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ABSTRACT 

Let A be an elementary abelian q-group acting on a finite q~-group G. We 

show that  if A has rank at least 3, then properties of Ca(a) ~, 1 ¢ a E A 
restrict the s tructure of G ~. In particular, we consider exponent,  order, 

rank and number  of generators. 

1. I n t r o d u c t i o n  

Let q be a prime, and A be an elementary abelian q-group acting on a finite 

q~-group G. It has been known for some time that  if CG(a) satisfies certain 

"smallness" conditions for each a E A # then the whole group G has a similar 

property. To exemplify this we cite the following results. 

The first result is a celebrated theorem of Thompson [19]. 

1. If A is cyclic and Ca (A) = 1, then G is nilpotent. 
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The next result is an easy consequence of the classification of finite simple 

groups [20]. There is a somewhat more precise version of the result, but note 

that it is not true that if A is cyclic and CG (A) is solvable, then G is solvable 

(consider L2(2q)). 

2. If B is a group of automorphisms of G whose order is coprime to that of G 

and CG(B) is nilpotent or has odd order, then G is solvable. 

For the rest of the paper, we assume that A is noncyclic. 

Let m be a positive integer. 

3. If Ca(a) has order at most m for each a C A # then the order of G is at 

most m q+l . 

This follows from the well-known facts that A normalizes some Sylow 

p-subgroup of G for any p e r (G)  and if G is a p-group then G = II~eA# Ca(a) 
([6, Theorem 6.2.2, Theorem 5.3.16]). We also use that if A is of rank 2 then it 

has exactly q + 1 cyclic subgroups. 

Recall that the rank of a finite group is the maximum number of generators 

required for any subgroup. 

4. If Ca(a) has rank at most m for each a C A # then the rank of G is 

{m, q}-bounded. 

This can be shown as follows. Let P be any A-invariant Sylow p-subgroup of 

G and H any A-invariant subgroup of P.  Since H = rIacA# CH(a), we conclude 

that  H is generated by at most d = m(q + 1) elements. Let V be the intersection 

of kernels of M1 homomorphisms of P into GLd(F), where F is the field with p 

elements. Set W = V i fp  is odd and W = V 2 i fp  = 2. Then any characteristic d- 

generated subgroup of P contained in W is powerful [3, Proposition 2.12]. Since 

the Sylow p-subgroups of GLd(F) are nilpotent of class d -  1, it follows that 

~/d(P) <_ V. We know that ~d(P) is d-generated so the image of ~/d(P) in P/W 
has order at most 2 d. Therefore P/W is nilpotent of class at most 2 d -  1 whence 

72d(P) _ W. Since "~2d(P) has at most d generators, it becomes clear that 72d(P) 

is powerful. Thus we conclude that 72d(P) has rank at most d [3, Theorem 2.9]. 

Since P has at most d generators, the rank of P/V2d(P) is d-bounded. Then so 

is the rank of P.  Let r be the maximum of ranks of Sylow p-subgroups of G, 

where p ranges through ~(G). Since A normalizes some Sylow p-subgroup of G 

for any p E ~(G), it follows that r is {m, q}-bounded. But the rank of G is at 

most r + 1 [10, 7, 14] and we are done. 

5. If Co(a) has exponent at most m for each a E A # then the exponent of G 

is {m, q}-bounded. 

This was proved in [9]. 
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In this paper  we impose conditions on the derived groups of Ca(a) and 

investigate the effect on the structure of G t. 

THEOREM 1.1: Let m be an integer, q a prime. Let G be a finite q~-group 

acted on by an elementary abelian group A of order q3. Assume that CG (a) has 

derived group of order at most  m for each a C A #. Then the order of G ~ is 

{m, q }-bounded. 

THEOREM 1.2: Let m be an integer, q a prime. Let G be a finite q~-group acted 

on by an elementary ahetian group A of  order q3. Assume that Ca(a) has derived 

group of  rank at most m for each a E A # . Then the rank of  G ~ is {m, q}-bounded. 

THEOREM 1.3: Let m be an integer, q a prime. Let G be a finite q~-group 

acted on by an elementary abelian group A of order q3. Assume that Co(a) has 

derived group of  exponent dividing m for each a C A #. Then the exponent of G' 

is {m, q}-bounded. 

