a field \mathfrak{k} . Let k, n be positive integers and let $x_1, x_2, \ldots, x_k, x, y$ be elements of L. We define inductively

$$[x_1] = x_1; \quad [x_1, x_2, \dots, x_k] = [[x_1, x_2, \dots, x_{k-1}], x_k]$$

and

$$[x, _0y] = x; \quad [x, _ny] = [[x, _{n-1}y], y].$$

An element $a \in L$ is called ad-nilpotent if there exists a positive integer n such that [x, na] = 0 for all $x \in L$. If n is the least integer with the above property then we say that a is ad-nilpotent of index n. Let $X \subseteq L$ be any subset of L. By a commutator in elements of X we mean any element of L that can be obtained as a Lie product of elements of X with some system of brackets. Denote

by F the free Lie algebra over \mathfrak{k} on countably many free generators x_1, x_2, \ldots . Let $f = f(x_1, x_2, \ldots, x_n)$ be a non-zero element of F. The algebra L is said to satisfy the identity $f \equiv 0$ if $f(a_1, a_2, \ldots, a_n) = 0$ for any $a_1, a_2, \ldots, a_n \in L$. In this case we say that L is PI. A deep result of Zelmanov says that if a Lie algebra L is PI and is generated by finitely many elements all commutators in which are ad-nilpotent, then L is nilpotent [25, III(0.4)]. Using this and some routine universal arguments, the next theorem can be deduced (see [9]).

THEOREM 4.1: Let L be a Lie algebra over a field \mathfrak{k} generated by a_1, a_2, \ldots, a_m . Assume that L satisfies an identity $f \equiv 0$ and that each commutator in the generators a_1, a_2, \ldots, a_m is ad-nilpotent of index at most n. Then L is nilpotent of $\{f, n, m, \mathfrak{k}\}$ -bounded class.

An important criterion for a Lie algebra to be PI is the following

THEOREM 4.2 (Bahturin-Linchenko-Zaicev): Let L be a Lie algebra over a field \mathfrak{k} . Assume that a finite group A acts on L by automorphisms in such a manner that $C_L(A)$, the subalgebra formed by fixed elements, is PI. Assume further that the characteristic of \mathfrak{k} is either 0 or prime to the order of A. Then L is PI.

This theorem was proved by Bahturin and Zaicev for solvable groups A [1] and extended by Linchenko to the general case [12].

COROLLARY 4.3 ([18]): Let F the free Lie algebra of countable rank over \mathfrak{k} . Denote by F^* the set of non-zero elements of F. For any finite group A there exists a mapping

$$\phi \colon F^* \to F^*$$

such that if L and A are as in Theorem 4.2, and if $C_L(A)$ satisfies an identity $f \equiv 0$, then L satisfies the identity $\phi(f) \equiv 0$.

The following lemma is quite helpful.

LEMMA 4.4 ([9]): Suppose that L is a Lie algebra, K a subalgebra of L generated by r elements h_1, \ldots, h_r such that all commutators in the h_i are ad-nilpotent in L of index t. If K is nilpotent of class c, then for some $\{r, t, c\}$ -bounded number u we have

$$[L,\underbrace{K,\ldots,K}_{u}]=0.$$

We now turn to groups. Throughout the rest of the section p will denote an arbitrary but fixed prime. Let G be any group. A series of subgroups

$$(*) G = G_1 \ge G_2 \ge \cdots$$

is called an N_p -series if $[G_i, G_j] \leq G_{i+j}$ and $G_i^p \leq G_{pi}$ for all i, j. To any N_p -series (*) of a group G one can associate a Lie algebra $L^*(G)$ over \mathbb{F}_p , the field with p elements. Let us briefly describe the construction.

Given an N_p -series (*), let us view the quotients $L_i^* = G_i/G_{i+1}$ as linear spaces over \mathbb{F}_p , and let $L^*(G)$ be the direct sum of these spaces. Commutation in G induces a binary operation [,] in L. For homogeneous elements $xG_{i+1} \in$ $L_i^*, yG_{j+1} \in L_j^*$ the operation is defined by

$$[xG_{i+1}, yG_{j+1}] = [x, y]G_{i+j+1} \in L_{i+j}^*$$

and extended to arbitrary elements of $L^*(G)$ by linearity. It is easy to check that the operation is well-defined and that $L^*(G)$ with the operations + and [,] is a Lie algebra over \mathbb{F}_p .

