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A B S T R A C T  

In case of GLn over p-adic fields, it is known that Shintani base change 
is well behaved. However, things are not so simple for general reductive 
groups. In the first part of this paper, we present a counterexample to 
the existence of quadratic base change descent for some Galois invariant 
representations. These are representations of type 010. In the second 
part, we compute the local L-factor of 010. Unlike many other super- 
cuspidal representations, we find that the L-factor of 010 has two poles. 
Finally, we discuss these two results in relation to the local Langlands 
correspondence. 

Introduct ion  

Let ko be a p-adic field with odd residue characteristic and  let k be a cyclic 

Galois extension of k0. Let Gal(k/k0)  be its Galois group generated by a.  Let 

G be a connected reductive algebraic group defined over k0 and  Gko (resp. Gk) 

be its k0-rational (resp. k-rat ional)  points.  Let Gko be the set of irreducible 
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admissible representations ~ of Gko and let G~ be the set of irreducible admissible 

representations H of Gk which are a-invariant, that is, H -~ H o a. 

In general, the conjectural Shintani lifting describes a (surjective) map from 

G k o /  ~ to G~ defined via a twisted character formula where for r ,  r '  C Gko, 

~r N ~r' if and only if r --- r '  | ) / fo r  a character X of k~ which is trivial on the 

image of the norm map Nk/ko. More precisely, this map can be defined as follows: 

Definition [AC, La]: Let 7~ and H be irreducible, admissible representations of 

Gko and Gk respectively. Suppose that H is Galois invariant. Then we can 

extend H to a representation of the semi-direct product Gk )~ ((71. We say that  

H is a (base  change)  lift or S h i n t a n i  ascen t  of 7~ if for any g E Gk such that 

Nk/ko (g) is regular and for some extended representation H, we have 

(*) x~(Nk/kog) ---- X.~(a" g). 

Here Xr and X- are the characters of r and H. We will also call ~r a (base  
I I  

change )  d e s c e n t  or S h i n t a n i  d e s c e n t  of H in this case. 

Here characters are represented by functions which are locally integrable and 

locally constant on the set of regular semisimple elements [HC, C1] and Nk/ko: 
Gk -+ Gko is a norm map. If G -- GL,  Nk/ko is well defined up to conjugacy 

[AC]. However, for general G, since conjugacy classes are not stable with respect 

to field extensions [Ko], a norm map is not always well defined. Hence for the left 

hand side of (*) to be well defined, X~ should be constant on stable conjugacy 

classes. 

For the case G = GL,  it is known that the Shintani lifting is surjective [AC, 

La] and it also coincides with Langlands functorial lift. However, as the examples 

of this paper show, in general, (7-invariant representations do not necessarily have 

Shintani descents to Gko. More precisely, we consider some representations of 

GSp4(k) of type 81o (defined in w associated to a two dimensional algebra K 

over k. These are analogous to 810 of Sp4(k) [As, Sr]. Assuming that K/ko is a 

cyclic extension of fields (then K/ko is unramified or totally ramified), we prove 

that these representations of type 81o are a-invariant; however, they cannot be 

lifted from any admissible irreducible representation of GSpa(ko) in the sense of 

Shintani base change. In the first part (I), we prove this by showing that XYl0 , 

the right hand side of (.),  vanishes in a small neighborhood of ~ while the left 

hand side of (*) never vanishes in any small neighborhood of the identity. 

In the second part (II), we compute the L-factor [PS] of ~10 associated to a 

quadratic unramified extension K of k. In general, L-functions of supercuspidal 
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representations are trivial. However, we show that the L-function (defined in 

[PSI) of 81o has two poles while this representation is still supercuspidal. This was 

already predicted in [PSI. However, the computation has not appeared anywhere 

and we will produce it here. 
In the third part (III), we discuss these two results in relation to Langlands 

parameters and functoriality according to the following picture: 

(*) a@4(ko) A > Hom(Wko, La@4(ko)) 

Langlands lift res 

GSp4(k) ̂  ~ Oko > LOgO e Hom(Wk, LGSp4(k)) 

Here 0k0 denotes the Olo for GSp4(k) and L0~o: Wk > LGSp4(k) = 
GSp4(C) >4 Wk denotes the Langlands parameter of 0~0- Here, Wk and Wko 
denote the Weil groups for k and ko respectively [De, T]. To find nO~o, we 

consider the following maps: 

(**) GSp4(ko)^ 11 :, Gn4(ko)^ 

L3 If 
~k o e VSp4(k)^ L2 ~, GL4(k)^ ~ H 

where vertical arrows are defined via base change (.) and horizontal arrows are 
defined via the functoriality associated to an embedding GSp4(C) > GL4(C). 

Using results in part (II) and [PSI, we find H = L2(~ko) and hence we can also 
find the Langlands parameter n~k o of 0k o. Using this parameter, we show that 

when k/ko is unramified, 0k 0 does not have a descent L31(0~o) via Langlands 

correspondence L3 over k/ko while L41 (H) does. This phenomenon is also related 

to the fact that  the L-packet of 010 has more than one element. In fact, its L- 
packet has two elements and it is conjectured [Re] that the other element is the 

unique Iwahori spherical non-Steinberg discrete series of GSp4. 
However, if k/ko is ramified, we show that 810 has a descent L31(~o) = ~lk~, 

making the diagram (**) commutative, that  is, H = L2(0ko) = L2 o L3(0k~) = 
ko L1 o L4(01o ). 
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O. P r e l i m i n a r i e s  

w NOTATION AND CONVENTIONS. Let k0 be a p-adic field with odd residue 

characteristic. Let ( , ) be a skew symmetric form defined on k 4 by 

(0.1.1) (v,w) = vJtw,  for v,w E k04 

where (0 
J =  -12 " 

Let G O = Sp4 (resp. G = GSp4)  be the symplectic group (resp. the similitude 

group) preserving ( , )  (up to constant). That  is, 

(0.1.2) 
G O =- S p 4  --- (g E GL41 tgJg  = J } ,  

G -~ GSp4  -= {g E GL41tgJg = y(g) .  J for some y(g) E Gin}, 

where Gm is the multiplicative group. For any algebraic extension E of ko, let 

E, OE and PE be its residue field, its ring of integers and the maximal ideal 

in OE with its generator w~, respectively. We also let GE and G ~ denote the 

E-rational points of (]  and G ~ respectively. Let 

(0.1.3) y: GE ~ E • 

be defined as follows: For g E GE, ~(g) C E • is the similitude of g, that is, 
 ggg = g.  