Each of the above theorems fails if IAI = q2. Indeed, let G be a finite q'-group 

admitt ing a non-cyclic automorphism group A of order q2 such that  Co(a) is 

abelian for each a E A #. Ward showed that  G is necessarily solvable [23]. The 

second author proved that  if G has derived length k then G ~ is nilpotent of class 

bounded by some function of q and k [17]. However the derived length k can 

be arbitrarily large. For instance, for any odd prime p Khukhro constructed a 

p-group G of derived length bigger than log2( p - 1) acted on by a four-group A 

such that  Co(a) is abelian for each a C A # [8, pp. 149-150]. Thus Theorems 

1.1 and 1.3 fail in the case IAI = q2. Direct products of such groups show that  

in this case G'  can have arbitrarily large rank. So the assumption that  IAI = q3 

is essential in each of the above theorems. This seems to be a part  of a more 

general phenomenon: if a certain property of Ca(a) for all a C A # implies 

a similar property for the whole group G then the property of Ca(a) ~ for all 

a C A # implies a similar property for G ~ provided that  the rank of A increases 

by 1. To illustrate this we mention the following results of Ward: if IAI = q3 and 

Ca(a) is nilpotent for each a C A # then G is likewise nilpotent [21]; if IAI = q4 

and CG(a)' is nilpotent for each a E A # then G'  is nilpotent [22]. Both of these 

results have been extended in [16] to the case where G is allowed to be periodic 

solvable. 

It  is also worth noting that  proofs of the results 3-5 mentioned above reduce 

very easily to the case of p-groups. This is no longer true for the results in this 

paper. We need to prove the following result of independent interest: 
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THEOREM 1.4: Let q be a prime. Let G be a finite q'-group acted on by an 

elementary abelian group A of order q3. Let P be an A-invariant Sylow subgroup 

of G. Then P N G' = (P f~ Cc(a)' la E Act>. 

Our proof of this result involves the classification of finite simple groups. The 

fact we use is that  any group of coprime automorphisms of a finite simple group 

is cyclic. Once Theorem 1.4 is proved we deal with the case of p-groups using Lie 

methods. The techniques developed by Zelmanov in his solution of the Restricted 

Burnside Problem are particularly helpful. 

2. Pre l iminar i e s  

The first two lemmas are well-known (see for example [6, 6.2.2, 6.2.4]). 

LEMMA 2.1: Let A be a group of automorphisms of the finite group G with 

(IAI, [GI) = 1. 

1. I f  N is any A-invariant normal subgroup of G we have CG/N(A) = 

Cc. (A)N/N;  

2. I f  H is an A-invariant p-subgroup of G, then H is contained in an A- 

invariant Sylow p-subgroup of G; 

3. CG(A) is transitive on the set of A-invariant Sylow p-subgroups of G; 

4. I f  P is an A-invariant Sylow p-subgroup of G, then Cp(A)  is a Sylow p- 

subgroup of Cc(A) .  

LEMMA 2.2: Let q be a prime, G a finite q'-group acted on by an elementary 

abelian q-group A of rank at least 2. Let A 1 , . . . ,  As be the maximal subgroups 

of A. I f  H is an A-invariant subgroup of G we have H = (CH(A1), . . . , Chr(A~)). 

LEMMA 2.3: Let q be a prime, G a finite q'-group acted on by an elementary 

abelian q-group A of rank at least 3. I f  N is any A-invariant normal subgroup 

of G then [N, G] = ([CN(a), Cc(a)]la 6 A#  ). I f  [N,G] is nilpotent then [N, G] = 

~[CN(a),  CG(a)], where the product is taken over all a E Act. 

Proof: Let A 1 , . . . , A s  be the maximal subgroups of A. By Lemma 2.2, G = 

(CG(A1) , . . . ,  Ca(As))  and N = (CN(A1) , . . . ,  CN(A8)). Consider the subgroup 

R = ([CN(Ai),CG(Aj)]I1 <_ i , j  <_ s). Obviously R is A-invariant so R = 

(CR(A1) , . . . ,CR(A~)) .  To show that  R is normal it is sufficient to establish 

that  yX E R for a n y y  E CR(Ai) a n d x  E Ca(Aj ) .  We haveyX = yXy- l y  and 

obviously both yXy-1 and y belong to R. Hence yX E R and R is normal. Using 

that  G = (Ca(A1) , . . .  ,Co(As))  and N = (CN(A1) , . . .  ,CN(A~)) it is now easy 
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to see that  the image of N in G / R  is central whence R = [N, G]. Since the 

intersection Ai n Aj cannot be trivial (the rank of A is at least 3), it follows that 

any subgroup of the form [CN(Ai), CG(Aj)] is contained in [CN(a), CG(a)] for 

some a 6 A # so that [N,G] = ([CN(a),CG(a)]la 6 A#).  

Assume now that [N, G] is nilpotent of class c. If [N, G] is abelian then the 

factorization [N, G] = I-I[CN(a), CG(a)] is immediate so we assume that c _> 2 

and use induction on c. Set 

M = [!N, G], . . . , [N, G]]. 

e--1 

Then [M, [N, G]] is central in [N, G]. L e t / t  denote the image of any subgroup H 

of G in G/[M, [N,G]]. By the inductive hypothesis [N,G] = l'-I[CN(a), Co(a)]. 

