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ABSTRACT

Let A be an elementary abelian g-group acting on a finite ¢’-group G. We
show that if A has rank at least 3, then properties of Cg(a)',1 #a € A
restrict the structure of G'. In particular, we consider exponent, order,
rank and number of generators.

1. Introduction

Let g be a prime, and A be an elementary abelian ¢-group acting on a finite
q'-group G. Tt has been known for some time that if Cq(a) satisfies certain
“smallness” conditions for each a € A# then the whole group G has a similar
property. To exemplify this we cite the following results.

The first result is a celebrated theorem of Thompson [19].

1. If A is cyclic and Cg(A) = 1, then G is nilpotent.
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The next result is an easy consequence of the classification of finite simple
groups [20]. There is a somewhat more precise version of the result, but note
that it is not true that if A is cyclic and Cg(A4) is solvable, then G is solvable
(consider Ly(27)).

2. If B is a group of automorphisms of G whose order is coprime to that of G
and Cg(B) is nilpotent or has odd order, then G is solvable.

For the rest of the paper, we assume that A is noncyclic.

Let m be a positive integer.

3. If Cg(a) has order at most m for each a € A¥ then the order of G is at
most m?t1.

This follows from the well-known facts that A normalizes some Sylow
p-subgroup of G for any p € 7(G) and if G is a p-group then G = [] ¢ 44 Ca(a)
([6, Theorem 6.2.2, Theorem 5.3.16]). We also use that if A is of rank 2 then it
has exactly g + 1 cyclic subgroups.

Recall that the rank of a finite group is the maximum number of generators
required for any subgroup.

4. If Cg(a) has rank at most m for each a € A¥ then the rank of G is
{m, q}-bounded.

This can be shown as follows. Let P be any A-invariant Sylow p-subgroup of
G and H any A-invariant subgroup of P. Since H =[], 4» Cr(a), we conclude
that H is generated by at most d = m(g+ 1) elements. Let V be the intersection
of kernels of all homomorphisms of P into GL4(F'), where F is the field with p
elements. Set W = V if pis odd and W = V2 if p = 2. Then any characteristic d-
generated subgroup of P contained in W is powerful [3, Proposition 2.12]. Since
the Sylow p-subgroups of GL4(F) are nilpotent of class d — 1, it follows that
v¢(P) < V. We know that v4(P) is d-generated so the image of v4(P) in P/W
has order at most 2¢. Therefore P/W is nilpotent of class at most 2d — 1 whence
y24(P) < W. Since y24(P) has at most d generators, it becomes clear that y24(P)
is powerful. Thus we conclude that y24(P) has rank at most d [3, Theorem 2.9].
Since P has at most d generators, the rank of P/v.4(P) is d-bounded. Then so
is the rank of P. Let r be the maximum of ranks of Sylow p-subgroups of G,
where p ranges through 7(G). Since A normalizes some Sylow p-subgroup of G
for any p € (@), it follows that r is {m, ¢}-bounded. But the rank of G is at
most r + 1 {10, 7, 14] and we are done.

5. If Cg(a) has exponent at most m for each a € A¥ then the exponent of G
is {m, g}-bounded.

This was proved in [9].
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In this paper we impose conditions on the derived groups of Cg(a) and
investigate the effect on the structure of G'.

THEOREM 1.1: Let m be an integer, ¢ a prime. Let G be a finite ¢'-group
acted on by an elementary abelian group A of order ¢*. Assume that C;(a) has
derived group of order at most m for each a € A¥. Then the order of G' is
{m, q}-bounded.

THEOREM 1.2: Let m be an integer, q a prime. Let G be a finite ¢'-group acted
on by an elementary abelian group A of order ¢°. Assume that Cg{a) has derived
group of rank at most m for each a € A*. Then the rank of G' is {m, q}-bounded.

THEOREM 1.3: Let m be an integer, ¢ a prime. Let G be a finite ¢'-group
acted on by an elementary abelian group A of order ¢3. Assume that C(a) has
derived group of exponent dividing m for each a € A*. Then the exponent of G’
is {m, ¢}-bounded.

