GOLDIE CONDITIONS FOR CONSTANTS OF ALGEBRAIC DERIVATIONS OF SEMIPRIME ALGEBRAS

BY

PIOTR GRZESZCZUK*

Institute of Mathematics, University of Warsaw, Bialystok Division Akademicka 2, 15–267, Bialystok, Poland

AND

JERZY MATCZUK**

Institute of Mathematics, University of Warsaw Banacha 2, 02-097 Warsaw, Poland

ABSTRACT

Relations between Goldie conditions of a semiprime algebra R and its subalgebra R^d of constants under an algebraic derivation are studied. The results obtained are applied to actions of finite dimensional solvable Lie algebras on associative algebras with no non-zero nilpotent elements.

Introduction

Let R be an associative algebra over a field F and L be a finite dimensional Lie algebra over F. Let us recall that the action of L on R means a homomorphism $\Phi: L \to \text{Der}_F R$. The subalgebra of constants of L on R is the subset $R^L =$ $\{r \in R | d(r) = 0 \text{ for all } d \in \Phi(L)\}$. For a single derivation d of R we will write $R^d = \{r \in R | d(r) = 0\}$. In [7], [8], the relations between finiteness conditions of R and R^L have been studied in the case R is a prime algebra of non-zero

^{*} Supported by KBN Grant No. 2 2012 91 02.

^{**} Supported by KBN Grant No. 2 2047 91 02.

Received January 30, 1992 and in revised form September 2, 1992

characteristic and L is a restricted Lie algebra acting by outer derivations. This means, in particular, that L acts by algebraic derivations d such that no power of d is X-inner. In [2] Bergen considered similar problems for R being without non-zero nilpotent elements, L solvable and restricted. In particular, he proved that R is Goldie if and only if R^L is Goldie and the Goldie localization of R can be obtained by inverting the regular elements of R^L .

In the paper we will consider the action of a single algebraic derivation d on a semiprime algebra R of arbitrary characteristic. We will show that the investigations can be reduced to two cases, namely when d is either nilpotent or separable. Using this aproach we prove, in particular, that R has a finite Goldie rank if and only if R^d has a finite Goldie rank and R is semisimple Artinian provided R^d is Artinian. This enable us to extend the result of Bergen [2, Theorem 3.4] to the case of the action of finite dimensional solvable Lie algebra acting by algebraic derivations.

By an ideal I of R we will mean a two-sided ideal. We will say I is a dideal of R if $d(I) \subseteq I$. For subsets A, B of R l.ann_AB (r.ann_AB) will denote the left (resp. right) annihilator of B in A, i.e. l.ann_A $B = \{a \in A | aB = 0\}$ and r.ann_A $B = \{a \in A | Ba = 0\}$. For a right R-module M rank M_R will denote the Goldie rank of M.

1. Nilpotent derivations

In this part d will stand for a nilpotent derivation of a ring R, n(R) will denote the index of nilpotency of d on R.

For any $k \ge 0$ define $R_k = \{x \in R | d^k(x) = 0\}$. Clearly $R_0 = 0$, $R_1 = R^d$ and $R_k = R$ for all $k \ge n(R)$. It is easy to see that the additive groups R_k define a filtration of R, i.e., $R_i \subseteq R_{i+1}$ and $R_i R_j \subseteq R_{i+j}$ for all $i, j \ge 0$.

For any $1 \le k \le n(R)$ let d_k denote the restriction of d to R_k . Then $d_k: R_k \to R_{k-1}$ is a homomorphism of R^d -bimodules.

Let Ω be a module property which is closed with respect to taking submodules and extensions, i.e.

(1) if $N \subseteq M$ and $M \in \Omega$, then $N \in \Omega$,

(2) if $N \subseteq M$ and $N, M/N \in \Omega$, then $M \in \Omega$.

 Ω can mean, for example, one of the following properties: to be Artinian, Noetherian, to have finite Goldie rank, to have Krull dimension and so on.

GOLDIE CONDITIONS

By inductive argument, using the filtration of R defined above together with homomorphisms $d_k: (R_k)_{R^d} \to (R_{k-1})_{R^d}$, one can easily prove the following

PROPOSITION 1.1: If $R_{R^d}^d \in \Omega$, then $R_{R^d} \in \Omega$. In particular;

- (i) If \mathbb{R}^d is right Artinian (Noetherian), then \mathbb{R} is right Artinian (Noetherian).
- (ii) If rank $R_{R^d}^d$ is finite, then rank R_R is finite and

$$\operatorname{rank} R_R \leq \operatorname{rank} R_{R^d} \leq n(R) \cdot \operatorname{rank} R_{R^d}^d$$

The following example shows that the converse implication does not hold in general.