Since [M, [N, G]] is abelian, it is clear that 

[M, [N, G]] = II[CM(a),  [CN(a), Ca(a)]]. 

Using that each subgroup [CM (a), [CN (a), C G (a)]] is central in [N, G], the result 

follows. I 

COROLLARY 2.4: Assume the hypothesis of the previous lemma, f f  G ~ is 

nilpotent then G' = 1-[ Ca(a)', where the product is taken over all a E A #. 

LEMMA 2.5: Let G be a finite group and N a normal perfect subgroup. Let 

P be a Sylowp-subgroup of G. Let R = P N N  and H = Nc(R) .  Then 

P n G' = R ( P  n H'). 

Proof'. By the Frattini argument, G = H N  and so G' -- H'N.  Thus, H n G ~ = 

H'(H n N).  Hence H'R  contains a Sylow p-subgroup of H N G'. Since H ' R  is 

normal in H n G', this implies it contains every Sylow p-subgroup of H n G'. In 

particular, P N G' = P n H'R  = (P N H')R.  I 

Let d(H) denote the minimal size of a generating set for H. Let the rank of 

H be the maximum of d(K) as K ranges over all subgroups K. 

The following result is an immediate consequence of a result obtained indepen- 

dently by the first author [7] and Lucchini [14]. It depends on the classification 

of finite simple groups. The result for solvable groups was obtained by Kov~cs 

[10]. 
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THEOREM 2.6: Let G be a finite group. 

(a) d(G) < 1 + maxp{d(P)l P a Sylow p-subgroup of G}. 

(b) rank(G) _~ 1 + maxp{rank(P)l P a Sylowp-subgroup of G}. 

Proof: The theorem cited above is precisely (a). Applying this to every subgroup 

proves (b). | 

We need one further result that  is dependent upon the classification of finite 

simple groups. 

LEMMA 2.7: Let S be a finite simple group and T a group of automorphisms of 

S with ([T[, [S[) = 1. Then T is cyclic. 

Proo~ If S is alternating or sporadic, then Out(S) has order dividing 4, and [S[ 

has even order. 

If S is a Chevalley group, then Out(S) has a normal series N1 < N2 < Out(S) 

with N1 consisting of diagonal automorphisms, N2/N1 cyclic (corresponding to 

field automorphisms) and with the final quotient being the group of graph auto- 

morphisms. Only, N2/N1 can be divisible by primes not dividing IS[. Thus, T 

embeds in N2/N1 and is cyclic. | 

We point out some easy consequences of the previous result. See [20]. We will 

not be using these results in the remainder of the article. 

COROLLARY 2.8: Let A be a group of automorphisms of the finite group G with 

(Ial, [AI) = 1. 

1. If Ca(A) is solvable and has no section isomorphic to $3, A4 or Sz(2), then 

G is solvable; 
2. IrA is not cyclic of prime power order and CG(a) is solvable for all a E A #, 

then G is solvable. 

Proof: The first statement follows by an elementary standard reduction argu- 

ment. Taking G to be minimal, we may assume that G is a direct product of 

simple groups and that A acts transitively on the simple direct factors. If B 

is the normalizer of one of the factors L, then Co(A) ~ CL(B) and so we are 

reduced to the case that G is simple. It follows that A is a cyclic group of field 

automorphisms. The only cases where CA(G) is solvable is when G = L2(r e) 

with r = 2 or 3, U3(2 e) or Sz(2 ~) and A is the full group of field automorphisms. 

Inspection of these cases yields the result. 

We now prove the second statement. Let G be a minimal counterexample. Let 

N be a minimal normal A-invariant subgroup of G. If N is solvable, we may pass 
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to GIN.  So N is a direct product of simple groups and A permutes the simple 

direct factors transitively. Thus, G = N. 

Let L be one of the factors. Suppose that a E A has prime order q and does 

not normalize L. Then L ~- {xx . . . .  x aq-1 ] x E L} < Ca(a) is not solvable. So 

every element of prime order fixes L (and each A-conjugate of L). By the simple 

case, we see that NA(L) must be cyclic of prime order q (because for any proper 

subgroup of NA(L),  the centralizer would not be solvable). It follows that A is a 

q-group and is either cyclic (q odd) or generalized quaternion (if q = 2). Since we 

are assuming that A is not cyclic of prime power order and has order relatively 

prime to ILl, we have a contradiction. I 

The second part of the previous result can be proved without the classification 

if A is abelian of rank 3 by results on solvable signalizer functors. See [4], [5], [2]. 

3. A generation result 

Throughout this section, let G be a finite group and A an elementary abelian 

q-group of order qe, q a prime not dividing the order of G. 

Our goal is to prove Theorem 1.4 which we restate for convenience. 