Let k be a quadratic extension over ko with its Galois group Gal(k/ko) = (a). 

Let K be a quadratic extension of k with its Galois group Gal(K/k)  = (T). We 

also fix an extension of r to K and denote it also by a. 

Let r be a fixed a-invariant additive character of k with conductor Pk- 

w REPRESENTATIONS OF TYPE 010. 

0.2.1. Representations of type t?lo are representations of GSp4 which are 

lifted from the sign characters of two dimensional similitude orthogonal groups 

via the Howe correspondence [MVW]. More precisely, let K be a 2-dimensional 

semisimple algebra over k with nontrivial involution ~'. Then K = k(v/-fi ) for 
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p ~ (k• 2 or K = k ~ k. In the first case, ~- is given by the nontrivial Galois 

action. In the second case, k is embedded diagonally and 

T ( ~ )  = ( ~ )  for (a~) E K = k @ k .  

Define a k-linear symmetric form on K given by 

1 . yr x r i~(x ,  y) = ~ (x  + �9 y). 

Let GO(f K) be the group of similitudes on K with respect to [K- Consider a dual 

pair (GSp4(k), GO(fK) ). For details about such dual pairs, we refer to [ao, HK]. 

Let sgn be a quadratic character of GO(fK) which is trivial on the connected 

component containing the unit element of GO([K). Then a r e p r e s e n t a t i o n  o f  

t y p e  010 is an irreducible representation of GSp4(k) which is a Howe-lift of the 

character sgn of GO([ K). 

In particular, when K / k  is an unramified quadratic extension, this coincides 

with the unipotent supercuspidal representation which extends 010 [As, HPS] of 

Sp4(k). 

0.2.2. In this section, when K / k  is a quadratic extension, we realize 

representations of type 010 explicitly. 

Let O([K) be the group of isometries on K with respect to [K and let SO([K) be 

the connected component of O([K) containing the unit element. We first define 

an irreducible representation 0% of Sp4(k) as an O(f~)-isotypic component in 

C~((k  @ k) | K) -= C ~ ( K  @ K) where O([~) acts as its unique nontrivial 

quadratic character sgn, that  is, it is a Howe-lift of the character sgn of O([n) 

[As, HPS]. More precisely, 000 can be realized on the complex vector space given 

by 
(0.2.1) 

Voo o for u E SO(f~:) j ( 

Let 

(0 0 ) (0 
t A_ 1 , u( S) = I2 ' -I2 0 

for A E GL2(k) and S G M(2, k) with S = tS. Then these are elements of G~ 
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and they generate G ~ They act on Vo through the operators 

(0.2.3) 

O~ y) = sgng(detA)l det(A)lkf((x, y)A) for (x, V) e K �9 K, 

1 
O~176 = r  trg/k((x,y)S t(x',y')))f(x,y), 

O00(W)f(x ,y)=(2f (x ,y)=(2c2 fK f ( v ) r  de. 
@K 

Here dx is the Haar measure with #(OK x OK) = 1, sgn K is the unique nontrivial 

character of k x/NK/k (KX), c is the positive number making f --+ f unitary and 

( is a constant of modulus 1. In our case, c 2 = #(p~ x pK)-�89 = ~K and (4 = 1. 

To extend 0~ to a representation 010 of G = Gk, we first let H be the stabilizer 

of 010 in G, that  is, H = {g 6 G[ 0~ o Adg -~ 0~ Then we can find H as follows 

[As]: 

(0.2.4) H = Staba(0io) = {9 6 GI~I(9 ) 6 Im(NK/k)}. 

We first extend 01o to a representation of H irreducibly as follows: for A(b) = 

diag(b, b, 1, 1) 6 H with b = NK/k(b) for some b E K, and for f 6 Vo, define 

(0.2.5) 
01o(A(b))f(x, y) = sgnK(b)lblkf(xb, yb) = Iblkf(xb, yb), (x, y) 6 K @ K. 

Then we can easily check that 

Olo( A(b ) )Olo(m( A ) ) = Olo(m( A ) )Olo( A(b ) ), 

(0.2.6) Olo()~(b))Olo(u(S)) = 01o(u(bS))Olo(A(b)), 

01o( A(b) )Olo(W) = 01o(W)Olo( A(b) )Olo(m(b-l I2) ). 

In addition, since such A(b)'s and re(A), u(S), W in (1.2.2) generate H,  we 

get a representation of H.  Note that H contains the center ZG of G and the 

central character of 01o is trivial. Now, we extend it to G by induction, IndGH 010. 

We see that this representation is irreducible by Maekey decomposition and its 

representation space Volo = V is given as follows: 

Vo10 = g = {f: G ----~ Vo] f ( h g )  : 0]_0(h)f(9)}. 
To simplify notation, we denote this representation still by 01o. We have 

[k x : NK/k(KX)] = 2 and [G : H] = 2. Moreover, in this case, f 6 V is 

determined by its value o n / 4  and A(e) where e r NK/k(KX). For the simplicity 

of notation, we fix e as follows: 

w = Wk if K/k  is unramified, 
e = eo if K/k  is ramified, 
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where r is a non-square unit  element,  t ha t  is, ~0 �9 O~ \ ( O ~  rh (kX)2). For 

m � 9 1 4 9  

m V ~- m (so~(~).(v+p~ • +p~ xp~'))=O, 
m let f(v,m) �9 170 be locally constant  on the cosets of PK x p~  and be suppor ted  on 

the O([K)-orbi t  of v + p ~  z p~  with f(v,m)(V) = 1. T h a t  is, 

1 if Y �9 SO2([~)  �9 (v + pm X pro), 
f(~,m)(Y)= - 1  i f Y � 9  

0 otherwise. 