We are now concerned with the relationship between G and $L^*(G)$. For any $x \in G_i \setminus G_{i+1}$ let x^* denote the element xG_{i+1} of $L^*(G)$.

PROPOSITION 4.5 (Lazard, [11]): For any $x \in G$ we have $(ad x^*)^p = ad (x^p)^*$. Consequently, if x is of finite order p^t then x^* is ad-nilpotent of index at most p^t .

Let Fr denote the free group on free generators x_1, x_2, \ldots , and choose a nontrivial element $w = w(x_1, x_2, \ldots, x_s) \in Fr$. We say that a group G satisfies the identity $w \equiv 1$ if $w(g_1, g_2, \ldots, g_s) = 1$ for any $g_1, g_2, \ldots, g_s \in G$. The following proposition can be deduced from the proof of Theorem 1 in the paper of Wilson and Zelmanov [24]

PROPOSITION 4.6: Let G be a group satisfying an identity $w \equiv 1$. Then there exists a non-zero multilinear Lie polynomial f over \mathbb{F}_p depending only on p and w such that for any N_p -series (*) of G the algebra $L^*(G)$ satisfies the identity $f \equiv 0$.

In fact Wilson and Zelmanov describe in [24] an effective algorithm allowing one to write f explicitly for any p and w, but we do not require this.

In general a group G has many N_p -series. The series described below is particularly important. To simplify the notation we write γ_i for $\gamma_i(G)$. Set $D_i = D_i(G) = \prod_{jp^k \ge i} \gamma_j^{p^k}$. The subgroups D_i form an N_p -series $G = D_1 \ge D_2 \ge \cdots$ in the group G. This is known as the Jennings-Lazard-Zassenhaus series.

Let $DL(G) = \bigoplus L_i$ be the Lie algebra over \mathbb{F}_p corresponding to the Jennings-Lazard-Zassenhaus series of G. Here $L_i = D_i/D_{i+1}$. Let $L_p(G) = \langle L_1 \rangle$ be the subalgebra of DL(G) generated by L_1 . The proof of the following lemma can be found in [9]. LEMMA 4.7: Suppose that X is a d-generator finite p-group such that the Lie algebra $L_p(X)$ is nilpotent of class c. Then X has a powerful characteristic subgroup of $\{p, c, d\}$ -bounded index.

Recall that powerful *p*-groups were introduced by Lubotzky and Mann in [13]: a finite *p*-group *G* is powerful if and only if $G^p \ge [G,G]$ for $p \ne 2$ (or $G^4 \ge [G,G]$ for p = 2). These groups have many nice properties, so that often a problem becomes much easier once it is reduced to the case of powerful *p*-groups. The above lemma is quite useful as it allows us to perform such a reduction.

Given a subgroup H of the group G, we denote by L(G, H) the linear span in DL(G) of all homogeneous elements of the form hD_{j+1} where $h \in D_j \cap H$. Clearly, L(G, H) is always a subalgebra of DL(G). Moreover, it is isomorphic with the Lie algebra associated with H using the N_p -series of H formed by $H_j = D_j \cap H$. We also set $L_p(G, H) = L_p(G) \cap L(G, H)$. Let α be any automorphism of the group G. Then α acts naturally on every quotient of the Jennings-Lazard-Zassenhaus series of G. This action induces an automorphism of the Lie algebra DL(G). So when convenient we will consider α as an automorphism of DL(G) (or of $L_p(G)$). Lemma 2.1 implies that if G is finite and $(|G|, |\alpha|) = 1$ then $L_p(G, C_G(\alpha)) = C_{L_p(G)}(\alpha)$.

LEMMA 4.8: Suppose that any Lie commutator in homogeneous elements x_1, \ldots, x_r of DL(G) is ad-nilpotent of index at most t. Let $K = \langle x_1, \ldots, x_r \rangle$ and assume that $K \leq L(G, H)$ for some subgroup H of G satisfying a group identity $w \equiv 1$. Then for some $\{r, t, w, p\}$ -bounded number u we have

$$[DL(G), \underbrace{K, \dots, K}_{r}] = 0.$$

Proof: In view of Lemma 4.4 it is sufficient to show that K has $\{r, t, w, p\}$ -bounded nilpotency class. We know from Proposition 4.6 that K satisfies certain multilinear polynomial identity depending only on w. Thus Theorem 4.1 shows that K has $\{r, t, w, p\}$ -bounded nilpotency class.