Example 1: Let L = Fx + Fy be a two-dimensional non-abelian Lie algebra over a field F of characteristic 0; [x, y] = x. Define $R = U(L)/(x^2)$, where U(L)is the universal enveloping algebra of L. Let $X, Y \in R$ denote the natural images of x, y and d be the inner derivation of R adjoint to X. Since $X^2 = 0$, d is nilpotent with n(R) = 3. Notice that R is Noetherian as a homomorphic image of an enveloping algebra. Thus R is of finite Goldie rank. In fact one can verify that rank $R_R = 1$.

We will show that rank $R_{R^d}^d$ is infinite. Using relations XY - YX = X and $X^2 = 0$ it is easy to see that every element from R is of the form f(Y) + Xg(Y) for some suitable $f(Y), g(Y) \in F[Y]$ and XYX = 0. Moreover by inductive argument, $XY^mX = 0$ for all $m \ge 1$. The above yields $R^d = F + XF[Y]$ and $(XF[Y])^2 = 0$. Therefore rank $R_{R^d}^d$ is infinite, as required.

In the sequel we will show that a similar example can not be constructed when R is a semiprime ring. For doing so, some preparation is needed.

Henceforth we will assume that the ring R is semiprime. \mathcal{F}_R will denoted the filter of all two-sided ideals of R with zero right annihilator. Since R is semiprime, \mathcal{F}_R consists of all ideals which are essential as right ideals. m(R) will stand for the smallest natural number m such that for any non-zero d-ideal Iof R l.ann_I $d^m(R) \neq 0$. We say that the ring R is **homogeneous** (cf. [5]) if for any non-zero d-ideal I of R m(I) = m(R) and n(I) = n(R). A d-ideal I of R is called **homogeneous** if I is homogeneous as a ring.

The following lemma will allow us to reduce our considerations to homogeneous rings.

LEMMA 1.2:

- (1) If R is homogeneous, then every non-zero d-ideal I of R is homogeneous and m(I) = m(R).
- (2) There is a family $\{I_{\alpha}\}_{\alpha \in A}$ of homogeneous d-ideals of R such that:
 - (i) $\bigoplus_{\alpha \in A} I_{\alpha} \in \mathcal{F}_R$,
 - (ii) each I_{α} is either Z-torsion free or $pI_{\alpha} = 0$ for some prime number p, i.e. char $I_{\alpha} = 0$ or char $I_{\alpha} = p$.

Proof: See [5, Lemma 2 and Proposition 3].

LEMMA 1.3: Let R be a homogeneous ring which does not contain an infinite direct sum of ideals. Then for any non-zero right d-ideal K of R $d^{m-1}(K) \neq 0$, where m = m(R).

Proof: Let K be a non-zero right d-ideal of R. Assume $d^{m-1}(K) = 0$. By the definition of m = m(R), there is a non-zero d-ideal I_1 of R such that $l.ann_{I_1}d^{m-1}(R) = 0$. Define $J_1 = r.ann_R I_1$ and $K_1 = J_1 \cap K$. Then $I_1 \cap J_1 = 0$, since R is semiprime, and $K_1 \neq 0$. To see that $K_1 \neq 0$, take $0 \neq x \in K^d$. Then $0 = d^{m-1}(xR) = xd^{m-1}(R)$. Hence $L \cap K \neq 0$, where $L = l.ann_R d^{m-1}(R)$. Clearly $I_1L \subseteq I_1 \cap L = 0$. It means that $L \subseteq J_1$ and proves that $K_1 \neq 0$.

We have constructed non-zero d-ideals I_1, J_1 of R such that $I_1 \cap J_1 = 0$ and a non-zero right d-ideal K_1 of J_1 satisfying $d^{m-1}(K_1) = 0$. By Lemma 1.2(1), J_1 is a homogeneous ring with $m(J_1) = m$. Therefore we can apply the above procedure to J_1 and K_1 , instead of R and K. Continuing this process we can construct a sequence of non-zero d-ideals $R = J_0 \triangleright J_1 \triangleright J_2 \triangleright \cdots$ and non-zero d-ideals I_j of $J_{j-1}, j > 0$, such that $I_j \cap J_j = 0$ for all j. Since R is semiprime, every I_j contains a non-zero ideal \overline{I}_j of R. The above implies that R contains an infinite direct sum $\bigoplus_{j=1}^{\infty} \overline{I}_j$ of ideals. This contradicts our assumption on Rand the thesis follows.

The formulation of the following proposition is fairly complicated, however the result itself is very important. It provides a construction of a map which behaves like a non-degenerate trace map.

PROPOSITION 1.4: Suppose R does not contain an infinite direct sum of ideals. Let I be a non-zero homogeneous d-ideal of R with either char I = 0 or char I = p. Then there exist a d-ideal J of R such that $J \subseteq I$, $J \in \mathcal{F}_I$ and a homomorphism t: $J \to I^d$ of \mathbb{R}^d -bimodules. The homomorphism t has the following property: for any right d-ideal K of R we have $t(K \cap J) \neq 0$ provided $K \cap J \neq 0$.

