
ISRAEL JOURNAL OF MATHEMATICS 88 (1993), 329-342 

GOLDIE CONDITIONS FOR CONSTANTS OF ALGEBRAIC 
DERIVATIONS OF SEMIPRIME ALGEBRAS 

BY 

P I O T R  G R Z E S Z C Z U K *  

lnstiZute of Methematics, University of Warsaw, Bialystok Division 
Akademicka £, 15-£67, Bialystok, Poland 

AND 

JERZY MATCZUK** 

Institute of Mathematics, Unieersit v of Warsaw 
Banacha £, 0£-097 Warsaw, Poland 

ABSTRACT 

Relations between Goldie conditions of a semiprime algebra R and its 
subalgebra R ~ of constants under an algebraic derivation are studied. 
The results obtained are applied to actions of finite dimensional solvable 
Lie algebras on associative algebras with no non-zero nilpotent elements. 

I n t r o d u c t i o n  

Let R be an associative algebra over a field F and L he a finite dimensional Lie 

algebra over F.  Let us recall that  the action of L on R means a homomorphism 

• : L ~ DerF R. The subalgebra of constants of L on R is the subset R L = 

{r E RI d(r) -- 0 for all d E ~(L)}. For a single derivation d of R we will write 

R d = {r E RI d(r) = 0}. In [7], [81, the relations between finiteness conditions 

of R and R L have been studied in the case R is a prime algebra of non-zero 
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characteristic and L is a restricted Lie algebra acting by outer derivations. This 

means, in particular, that L acts by algebraic derivations d such that no power 

of d is X-inner. In [2] Bergen considered similar problems for R being without 

non-zero nilpotent elements, L solvable and restricted. In particular, he proved 

that R is Goldie if and only if R L is Goldie and the Goldie localization of R can 

be obtained by inverting the regular elements of R L. 

In the paper we will consider the action of a single algebraic derivation d on a 

semiprime algebra R of arbitrary characteristic. We will show that the investiga- 

tions can be reduced to two cases, namely when d is either nilpotent or separable. 

Using this aproach we prove, in particular, that R has a finite Goldie rank if and 

only if R d has a finite Goldie rank and R is semisimple Artinian provided R ~ is 

Artinian. This enable us to extend the result of Bergen [2, Theorem 3.4] to the 

case of the action of finite dimensional solvable Lie algebra acting by algebraic 

derivations. 

By an ideal I of R we will mean a two-sided ideal. We will say I is a d- 

ideal of R if d(I) C. I. For subsets A, B of R 1.annAB (r.annAB) will denote the 

left (resp. right) annihilator of B in A, i.e. 1.annAB = {a E A] aB = 0} and 

r.annAB = {a E A] Ba = 0}. For a right R-module M rankMR will denote the 

Goldie rank of M. 

1. N i l p o t e n t  de r iva t ions  

In this part d will stand for a nilpotent derivation of a ring R, n(R) will denote 

the index of nilpotency of d on R. 

For any k > 0 define Rk = {x E RI dk(z) = 0}. Clearly R0 = 0, R1 = R d and 

R~ = R for all k > n(R). It is easy to see that the additive groups Rk define a 

filtration of R, i.e., Ri C_ Ri+l and RiRj  C_ Ri+j for all i , j  > O. 

For any 1 < k < n(R) let dk denote the restriction of d to Rk. Then dk: Rk 

Rk-1 is a homomorphism of Rd-bimodules. 

Let f~ be a module property which is closed with respect to taking submodules 

and extensions, i.e. 

(1) i f N C _ M a n d M E f / , t h e n N E ~ ,  

(2) if N C_ M and N, M / N E ~ , t h e n M E ~ .  

can mean, for example, one of the following properties: to be Artinian, 

Noetherian, to have finite Goldie rank, to have Krull dimension and so on. 
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By inductive argument, using the filtration of R defined above together with 

homomorphisms dk: (Rk)n, ---* (Rk-1)n,, one can easily prove the following 

PROPOSITION 1.1: If  Rdn~ E l~, then RRd E l~. In particular; 

(i) If  R d is right Artinian ( Noetherian), then R is right Artinian ( Noetherian). 