Then  we observe 17o is l inearly spanned by such f(., ,~)'s: 

(0.2.7) V0 = (f(~,,~) �9 Vo[ v �9 K @ K,  m �9 Z).  

For A = 1 or A(c) and f(v,m) �9 V, let f = f(),,v,m) be defined as f(A) --- f(v,m) 
with s u p p ( f )  = HA. Then  V = Veto is l inearly spanned by all f(,X,v,m): 

(0 .2 .8 )  v = V0,o -- (f(~,~,~) �9 Vl ~ -- 1 or A(e), f(v,m) �9 Uo). 

0.2.3.  Remark:  G l o b a l  c a se .  Let F be a number  field and let F '  be a 

quadrat ic  extension of F .  Then  the norm m a p  F '  -+ F induces a two dimensional  

or thogonal  form on AF, over F .  Let  GO2 be its simili tude group on (AF,, NF,/F) 
and let sgn be a representa t ion of GO2 defined as follows: 

sgn = H sgn P 
P 

where sgnp is the quadrat ic  character  of GO2(Fp) defined in w Here, 5p 

is 0 or 1 and it is zero for all but  a finite number  of places p with ~ 5p even. 

Then  after  fixing an addit ive character  of AF/F, a representa t ion of type  01o for 

GSp4 (AF) is defined as a Howe-lift of sgn. 

I. S h i n t a n i  de scen t  o f  010 

Let  ko c k C K and c~, T be as in w In this section, we assume tha t  K/ko 
is cyclic Galois. Then  K/ko is unramified or to ta l ly  ramified. In  bo th  cases, we 

choose a such tha t  a 2 = ~-. 

w gl0 AND ITS CHARACTER g)lo. 
1.1.1.  Here, we extend 01o to a representa t ion 01o of Gk = Gk ~ Gal(k/ko) on 

the same vector  space Velo. Consider the following act ion of a on V: 

(~ f ) (~ ) (x ,  y) = if(g~)(x ~', V )  
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where i 2 --- -1 .  Then since 

y )  = = y ) ,  

we have O[o(h ) = 01o(h~). Hence, A~: (0~o, V) -+ (01o, V) is an isomorphism 
with A2a = 1 and it defines an extension of 01o to a representation of Gk. 

1.1.2. [HC, C1] Let O10 be the character distribution defined by 010: For any 

E C~(Gk) ,  if �9 is constant on each double coset of an open compact subgroup 

U C Gk, then the operator fGk ~(g)~lo(g)dg is well defined on V U and 

01o(r = Tryu ( /~k  q~(g)~lo(g)dg ) �9 

This invariant distribution is represented by a locally integrable function XYlo on 

Gk which is also locally constant on the set G~ of regular elements in Gk, i.e., 

~)l~ = fGk XO~o (g)~(g)dg. Moreover, for x, y E Gk with x regular, we have 

Ad y(x~  o)(x) = X~ ~ (y- lxy)  = X~ ~ (x), 
(1.1.3) 

= 

where XO~o is the complex conjugation of XY~o. 

w THE SHINTANI DESCENT OF 010- We keep the notation from the previous 

section. 

THEOREM 1: Suppose that K/ko is cyclic. Then the representation 01o = Oko is 
Galois stable, but the Shintani descent of 01o does not exist. 

Here, the Shintani descent of 810 is defined as in the introduction. As we 

mentioned in the introduction, we will prove this theorem by proving the following 

proposition: 

PROPOSITION 1: There is a small neighborhood f~ of 1 >4 a E Gk such that 

e)lolC ( ) = 0. 

The above proposition implies that  Xyl ~ -- ~)10 on the right hand side of (*) 

in Definition (see Introduction) vanishes in some small neighborhood of a while 

the left hand side of (*) never vanishes in any small neighborhood of the identity 

for any Ir E Gko. Hence this will prove Theorem 1. 

To prove Proposition 1, we first find a neighborhood ~ = ]; )4 a c Gk )4 a 

of a such that V is a neighborhood o f /4  in Gk where each element g E ]; is 

a-conjugate to an element g' E Gko. For this, we need the following lemma: 
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1.2.1. LEMMA: The map ~: Gk • Gko --4 Gk defined by ~(g,h)  = g~hg -1 is 

submersive in some neighborhood of (/4,/4) E Gk x Gko. 

Proof: For X E Lie(Gk) and Y E Lie(Gko), we have 

d~(a,h)(X, Y ) = ~(g, h ) - l  g~h(Y + Ad h - l ( X  ~) - X)g  -1 

= Adg(Y + Ad h - i X  ~ - X) .  

For h = I t ,  i f X  = X1 +fiX2 with X~ E Lie(Gko) and/3 C k with Trk/ko(/3) = O, 

we have X a - X  = -2/3X2, and hence d~ is surjective onto Lie(Gk) at (g, It) .  Let 

r be the restriction of d~(g,h) to the space/3 Lie(Gko) • Lie(Gko). Note that 
- - 1  r is bijective and thus det r r 0. Put  ff)(g, h) = det(r 0 r 

Since �9 is continuous and we have O(I4,/4) = 1, in some ne ighborhood/ /  of 

(/4, I4) C Gk • Gko, we have O(g, h) r 0 and r is bijective for (g, h) E /4. 