5. Proofs of main results

Vol. 126, 2001

Proof of Theorem 1.2: Suppose that we have proved the result for *p*-groups. Choose an A-invariant Sylow *p*-subgroup P of G. Then P' has bounded rank. Since $P \cap G'$ has a bounded number of generators by Theorem 1.4 (in terms of q and m), it follows that $P \cap G'$ has rank bounded in terms of m and q. Then, by Theorem 2.6, the result holds for all groups (with the bound increased by 1). So we assume that G is a p-group. By Lemma 2.3, if N is any normal A-invariant subgroup of G we have $[N, G] = \prod [C_N(a), C_G(a)]$. Therefore [N, G] has at most $d = m(q^2 + q + 1)$ generators. In particular we conclude that any term of the lower central series of G (except possibly G) has at most d generators. Let V be the intersection of kernels of all homomorphisms of G into $\operatorname{GL}_d(F)$, where F is the field with p elements. Set W = V if p is odd and $W = V^2$ if p = 2. Then any characteristic d-generated subgroup of G contained in W is powerful [3, Proposition 2.12]. Since the Sylow p-subgroups of $\operatorname{GL}_d(F)$ are nilpotent of class d-1, it follows that $\gamma_d(G) \leq V$. We know that $\gamma_d(G)$ is d-generated so the image of $\gamma_d(G)$ in G/W has order at most 2^d . Therefore G/W is nilpotent of class at most 2d-1 whence $\gamma_{2d}(G) \leq W$. Since $\gamma_{2d}(G)$ has at most d generators, it becomes clear that $\gamma_{2d}(G)$ is powerful. Thus we conclude that $\gamma_{2d}(G)$ has rank at most d [3, Theorem 2.9]. Since G' has at most d generators, it is easy to see that r, the rank of $G'/\gamma_{2d}(G)$, is d-bounded. But then the rank of G' is at most r + d.

To prove Theorem 1.3 some more preparatory work is required. First note that it suffices to prove that there is a bound on the exponent of $P \cap G'$ for a Sylow *p*-subgroup for each prime *p* (with a bound depending only on *m* and *q*). By Theorem 1.4, the exponent of $(P \cap G')/P'$ is bounded by *m*. Thus, the exponent of $P \cap G'$ is bounded by *mm'* where *m'* is the bound for *p*-groups. Note also that if p > m, $P \cap G' = 1$ and so *p* does not divide |G|'. So in what follows we assume the hypothesis of Theorem 1.3 with *G* being a *p*-group.

LEMMA 5.1: Theorem 1.3 is valid if G is powerful.

Proof: If G is powerful so is G' [3, Exercise 2.1]. Since G' is generated by elements of order dividing m (Lemma 2.3), it follows that the exponent of G' divides m [3, Lemma 2.5].

LEMMA 5.2: Assume G has a characteristic powerful subgroup H of index t. Then the exponent of G' is $\{m, q, t\}$ -bounded.

Proof: We know from the previous lemma that the exponent of H' is $\{m, q\}$ bounded. Factoring out H' we can assume that H is abelian. Then, by Lemma 2.3, [H, G] has exponent dividing m. Passing to the quotient G/[H, G] we can assume that H is central. But then G' has t-bounded order by the Schur Theorem (see [15, Part 1, Theorem 4.12]).

Proof of Theorem 1.3: Let x be any element of G'. By Lemma 2.3, x can be written as a product $x = x_1 \cdots x_s$, where each x_l belongs to some $C_G(a)'$ for a

suitable $a \in A^{\#}$. So $s \leq q^2 + q + 1$. Let Y be the subgroup of G generated by the orbits x_l^A , l = 1, 2, ..., s. Each such orbit contains at most q^2 elements so it follows that Y has at most q^2s generators, each of order dividing m. Since $x \in Y$ and our goal is to bound the order of x, it is sufficient to show that the exponent of Y is $\{m, q\}$ -bounded.