(ii) If  rank Rdnd is tinite, then r ankRn  is finite and 

rank RR _< rank RRd <_ n(R). rank Rd~ 

The following example shows that the converse implication does not hold in 

general. 

Example 1: Let L = Fx + Fy be a two-dimensional non-abelian Lie algebra 

over a field F of characteristic 0; [x, y] = x. Define R = U(L)/(x2), where U(L) 

is the universal enveloping algebra of L. Let X, Y E R denote the natural images 

of x, y and d be the inner derivation of R adjoint to X. Since X 2 = 0, d is 

nilpotent with n(R) = 3. Notice that R is Noetherian as a homomorphic image 

of an enveloping algebra. Thus R is of finite Goldie rank. In fact one can verify 

that rank RR = 1. 

We will show that rank Rd~ is infinite. Using relations X Y  - Y X  = X and 

X 2 = 0 it is easy to see that every element from R is of the form f ( Y )  + Xg(Y)  

for some suitable f (Y ) ,g (Y )  e F[Y] and X Y X  = 0. Moreover by inductive 

argument, X Y " X  = 0 for all m > 1. The above yields R a = F + XF[Y] and 

(XF[Y]) 2 = 0. Therefore r ankR d,  is infinite, as required. II 

In the sequel we will show that a similar example can not be constructed when 

R is a semiprime ring. For doing so, some preparation is needed. 

Henceforth we will assume that the ring R is semiprime. ~-n will denoted 

the filter of all two-sided ideals of R with zero right annihilator. Since R is 

semiprime, 9t-g consists of all ideals which are essential as right ideals, re(R) will 

stand for the smallest natural number m such that for any non-zero d-ideal I 

of R l.annldm(R) # 0. We say that the ring R is h o m o g e n e o u s  (cf. [5]) if for 

any non-zero d-ideal I of R m(I) = m(R) and n(I) = n(R). A d-ideal I of R is 

called h o m o g e n e o u s  if I is homogeneous as a ring. 

The following lemma will allow us to reduce our considerations to homogeneous 

rings. 
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LEMMA 1.2: 

(1) If R is homogeneous, then every non-zero d-ideal I o[ R is homogeneous 

and re(Z) = re(R). 

(2) There is a family {Ia}~eA of homogeneous d-ideals of R such that: 

(i) ( ~ e a  I~ E ~'R, 
(ii) each I~ is either Z-torsion free or pL, = 0/ 'or some prime number p, 

i.e. char la  = 0 or charI~ = p .  

Proof." See [5, Lemma 2 and Proposition 3]. | 

LEMMA 1.3: Let R be a homogeneous ring which does not contain an intinite 

direct sum of ideals. Then for any non-zero right d-ideal K of R dm-l(K) ~ O, 

where m = re(R). 

Proof" Let K be a non-zero right d-ideal of R. Assume d " - l ( K )  = 0. By 

the definition of m = re(R), there is a non-zero d-ideal /1 of R such that 

1.annlldm-l(R) = 0. Define Jl =r.annaI1 and KI = J1 N K.  Then I1 N J1 = 0, 

since R i s  semiprime, and K1 ~ 0. To see that K1 ~ 0, take 0 ~ x E K d. 

Then 0 = d " - l ( x R )  = xdm-t (R) .  Hence L N K ~ 0, where L =l.annRdm-'(R). 

Clearly IlL C_ I1 N L = 0. It means that L C_ -/1 and proves that K1 ~ 0. 

We have constructed non-zero d-ideals /1,  J1 of R such that I1 N J1 = 0 and 

a non-zero right d-ideal K1 of J~ satisfying d " - l ( K 1 )  = 0. By Lemma 1.2(1), 

J1 is a homogeneous ring with re(J1) = m. Therefore we can apply the above 

procedure to J1 and Ki ,  instead of R and K. Continuing this process we can 

construct a sequence of non-zero d-ideals R = J0 I> Jl t> ,/2 I> . . .  and non-zero 

d-ideals Ij  of Jj_~, j > 0, such that I i N Ji = 0 for all j .  Since R is semiprime, 

every I i contains a non-zero ideal 7 i of R. The above implies that R contains 
O O  - -  an infinite direct sum ~ j = l  Ii of ideals. This contradicts our assumption on R 

and the thesis follows. | 

The formulation of the following proposition is fairly complicaded, however the 

result itself is very important. It provides a construction of a map which behaves 

like a non-degenerate trace map. 