Each of the above theorems fails if |A| = ¢*. Indeed, let G be a finite ¢'-group
admitting a non-cyclic automorphism group A of order ¢? such that Cg(a) is
abelian for each a € A*. Ward showed that G is necessarily solvable [23]. The
second author proved that if G has derived length k then G’ is nilpotent of class
bounded by some function of ¢ and k [17]. However the derived length k can
be arbitrarily large. For instance, for any odd prime p Khukhro constructed a
p-group G of derived length bigger than log,(p — 1) acted on by a four-group 4
such that Cg(a) is abelian for each a € A# [8, pp. 149-150]. Thus Theorems
1.1 and 1.3 fail in the case |A| = ¢?. Direct products of such groups show that
in this case G' can have arbitrarily large rank. So the assumption that |A4| = ¢3
is essential in each of the above theorems. This seems to be a part of a more
general phenomenon: if a certain property of Cg(e) for all @ € A# implies
a similar property for the whole group G then the property of Cg(a)' for all
a € A* implies a similar property for G’ provided that the rank of A increases
by 1. To illustrate this we mention the following results of Ward: if |A| = ¢® and
Cq(a) is nilpotent for each a € A% then G is likewise nilpotent [21]; if |A| = ¢*
and Cg(a)' is nilpotent for each a € A¥ then G’ is nilpotent [22]. Both of these
results have been extended in {16} to the case where G is allowed to be periodic
solvable.

It is also worth noting that proofs of the results 3-5 mentioned above reduce
very easily to the case of p-groups. This is no longer true for the results in this
paper. We need to prove the following result of independent interest:
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THEOREM 1.4: Let q be a prime. Let G be a finite ¢'-group acted on by an
elementary abelian group A of order ¢*. Let P be an A-invariant Sylow subgroup
of G. Then PNG' = (PN Cq(a)|a € A¥*).

Our proof of this result involves the classification of finite simple groups. The
fact we use is that any group of coprime automorphisms of a finite simple group
is ¢yclic. Once Theorem 1.4 is proved we deal with the case of p-groups using Lie
methods. The techniques developed by Zelmanov in his solution of the Restricted
Burnside Problem are particularly helpful.

2. Preliminaries

The first two lemmas are well-known (see for example [6, 6.2.2, 6.2.4}).

LEMMA 2.1: Let A be a group of automorphisms of the finite group G with
(141G = 1.
1. If N is any A-invariant normal subgroup of G we have Cg/n(A) =
Co(A)N/N;
2. If H is an A-invariant p-subgroup of G, then H is contained in an A-
invariant Sylow p-subgroup of G;
3. C(A) is transitive on the set of A-invariant Sylow p-subgroups of G;
4. If P is an A-invariant Sylow p-subgroup of G, then Cp(A) is a Sylow p-
subgroup of Cg(A).

LEMMA 2.2: Let q be a prime, G a finite ¢'-group acted on by an elementary
abelian g-group A of rank at least 2. Let A;,..., A; be the maximal subgroups
of A. If H is an A-invariant subgroup of G we have H = (Cy(41),...,Cu(4,)).

LEMMA 2.3: Let q be a prime, G a finite ¢'-group acted on by an elementary
abelian g-group A of rank at least 3. If N is any A-invariant normal subgroup
of G then [N,G] = {[Cn(a),Cg(a)lla € A#). If[N,G] is nilpotent then [N,G] =
[1[Cn(a),Ce(a)], where the product is taken over all a € A¥.

Proof: Let Ay,...,As be the maximal subgroups of A. By Lemma 2.2, G =
(Ca(A1),-..,Cq(As)) and N = (Cn(A1),...,Cn(As)). Consider the subgroup
R = ([Cn(4;),Ce(Aj)]I1 < i,j < s). Obviously R is A-invariant so R =
(Cr(A1),...,Cr(As)). To show that R is normal it is sufficient to establish
that y° € R for any y € Cr(A4;) and z € Cg(4,). We have y* = y*y ™'y and
obviously both y*y~! and y belong to R. Hence y* € R and R is normal. Using
that G = (Cg(A1),...,Cc(4,)) and N = (Cn(41),...,Cn(A)) it is now easy
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to see that the image of N in G/R is central whence R = [N,G]. Since the
intersection A; N A; cannot be trivial (the rank of A is at least 3), it follows that
any subgroup of the form [Cn(A;),Cg(4;)] is contained in [Cn(a),Cg(a)] for
some a € A# so that [N,G] = ([Cn(a),Cg(a)]la € A#).