Hence d~o(g,h ) is submersive in/4. I 

1.2.2. Since ~ is submersive in the neighborhood/4 of (/4, I4), Im(~) contains a 

neighborhood Ks of /4  E Gk where Ks is the s-th principal congruence subgroup 

of Gk with s _> 1. Let V -- ~ ( ~ - l ( K s )  N (go • (Gko VI Ks))). T h e n / 4  �9 V and 

each element of V is a-conjugated to an element g' �9 Gko A Ks. Moreover, each 

element in V can be conjugated by an element in Ko to an element in Gko [-I Ks 

from the choice of V. Moreover, since V C K1, the Cayley transformation c 

defined by c(x) = (1 + x)(1 - x) -1 induces a homeomorphism of V onto its 

image. Let f~ = aV and let ~ = C ~  (f~). 

1.2.3. Now we will show ~)101~ - 0, which will prove Proposition 1. For X �9 ~ ,  

there is t > s such that X is constant on the double cosets of Kt C Ks M ]2. By 

linearity, we may assume X - - -  Xgtaggt , the characteristic function supported 

on KtagKt  C ~. For simplicity of notation, we denote X = XgtagKt by X(g,t). 

Since ag is conjugate to ag'  for some g' �9 Gko A Ks by an element in K0 from 

the choice of ft, we may assume g �9 Gko A Ks. Moreover, for any g �9 Gko A Ks, 

z/(g) - 1 (rood Pko) and 7/(g) = 3, 2 for some 7 �9 k0 by Hensel's Lemma. Then 

rl(..fi4) = ,,/2 and ,y-lg �9 GO ~ N Ks. Since Za acts trivially, we have 01o(ag) = 

01o(aT-lg). Hence we may even further assume that g �9 G~o M Ks. 

1.2.4. LEMMA: Let E be either a t~nite field or a p-adic field. Any g �9 G ~ is 

conjugate to g-1 by an element in G E . 

Proof'. Case 1. g is regular semisimple. 

This follows from Proposition 4.I.2 in [MVW], that is, they are conjugate by 

some F �9 GSp4(E) with ~/(P) = -1 .  
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Case 2. g is non regular and semisimple. 

In this case, g is conjugate to 

(a 
go = a - 1  b l) 

with a, b C E x , or 

a 0 b 
~ ; '  0 a ' 0  

~b 0 a 

where e and d are nonsquare elements in E and a ' 2  - e t b  12 = 1, a 2 - cb 2 = 1. In 

the former case, W (see (0.2.2)) conjugates g0 and go 1, and in the latter case, 

d = d i a g ( - 1 ,  - 1 ,  1, 1) conjugates g0 and go  1. 

Case 3. g is unipotent .  

Let ~ be the Lie algebra of G~. In this case, since the Cayley t ransformat ion 

c is a well defined map  from the set of nilpotent elements in Oz onto the set of 

unipotent  elements in Gz  and since (c(Y)) -1 = c ( - Y ) ,  it is enough to show tha t  

for a nilpotent Y E ~ z ,  Y and - Y  are conjugate in G~ up to outer  conjugat ion 

by d = d i a g ( - 1 ,  - 1 ,  1, 1). Now since Y is conjugate to one of the following forms 

in G~,  we assume tha t  Y is one of  them: 

(i ~176 o i) (i ~176 b i) (i ~176 o a~ 0 0 ' 0 0 , or b 0 0 ' 

0 0 0 0 0 0 0 

where a, b, c E E .  In any case, Y and - Y  are conjugate by d. 

Case 4. Other  cases. 

In this case, g is conjugate to go = - u  with u unipotent  of  the form in Case 3, 

o r  

( 1o a  )(ilO 
T1 0 with a, b E E ,  or a 
0 •  0 
0 0 ~=1 eb 

and a 2 - eb 2 = 1 with e a nonsquare in E ,  or o) 
a 0 0 
0 •  0 
0 0 a -1 

0 
•  
0 

where c E E 
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with a E E x and b E E. In the first three cases, d conjugates go and go 1. In the 

last case, go and go 1 are conjugate via 

- 1  0 0 ~ )  
0 0 0 

0 0 1 " 
0 1 0 

By the above Lemma, for any g E G~o, ag is conjugate t o  ((Tg) -1  --  g - l o "  --- 

ag -1 by an element of Gko. Hence, we have Xylo(ag) = XYlO((ag) -1) from 

(1.1.3) and thus XY~o(ag ) is real valued (recall that  X~o is defined in (1.1.2)). 

Moreover, since both X(a,t) and XYl ~ are real valued on V, so is 01o(X(9,t)) = 
fGk X'O~o (g')X(g,t)(g')dg'. Now we claim that 01o(X(g,t)) is also purely imaginary. 

Then we see 01o(X(9,t)) is both real and pure imag.inary and thus 0 for any 

X(g,t) E ~ .  Hence it follows that ~)1o]~ = 0, which will prove Proposition 1. 

1.2.5. To prove the claim, we decompose V into V + G V -  as vector spaces 

where V • is +1 a-eigenspace of V. This can be done since for any f E V, we 

have 

] _  f + a f  + f - a f  with ] + a ]  ] - a ' f  - -  - -  - - E V  + ,  - - E V - .  
2 2 2 2 

Since a and Gko conmmte and both V +, V -  are Gko-stable, they are Gko- 

modules. We will show that V + and V -  are dual to each other as Gko-modules. 

First we note that the space V0 of (0.2.1) carries a natural Hermitian structure 

( , ) coming from the L 2 structure on C~(K @ K) C L:(K @ K), that is, for 

S , I ' E  Vo, 
(f, f') = ] f(x)f'(x) dx. 

[ *  

J K  @K 

Moreover, ( , ) is invariant under the action of H defined by (0.2.3) and (0.2.5). 