Proof: For defining t we will make use of an over-ring S of I. The definition of S depends on the characteristic of I. Let m = m(I).

CASE 1: char I does not divide m. In this case we set S equal to the symmetric Martindale ring of quotients of I. By [5, Theorem 5], there is $x \in S$ such that $x^m = 0$ and d(r) = xr - rx for all $r \in I$. The construction of S provides us a d-ideal J of I such that $J \in \mathcal{F}_I$ and $x^k J x^l \subseteq I$ for $0 \leq k, l \leq m$. Replacing J by IJI we may assume that J is a d-ideal of R.

CASE 2: char I = p > 0 and $m = p^k l$, where $k \ge 1$ and the prime number p does not divide l. Consider the ring of differential polynomials $I^1[X; d]$, where I^1 denotes the natural extension of I to a unital ring. Define $S = I^1[X; d]/(X^m)$. Applying the same arguments as in [5] we will prove that $(X^m) \cap I = 0$. Indeed, it is easy to see that every polynomial in (X^m) has a free coefficient of the form $\sum d^m(a_i)b_i$, where $a_i, b_i \in I^1$. Hence $I \cap (X^m) \subseteq d^m(I)I^1$ and

$$\operatorname{l.ann}_{I\cap(X^m)}(d^m(I))\cdot(I\cap(X^m))=0.$$

Now the definition of m(I) and the semiprimeness of I imply immediately that $I \cap (X^m) = 0$. Thus I can be treated as a subring of S. Let x be the canonical image of X in S. Clearly $x^m = 0$ and d(r) = xr - rx for all $r \in I$. It was shown in [6, Lemma 3] that in the above situation $r.ann_I x^{p^k}$ intersects every non-zero d-ideal of I non-trivially. Therefore $J = I \cdot r.ann_I x^{p^k} \in \mathcal{F}_I$ and $x^{p^k} J$, $Jx^{p^k} \subseteq J$. Obviously J is a d-ideal of I. As in the previous case, we may assume that J is a d-ideal of R such that $x^{ip^k} J x^{jp^k} \subseteq I$ for $0 \leq i, j \leq l$.

In both cases we define $t: J \to I^d$ by the formula $t(r) = x^{m-1}r + x^{m-2}rx + \cdots + xrx^{m-2} + rx^{m-1}$. Using the identity xr = rx + d(r), for $r \in J$, we can write t(r) in the following form

(1)
$$t(r) = \sum_{i=0}^{m-1} (-1)^{i} {m \choose i+1} x^{m-i-1} d^{i}(r),$$

for $r \in J$.

In case char I = p and $m = p^k l$ the above formula reduces to (see [6])

(2)
$$t(r) = \sum_{i=1}^{l} (-1)^{ip^{k}} {l \choose i} x^{p^{k}(l-i)} d^{ip^{k}-1}(r),$$

for $r \in J$.

Since xt(r) - t(r)x = 0 for $r \in J$, the choice of J and x together with formulas (1), (2) yield that t really acts into I^d .

Now we will show that t is a homomorphism of \mathbb{R}^d -bimodules. The presented proof covers the case char I = 0. If char I = p > 0, the proof is the same if we replace x by x^{p^k} and formula (1) by (2). Suppose char I = 0. Notice that, since S is an over-ring of I not of R, we do not know a priori that (xj)r = x(jr) for $j \in J$ and $r \in \mathbb{R}$. However working inside S we have

$$(x(jr))a = x((jr)a) = x(j(ra)) = ((xj)r)a$$

for any $j \in J$, $a \in I$, $r \in R$. It means that ((xj)r - x(jr))I = 0 in the ring I, and the semiprimeness of I give us (xj)r = x(jr) for any $j \in J$ and $r \in R$. Using this and the formula (1) it is clear that t is a homomorphism of right R^d -modules. Similarly, expressing t(r) in terms of combinations of $d^i(r)$ with coefficients x^j on the right hand side, one can prove that t is a homomorphism of left R^d -modules, as well.

Now let K be a right d-ideal of R such that $K \cap I \neq 0$. Because J is essential in I, we may additionally assume that $K \subseteq J$. Notice also that the condition imposed on R inherits on I. Thus we can apply Lemma 1.3 to I. Assume t(K) = 0. Then, depending on char I, either

$$0 = x^{m-1}t(K) = x^{m-1}d^{m-1}(K)$$

or

$$0 = x^{p^{k}(l-1)}t(K) = x^{p^{k}(l-1)}d^{m-1}(K),$$

respectively. By Lemma 1.3, $d^{m-1}(K) \neq 0$, so $K_1 = r.ann_I x^{m-1} \cap K \neq 0$ ($K_1 = r.ann_I x^{p^k(l-1)} \cap K \neq 0$, respectively). Clearly $t(K_1) = 0$. Repeating similar procedure enough times, we can construct a non-zero right *d*-ideal \overline{K} of *I* such that $t(\overline{K}) = 0$ and $x\overline{K} = 0$ ($x^{p^k}\overline{K} = 0$, respectively). Hence, by (1) and (2), $d^{m-1}(\overline{K}) = 0$, which contradicts Lemma 1.3. Therefore $t(K) \neq 0$.