Assume now that [N, G] is nilpotent of class ¢. If [N,G] is abelian then the
factorization [N, G] = [[[Cn(a), Cs(a)] is immediate so we assume that ¢ > 2
and use induction on c. Set

M =[[N,G],...,|N,G].

c—1

Then [M,[N,G]] is central in [N, G]. Let H denote the image of any subgroup H
of G in G/[M,[N,G]]. By the inductive hypothesis [N,G] = [[[Cx(a),Ca(a)].
Since [M, [N, G]] is abelian, it is clear that

[M,[N,G]] = [[[Cm(a), [Cn(a), Cs(a)])-

Using that each subgroup [Cps(a),[Cn(a), C(a)]] is central in [N, G], the result
follows. |

COROLLARY 2.4: Assume the hypothesis of the previous lemma. If G' is
nilpotent then G' = [[ Cg(a)’, where the product is taken over all a € A¥.

LEMMA 2.5: Let G be a finite group and N a normal perfect subgroup. Let
P be a Sylow p-subgroup of G. Let R = PN N and H = Ng(R). Then
PnG =R(PNH").

Proof: By the Frattini argument, G = HN and so G' = H'N. Thus, HNG' =
H'(HNN). Hence H'R contains a Sylow p-subgroup of H N G'. Since H'R is
normal in H N G’, this implies it contains every Sylow p-subgroup of HNG'. In
particular, PNG' = PN H'R= (PN H')R. |

Let d(H) denote the minimal size of a generating set for H. Let the rank of
H be the maximum of d(K) as K ranges over all subgroups K.

The following result is an immediate consequence of a result obtained indepen-
dently by the first author [7] and Lucchini [14]. It depends on the classification
of finite simple groups. The result for solvable groups was obtained by Kovécs
[10].
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THEOREM 2.6: Let G be a finite group.
() d(G) <14 max,{d(P)| P a Sylow p-subgroup of G}.
(b) rank(G) < 1+ max,{rank(P)| P a Sylow p-subgroup of G}.

Proof: The theorem cited above is precisely (a). Applying this to every subgroup
proves (b). |

We need one further result that is dependent upon the classification of finite
simple groups.

LEMMA 2.7: Let S be a finite simple group and T a group of automorphisms of
S with (|T|,|S|) = 1. Then T is cyclic.

Proof: If S is alternating or sporadic, then Out(S) has order dividing 4, and |S|
has even order.

If S is a Chevalley group, then Out(S) has a normal series N7 < N2 < Out(S)
with N; consisting of diagonal automorphisms, Ns/N; cyclic (corresponding to
field automorphisms) and with the final quotient being the group of graph auto-
morphisms. Only, N2/N; can be divisible by primes not dividing |S|. Thus, T
embeds in Ny /N; and is cyclic. |

We point out some easy consequences of the previous result. See [20]. We will
not be using these results in the remainder of the article.

COROLLARY 2.8: Let A be a group of automorphisms of the finite group G with
(IG],14]) = 1.
1. If Cg(A) is solvable and has no section isomorphic to S3, A4 or Sz(2), then
G is solvable;
2. If A is not cyclic of prime power order and C(a) is solvable for all a € A%,
then G is solvable.

Proof: The first statement follows by an elementary standard reduction argu-
ment. Taking G to be minimal, we may assume that G is a direct product of
simple groups and that A acts transitively on the simple direct factors. If B
is the normalizer of one of the factors L, then Cg(A) = Cr(B) and so we are
reduced to the case that G is simple. It follows that A is a cyclic group of field
automorphisms. The only cases where C4(G) is solvable is when G = Ly(r®)
with » = 2 or 3, U3(2°) or Sz(2¢) and A is the full group of field automorphisms.
Inspection of these cases yields the result.

We now prove the second statement. Let G be a minimal counterexample. Let
N be a minimal normal A-invariant subgroup of G. If N is solvable, we may pass
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to G/N. So N is a direct product of simple groups and A permutes the simple
direct factors transitively. Thus, G = N.

Let L be one of the factors. Suppose that a € A has prime order ¢ and does
not normalize L. Then L = {zz®---2* | z € L} < Cg(a) is not solvable. So
every element of prime order fixes L {and each A-conjugate of L). By the simple
case, we see that N4(L) must be cyclic of prime order ¢ (because for any proper
subgroup of N4(L), the centralizer would not be solvable). It follows that 4 is a
g-group and is either cyclic (g odd) or generalized quaternion (if ¢ = 2). Since we
are assuming that A is not cyclic of prime power order and has order relatively
prime to |L|, we have a contradiction. |

The second part of the previous result can be proved without the classification
if A is abelian of rank 3 by results on solvable signalizer functors. See [4], [5], [2].