PROPOSITION 1.4: Suppose R does not contain an int~nite direct sum of ide- 

als. Let I be a non-zero homogeneous d-ideal of R with either char I = 0 or 

c h a r / =  p. Then there exist a d-ideal J of R such that J C_ I, J E 3:1 and 

a homomorphism t: J ~ I ~ of Rd-bimodules. The homomorphism t has the 
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following property: for any right d-ideal K of R we have t ( K  N J)  # 0 provided 

KnJ#O. 

Proof: For defining t we will make use of an over-ring S of I. The definition of 

S depends on the characteristic of I.  Let m = re(I).  

CASE 1: char I does not divide m. In this case we set S equal to the symmetric 

Martindale ring of quotients of I. By [5, Theorem 5], there is z E S such that 

z m = 0 and d(r) = xr  - rz  for all r E I. The construction of S provides us a 

d-ideal J of I such that J E Y l  and x k J z  t C_ I for 0 < k, l < m. Replacing J by 

I J I  we may assume that J is a d-ideal of R. 

CASE 2: c h a r / = p  > 0 a n d m  = p k l ,  where k >_ l and the prime number p 

does not divide I. Consider the ring of differential polynomials 11 [X; d], where 11 

denotes the natural extension of I to a unital ring. Define S = 11 [X; ~ / ( X m ) .  

Applying the same arguments as in [5] we will prove that ( X  m) N I = 0. Indeed, 

it is easy to see that every polynomial in ( X  m) has a free coefficient of the form 

~_~dra(ai)bi, where ai,bi E 11. Hence I N  ( X " )  C_ dm(I ) I  1 and 

. (Z n ( X " ' ) )  = O. 

Now the definition of m ( I )  and the semiprimeness of a r imply immediately that 

I Iq ( X  ra) = 0. Thus I can be treated as a subring of S. Let x be the canonical 

image of X in S. Clearly z m = 0 and d(r) = xr  - rx for all r E I. It was shown 

in [6, Lemma 3] that in the above situation r.annl xp* intersects every non-zero 

d-ideal of I non-trivially. Therefore ] = I. r .annlz  p* E Y l  and xp* J, Jxp* C_ J. 

Obviously J is a d-ideal of I. As in the previous ease, we may assume that J is 

a d-ideal of R such that xip*Jz jpk C_ I for 0 _< i , j  <_ 1. 

In both cases we define t: J ~ I d by the fornmla t(r) = x m - l r  + xm-~rz  + 

• .. + z rx  m-~ + rz  m-1 . Using the identity xr = rx + d(r), for r E J,  we can write 

t(r) in the following form 

m--I  

(1) t(r)  = Z..~ t_X-'t l~i~/ ti+i/m ~x,,,-i-ldi@~t /, 
i=0 

for r E J. 

In ease c h a r / =  p and m = pkl the above formula reduces to (see [6]) 

I 

(2) t(r) = E ( - 1 ) i p *  ([)zP*(I-i)diP*-'(r), 
i=1 
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for r E J. 

Since xt(r) - t(r)x = 0 for r E J,  the choice of J and x together with formulas 

(1), (2) yield that t really acts into I d. 

Now we will show that t is a homomorphism of Rd-bimodules. The presented 

proof covers the case char I = 0. If char I = p > 0, the proof is the same if we 

replace x by x p~ and formula (1) by (2). Suppose c h a r / =  0. Notice that, since 

S is an over-ring of I not of R, we do not know a priori that (xj)r  = x( j r )  for 

j E J and r E R. However working inside S we have 

(x(jr))a = x((jr)a) = x(j(ra)) = ((xj)r)a 

for a n y j  E J, a E I, r E R. It means that ( ( x j ) r - x ( j r ) ) I  = 0 in the ring I,  and 

the semiprimeness of I give us (xj)r  = z(jr)  for any j E J and r E R. Using this 

and the formula (1) it is clear that t is a honmnmrphism of right Rd-modules. 

Similarly, expressing t(r) in terms of combinations of d i (r) with coefficients x i on 

the right hand side, one can prove that t is a homomorphism of left Rd-modules, 

as well. 