The induced representation V then has a Ga-invariant Hernfitian structure 

defined by 

(f-, f-') = (/(e), / ' (e))  + 

Hence V is unitary and its complex conjugate is naturally isomorphic to its 

contragredient. Let a E K with NK/k(a) = --1. Such an a exists from the 

assumption that K/ko is cyclic Galois (if K/ko is ramified, it follows that K/ko 
is cyclic Galois if and only if ko contains a square root of unity). Define a C- 

antilinear map r: V ~ V as 

,.(f)(g)(v) = y(g)( ,v) .  
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It can be easily checked using elements of the form (0.2.2) that  r is well defined 

and Gk-equivariant. Hence V is self-contragredient. Moreover, r ( V  :t:) = V =r and 

hence V +, V -  are dual to each other as G~ modules. 

Denote Tr(Olo(.)tY g~) by ~(-). Let V K~ = V :t: ;3 Y gt  and let x•  be 

Tr((?lo(g)lvgt).  Then via the map r, V g t  and V_ gt are dual to each other 

as G~ N Ko modules and hence we have x+(g) = x - (g ) .  Now we have 

= x + ( g )  - 

which implies 01o(X(g,t)) is pure imaginary. 

1.2.6. Conc lus ion .  Combining w and w we see Xy~ is both real and 

pure imaginary valued on ~. Then the character distribution e lo  represented by 

Xylo vanishes on ~, that is, ~)1o1~ = 0 where ~ = C~(12). Hence Proposition 1 

and Theorem 1 are proved. 

1.2.7. R e m a r k :  F i n i t e  field case.  In this case, since the norm map k x --+ k~ 

is surjective, H = G and (?~ o extends irreducibly to (71o. We can also prove that  (71o 

does not have a descent. More precisely, we can directly compute Tr(01o(a, 1)) = 

0. On the other hand, since Tr(r(1))  = dim(r)  > 0 for any r E GSp4(ko) ^,  it 

implies that  #10 does not have a descent. It can be also proved that (71o does not 

have a Shintani ascent [Gy]. 

II. L-factor o f  (71o 

w PRELIMINARIES ON L-FUNCTIONS. In w and w we will intro- 

duce generalized Whittaker models and L-functions for representations of GSp4 

defined by the second author [PS, PSS]. All the results in these sections can be 

found in [PS] and [PSS]. We also refer most of notation and definitions to [PS], 

[PSS] and we will repeat only what we need here. 

w GENERALIZED WHITTAKER MODEL OF (?10. We  have the following 

subgroups of G: 

( 2 . 1 . 1 )  

s (,2 s)ls  ,2k, } 
0 I2 s = %  ' 

0 x t A  -1 x C k x ' 

P = M S .  
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Then P is a parabolic subgroup of G with reductive part M and unipotent radical 

S. Since S is abelian, the application u(s) --+ r162 where ~r = r E M(2, k), 

defines a character r162 of S. All characters of S can be obtained in this way. In 

particular, if r E GL(2, k), we call r162 nondegenerate. 

Let r be nondegenerate and l e t /9  be the stabilizer of r162 in M. There exists 

a unique semisimple algebra K over k, with (K : k) = 2 such that  D = K • �9 Z2. 

Denote by D the connected component o f / ) ;  then D _~ K • K is either a 

quadratic extension of k, K = K1 = k(v~)  with p ~ (k• 2 or K = K2 = k ~ k 

with k embedded diagonally. We take in the first case 

and in the second case 

r 1 6 2  
= 0 " 

In both cases the isomorphism K~ ~- Di = D is given by 

r_+ ( fi(r) 0 ) 
0 det f i ( r ) ,  t f i ( r ) - i  

where fi  is the following embedding of K~ in GL(2, k): 

Denote r = r162 i -- 1, 2 and let Ri = DiS. Each character u of K~ defines, 

together with r a character of Ri, which we denote by u | r 

2.1.2. THEOREM ([PSI): Let k be a local tield and i =- 1,2. Let r be an 

irreducible admissible we-unitary representation of G. Then up to a scalar there 

exists at most one nonzero linear functional l: V. -~ C satisfying 

(2.1.3) l (r(r)v)  =- (u | r for r e Ri, v e V~r. 

A functional satisfying (2.1.3) is called a g e n e r a l i z e d  W h i t t a k e r  f u n c t i o n a l  

with respect to (u, r 

Let r have a nonzero generalized Whittaker functional I with respect to (u, r 

and let v C V~. Let w~ be the function on G defined by 

 v(g) = 

Then we note that  w~(rg) -~ (uQr for r E Ri, g E G; wv is called the 

g e n e r a l i z e d  W h i t t a k e r  f u n c t i o n  o f  v. Denote by W~ ,r the space of all these 
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functions. G acts on W,~ 'r by right translations, and the representation of G in 

W~ ,r is equivalent to ~r. W~ ,*~ is called the g en e ra l i z ed  W h i t t a k e r  m o d e l  

of ~r with respect to (v, r 

w DEFINITION OF THE L-FUNCTION. Denote by - the unique nontrivial 

k automorphism of Ki. Put  Tr = TrK~/k and N -- NK~/k. Let V~ = Ki @ Ki. 
We write vectors in Vi in a row form. Define Ti(X, y) ---- �89 Tr(xly2 - x2yl) for 

x = (xl, x2), y = (Yt, Y2) in Vi. Then vi is a nondegenerate antisymmetric form 

on Vi. Regard Vi as a 4-dimensional vector space over k. Let 

(2.1.4) 

GSp(Ti) = {g �9 GL(4, k)lTi(xg, yg ) = y(g)Ti(x,y); x ,y  �9 Vi, ~l(g) �9 kX}.  