3. A generation result

Throughout this section, let G be a finite group and A an elementary abelian
g-group of order ¢¢, ¢ a prime not dividing the order of G.
Our goal is to prove Theorem 1.4 which we restate for convenience.

THEOREM 3.1: Assume e > 3. Let P be an A-invariant Sylow subgroup of G;
then PNG' = {Cg(a) N P|a € A#).

Before we prove Theorem 1.4, we note some easy consequences including the
proof of Theorem 1.1.

COROLLARY 3.2: Assumee > 3. Let P be an A-invariant Sylow subgroup of G;
then PNG' = ([z,y] € P| z € Cp(a),y € Cg(a),a € A#).

Proof: This follows from the theorem and the Focal Subgroup Theorem [6]
which describes PN Cg(a)'. ]

COROLLARY 3.3: Assume e > 3. Then n(G') = (J,c 4+ 7(C(a)").

COROLLARY 3.4: Ife > 3, then G' = ({Cg(a)'| a € A#).

Since a rank 3 elementary abelian g-group has ¢ + ¢ + 1 nontrivial cyclic
subgroups, the next result follows immediately.

COROLLARY 3.5: Ife > 3 and Cg(a) can be generated by at most m elements
for each nontrivial a € A, then G' can be generated m(q® + g + 1) elements.
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We can now prove a somewhat more precise version of Theorem 1.1. Note that
there is an analogous result for the order of a Sylow p-subgroup of G' in terms
of the maximal order of a Sylow p-subgroup of Cg(a)'.

THEOREM 3.6: Let m be an integer, q a prime. Let G be a finite ¢’'-group acted
on by an elementary abelian group A of order ¢*. Assume that Cg(a) has derived
group of order at most m for each a € A*. Then |G'| < m2(@*+a+1),

Proof: Let P be an A-invariant Sylow p-subgroup of G. Let A denote the
set of nontrivial cyclic subgroups of A. For each B € A, let mp = |Ce(B)'|
and mp(p) be the order of the Sylow p-subgroup of Cg(B)’. By Lemma 2.1,
mp(p) = |P N Ca(B)|.

By Lemma 2.3, |P'| < [[gca mB(p). By Theorem 3.1,

PG| < |P'| [] ms) < [[ msp)*
BeA BeA
Thus,

6" < I me@? < [[mh <m@+eD. g
p,BEA B

In order to prove the other main theorems, we will need to consider the p-group
case more closely.

We now prove the theorem. We first handle the case of direct products of
simple groups. Let H* denote the final term in the derived series for H.

LEMMA 3.7: Assume that G is a direct product of nonabelian simple groups.
Let P be an A-invariant Sylow p-subgroup of G. If e > 2, then

P = (Cg(a)® N P|ac A%).

Proof: We may assume that A is transitive on the direct factors of G. Consider
the stabilizer of one these factors L. If this stabilizer has order at least ¢2, then
as the Sylow g-subgroup of Aut(L) is cyclic by Lemma 2.7, it follows that there
is a nontrivial subgroup Ag of A which centralizes L. Since A is abelian, Ag
centralizes L® for all a € A. Since A is transitive on the direct factors of G, this
implies that Ay centralizes G, whence the result is clear.

So there exists a subgroup B of A of order ¢* which fixes no direct factor
L% a € A. Let H be the direct product of these ¢* factors. We will show that
PN H = (PN C(a)*®| a € B¥) which implies the result.

Identifying the various direct factors by the action of B, we may assume that
B acts by permuting the coordinates of the ¢* copies of L. Then we see that for
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1 #a € B, Cy(a) is just q copies of L (one copy for each a-orbit). In particular,
Cr/(a) is perfect.
By Lemma 2.2, we know that

PNH=(PNnC(a)ac B =(PNC(a)*®la€ B*). 1

We now complete the proof of Theorem 3.1.

Proof of Theorem 3.1: Set B = (Cg(a)' N P}a € A*). Clearly, PNG’ > B. So
we only need the opposite inclusion.

Let G be a counterexample of minimal order.

If G’ = 1, there is nothing to prove. Let N be a normal subgroup of G which
is A-invariant and which is minimal with respect to these properties. So N is
characteristically simple.

By Lemma 2.1, Cg/n(a) = C(a)’N/N. Thus, by minimality PN NG’ =
(C(a))N N PN| a € A#*). Since a has order prime to |G|, it follows that
C(a)) NN P < Cp(a)N. It also follows that Cp(a) is a Sylow p-subgroup of
C(a) and so PN C(a) is a Sylow p-subgroup of C(a)'.