Now let K be a right d-ideal of R such that K N I # 0. Because J is essential 

in I,  we may additionally assume that K C J. Notice also that the condition 

imposed on R inherits on I. Thus we can apply Lemma 1.3 to I. Assume 

t (K)  = O. Then, depending on char I,  either 

0 = x " - l t ( K )  = x"~- 'd '" - ' (K)  

or  

0 = xP*(I-I)t(K) = xP~(I-l)d ''~-1 (K),  

respectively. By Lemma 1.3, d " - ' ( K )  # 0, so K, = r . ann lx ' " - '  n K  # 0 ( K,  = 

r .annlx pk(~-') f3 K # 0, respectively). Clearly t(K~) = 0. Repeating similar 

procedure enough times, we cml construct a non-zero right d-ideal K of I such 

that t (K)  = 0 and x K  = 0 (zPkK = 0, respectively). Hence, by (I) and (2), 

d r " - l (K)  = 0, which contradicts Lemma 1.3. Therefore t (K)  # O. | 

LEMMA 1.5: Let R be a homogeneous ring with either char R = 0 or char R = p. 

If  rank Rrt is finite, then rank R~, is finite and 

rank R ~  <_ rank RR. 
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Proof." Applying Proposition 1.4 to I = R we obtain an essential d-ideal J of 

R and a homomorphism t: J --* R d of Rd-bimodtfles such that t(K) y£ 0 for any 

non-zero right d-ideal of R contained in J .  

Let Ki, 1 < i < s, be non-zero right ideals of R d such that the sum ~,i~=1 Ki 

is direct. Since R is semiprime and J E ~'n, the d-invariant right ideal KiJ is 

non-zero for every 1 < i < s. Let K = KiJ n Y]~j~i KjJ. Then t(K) C t(KiJ) (q 

t ( ~ j #  i KjJ)  C_ Kit(J) n ~ j ¢ i  Kit(J)  C_ gi  f) ~ j ~ i  Kj = 0, i.e., t(K) = 0. This 

implies K = 0, so the sum ~,~=1 KiJ  is direct and the thesis follows. I 

Let us remark that in the above lemma we proved that rank R a is equal to 

d-invariant Goldie rank of R, i.e., the Goldie rank with respect to right d-ideals. 

LEMMA 1.6: Let R be a semiprime ring which does not contain ml infinite direct 

sum of ideals. Then t'or every essential right d-ideal K of R, K d = K n R d is an 

essential right ideal of R d. 

Proof'. By Lemma 1.2, there exist homogeneous d-ideals I 1 , . . . ,  I ,  of R such 
$ 

that E = ~i=1 Ii E J~R and the charcteristic of Ii is either zero or prime for 

any 1 < i < s. Moreover, by Proposition 1.4, there are non-zero d-ideals Ji 

of R contained in Ii, J~ E ~-I~ and non-trivial honmmorphisms ti: Ji -* I~ of 
8 

Rd-bimodules, i = 1 , . . . ,  s. Notice that J = ~ i=1  Ji E ~-a, since E E ~'R and 

Ji E~'I~ for 1 < i < s .  

Let K be an essential right d-ideal of R and A a non-zero right ideal of R d. 

We will show that K d f) A ~ O, i.e. K d is essential in R d. Because R is semiprime 

and J E ~R, AJ  ~ O. It means that for some 1 <_ j <_ s AJj is a non-zero right 

d-ideal of R. Thus AJj n K is a non-zero right d-ideal contained in Jj. Take 

0 # a E (AJj f3 K) d. By the senfiprimeness of Jj aJj is a n o n - z e r o  right d-ideal, 

so Proposition 1.4 gives 

0 ~ tj(aJj) = atj(Jj) C_ ai  d C KdI~ C_ K d. 

On the other hand aJj C_ AJ] C AJ  i. Since t i is a homomorphism of R d- 

bimodules, 

0 • tj(aJj) C_ tj(AJj) = Atj(Jj) C_ AI] C_ A. 

Consequently A fq K d ~ O, as required. II 

Now we are in position to prove the main result of this section. 
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THEOREM 1.7: Let R be a semiprime ring with a nilpotent derivation d. Then 

rank RR is tinite i f  and only if rank R ~  is tinite zmd 

rank R~d < rankRR _< n ( R ) - r a n k R ~ .  