Consider the group Gi = {g �9 GL(2, Ki)ldetg �9 k• Gi acts on Vi from 

the right, preserving Ti up to a scalar, and so we get a natural embedding 

Gi C GSp(Ti). Let Ni -- {u(s) �9 S I Tr(r = 0}. There exists an isomorphism 

~oi: GSp4(ri) --+ G such that ~oi(Gi) A R~ = DiNi. Let 

(for i --  1, a = a l  + a 2 ~  etc . ,  and  for i = 2, a = (a l ,  ~2) e tc . ) .  T h e n  

(2.1.5) ~ l ( a  : ) =  a2 al b2 
C 

cl c2p dl d2 
c2p clp d2p dl / Co1~ ~ 

a2 0 b2 
( a : )  

~2 c = 0 dl 0 " 
~O1 62 0 d2 

From now on, we shall identify Gi with ~oi(Gi). Note that  ~o~(Ui) = Ni where 

Let 7r have a unique generalized Whittaker functional with respect to (~, r Let 

# be a character of k x . Define for �9 e S(Vi), the Schwartz-Bruhat functions on 

Vi, w E W~,r s C C, 

(2.1.6) L~(w, ~, tt, s) = f w(g)O((0, 1)g)#(detg)l detglS+�89 
JN ~\G~ 
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The integral in (2.1.6) converges in a half plane Re(s) > So and has a meromor- 

phic continuation to the whole plane [PSI. There is an Euler factor L~(r ,  #, s) 
L~(W,r such that L~(~,,,~) is entire for all W, ~. It is easy to see that for a fixed i, 

i L~(~, #, s) does not depend on r In many cases, L . (~ ,  #, s) does not depend on 
i i and v. L,(Tr, #, s) is called the L - f ac to r  associated to (~r, it). From now on, we 

drop . and i for simplicity of notation. 

Let So(K @ K) = {~ �9 S(K �9 g) l~ ( (0 ,  0)) = 0}. Then we divide the poles of 

L(~r, #, s) into two types. We call a pole of L(Tr, #, s) r e g u l a r  if it is a pole of some 

L(w, ~, #, s) with r �9 So(K | K) .  A pole of L0r, #, s) is called e x c e p t i o n a l  if 

it is not a pole of any L(w, ~, #, s) with r �9 So(K @ K). 

w L-FUNCTION OF 010 ON G. In this section, we assume that K/k  is an 

unramified quadratic extension and let 01o be the representation associated to 

K/k.  This is the unipotent supercuspidal representation extending the one on 

Sp4 [As, PS]. 

Let l be the linear functional defined on V as 

(2.2.1) l ( f )  = f(1)(1, x/fi) for f E  V. 

Then 1 is a generalized Whittaker functional with respect to (v, r where v = 1 

and r is as in w We can define the generalized Whittaker model as 

(2.2.2) wgg) = ](g)(1, v/-fi). 

THEOREM 2: I f  It i8 unrami/~ed, we have 

L(01o, it, s) = 

If It is ramified, 

1 1 1 
1 - ,  { w 2 ] q  - 2 s - 1  

t ~, k /  
1 8 1 " (1 - (1 + t,(o k)q- 

L(01o, #, s) = 1. 

Since 010 is not generic, by Theorem 2.3 and its Corollary in [PSS], we have only 

exceptional poles, that is, poles are coming from L(w, ~, #, s) for �9 ~ So(K@K). 
Hence we may assume that (I) = Xp~xp~. We may further assume that m = n, 

since if m < n, Xp~:xp~ = ~X(0,x)+p~• with ~ over x E pm (mod p~) 

and unless x ~ 0, X(o,x)+p~ xp~ E So(K @ K) and they do not contribute to 

poles. Here X z  with Z C K @ K is a characteristic function supported on Z. 

Combining this with (0.2.8), in computing L(01o, #, s), it is enough to consider 

L(wy, a2, It, s) with 

f = f(A,v,m), ~ = Xp~xp~. 
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We compute only the case A = 1. The other case is similar. Note that the 
Borel subgroup B of Gi is given by 

1 3 = { B = ( a  ) ( 1  c )  ] KX } -6b 1 aE  , b E k  x, c C K  . 

We have the following notations for the computation: 

(1) v= (x ,y ) ,  f=f(v,m),  (1)(1) 
(2) W o = (  01 10) 1/p 1 

- = 1 - 1  = e . w ,  

p -1  

(3) supp(f) = O(fn)-orbit of (v + p~ x pro) 

= 0 (u,(x, y) + p~ • p~' u ~,(~,~) + p~' • p~') 
i 

for some finite number of ui's in ker(NK/k). 

In (2), 
1 wo=(O 0) 

is the longest Weyt element in GL2 and wo = Q" W is its expression as an element 
of GSp(4) where 

0 = 1/p and W =  1 
1 - 1  " 

p -1  

We first consider the cases where # is ramified. In these cases, we can use 
Bruhat decomposition for computation. 

fN s+�89 L(wf,  e), p, s) = w~g)r 1)g)p(detg)l detg]k dg 
1\G1 

(=1) f• f(woB)(1, v~)O((1, O)woB)v(det B)] det B]~ +�89 dB 

= a a Wo (1, X/~) 

b e l m ( N K / k )  �9 ep(a, ac)#(a~b) aao-" ks+�89 d x a d kx b d+c 
a E K  x , c E K  

,ep K,- ,co-' p}, �9 O(a, ac)#(a~b) aao-" ks+�89 d x a dkX b d+c 
b e l m ( N K / k ) ,  N K / k ( b ) = b  
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f f f f  = , ' y .  

b ~ K  x , z e s u p p ( . f )  

(3) If If 
b E I m ( N K / h ) ,  N K / k ( b ) = b ,  

zesupp(I) 
n c a - 1  n aE p  K ,  E P K '  r  

(4J,.}/. f/ f/ 
bE K x , a '* E p ~ ,  

b~----b -~- n cEa P K 
z E s u p p ( f )  ~ b ( z c t ~ ) = l  

a E p  n 

cEa-- l pn K , q,( zct'~)= l 

_-= _ - : 8 + � 8 9  • d+ c eP(a, ae)#(aabb)laabbik dz dXa d k b 

r ac)#(a-5)lanlS+�89 d~ad+g c 
4(z)r ~)~%~(b)lbl~ +�89 dXb d+z 

_ _ s + � 8 9  x + I~(aa)laalk dKadgc 

// 
z E s u p p ( / )  

~ 8 ~ 1  
f ( z ) r  x/_fi)bt-~)p(b)ibik T~ d x b d+ z. 