First suppose that N is a p'-group. Thus, PN C(a)' is a Sylow p-subgroup of
C(a)N and so PNNC(a))N = (PN C(a)')N. So

PN NG ={(Cla) N P)N|a € A*) = BN,

whence PNG' = B.

Next suppose that N is perfect and R := PN N is nontrivial. Let H = Ng(R).
Then H is a proper subgroup of G and is A-invariant. So by minimality, PNH' <
B. By Lemma 2.5, PNG' = (PN H')R. By the previous result, R < B and so
PN @G < B as required.

So we may assume that N is a p-group and so is contained in P. Indeed, it
follows that every minimal normal subgroup is a p-group. Moreover, we may
assume that N is contained in G’ (otherwise G' = 1 and there is nothing to
prove).

Thus, PN NC(a)’N = (PNC(a) )N and (PNG’') < B(PNN). So it suffices
to prove that NV < B.

If N is not central in G, then by Lemma 2.3,

N =[N,G] = ([On(a),Cs(a)]l a € A*) < B

and the result holds.
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If G is not perfect and G” # 1, then we may choose N < G". By minimality,
N < B and the result follows.

If G = 1, then G' is an abelian p-group. Then Lemma 2.3 implies that
PNnG' =G = HQ{CG(GLCG(G)] < B.

So we are reduced to the case that G is perfect.

If N < &(P), the Frattini subgroup of P, then P = PNG' = B®(P) = B as
required.

If N is not disjoint from ®(P), then we can choose an A-invariant complement
to NN &(P) in N, contradicting the minimality of N.

Now choose Z < N of order p. Since Z is not contained in the Frattini subgroup
of P, it follows that P = Z x M for some maximal subgroup M of P; i.e. the
sequence

1-Z->P—>P/Z->1

splits.
Consider the sequence

122-5G->G/Z-> 1.

This corresponds to an element 3 € H?(G/Z,Z). The fact that the sequence
above splits indicates that 3 = 0in H%(P/Z, Z). Since P/Z is a Sylow p-subgroup
of G/Z, the restriction mapping from H%(G/Z,Z) to H?(P/Z, Z) is injective and
so B =0in H*(G/Z,Z), whence Z is complemented in G. This implies that Z
is not contained in G’, a contradiction, since Z < N < G'. |

4. Some Lie-theoretic machinery

Let L be a Lie algebra over a field . Let k,n be positive integers and let
Z1,%2,...,Tk, T,y be elements of L. We define inductively

[xl] = T1, [$1,£L‘2,. .. 7$k] = [[.2'1,.'1?2,- .. »mk—l]vxk]

and
[2,09] =25 [2,03] = [z, n-19),y)-

An element a € L is called ad-nilpotent if there exists a positive integer n such
that [z, ,a] = 0 for all z € L. If n is the least integer with the above property
then we say that a is ad-nilpotent of index n. Let X C L be any subset of
L. By a commutator in elements of X we mean any element of L that can be
obtained as a Lie product of elements of X with some system of brackets. Denote
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by F the free Lie algebra over £ on countably many free generators z,zs,.. ..
Let f = f(z1,22,...,2,) be a non-zero element of F. The algebra L is said to
satisfy the identity f = 0 if f(a1,a»,...,a,) = O for any a;1,a9,...,a, € L. In
this case we say that L is PI. A deep result of Zelmanov says that if a Lie algebra
L is PI and is generated by finitely many elements all commutators in which
are ad-nilpotent, then L is nilpotent [25, IT1I(0.4)]. Using this and some routine
universal arguments, the next theorem can be deduced (see [9]).

THEOREM 4.1: Let L be a Lie algebra over a field € generated by a;,as,...,an.
Assume that L satisfies an identity f = 0 and that each commutator in the

generators a,, s, - . . , Gy, is ad-nilpotent of index at most n. Then L is nilpotent
of {f,n,m,}-bounded class.

An important criterion for a Lie algebra to be PI is the following

THEOREM 4.2 (Bahturin-Linchenko-Zaicev): Let L be a Lie algebra over a field
t. Assume that a finite group A acts on L by automorphisms in such a manner
that Cr(A), the subalgebra formed by fixed elements, is P1. Assume further that
the characteristic of € is either 0 or prime to the order of A. Then L is PL

This theorem was proved by Bahturin and Zaicev for solvable groups A [1] and
extended by Linchenko to the general case [12].