THEOREM 3.1: Assume e >__ 3. Let P be an A-invariant Sylow subgroup of G; 

then P M G' = (Ca(a)' M PI a E A#) .  

Before we prove Theorem 1.4, we note some easy consequences including the 

proof of Theorem 1.1. 

COROLLARY 3.2: Assume e >_ 3. Let P be an A-invariant Sylow subgroup of G; 

then P M G '  = ([x,y] E P[ x E Cp(a) ,y  E Ca(a) ,a  E A#) .  

Proo£ This follows from the theorem and the Focal Subgroup Theorem [6] 

which describes P M Ca (a)'. I 

COROLLARY 3.3: Assume e >_ 3. Then 7~(G') = UaeA* 7r(C(a)'). 

COROLLARY 3.4: I f  e ~ 3, then G' = {CG(a)'] a E A#). 

Since a rank 3 elementary abelian q-group has q2 + q + 1 nontrivial cyclic 

subgroups, the next result follows immediately. 

COROLLARY 3.5: _Tfe ~ 3 and CG(a)' can be generated by at most m elements 

for each nontrivial a E A, then G' can be generated m(q 2 + q + 1) elements. 
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We can now prove a somewhat more precise version of Theorem 1.1. Note that 

there is an analogous result for the order of a Sylow p-subgroup of G' in terms 

of the maximal order of a Sylow p-subgroup of Ca(a)'. 

THEOREM 3.6: Let m be an integer, q a prime. Let G be a tlnite q'-group acted 

on by an elementary abelian group A of order q3. Assume that Ca(a) has derived 

group of order at most m [or each a E A #. Then ]G '] _< m 2 ( q : + q + l )  . 

Proof: Let P be an A-invariant Sylow p-subgroup of G. Let A denote the 

set of nontrivial cyclic subgroups of A. For each B E A, let mB = ]CG(B)'t 

and mB(p) be the order of the Sylow p-subgroup of Ca(B) ' .  By Lemma 2.1, 

ms(p )  = IP n CG(B)'I. 
By Lemma 2.3, [P'[ _~ I-IBeA mB(p). By Theorem 3.1, 

IF n C'l < Ip'l I I  ms(p) < II  ms(p) 2" 
B E A  B E A  

Thus, 

p , B E A  B 

In order to prove the other main theorems, we will need to consider the p-group 

case more closely. 

We now prove the theorem. We first handle the case of direct products of 

simple groups. Let H ~ denote the final term in the derived series for H.  

LEMMA 3.7: Assume that G is a direct product of nonabelian simple groups. 

Let P be an A-invariant Sylow p-subgroup of G./if  e > 2, then 

P = (Co(a) ~ M PI a E A#) .  

Proof: We may assume that A is transitive on the direct factors of G. Consider 

the stabilizer of one these factors L. If this stabilizer has order at least q2, then 

as the Sylow q-subgroup of Aut(L) is cyclic by Lemma 2.7, it follows that there 

is a nontrivial subgroup A0 of A which centralizes L. Since A is abelian, Ao 

centralizes L a for all a E A. Since A is transitive on the direct factors of G, this 

implies that Ao centralizes G, whence the result is clear. 

So there exists a subgroup B of A of order q2 which fixes no direct factor 

La,a E A. Let H be the direct product of these q2 factors. We will show that 

P M H = (P O C(a)~I  a E B #) which implies the result. 

Identifying the various direct factors by the action of B, we may assume that  

B acts by permuting the coordinates of the q2 copies of L. Then we see that for 
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1 ~ a E B, CH(a) is just q copies of L (one copy for each a-orbit). In particular, 

CH(a) is  perfect. 

By Lemma 2.2, we know that  

P N  H = <PN C(a)] a 6 B #} = ( P n C ( a ) ° ° t a  6 B#>. I 

We now complete the proof of Theorem 3.1. 

Proof of Theorem 3.1: Set B = (CG(a)' APt  a E A#).  Clearly, P N G '  >_ B. So 

we only need the opposite inclusion. 

Let G be a counterexample of minimal order. 

If G ~ = 1, there is nothing to prove. Let N be a normal subgroup of G which 

is A-invariant and which is minimal with respect to these properties. So N is 

characteristically simple. 

By Lemma 2.1, CG/N(a )' : C(a) 'N/N.  Thus, by minimality P N  n G' = 

(C(a) 'N n P N  I a E A#) .  Since a has order prime to IGI, it follows that  

C(a) 'N n P ~ Cp(a)g. It  also follows that  Cp(a) is a Sylow p-subgroup of 

C(a) and so P n C(a)' is a Sylow p-subgroup of C(a)'. 