(1) follows from the decomposi t ion G1 = B U NlwoB and tha t  NlWoB is a big 

cell. For (2), 

/ ( W (  1 ~ ) )  ((l'y/P)bQ)=7"{Esupp(l)cKCKr 

where 7 = r 2 c 2  is a constant  which conies from the act ion of Olo(W) in (0.2.3). (3) 

follows from the observation tha t  if r ~ 1, r becomes a nontrivial  
- - 1  n additive character  for c E a PK and the integral over c gives 0. When  # is 

ramified, we have 

// 
aCp n 

cEa-- lpn  K , ~ (zc t~)=l  

- -  _ _  s +  1 

it(aa)laal k x + dgadgc ----- O. 

Hence 

L(01o, #, S) = 1. 

Now, we consider the case when # is unramified. We will use Iwasawa decompo- 

sition, tha t  is, 

G1 = NIAKo 
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where 
0 ~.} 

and Ko is the maximal compact subgroup of G1. 

i(w~, q~, #, s) = iN~\G~ w~g)~((O, 1)g)#(det g)l detglS+�89 

0 0 = ~jezSKoW']'((WO ' .j)k)(I>((l.O)(~' wj)k) 
�9 #(det k)#(w i+j) Iw ~+s 1'+�89 dk 

=. o 0 01)k)(I)((1.O)(~ wO)k)#(wi+J),w'+J, "+�89 dk 

( ( 7 ) )  iKo {s k #(wi+J)lwi+Jis+�89 dk (2=) ~ W o 
i , jEz 
j>_n 

<'--> ,~ i.o ~, ((o' o)~).I.+,,>..+,,,.+~ ,~ 
j_>n 

�9 z i .  ((" ~ (42 ~ p(W23)iw2jlsq-�89 W~ o k ,(wi)lwii'+�89 dk 
jEZ, j)_n iEZ o 

(5----)(#(w2n)lw2nls+�89 + #(w2n+2)iw2n+21s+l 
+ .(w2"+4)lw2'~+41~+�89 +-..)- ~ J(i, .) 

iEZ 

(Here, J(i,s)-- fKo w'[(( WO 01)k) . ( . i ) l~i l '+ �89 dk) 

1 .Zj(i ,s)" 
~)~(<"2")1~"1"+�89 1 - ~(<,~)t~21"+�89 ~ z  

Since Zc acts trivially, (1) follows. Since 

( : )  0 
(1,0) wJ k E supp(~) 

if and only if j > n, (2) follows. Since f" is compactly supported, 

~(o  ' 
for only finitely many i E Z. Hence, 
L(010, #, s) -1 divides 1 - #(w2)iw] 2s+1. 

•)k#0 
~i J(i, s) is holomorphic in s. Hence 
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Especially, if we take �9 = XOK• a n d / =  ~-~v/(1,v,1) with 

ve{(c~,c~v/-fi)lc~eO~( ( m o d l + p K ) } ,  

then we can directly compute 

1 
n(w / ,  ~, #, s) = "/. vo l (g l )~ (go / Io ) - l ( q  2 + 1)- 1 _ tt(w2)lwk128+l , 

where Kz is the subgroup of Ko which is trivial mod PK and Io is an Iwahori sub- 

group of G1, that  is, the subgroup of Ko projected to upper triangular matrices 

mod p~. Here, qK denotes the cardinality of the residue field of K.  Hence, 

1 1 
L(91o, p , s )  = 1 - 1 = 1 _ tt(Wk) q 2  -2s-1 

1 1 

= (1 - #(wk)q-S-�89 (1 + p(wk)q-~-�89 | 

COROLLARY: Let 90 be a representation of GSpa(k) which is a Howe-lift of  the 

trivial character of G02 (here, GO2 is associated to (K, NK/k) as before). Then 

L(9o, #, s) -- L(gm, #, s). 

Note that  the generalized Whittaker model of 00 can be realized in a similar 

way as 910 (see (2.2.1)-(2.2.2)). Moreover, computation of L-factors is the same 

except for sign changes. We will give another proof using global L-functions in 

Section III below. 

III. Langlands correspondence 

In this section, we assume k/ko is a (unramified or ramified) quadratic extension 

and K is the unramified quadratic extension of k. Let 01k~) and 9~0 denote rep- 

resentations of GSp4(ko) and GSp4(k), respectively, constructed as in w Let 

Wko and Wk be WeLl groups for k0 and k, respectively. Consider the following 

Langlands liftings: 

(**) 9~8 E GSp4(ko) A n~ L A > GL4(ko) ̂  �9 Wko 

9~o e GSp4(k) A L2 �9 GLa(k)^  L �9 Wk 

where ^ means the set of admissible irreducible representations. Here, down 

arrows come from Wk r Wko by the restriction map and right arrows come from 
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GSp4(C) ~ GL4(C). For any T �9 G ̂ , we denote its Langlands parameter by 
LT. 