COROLLARY 4.3 ([18]): Let F the free Lie algebra of countable rank over &.
Denote by F* the set of non-zero elements of F. For any finite group A there
exists a mapping

¢: F* — F*
such that if L and A are as in Theorem 4.2, and if Cp,(A) satisfies an identity
f =0, then L satisfies the identity ¢(f) = 0.

The following lemma, is quite helpful.

LEMMA 4.4 (]9]): Suppose that L is a Lie algebra, K a subalgebra of L generated
by r elements hy, ..., h, such that all commutators in the h; are ad-nilpotent in
L of index t. If K is nilpotent of class c, then for some {r,t, c}-bounded number
u we have

[L,K,...,K]=0.
———
u
We now turn to groups. Throughout the rest of the section p will denote an
arbitrary but fixed prime. Let G be any group. A series of subgroups

(%) G=Gi12>2Gy >
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is called an Np-series if [G;,G;] < Git; and GF < Gy, for all 4,j. To any N,-
series (*) of a group G one can associate a Lie algebra L*(G) over F,, the field
with p elements. Let us briefly describe the construction.

Given an Np-series (*), let us view the quotients L} = G;/Gi;1 as linear
spaces over F,, and let L*(G) be the direct sum of these spaces. Commutation
in G induces a binary operation [,] in L. For homogeneous elements Gy, €
L},yGj+1 € L} the operation is defined by

[Gi+1,YG 1] = [2,y]Girjr1 € Liy;

and extended to arbitrary elements of L*(G) by linearity. It is easy to check that
the operation is well-defined and that L*(G) with the operations + and [,] is a
Lie algebra over F,.

We are now concerned with the relationship between G and L*(G). For any
z € G; ~Git1 let £* denote the element £G;y of L*(G).

ProprosITION 4.5 (Lazard, [11]): For any ¢ € G we have (adz*)? = ad (z?)*.
Consequently, if x is of finite order p* then z* is ad-nilpotent of index at most p.

Let Fr denote the free group on free generators 1, s, ..., and choose a non-
trivial element w = w(z1,22,...,%s) € Fr. We say that a group G satisfies the
identity w = 1 if w(g1,92,...,9s) = 1 for any ¢1,92,...,9s € G. The following
proposition can be deduced from the proof of Theorem 1 in the paper of Wilson
and Zelmanov [24]

PROPOSITION 4.6: Let G be a group satisfying an identity w = 1. Then there
exists a non-zero multilinear Lie polynomial f over F, depending only on p and
w such that for any Np-series (¥) of G the algebra L*(G) satisfies the identity
f=o.

In fact Wilson and Zelmanov describe in [24] an effective algorithm allowing
one to write f explicitly for any p and w, but we do not require this.

In general a group G has many Np-series. The series described below is par-
ticularly important. To simplify the notation we write 7; for ,(G). Set D; =
Di(G) = ij"Zi 'yfk. The subgroups D; form an N,-serites G = D; > Dy > ---
in the group G. This is known as the Jennings-Lazard-Zassenhaus series.

Let DL(G) = @ L; be the Lie algebra over F, corresponding to the Jennings-
Lazard-Zassenhaus series of G. Here L; = D;/D;y1. Let L,(G) = (L1) be the
subalgebra of DL(G) generated by L;. The proof of the following lemma can be
found in [9)].
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LEMMA 4.7: Suppose that X is a d-generator finite p-group such that the Lie
algebra L,(X) is nilpotent of class ¢. Then X has a powerful characteristic
subgroup of {p, ¢,d}-bounded index.

Recall that powerful p-groups were introduced by Lubotzky and Mann in [13}:
a finite p-group G is powerful if and only if G? > [G,G] for p # 2 (or G* > |G, G]
for p = 2). These groups have many nice properties, so that often a problem
becomes much easier once it is reduced to the case of powerful p-groups. The
above lemma, is quite useful as it allows us to perform such a reduction.