LEMMA 1.5: Let R be a homogeneous ring with either char R = 0 or char R = p. If rank R_R is finite, then rank $R_{R^d}^d$ is finite and

$$\operatorname{rank} R_{R^d}^d \leq \operatorname{rank} R_R$$

Proof: Applying Proposition 1.4 to I = R we obtain an essential *d*-ideal *J* of R and a homomorphism $t: J \to R^d$ of R^d -bimodules such that $t(K) \neq 0$ for any non-zero right *d*-ideal of *R* contained in *J*.

Let K_i , $1 \leq i \leq s$, be non-zero right ideals of R^d such that the sum $\sum_{i=1}^s K_i$ is direct. Since R is semiprime and $J \in \mathcal{F}_R$, the *d*-invariant right ideal $K_i J$ is non-zero for every $1 \leq i \leq s$. Let $K = K_i J \cap \sum_{j \neq i} K_j J$. Then $t(K) \subseteq t(K_i J) \cap$ $t(\sum_{j \neq i} K_j J) \subseteq K_i t(J) \cap \sum_{j \neq i} K_j t(J) \subseteq K_i \cap \sum_{j \neq i} K_j = 0$, i.e., t(K) = 0. This implies K = 0, so the sum $\sum_{i=1}^s K_i J$ is direct and the thesis follows.

Let us remark that in the above lemma we proved that rank R^d is equal to *d*-invariant Goldie rank of R, i.e., the Goldie rank with respect to right *d*-ideals.

LEMMA 1.6: Let R be a semiprime ring which does not contain an infinite direct sum of ideals. Then for every essential right d-ideal K of R, $K^d = K \cap R^d$ is an essential right ideal of R^d .

Proof: By Lemma 1.2, there exist homogeneous d-ideals I_1, \ldots, I_s of R such that $E = \bigoplus_{i=1}^s I_i \in \mathcal{F}_R$ and the charcteristic of I_i is either zero or prime for any $1 \leq i \leq s$. Moreover, by Proposition 1.4, there are non-zero d-ideals J_i of R contained in $I_i, J_i \in \mathcal{F}_{I_i}$ and non-trivial homomorphisms $t_i: J_i \to I_i^d$ of R^d -bimodules, $i = 1, \ldots, s$. Notice that $J = \bigoplus_{i=1}^s J_i \in \mathcal{F}_R$, since $E \in \mathcal{F}_R$ and $J_i \in \mathcal{F}_{I_i}$ for $1 \leq i \leq s$.

Let K be an essential right d-ideal of R and A a non-zero right ideal of \mathbb{R}^d . We will show that $K^d \cap A \neq 0$, i.e. K^d is essential in \mathbb{R}^d . Because R is semiprime and $J \in \mathcal{F}_R$, $AJ \neq 0$. It means that for some $1 \leq j \leq s$ AJ_j is a non-zero right d-ideal of R. Thus $AJ_j \cap K$ is a non-zero right d-ideal contained in J_j . Take $0 \neq a \in (AJ_j \cap K)^d$. By the semiprimeness of J_j aJ_j is a non-zero right d-ideal, so Proposition 1.4 gives

$$0 \neq t_j(aJ_j) = at_j(J_j) \subseteq aI_j^d \subseteq K^d I_j^d \subseteq K^d.$$

On the other hand $aJ_j \subseteq AJ_j^2 \subseteq AJ_j$. Since t_j is a homomorphism of \mathbb{R}^{d} -bimodules,

$$0 \neq t_j(aJ_j) \subseteq t_j(AJ_j) = At_j(J_j) \subseteq AI_j^d \subseteq A.$$

Consequently $A \cap K^d \neq 0$, as required.

Now we are in position to prove the main result of this section.

THEOREM 1.7: Let R be a semiprime ring with a nilpotent derivation d. Then rank R_R is finite if and only if rank $R_{R^d}^d$ is finite and

$$\operatorname{rank} R^d_{R^d} \leq \operatorname{rank} R_R \leq n(R) \cdot \operatorname{rank} R^d_{R^d}.$$

Proof: Suppose rank R_R is finite. Let I_1, \ldots, I_s and E be ideals of R defined in the proof of Lemma 1.6. We have rank $(I_j^d)_{R^d} \leq \operatorname{rank}(I_j^d)_{E^d} = \operatorname{rank}(I_j^d)_{I_j^d}$, so applying the above lemma to K = E

$$\operatorname{rank} R^d_{R^d} = \operatorname{rank} E^d_{R^d} \leq \sum_{j=1}^s \operatorname{rank}(I^d_j)_{I^d_j}.$$

Moreover, since $E \in \mathcal{F}_R$ and R is semiprime, similar considerations give us rank $R_R = \sum_{j=1}^{s} \operatorname{rank}(I_j)_{I_j}$. Now Lemma 1.5 applied to homogeneous rings I_j , $1 \leq j \leq s$ implies that rank $R_{R^4}^d$ is finite and rank $R_{R^4}^d \leq \operatorname{rank} R_R$. The converse implication and the second inequality are given by Proposition 1.1.