Let $L = L_p(Y)$, $M = Y/\Phi(Y)$. Then M is a subspace of L such that $\langle M \rangle = L$. Of course the dimension of M is at most q^2s . For any $a \in A^{\#}$ we let M_a denote the image of $C_G(a)' \cap Y$ in M. Since Y is generated by x_l^A , it is clear that $M = \sum M_a$, where the summation is taken over all $a \in A^{\#}$. Any Lie commutator in elements of M_a (for a fixed $a \in A^{\#}$) corresponds to a group commutator in elements of $C_G(a)'$. Since $C_G(a)'$ has exponent dividing m, Proposition 4.5 shows that any Lie commutator in elements of M_a is at most q^2s and $C_G(a)'$ satisfies the law $y^m = 1$. Thus, by Lemma 4.8, there exists an $\{m, q\}$ -bounded number u such that

$$(5.3) \qquad \qquad [L, \underbrace{M_a, \dots, M_a}_u] = 0.$$

Let ω be a primitive qth root of unity, and let $\overline{L} = L \otimes \mathbb{F}_p[\omega]$. We will view \overline{L} as a Lie algebra over $\mathbb{F}_p[\omega]$ and L as a subset of \overline{L} . For any \mathbb{F}_p -subspace S of L we write \overline{S} for $S \otimes \mathbb{F}_p[\omega]$. An element of \overline{L} will be called homogeneous if it belongs to \overline{S} for some homogeneous subspace S of L. The group A acts naturally on Land this action extends uniquely to \overline{L} . It is easy to see that $C_{\overline{L}}(a) = \overline{C_L}(a)$ for any $a \in A$. Also recall that $C_L(a) = L_p(Y, C_Y(a))$. The field $\mathbb{F}_p[\omega]$ contains all eigenvalues for any $a \in A$ regarded as a linear transformation of \overline{L} . It follows that any A-invariant subspace of \overline{L} decomposes as a direct sum of 1-dimensional Ainvariant subspaces. Applying this remark to the subspaces $\overline{M_a}$ (for all $a \in A^{\#}$) and using that the algebra \overline{L} is generated by \overline{M} and that the $\mathbb{F}_p[\omega]$ -dimension of \overline{M} is at most q^2s , we can choose vectors v_1, \ldots, v_d with $d \leq q^2s$ such that \overline{M} is spanned by v_1, \ldots, v_d and each of them is a common eigenvector for all $a \in A^{\#}$ lying in $\overline{M_a}$ for some $a \in A^{\#}$. Obviously (5.3) implies that

$$[\overline{L}, \underbrace{\overline{M_a}, \dots, \overline{M_a}}_{u}] = 0$$

so that, in particular, it follows that

(5.4) each of the vectors v_1, \ldots, v_d is ad-nilpotent of index at most u.

We will now show that

there exists an $\{m, q\}$ -number u_1 such that if $l_1, l_2 \in \overline{L}$ are common

(5.5) eigenvectors for all $a \in A$, and if they are homogeneous, then $[l_1, l_2]$ is ad-nilpotent of index at most u_1 .

Really, since l_1, l_2 are common eigenvectors for all $a \in A$, it follows that there exist two maximal subgroups A_1 and A_2 of A such that $l_1 \in C_{\overline{L}}(A_1)$, $l_2 \in C_{\overline{L}}(A_2)$. Let a be a non-identity element in $A_i \cap A_j$. Since $C_G(a)$ has derived group of exponent m, and since $C_L(a) = L_p(Y, C_Y(a))$, Proposition 4.5 shows that any homogeneous element of $[C_L(a), C_L(a)]$ is ad-nilpotent of index at most m. The commutator $[l_1, l_2]$, being a homogeneous element of \overline{L} , can be written as $[l_1, l_2] = y_0 \otimes 1 + y_1 \otimes \omega + \cdots + y_{q-2} \otimes \omega^{q-2}$ for suitable homogeneous elements $y_0, y_1, \ldots, y_{q-1}$ of $[C_L(a), C_L(a)]$. The elements $y_0, y_1, \ldots, y_{q-1}$ correspond to some $g_0, g_1, \ldots, g_{q-1}$ that belong to the derived group of $C_Y(a)$. Set $K = \langle y_0, y_1, \ldots, y_{q-1} \rangle$ and $H = \langle g_0, g_1, \ldots, g_{q-1} \rangle$. Since H has exponent m and $K \leq L(Y, H)$, Lemma 4.8 shows that there exists an $\{m, q\}$ -number u_1 such that

$$[L,\underbrace{K,\ldots,K}_{u_1}]=0.$$

Clearly, this gives us

$$[\overline{L}, \underbrace{\overline{K}, \ldots, \overline{K}}_{u_1}] = 0.$$

Since $[l_1, l_2] \in \overline{K}$, (5.5) follows.