First suppose that  N is a p'-group. Thus, P N C(a)' is a Sylow p-subgroup of 

C(a) 'N and so P N  N C(a) 'N = (P n C(a) ')N.  So 

P N  NG' = ((C(a)' N P ) N  I a E A #) = BN,  

whence P N G' = B. 

Next suppose that  N is perfect and R := P A N  is nontrivial. Let H = NG(R). 

Then H is a proper subgroup of G and is A-invariant. So by minimality, P N H  I ~ 

B. By Lemma 2.5, P N G ~ = (P  n HI)R. By the previous result, R _< B and so 

P N G ~ _< B as required. 

So we may assume that  N is a p-group and so is contained in P.  Indeed, it 

follows that  every minimal normal subgroup is a p-group. Moreover, we may 

assume that  N is contained in G ~ (otherwise G ~ = 1 and there is nothing to 

prove). 

Thus, P N  n C(a) 'N = (P n C(a) ' )N and (P N G') ~_ B ( P  n N).  So it suffices 

to prove that  N < B. 

If N is not central in G, then by Lemma 2.3, 

N = [N,G] = <[CN(a),Cc.(a)]] a E A #) ~_ B 

and the result holds. 
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If G is not perfect and G" ~ 1, then we may choose N _< G".  By minimality, 

N < B and the result follows. 

If G" = 1, then G'  is an abelian p-group. Then Lemma 2.3 implies that  

P n G'  = a '  = r Ia  [cG (a), CG (a)] < B. 

So we are reduced to the case that  G is perfect. 

If  N < ~ (P) ,  the Frattini subgroup of P,  then P = P N G' = B ~ ( P )  = B as 

required. 

If N is not disjoint from ~2(P), then we can choose an A-invariant complement 

to N A ~ ( P )  in N, contradicting the minimality of N.  

Now choose Z _< N of order p. Since Z is not contained in the Frattini subgroup 

of P,  it follows that  P = Z x M for some maximal subgroup M of P; i.e. the 

sequence 

1-+ Z - +  P--+ P / Z - +  I 

splits. 

Consider the sequence 

I ~ Z ~ G ~ G / Z  ~ I. 

This corresponds to an element/~ E H 2 (G/Z, Z). The fact that  the sequence 

above splits indicates that/~ : 0 in H 2 (P/Z,  Z). Since P / Z  is a Sylow p-subgroup 

of G/Z ,  the restriction mapping from H 2 (G/Z, Z) to H 2 (P/Z,  Z) is injective and 

so/~ = 0 in H~(G/Z,  Z), whence Z is complemented in G. This implies that  Z 

is not contained in G', a contradiction, since Z < N _< G'.  1 

4. Some Lie-theoretic machinery 

Let L be a Lie algebra over a field 6. Let k, n be positive integers and let 

Xl, x 2 , . . . ,  Xk, x, y be elements of L. We define inductively 

[Xl] : Xl ;  [ X l , X 2 , - . . , X k ]  : [ [ X l , X 2 , . . . , X k - 1 ] , X k ]  

and 

[ x , 0 y ]  = x ;  = [[x, n-ly], y]. 

An element a E L is called ad-nilpotent if there exists a positive integer n such 

that  Ix, hal = 0 for all x E L. If n is the least integer with the above property 

then we say that  a is ad-nilpotent of index n. Let X C_ L be any subset of 

L. By a commutator  in elements of X we mean any element of L that  can be 

obtained as a Lie product of elements of X with some system of brackets. Denote 
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by F the free Lie algebra over t~ on countably many free generators Xl,X2,. . . .  

Let f = f ( x l ,  x 2 , . . . ,  x,~) be a non-zero element of F.  The algebra L is said to 

satisfy the identity f = 0 if f ( a l , a 2 , . . . , a , , )  = 0 for any a l , a 2 , . . . , a N  C L. In 

this case we say that  L is PI. A deep result of Zelmanov says that  if a Lie algebra 

L is PI  and is generated by finitely many elements all commutators  in which 

are ad-nilpotent, then L is nilpotent [25, III(0.4)]. Using this and some routine 

universal arguments, the next theorem can be deduced (see [9]). 

THEOREM 4.1: Let L be a Lie algebra over a field ~ generated by al, a 2 , . . . ,  am. 

Assume that L satisfies an identity f = 0 and that each commutator in the 

generators al, a 2 , . . . ,  am is ad-nilpotent of  index at most n. Then L is nilpotent 

of {f, n, m, e }-bounded class. 

An important  criterion for a Lie algebra to be PI is the following 

THEOREM 4.2 (Bahturin-Linchenko Zaicev): Let L be a Lie algebra over a field 

~. Assume that a finite group A acts on L by automorphisms in such a manner  

that CL (A), the subalgebra formed by fixed dements,  is PI. Assume further that 

the characteristic of ~ is either 0 or prime to the order of A. Then L is PL 

This theorem was proved by Bahturin and Zaicev for solvable groups A [1] and 

extended by Linchenko to the general case [12]. 