2. Algebraic derivations

In this part we will show how to apply results of the previous section to algebraic derivations of semiprime algebras. Henceforth R will be denote a semiprime algebra over a field F and d will stand for an algebraic derivation of R, i.e., d is algebraic over F as an element of $\operatorname{End}_F(R^+)$. Thus there are $k, n \geq 0$ and elements $a_0, ..., a_k \in F$ such that

(3)
$$a_0d^n + a_1d^{n+1} + \cdots + a_kd^{n+k} = 0.$$

Clearly we may assume $a_0 = 1$. Notice that $n \ge 1$, since otherwise $\mathbb{R}^d = 0$ and by [1, Theorem 1.3], \mathbb{R} would be nilpotent. From the same reasons $\mathbb{K}^d \ne 0$ for every non-zero right *d*-ideal of \mathbb{R} . Let us remark that if I is an ideal of \mathbb{R} , then $d^s(I^{n+k}) \subseteq I$ for any $s \ge 0$. This and the semiprimeness of \mathbb{R} yield that any non-zero ideal I of \mathbb{R} contains a non-zero *d*-ideal \hat{I} . Thus, in particular, $I \cap \mathbb{R}^d \ne 0$. We will frequently use the above remarks.

Let $R_d = \{x \in R | \exists j \geq 0 \ d^j(x) = 0\}$. It is standard to see that R_d is a subalgebra of R and $R_d = \{x \in R \mid d^n(x) = 0\}$, where n is as in (3). Obviously $R^d \subseteq R_d$ and d is nilpotent on R_d . Moreover, it is known ([6]) that R_d is semiprime. It means that we will able to apply results of the first section to the extension $R^d \subseteq R_d$.

GOLDIE CONDITIONS

Let us consider an *F*-linear map $f: R \to R_d$ given by the formula $f(x) = x + a_1 d(x) + \cdots + a_k d^k(x)$. Remark that f is a homomorphism of R^d -bimodules. In the following lemma we collect basic properties of the map f; A denotes the kernel of f.

LEMMA 2.1:

- $(1) f(R_d) = R_d.$
- (2) $(R_d A + A) \cap R_d = 0.$
- (3) $R = R_d \oplus A$ as R^d -bimodules.
- (4) If I is a right ideal of R_d , then $(I + IR) \cap R_d = I$.
- (5) If K is a non-zero right ideal of R, then $f(K) \neq 0$.

Proof: Consider the natural filtration of R_d defined at the beginning of the first section, i.e. $(R_d)_k = \{x \in R_d \mid d^k(x) = 0\}$, for $k \ge 0$.

- (1) Clearly $0 = (R_d)_0 \subseteq f(R_d)$. Assume that $(R_d)_i \subseteq f(R_d)$ for some $i \ge 0$. Let $x \in (R_d)_{i+1}$. Then $v = a_1 d(x) + \dots + a_k d^k(x) \in (R_d)_i$. By assumption, there is $y \in R_d$ such that f(y) = v. Now $x - y \in R_d$ and f(x - y) = x. This shows that $(R_d)_{i+1} \subseteq f(R_d)$ and yields $R_d = (R_d)_n \subseteq f(R_d)$.
- (2) Let i > 0 and $x \in (R_d)_i$, $a \in A$. Using the definition of f it is easy to see that

$$f(xa) \in xf(a) + \operatorname{span}_F\{d^l(x)d^s(a) | l \ge 1, s \ge 0\} \subseteq$$

$$xf(a) + (R_d)_{i-1}A \subseteq (R_d)_{i-1}A,$$

as $a \in A = \ker f$. Hence $f^n(R_dA + A) \subseteq (R_d)_0 A = 0$. $(R_dA + A) \cap R_d$ is a *d*-invariant subspace of R_d , thus for $x \in (R_dA + A) \cap R^d$ we have $x = f(x) = f^n(x) = 0$. Therefore $(R_dA + A) \cap R_d = 0$.

- (3) This statement is an easy consequence of (1) and (2).
- (4) Let I be a right ideal of R_d . Using (3) and (2) one obtains $I \subseteq (I + IR) \cap R_d \subseteq (I + IA) \cap R_d \subseteq I + (IA \cap R_d) = I$.
- (5) Let K be a right ideal of R. Assume f(K) = 0. Since f and d commute, $f(\sum_{i\geq 0} d^i(K)) = 0$. Therefore, eventually replacing K by $\sum_{i\geq 0} d^i(K)$, we may assume $d(K) \subseteq K$ and $\delta = d_{|K}$ is a derivation of K satisfying $1 + a_1\delta + \cdots + a_k\delta^k = 0$. This implies $K^{\delta} = 0$, so K = 0 and the thesis follows.