Using Proposition 4.6 and the fact that $C_L(a) = L_p(Y, C_Y(a))$, we conclude that $C_L(a)$ satisfies a certain $\{m, q\}$ -bounded multilinear polynomial identity. This also holds in $C_{\overline{L}}(a) = \overline{C_L(a)}$. Therefore Corollary 4.3 implies that \overline{L} satisfies a certain $\{m, q\}$ -bounded polynomial identity. Combined with (5.4) and with (5.5) this places us in a situation where Theorem 4.1 can be used. Thus we conclude that \overline{L} is nilpotent of $\{m, q\}$ -bounded class. Now Lemma 4.7 yields that Yhas a characteristic powerful subgroup of $\{m, q\}$ -bounded index. By Lemma 5.2 we conclude that Y' has $\{m, q\}$ -bounded exponent. Since Y is generated by elements of order dividing m, it follows that the exponent of Y is $\{m, q\}$ -bounded, as required.

References

- Yu. A. Bahturin and M. V. Zaicev, Identities of graded algebras, Journal of Algebra 205 (1998), 1–12.
- [2] H. Bender, Goldschmidt's 2-signalizer functor theorem, Israel Journal of Mathematics 22 (1975), 208-213.
- [3] J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, Analytic pro-p groups, London Mathematical Society Lecture Note Series 157, Cambridge University Press, 1991.
- [4] G. Glauberman, On solvable signalizer functors in finite groups, Proceedings of the London Mathematical Society 33 (1976), 1-27.
- [5] D. M. Goldschmidt, 2-signalizer functors on finite groups, Journal of Algebra 21 (1972), 321-340.
- [6] D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
- [7] R. Guralnick, On the number of generators of a finite group, Archiv der Mathematik 53 (1989), 521-523.
- [8] E. I. Khukhro, Nilpotent Groups and their Automorphisms, de Gruyter-Verlag, Berlin, 1993.
- [9] E. I. Khukhro and P. V. Shumyatsky, Bounding the exponent of a finite group with automorphisms, Journal of Algebra 212 (1999), 363-374.
- [10] L. Kovács, On finite soluble groups, Mathematische Zeitschrift 103 (1968), 37-39.
- [11] M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Annales Scientifiques de l'École Normale Supérieure 71 (1954), 101–190.
- [12] V. Linchenko, Identities of Lie algebras with actions of Hopf algebras, Communications in Algebra 25 (1997), 3179–3187.
- [13] A. Lubotzky and A. Mann, Powerful p-groups. I: finite groups, Journal of Algebra 105 (1987), 484–505; II: p-adic analytic groups, Journal of Algebra 105 (1987), 506–515.
- [14] A. Lucchini, A bound on the number of generators of a finite group, Archiv der Mathematik 53 (1989), 313-317.
- [15] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin, 1972.
- [16] P. Shumyatsky, On periodic soluble groups and the fixed-point groups of operators, Communications in Algebra 20 (1992), 2815–2820.
- [17] P. Shumyatsky, On periodic solvable groups having automorphisms with nilpotent fixed point groups, Israel Journal of Mathematics 87 (1994), 111-116.
- [18] P. Shumyatsky, Exponent of finite groups admitting an involutory automorphism, Journal of Group Theory 2 (1999), 367-372.

- [19] J. G. Thompson, Finite groups with fixed-point-free automorphisms of prime order, Proceedings of the National Academy of Sciences of the United States of America 45 (1959), 578-581.
- [20] Y. M. Wang and Z. M. Chen, Solubility of finite groups admitting a coprime order operator group, Unione Matematica Italiana. Bollettino 7 (1993), 325-331.
- [21] J. N. Ward, On finite groups admitting automorphisms with nilpotent fixed-point group, Bulletin of the Australian Mathematical Society 5 (1971), 281-282.
- [22] J. N. Ward, On finite soluble groups and the fixed-point groups of automorphisms, Bulletin of the Australian Mathematical Society 5 (1971), 375-378.
- [23] J. N. Ward, On groups admitting a noncyclic abelian automorphism group, Bulletin of the Australian Mathematical Society 9 (1973), 363-366.
- [24] J. S. Wilson and E. Zelmanov, Identities for Lie algebras of pro-p groups, Journal of Pure and Applied Algebra 81 (1992), 103-109.
- [25] E. Zelmanov, Nil Rings and Periodic Groups, The Korean Mathematical Society Lecture Notes in Mathematics, Seoul, 1992.