COROLLARY 4.3 ([18]): Let F the free Lie algebra of countable rank over ~. 

Denote by F* the set of non-zero elements of  F. For any finite group A there 

exists a mapping 

¢: F* ~ F* 

such that i f  L and A are as in Theorem 4.2, and i f  CL(A) satisfies an identity 

f =- O, then L satisfies the identity ¢( f )  = 0. 

The following lemma is quite helpful. 

LEMMA 4.4 ([9]): Suppose that L is a Lie algebra, K a subalgebra of L generated 

by r elements h i , . . . ,  h,. such that all commutators in the hi are ad-nilpotent in 

L of index t. I l K  is nilpotent of  class c, then for some {r, t, c}-bounded number 

u we have 

[L,,/,,..., t<1 =0. 
Y 
It 

We now turn to groups. Throughout the rest of the section p will denote an 

arbi trary but fixed prime. Let G be any group. A series of subgroups 

($) G : GÂ > a 2  __> . . .  
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is called an Np-series if [Gi, Gj] ~ Gi+j and G p <_ Gpi for all i, j .  To any Np- 

series (*) of a group G one can associate a Lie algebra L*(G) over Fp, the field 

with p elements. Let us briefly describe the construction. 

Given an Np-series (*), let us view the quotients L~ = Gi/Gi+l as linear 

spaces over Fp, and let L*(G) be the direct sum of these spaces. Commutation 

in G induces a binary operation [, ] in L. For homogeneous elements xGi+l E 

L~, yGj+I E L~ the operation is defined by 

[xGi+l, yGj+I] = [x, y]Gi+j+l C Li*+j 

and extended to arbitrary elements of L* (G) by linearity. It is easy to check that 

the operation is well-defined and that L* (G) with the operations + and [, ] is a 

Lie algebra over Pp. 

We are now concerned with the relationship between G and L*(G). For any 

x E Gi \ Gi+1 let x* denote the element xGi+l of L*(G). 

PROPOSITION 4.5 (Lazard, [11]): For any x E G we have (adx*) p = ad(xP) *. 

Consequently, if x is of finite order pt then x* is ad-nilpotent of index at most pt. 

Let Fr denote the free group on free generators Xl, x2 , . . . ,  and choose a non- 

trivial element w = w(x l ,x2 , . . .  ,xs) E Fr. We say that a group G satisfies the 

identity w -- 1 if w(gl,g2, . . .  ,g~) -- 1 for any gx,g2, . . .  ,gs E G. The following 

proposition can be deduced from the proof of Theorem 1 in the paper of Wilson 

and Zelmanov [24] 

PROPOSITION 4.6: Let G be a group satisfying an identity w - 1. Then there 

exists a non-zero multilinear Lie polynomial f over Fp depending only on p and 

w such that for any Np-series (,) of G the algebra L*(G) satisfies the identity 

f - - O .  

In fact Wilson and Zelmanov describe in [24] an effective algorithm allowing 

one to write f explicitly for any p and w, but we do not require this. 

In general a group G has many Nv-series. The series described below is par- 

ticularly important. To simplify the notation we write "Yi for "yi(G). Set Di = 
pk 

Di(G) = ~jv~>i 7) • The subgroups Di form an Np-series G = D1 > D2 _> --- 

in the group G. This is known as the Jennings Lazard-Zassenhaus series. 

Let DL(G) = ~) Li be the Lie algebra over Fp corresponding to the Jennings- 

Lazard-Zassenhaus series of G. Here Li -- Di/Di+l. Let Lp(G) = (L1) be the 

subalgebra of DL(G) generated by L1. The proof of the following lernma can be 

found in [9]. 
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LEMMA 4.7: Suppose that X is a d-generator finite p-group such that the Lie 

algebra Lp(X) is nilpotent of class c. Then X has a powerful characteristic 

subgroup of {p, c, d}-bounded index. 

Recall that powerful p-groups were introduced by Lubotzky and Mann in [13]: 

a finite p-group G is powerful if and only if G p >_ [G, G] for p ~ 2 (or G 4 _> [G, G] 

for p = 2). These groups have many nice properties, so that  often a problem 

becomes much easier once it is reduced to the case of powerful p-groups. The 

above lemma is quite useful as it allows us to perform such a reduction. 

Given a subgroup H of the group G, we denote by L(G, H) the linear span in 

DL(G) of all homogeneous elements of the form hDj+l where h E DjNH. Clearly, 

L(G, H) is always a subalgebra of DL(G). Moreover, it is isomorphic with the 

Lie algebra associated with H using the Np-series of H formed by Hj = Dj n H. 