Now we can extend Theorem 1.7 to algebraic derivations.

THEOREM 2.2: Let R be a semiprime algebra and d be an algebraic derivation of R. The following conditions are equivalent:

- (1) rank R_R is finite,
- (2) $\operatorname{rank}(R_d)_{R_d}$ is finite,
- (3) rank $R^{d}_{R^{d}}$ is finite.

Proof: In virtue of Theorem 1.7, conditions (2) and (3) are equivalent.

 $(1)\Rightarrow(2)$. Suppose rank R_R is finite. If rank $(R_d)_{R_d}$ is infinite, then R_d contains an infinite direct sum of right *d*-ideals $I_1 \oplus I_2 \oplus \ldots$ ([4, Theorem 3.1]). Then for $i \ge 1$

$$f(I_i^d R \cap \sum_{j \neq i} I_j^d R) \subseteq f(I_i^d R) \cap f(\sum_{j \neq i} I_j^d R)$$
$$\subseteq I_i^d R_d \cap \sum_{j \neq i} I_i^d R_d \subseteq I_i \cap \sum_{j \neq i} I_j = 0$$

Therefore, by Lemma 2.1(5), $I_i^d R \cap \sum_{j \neq i} I_j^d R = 0$ for any $i \ge 1$. This shows that the sum $\sum_{i>1} I_i^d R$ is direct and yields the thesis.

(3) \Rightarrow (1). If rank R_R is infinite then R contains an infinite direct sum $K_1 \oplus K_2 \oplus \cdots$ of right *d*-ideals ([4, Theorem 3.1]). Then $\sum_{i\geq 1} K_i^d$ is an infinite direct sum of right ideals of R^d . Therefore rank R_R is finite provided rank $R_{R^d}^d$ is finite.

For the algebra R, Z(R) will denote the right singular ideal of R. Recall that R is said to be right non-singular if Z(R) = 0.

LEMMA 2.3: Let K be a right d-ideal of R.

- (1) If $R^d = R_d$, then $K_d = K \cap R_d$ is essential in R_d provided K is d-essential in R, i.e. for every non-zero right d-ideal K' of $R \quad K \cap K' \neq 0$;
- (2) If R is right non-singular then K_d essential in R_d provided K is essential in R.

Proof: (1) Suppose $R_d = R^d$. Let $a \in R^d$. Then aR is a right *d*-ideal of R and $f(K \cap aR) \subseteq K_d \cap aR_d$. Now Lemma 2.1(5) provides the thesis in this case.

(2) Let R be right non-singular. Assume K_d is not essential in R_d . Take $0 \neq a \in R_d$ such that $K_d \cap aR_d = 0$ and define $K_j = \{x \in K \mid d^j(a)x \in K\}$ for $j \geq 0$. Since K is essential, each K_j is essential and hence $\hat{K} = K_0 \cap K_1 \cap \cdots \cap K_{n+k}$ is an essential right ideal of R. Moreover, since d is algebraic of degree n + k and K is d-invariant, standard calculations show that \hat{K} is also d-invariant. Let $\hat{K}_d = \hat{K} \cap R_d$. Notice that $a\hat{K}_d \subseteq K_d \cap aR_d = 0$ and $d^j(a)\hat{K}_d = 0$ for $j \geq 0$

follows, because \widehat{K}_d is *d*-invariant. Let $m \ge 0$ be such that $0 \ne b = d^m(a) \in \mathbb{R}^d$. Using the above, one gets

$$f(b\widehat{K}) = bf(\widehat{K}) \subseteq b\widehat{K}_d = 0$$

Applying Lemma 2.1(5) we obtain $b\hat{K} = 0$. It means that $0 \neq b \in Z(R)$. This contradicts our assumption on Z(R). Consequently K_d is essential in R_d .

PROPOSITION 2.4: For the algebra R the following conditions are equivalent:

- (1) R is right Artinian.
- (2) R_d is right Artinian.

Proof: The implication $(1) \Rightarrow (2)$ is a direct consequence of Lemma 2.1(4).

 $(2)\Rightarrow(1)$. We know that R_d is semiprime. Suppose R_d is right Artinian. Then R_d is an unital algebra with a unity e. We will show that e is the unity of R. Consider the right ideal $K = \{x - ex | x \in R\}$ of R. Noticing that $e \in R^d$ and f is a homomorphism of R^d -bimodules one easily gets f(K) = 0. Therefore, by Lemma 2.1(5), K = 0. It means that e is the left unit of R. Now $L = \{x - xe | x \in R\}$ is a left ideal of a semiprime algebra R such that $L^2 = 0$. Thus L = 0. This shows that R is a unital algebra with the unity 1 = e.