We first consider the behavior of 01o under these liftings. 

w COMPUTING L2(01k0), Ll(0k~). It is known that 010 has the same L-factor 
as the following representation ~rK of GL4(k) [PS]: Let ao be the special repre- 
sentation of GL2 (k) which is the uniquely defined subrepresentation of indGo L2 a, 
where Bo is the standard Borel subgroup of GL2 and 

a b2 = b 2  " 

Denote by P2,2 the parabolic subgroup 

Then rK = indaL~ (a0 | (a0 | fig (det g))), where flK is the character of k • given 
by 

fig(x) = { 1 i f x  �9 Yg/k(g• 
--1 i fx  • NK/k(K• 

One can prove that r g  is the only generic unitary representation of GL4(k) with 

the same L-function as 01o. One can also prove, by using other properties of 
the conjectured Langlands correspondence, that for any cuspidal representation 
T of PGSp4(k), the representation L2(r) of GL4(k) must be generic and unitary. 
Hence if L2(01k0) exists, it should be equal to ~-g [PS]. Similarly, let Ko be the 
quadratic unramified extension of ko. Then, we have Ll(0k~)) ----- 7rgo where rgo 
is the representation of GL4(ko) constructed similarly as r g .  Now, we are ready 
to give another proof for the Corollary of Theorem 2. 

Another Proof for the Corollary of Theorem 2: Let F and F I be number fields 

with F C F '  and (F '  : F)  = 2. Let AF = 1--I Fp and AF, = 1-[ F~,. Assume that 
Fpo = k and Fg~ = K for some places Po and p~. Let GO~(AF) be defined as in 

(0.2.9). Let sgn 1 = l ip sgn~p ~ be a character of GO2(AF) as in (0.2.9) such that 
5~ = 1 at more than three finite places, say, Po, P l , . . .  with O2(Fp,) compact. In 

particular, note that we assume 5~o = 1. Let sgn 2 = lip sgn~ ~ be a character of 

GO2 (AF) with 

2 { 0  i fp  = pO, Pl, 
5p = 5~ otherwise. 
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Let Oi be the Howe-lift of sun i with i = 1, 2. Then 

Oi = H Op(sgn~p~) 
P 

where Op(sgn~a) is the Howe-lift of sgn~ g at p. Especially, when 5~ = 1, Op(sgnap ~ ) 

is 810 for GSpt(Fp). Considering the functoriality 

as in (**), we have 

G S p 4 ( A F )  ^ L 2 ) C L 4 ( A F )  ^ 

L2(Oi) = H L2(Op(sgn~p ~))" 
P 

Since L2(O1) and L2(O2) are different at two places, from Strong multiplicity 

one on GL4(AF), we have L2(O1) -~ L2(O2) and this implies L-factors of L2(O1) 
and L2(O2) are the same. Hence the L-factors of O1 and O2 are also the same. 

Thus 

II  L, (e0 (sg2p  /, ,0, s/= II  s/, 
P 

where Lp denotes the local L-factor. By cancelling same factors, we have 

L,o (ok0, #,o, s)L, ,  (OR', #, , ,  s) = Lpo ( Oko, It,o, s)L, ,  (OFo p' , #p,, s) 

for all It and s. Hence L(Oko, Itpo, s) = L(Oko, ItPo, s) and the corollary follows. 
| 

w COMPUTING nTrg, LTrKo. We use the results in [De] to compute LTrg and 

LTrKo. We still assume that K / k  is unramified. Let us use the same notation/3K 
for a quadratic character of Wk corresponding to/~g above. Then we have 

ZK: wk ~ z --+ z /2  ~_ {!1}. 

Let Tk and ak be the 2-dimensional representation of Wk given by 

o (11 ~ o (1o o 
Then 

L7rK ~-- Tk ~ O'k : O'k (~ (O'k (~ ]~K). 

Moreover, since Tk is orthogonal and ak is symplectic, Tk | ak is a representation 

into Sp4(C). Hence 

~e~o = rk | ek  = ~k �9 (ek | ~ g ) .  
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C a s e  1. k/ko is ramified. 

Let Tko, ako and flKo be the representations of Wko constructed similarly. Then 

note that  ~glko =/3go and 

LTrKo = Tko | O'ko = O'ko (~ (O'ko |  
L Dko 

Vl0 : Tko | O'ko : O'ko + (O'ko | flgo )" 

Note rko | ako [Wk = Tk | O'k. Then from the commutat ivi ty  of the second square 

in (**), we have 

L4(~rKo) ---- 7rK. 

Then combining this with the conjectural commutat ivi ty  of the first square in 

(**), we can conclude that  

ko ko 
L3(010  ) = L ~ - I ( L 4  o L1(01o)) = L 2 1 ( L a ( r g o ) )  = L 2 1 ( r g )  = 01kO . 

Moreover, we note that  

L(O~lo,,o g~/ko,S) = H ~o L(01o, ~ | #, s) = L(0~ ,  #, s), 

where E is the set of characters for k/ko. 
C a s e  2. k/ko is unramified. 

In this case, we have k = Ko. Let -y be a character of Wko such that  7]Wk = fix- 

Then "y is of order 4 and we have 

Z~: wk > z > z / 2  = {+1}  

Then the representation (1 ~ 0) 
r k =  /3K 

of Wk can be extended to a representation T of Wko : 

However, none of them is orthogonal. Moreover, for any T as above, T | O'ko 

extends vk | O'k while none of them respects symplectic form. Hence, 0[0 cannot 

be in the image of L3. 
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w REMARKS. In general, if k/ko is a cyclic extension, L4 should coincide 

with Shintani's lifting [AC, La] and its images are Gal(k/ko) invariant represen- 

tations. However, for homomorphisms Wk ----+ GSp4(C), Gal(k/ko)-invariance 

is not sufficient to extend it to Wko ~ GSp4(C), while it is enough for the GL4 

case. 

In case 1, that is, when k/ko is a ramified quadratic extension, we observe that  

8~0 has the Langlands descent 0~.  Then we may expect that  the L-packet of 0~0 

can be descended to that of 81k~. 

In case 2 where k/ko is an unramified quadratic extension, o k  has neither a 

Shintani descent nor a Langlands descent. Following the general philosophy, it 

seems unlikely that the L-packet of 0k0 would have a base change descent via 

trace formula. 
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