We also set Lp(G, H) = Lp(G) A L(G, H). Let a be any automorphism of the 

group G. Then a acts naturally on every quotient of the Jennings-Lazard- 

Zassenhaus series of G. This action induces an automorphism of the Lie algebra 

DL(G). So when convenient we will consider a as an automorphism of DL(G) 

(or of Lp(G)). Lemma 2.1 implies that if G is finite and (IGl, lal) = 1 then 

Lp(a, CG(a) ) = CLp(C)(a). 

LEMMA 4.8: Suppose that any Lie commutator in homogeneous elements 

x l , . . . , x r  of DL(G) is ad-nilpotent of index at most t. Let K = ( X l , . . . , x r )  

and assume that K ~_ L(G, H) for some subgroup H of G satisfying a group 

identity w - 1. Then for some {r, t, w,p}-bounded number u we have 

[DL(G),K, .  . ., K] = O. 

U 

Proof: In view of Lemma 4.4 it is sufficient to show that K has {r , t ,w ,p}-  

bounded nilpotency class. We know from Proposition 4.6 that K satisfies certain 

multilinear polynomial identity depending only on w. Thus Theorem 4.1 shows 

that K has {r, t, w,p}-bounded nilpotency class. | 

5. P r o o f s  o f  m a i n  resul t s  

Proof of Theorem 1.2: Suppose that we have proved the result for p-groups. 

Choose an A-invariant Sylow p-subgroup P of G. Then P~ has bounded rank. 

Since P A G ~ has a bounded number of generators by Theorem 1.4 (in terms of 

q and m), it follows that P n G ~ has rank bounded in terms of m and q. Then, 

by Theorem 2.6, the result holds for all groups (with the bound increased by 1). 
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So we assume that  G is a p-group. By Lemma 2.3, if N is any normal A- 

invariant subgroup of G we have [N, G] = yI[CN(a), CG(a)]. Therefore [N, G] has 

at most d = m(q 2 + q + 1) generators. In particular we conclude that  any term 

of the lower central series of G (except possibly G) has at most d generators. Let 

V be the intersection of kernels of all homomorphisms of G into GLd(F),  where 

F is the field with p elements. Set W = V if p is odd and W = V 2 if p =  2. 

Then any characteristic d-generated subgroup of G contained in W is powerful 

[3, Proposition 2.12]. Since the Sylow p-subgroups of GLd(F) are nilpotent of 

class d -  1, it follows that  7d(G) <_ V. We know that  "~d(G) is d-generated so the 

image of ~'d(G) in G / W  has order at most 2 4. Therefore G / W  is nilpotent of 

class at most 2 d -  1 whence 72d(G) _< W. Since 72d(G) has at most d generators, 

it becomes clear that  ")'2d(G) is powerful. Thus we conclude that  "72d(G) has rank 

at most d [3, Theorem 2.9]. Since G' has at most d generators, it is easy to see 

that  r, the rank of G'/72d(G), is d-bounded. But then the rank of G I is at most 

r + d .  | 

To prove Theorem 1.3 some more preparatory work is required. First note that  

it suffices to prove that  there is a bound on the exponent of P A G'  for a Sylow 

p-subgroup for each prime p (with a bound depending only on m and q). By 

Theorem 1.4, the exponent of (P A G' ) /P  ~ is bounded by m. Thus, the exponent 

of P A G ~ is bounded by mm' where m '  is the bound for p-groups. Note also that  

i f p  > m, PNG'  = 1 and so p does not divide [G['. So in what follows we assume 

the hypothesis of Theorem 1.3 with G being a p-group. 

LEMMA 5.1: Theorem 1.3 is valid if G is powerful 

Proof: If G is powerful so is G'  [3, Exercise 2.1]. Since G' is generated by 

elements of order dividing m (Lemma 2.3), it follows that  the exponent of G' 

divides m [3, Lemma 2.5]. | 

LEMMA 5.2: Assume G has a characteristic powerful subgroup H of index t. 

Then the exponent of G' is {m, q, t}-bounded. 

Proof: We know from the previous lemma that  the exponent of H ~ is {m, q}- 

bounded. Factoring out H ~ we can assume that  H is abelian. Then, by Lemma 

2.3, [H, G] has exponent dividing m. Passing to the quotient G/[H, G] we can 

assume that  H is central. But then G ~ has t-bounded order by the Schur Theorem 

(see [15, Part  1, Theorem 4.12]). 

Proof of Theorem 1.3: Let x be any element of G' .  By Lemma 2.3, x can be 

written as a product x = X l . . . x s ,  where each xt belongs to some CG(a) ~ for a 
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suitable a E A #. So s < q2 + q + 1. Let Y be the subgroup of G generated by 

the orbits x A, l = 1, 2 , . . . ,  s. Each such orbit contains at most q2 elements so it 

follows that  Y has at most q2s generators, each of order dividing m. Since x E Y 

and our goal is to bound the order of x, it is sufficient to show that  the exponent 

of Y is {m, q}-bounded. 