Observe that R is right non-singular. Indeed, if $Z(R) \neq 0$ then Z(R), as a nonzero two-sided ideal of R, contains a non-zero d-ideal. Therefore $Z(R) \cap R_d$ is a non-zero ideal of a semisimple artinian algebra. This yields that Z(R) contains a non-trivial idempotent, which is impossible.

Now we will divide the proof into two cases depending on char F. Let char F = 0. By [4, Corollary 4.4] every essential right ideal K of R contains a d-invariant essential right ideal \hat{K} . By Lemma 2.3(2) \hat{K}_d is essential in R_d , so $1 \in \hat{K}_d \subseteq K$ because R_d is semisimple Artinian. This means that R does not contain proper essential right ideals. Moreover, by Theorem 2.2, R_R is of finite Goldie rank, so R is semisimple Artinian.

Let char F = p > 0 and $m \ge 0$ be such that $p^m \ge n$ (recall that n is such that $R_d = \{r \in R \mid d^n(x) = 0\}$. Then the algebraic derivation $\delta = d^{p^m}$ satisfies $R_d = R_\delta = R^\delta$. By Lemma 2.3(1) R has no proper δ -essential right ideals. Thus R_R is completely reducible with respect to right δ -ideals, i.e., for every proper right δ -ideal K there exists a right δ -ideal K' such that $K \oplus K' = R$. This together the fact that rank R_R is finite yields that R_R has a finite length with

respect to right δ -ideals. By making use of [4, Theorem 3.1] we get that R_R has a finite length, so is Artinian.

As a direct consequence of the above proposition and Proposition 1.1 we get

THEOREM 2.5: Let d be an algebraic derivation of a semiprime algebra R. If R^d is right Artinian, then R is semisimple Artinian.

Now we are in position to prove the following result.

PROPOSITION 2.6: Suppose \mathbb{R}^d is semiprime. Then:

- (1) R is right Artinian if and only if R^d is right Artinian,
- (2) R is right Goldie if and only if R^d is right Goldie.

Moreover, in the case when both R and R^d are right Goldie

- (3) $Q(R) = RT^{-1}$, where Q(R) is the Goldie localization of R and RT^{-1} is a localization of R at the set T of regular elements of R^d .
- (4) $Q(R)^{\overline{d}} = Q(R^d)$, where \overline{d} is the unique extension of d to Q(R).

Proof: (2). In light of Theorem 2.2 the equivalence (2) holds if we will prove that R is right nonsingular provided R^d is semiprime Goldie. Suppose R^d is semiprime Goldie. Let char F = 0. Then the semiprimeness of R^d implies $R^d = R_d$. Indeed, by Leibniz formula, $d^{n-1}(R_d)^2 = 0$ and $d^{n-1}(R_d)$ is a two-sided ideal of R^d . Let $a \in Z(R) \cap R^d$. Then $K = \operatorname{r.ann}_R a$ is an essential right d-ideal of R. Thus, by Lemma 2.3(1) $K_d = K \cap R_d$ is essential in $R_d = R^d$, i.e. $a \in Z(R^d) = 0$. This shows that $Z(R) \cap R^d = 0$ and implies Z(R) = 0, as required.

Let char F = p > 0 and let $\delta = d^{p^m}$ be such that $R_d = R_\delta = R^\delta$. Since R^d is semiprime Goldie, Proposition 1.1 and Lemma 1.6 yield that R^δ has finite Goldie rank and $Z(R^\delta) = 0$, i.e. R^δ is semiprime Goldie. Therefore, while proving Z(R) = 0, we may replace d by δ and assume that $R_d = R^d$. Now, as in the case char F = 0, Z(R) = 0 follows.

(3) and (4). Now assume that both R and R^d are semiprime Goldie. We claim that T is an Ore set of R. Since the right annihilator of a constant element is d-invariant and every non-zero right d-ideal has a non-zero intersection with R^d , all elements of T are regular in R. Now let $s \in T$ and $a \in R$. Then K = sR is an essential right d-ideal of R and $\hat{K} = \bigcap_{j=0}^{n+k} \{x \in K \mid d^j(a)x \in K\}$ is an essential right d-ideal contained in K (see the proof of Lemma 2.3). By Lemmas 2.3 and 1.6, \hat{K}^d is essential in R^d , so $\hat{K} \subseteq K$ contains a regular element $t \in T$. It means that $sR \cap aT \neq \emptyset$, as claimed.

GOLDIE CONDITIONS

Now we can consider the localization RT^{-1} and the extension \overline{d} of d to RT^{-1} via $\overline{d}(at^{-1}) = d(a)t^{-1}$. Clearly d satisfies the same identity (3) as d and $(RT^{-1})^{\overline{d}} = R^d T^{-1}$ is a semisimple right Artinian algebra. Applying Theorem 2.5 to RT^{-1} we obtain that RT^{-1} is semisimple Artinian. Thus $Q(R) = RT^{-1}$ which gives the proof of (3) and (4).