Given a subgroup H of the group G, we denote by L(G, H) the linear span in
DL(G) of all homogeneous elements of the form hD;,; where h € D;NH. Clearly,
L(G, H) is always a subalgebra of DL(G). Moreover, it is isomorphic with the
Lie algebra associated with H using the N,-series of H formed by H; = D; N H.
We also set L,(G,H) = L,(G) N L(G,H). Let o be any automorphism of the
group G. Then a acts naturally on every quotient of the Jennings-Lazard-
Zassenhaus series of G. This action induces an automorphism of the Lie algebra
DL(G). So when convenient we will consider « as an automorphism of DL(G)
(or of Ly(G)). Lemma 2.1 implies that if G is finite and (|G|,|a]) = 1 then
Ly(G,Cq(a)) = Cr,q)(@)-

LEMMA 4.8: Suppose that any Lie commutator in homogeneous elements
z1,...,&r of DL(G) is ad-nilpotent of index at most t. Let K = (z1,...,%,)
and assume that K < L{G, H) for some subgroup H of G satisfying a group
identity w = 1. Then for some {r,t,w, p}-bounded number u we have

[DL(G),K,...,K] = 0.
N
u
Proof: In view of Lemma 4.4 it is sufficient to show that K has {r,{,w,p}-
bounded nilpotency class. We know from Proposition 4.6 that K satisfies certain
multilinear polynomial identity depending only on w. Thus Theorem 4.1 shows
that K has {r,t,w, p}-bounded nilpotency class. ]

5. Proofs of main results

Proof of Theorem 1.2: Suppose that we have proved the result for p-groups.
Choose an A-invariant Sylow p-subgroup P of G. Then P’ has bounded rank.
Since P NG’ has a bounded number of generators by Theorem 1.4 (in terms of
g and m), it follows that P N G’ has rank bounded in terms of m and ¢. Then,
by Theorem 2.6, the result holds for all groups (with the bound increased by 1).
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So we assume that G is a p-group. By Lemma 2.3, if N is any normal A-
invariant subgroup of G we have [N, G] = [[[Cn(a), Ca(a)]. Therefore [N, G] has
at most d = m(q® + ¢ + 1) generators. In particular we conclude that any term
of the lower central series of G (except possibly G) has at most d generators. Let
V be the intersection of kernels of all homomorphisms of G into GL4(F'), where
F is the field with p elements. Set W = V if pis odd and W = V2 if p = 2.
Then any characteristic d-generated subgroup of G contained in W is powerful
[3, Proposition 2.12]. Since the Sylow p-subgroups of GLy4(F) are nilpotent of
class d — 1, it follows that v4(G) < V. We know that v4(G) is d-generated so the
image of 74(G) in G/W has order at most 2¢. Therefore G/W is nilpotent of
class at most 2d — 1 whence y24(G) < W. Since 724(G) has at most d generators,
it becomes clear that v24(G) is powerful. Thus we conclude that y24(G) has rank
at most d [3, Theorem 2.9]. Since G’ has at most d generators, it is easy to see
that r, the rank of G’ /v24(G), is d-bounded. But then the rank of G' is at most
r+d. ]

To prove Theorem 1.3 some more preparatory work is required. First note that
it suffices to prove that there is a bound on the exponent of P NG’ for a Sylow
p-subgroup for each prime p (with a bound depending only on m and ¢). By
Theorem 1.4, the exponent of (PNG')/P’ is bounded by m. Thus, the exponent
of PNG' is bounded by mm' where m/' is the bound for p-groups. Note also that
if p>m, PNG' =1 and so p does not divide |G|’. So in what follows we assume
the hypothesis of Theorem 1.3 with G being a p-group.

LEMMA 5.1: Theorem 1.3 is valid if G is powerful.

Proof: If G is powerful so is G' [3, Exercise 2.1]. Since G’ is generated by
elements of order dividing m (Lemma 2.3), it follows that the exponent of G’
divides m [3, Lemma 2.5). n

LEMMA 5.2: Assume G has a characteristic powerful subgroup H of index t.
Then the exponent of G' is {m, q,t}-bounded.

Proof:  We know from the previous lemma that the exponent of H' is {m,¢}-
bounded. Factoring out H' we can assume that H is abelian. Then, by Lemma
2.3, [H,G] has exponent dividing m. Passing to the quotient G/[H,G] we can
assume that H is central. But then G' has ¢-bounded order by the Schur Theorem
(see [15, Part 1, Theorem 4.12]).

Proof of Theorem 1.3: Let x be any element of G'. By Lemma 2.3, £ can be
written as a product x = z; - -z, where each z; belongs to some Cg(a)' for a
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suitable a € A#. So s < ¢ + ¢ + 1. Let Y be the subgroup of G generated by
the orbits :1:,‘4, 1=1,2,...,s. Each such orbit contains at most ¢> elements so it
follows that ¥ has at most g%s generators, each of order dividing m. Sincez € Y
and our goal is to bound the order of z, it is sufficient to show that the exponent
of Y is {m, ¢}-bounded.