Let L = Lp(Y) ,  M = Y/(I)(Y). Then M is a subspace of L such that  (M) = L. 

Of course the dimension of M is at most q2s. For any a C A # we let Ma 

denote the image of Ca(a) ~ N Y  in M. Since Y is generated by x A, it is clear that  

M = ~ Ma, where the summation is taken over all a C A #. Any Lie commutator  

in elements of Ma (for a fixed a E A #) corresponds to a group commutator  in 

elements of Ca(a) ~. Since Ca  (a) ~ has exponent dividing m, Proposition 4.5 shows 

that  any Lie commutator  in elements of Ma is ad-nilpotent of index at most m. 

We know that  the dimension of Ma is at most q2s and Ca(a) ~ satisfies the law 

ym = 1. Thus, by Lemma 4.8, there exists an {m,q}-bounded number u such 

that  

(5.3) MoJ =0. 
/ t  

Let w be a primitive qth root of unity, and let L = L ® Fp [w]. We will view L as 

a Lie algebra over Fp [a~] and L as a subset of L. For any Fp-subspace S of L we 

write S for S ® Fp [w]. An element of L will be called homogeneous if it belongs 

to S for some homogeneous subspace S of L. The group A acts naturally on L 

and this action extends uniquely to L. It is easy to see that  Cy(a)  = CL (a) for 

any a e A. Also recall that  CL(a) = Lp(3:. Cy(a)). The field Fp[w] contains all 

eigenvalues for any a E A regarded as a linear transformation of L. It follows that  

any A-invariant subspace of L decomposes as a direct sum of 1-dimensional A- 

invariant subspaces. Applying this remark to the subspaces ~ (for all a E A #) 

and using that  the algebra L is generated by M and that  the Fp [w]-dimension of 
- -  O M is at most q-s, we can choose vectors Vm,... ,Vd with d <_ q2s such that  M is 

spanned by vl , . .  •, Vd and each of them is a common eigenvector for all a C A # 

lying in Ma for some a E A #. Obviously (5.3) implies that  

EL,, o, : 0  
Y 

~t 

so that,  in particular, it follows that  

(5.4) each of the vectors Vl , . . . ,  Vd is ad-nilpotent of index at most u. 
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We will now show that 

(5.5) 
there exists an {m,q}-number ul such that if 11,12 E L are common 

eigenvectors for all a E A, and if they are homogeneous, then [/1,12] is 

ad-nilpotent of index at most ul. 

Really, since 11,12 are common eigenvectors for all a E A, it follows that  

there exist two maximal subgroups A1 and A2 of A such that 11 E CT(A1 ), 

12 E CT(A2). Let a be a non-identity element in Ai N Aj. Since Ca(a) has 

derived group of exponent m, and since CL(a) = Lp(Y~ Cy(a)), Proposition 4.5 

shows that any homogeneous element of [CL (a), CL (a)] is ad-nilpotent of index 

at most m. The commutator [11,/2], being a homogeneous element of L, can be 

written as [ll,/2] = Yo ® 1 + Yl ® w + . . .  + yq-2 ® w q-~ for suitable homogeneous 

elements Yo, Yl , . . . ,  yq-1 of [CL(a), CL(a)]. The elements Y0, Yl , - . . ,  Yq-1 corre- 

spond to some go,g1,. . .  ,gq-1 that belong to the derived group of Cy(a).  Set 

K = <yo,Yl,.-. ,Yq-1) and H = (g0,gl , . . .  ,gq-1}. Since H has exponent m and 
K <_ L(Y,  H),  Lemma 4.8 shows that there exists an {m, q}-number ul such that 

Clearly, this gives us 

J = 0  
Y 

U l  

EL,5, , = 0  
Y 

U l  

Since [/1,12] E K,  (5.5) follows. 
Using Proposition 4.6 and the fact that CL(a) = Lp(Y, Cy(a)) ,  we conclude 

that eL(a)  satisfies a certain {m,q}-bounded multilinear polynomial identity. 

This also holds in CT(a ) = CL(a). Therefore Corollary 4.3 implies that L satis- 

fies a certain {m, q}-bounded polynomial identity. Combined with (5.4) and with 

(5.5) this places us in a situation where Theorem 4.1 can be used. Thus we con- 

clude that L is nilpotent of {m, q}-bounded class. Now Lemma 4.7 yields that  Y 

has a characteristic powerful subgroup of {m, q}-bounded index. By Lemma 5.2 

we conclude that Y' has {m, q}-bounded exponent. Since Y is generated by ele- 

ments of order dividing m, it follows that the exponent of Y is {m, q}-bounded, 

as required. | 
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