The statement (1) is a direct consequence of Theorem 2.5 and (4).

We conclude this paper with the following extension of J. Bergen's result [2, Theorem 3.4] to the action of arbitrary solvable finite dimensional Lie algebra acting by algebraic derivations.

THEOREM 2.7: Let R be an algebra with no non-zero nilpotent elements and let L be a finite dimensional solvable Lie algebra acting on R by algebraic derivations. Then:

- (1) R is right Artinian if and only if R^L is right Artinian,
- (2) R is right Goldie if and only if R^L is right Goldie.

Furthermore, in the case where both R and R^L are right Goldie

- (3) $Q(R) = RT^{-1}$, where T is the set of regular elements of R^L ,
- (4) $Q(R)^L = Q(R^L)$.

Proof: The algebra R is without non-zero nilpotents, so any its non-zero subalgebra is semiprime. We will proceed by induction on dim L. If dim L = 1, then the theorem is a special case of Proposition 2.6. Assume dim L > 1. Then L contains an ideal M of co-dimension one. Let $z \in L \setminus M$. Then $L = M \oplus Fz$ as linear spaces and $R^L = (R^M)^d$, where $d = \Phi(z)$. Applying the inductive hypothesis to the extension $R^L = (R^M)^d \subseteq R^M \subseteq R$ we easily get statements (1) and (2) of the theorem. From the same reasons, it is clear that:

- (i) every element from T is regular in R,
- (ii) T is an Ore set in R^M such that $Q(R^M) = R^M T^{-1}$,
- (iii) \overline{T} is an Ore set in R and $Q(R) = R\overline{T}^{-1}$, where \overline{T} is the set of all regular elements of R^M .

Let $s \in T$ and $0 \neq a \in R$. Then, by (i) and (iii) $sR \cap a\overline{T} \neq \emptyset$. Take $0 \neq a\overline{t} \in sR \cap a\overline{T}$. By (ii) and (iii) $R^M\overline{T}^{-1} = R^MT^{-1}$. Hence there are $r \in R^M$, $t \in T$ such that $\overline{t}^{-1} = rt^{-1}$. It means that $\overline{t}r = t \in T$. Therefore $0 \neq at = a\overline{t}r \in sR \cap aT$, i.e., T is an Ore set in R.

Now extending the action of L to the action on RT^{-1} by $d(at^{-1}) = d(a)t^{-1}$, for all $d \in \Phi(L)$, we see that L acts on RT^{-1} by algebraic derivations and $(RT^{-1})^L = R^L T^{-1} = Q(R^L)$. Making use of (1), we get immediately that RT^{-1} is semisimple Artinian, so $Q(R) = RT^{-1}$. This ends the proof of (3) and (4).

Let us remark that the assumption imposed on R is essential in the above theorem.

Example 2: (Bergen, [2]). Let $R = M_2(S)$, where $S = F\{x, y\}$ is a noncommutative free algebra in two variables over a field F of arbitrary characteristic. Let d_i , i = 1, 2, 3 be inner derivations of R adjoint to $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix}$, respectively. Then $L = Fd_1 \oplus Fd_2 \oplus Fd_3$ is a three dimensional solvable Lie algebra of algebraic derivations of R. One can check that $R = \{\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \mid a \in F\}$. Thus R^L is semisimple Artinian however R is neither Artinian nor Goldie.

Notice, at the end, that if a finite dimensional solvable Lie algebra L acts on a semiprime algebra R by separable derivations (i.e., $R^d = R_d$ for any $d \in \Phi(L)$) then the analogue of Theorem 2.7 holds, because R^d is semiprime for every $d \in \Phi(L)$ in this case (cf. [3]).

References

- [1] J. Bergen, Constants of Lie algebra actions, J. Algebra 114 (1988), 452-465.
- [2] J. Bergen, Actions of solvable Lie algebras on rings with no nilpotent elements, J. Algebra 135 (1990), 217-227.
- [3] J. Bergen and M. Cohen, Actions of commutative Hopf algebras, Bull. London Math. Soc. 18 (1986), 159-164.
- [4] P. Grzeszczuk, On derivations of finite index. Chain conditions, dimensions and radicals, Israel J. Math. 58 (1987), 54-66.
- [5] P. Grzeszczuk, On nilpotent derivations of semiprime rings, J. Algebra 149 (1992), 313-321.
- [6] P. Grzeszczuk, Constants of algebraic derivations, Comm. Algebra (to appear).
- [7] V.K. Kharchenko, Constants of derivations of prime rings, Izv. Akad. Nauk. SSSR, Ser. Matem 45 (1981), 435-447; English transl. Math. USSR Izv. 18 (1982), 381-400.
- [8] A.Z. Popov, Derivations of prime rings, Algebra i Logika 22 (1983), 79-92.