Let L =L,(Y), M =Y/®(Y). Then M is a subspace of L such that (M) = L.
Of course the dimension of M is at most ¢>s. For any a € A#* we let M,
denote the image of C(a)'NY in M. Since Y is generated by z;!, it is clear that
M =" M,, where the summation is taken over all a € A¥. Any Lie commutator
in elements of M, (for a fixed @ € A#) corresponds to a group commutator in
elements of C(a)’. Since C¢(a)' has exponent dividing m, Proposition 4.5 shows
that any Lie commutator in elements of M, is ad-nilpotent of index at most m.
We know that the dimension of M, is at most ¢°s and Cg(a)' satisfies the law
y™ = 1. Thus, by Lemma 4.8, there exists an {m, ¢}-bounded number u such
that

(5.3) [L,M,,...,M,] =0.

Let w be a primitive gth root of unity, and let L = L ® F, [w]. We will view T as
a Lie algebra over F,[w] and L as a subset of L. For any F,-subspace S of L we
write S for S ® F,[w]. An element of T will be called homogeneous if it belongs
to S for some homogeneous subspace S of L. The group A acts naturally on L
and this action extends uniquely to L. It is easy to see that Cr(a) = Cr(a) for
any a € A. Also recall that Cp(a) = L,(Y,Cy(a)). The field F,[w] contains all
eigenvalues for any a € A regarded as a linear transformation of L. It follows that
any A-invariant subspace of L decomposes as a direct sum of 1-dimensional A-
invariant subspaces. Applying this remark to the subspaces M, (for all a € A#)
and using that the algebra L is generated by M and that the F, [w]-dimension of
M is at most ¢°s, we can choose vectors vy, ..., vy with d < ¢2s such that M is
spanned by vy, ...,vs and each of them is a common eigenvector for all a € A#
lying in M, for some a € A¥. Obviously (5.3) implies that

[L,M,,...,M,]=0
—— —

u

so that, in particular, it follows that

(5.4) each of the vectors vy,...,vq is ad-nilpotent of index at most u.
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We will now show that

there exists an {m, ¢}-number u, such that if {;,l5 € L are common
(5.5) eigenvectors for all a € A, and if they are homogeneous, then {i1,l;] is

ad-nilpotent of index at most u;.

Really, since l1,ls are common eigenvectors for all a € A, it follows that
there exist two maximal subgroups A; and A; of A such that I; € Cz(A41),
ly € Cy(A2). Let a be a non-identity element in A; N A;. Since Cg(a) has
derived group of exponent m, and since Cr(a) = L,(Y, Cy(a)), Proposition 4.5
shows that any homogeneous element of [CL(a),Cr(a)] is ad-nilpotent of index
at most m. The commutator [I;, /2], being a homogeneous element of L, can be
written as [l1, ] =y @1+ Quw+ -+ yg-2 ® w92 for suitable homogeneous
elements yo,y1,...,¥g—1 of [Cr{a),Cr(a)}. The elements yo,¥1,...,yq—1 corre-
spond to some go, g1, .- .,9,—1 that belong to the derived group of Cy(a). Set
K = (yo,y1,--,Yq—1) and H = (g0, 91,...,9¢-1). Since H has exponent m and
K < L{Y,H), Lemma 4.8 shows that there exists an {m, ¢}-number u; such that

[L,K,...,K]=0.

Clearly, this gives us

Since [l1,12] € K, (5.5) follows.

Using Proposition 4.6 and the fact that Cp(a) = Lp(Y,Cy(a)), we conclude
that Cr(a) satisfies a certain {m,¢}-bounded multilinear polynomial identity.
This also holds in C¢{a) = Cr(a). Therefore Corollary 4.3 implies that I satis-
fies a certain {m, q}-bounded polynomial identity. Combined with (5.4) and with
(5.5) this places us in a situation where Theorem 4.1 can be used. Thus we con-
clude that L is nilpotent of {m, ¢}-bounded class. Now Lemma 4.7 yields that ¥’
has a characteristic powerful subgroup of {m, ¢}-bounded index. By Lemma 5.2
we conclude that Y’ has {m, ¢}-bounded exponent. Since Y is generated by ele-
ments of order dividing m, it follows that the exponent of Y is {m, ¢}-bounded,
as required. 1
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