Proof: Suppose rank RR is finite. Let / 1 , . . . ,  I~ and E be ideals of R defined 

in the proof of Lemma 1.6. We have rank(I])R, _< rank(I])z~ = rank(I])ff ,  so 

applying the above lemma to K = E 

$ 

rank R~, = rank E~, _< Z rank(I~)q.  
j = l  

Moreover, since E E ~R and R is semiprime, similar considerations give us 

rank RR = rank(1i)  . Now Lemma 1.5 applied to homogeneous rings 

1 _< j < s implies that rank R ~  is finite and rank R ~  < rank RR. The converse 

implication and the second inequality are given by Prol)osition 1.1. | 

2. Algebraic derivations 

In this part we will show how to apply results of the previous section to algebraic 

derivations of semiprime algebras. Henceforth R will be denote a semiprime 

algebra over a field F and d will stand for all algebraic derivation of R, i.e., d 

is algebraic over F as an element of Endf(R+) .  Thus there are k,n > 0 and 

elements a0, ..., ak E F such that 

(3) aod n + aid n+i + . . .  + akd "+k = O. 

Clearly we may assume a0 = 1. Notice that n > 1, since otherwise R d = 0 

and by [1, Theorem 1.3], R would be nilpotent. From the same reasons K d ~ 0 

for every non-zero right d-ideal of R. Let us remark that if I is an ideal of R, 

then d ' ( I  n+k) C_ I for any s ~ 0. This and the semiprimeness of R yield that 

any non-zero ideal I of R contains a non-zero d-ideal I. Thus, in particular, 

I A R d ~ 0. We will frequently use the above remarks. 

Let Rd = {x E R] 3j >_ 0 dJ(x) = 0}. It is standard to see that Rd is a 

suba l ge b ra o fR  and Rd = {x E R [ dn(x) = 0}, where h i s  as in (3). Obvi- 

ously R d C Rd and d is nilpotent on Rd. Moreover, it is known ([6]) that Rd is 

semiprime. It means that we will able to apply results of the first section to the 

extension R d C_ Rd. 
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Let us consider an F-linear map f:  R --* Rd given by the formula f ( z )  = 

z + al d(z) + . . .  + atdk(x).  Remark that f is a homonmrphism of Rd-bimodules. 

In the following lemma we collect basic properties of the map f ;  A denotes the 

kernel of f .  

LEMMA 2.1: 

(i) /(Rd) = Rd. 

(2) (RdA + A) N Rd = O. 

(3) R = Rd @ A as Rd-bimodules. 

(4) I f  I is a right ideal of Rd, then ( I  + IR)  f3 Rd = I. 

(5) I f  K is a non-zero right ideal of R, then f ( K )  # O. 

Proof." Consider the natural filtration of Rd defined at the beginning of the first 

section, i.e. (Rd)k = {z • Rd ] d~(z) = 0}, for k > 0. 

(1) Clearly 0 = (Rd)o C_ f (Rd) .  Assume that (Rd)i _C f (Rd)  for some i _> 0. 

Let x • (Rd)i+l. Then v = a i d ( z ) + . . .  +akdk(x)  • (Rd)i. By assumption, 

there is y • Rd such that f ( y )  = v. Now x - y • Rd mid f ( x  - y) = x. This 

shows that (Rd)i+l C f (Rd)  and yields Rd = (Rd) ,  C f (Rd) .  

(2) Let i > 0 and x • (Rd)i, a • A. Using the definition of f it is easy to see 

that 

f ( xa )  • x f (a )  + spanF{dt(x)dS(a)l 1 ~ 1, s > 0} C 

(3) 
(4) 

(5) 

x f (a )  + (Rd) i - lA  C_ (Rd) i - lA ,  

a s h  E A = kerr .  Hence f " ( R d A  + A) C (Rd)oA = O. (RdA + A) t3Rd 

is a d-invariant subspace of Rd, thus for x E (RdA + A) f3 R d we have 

z = f ( z )  = fn ( x )  = 0. Therefore (RdA + A) f3 Rd = O. 

This statement is an easy consequence of (1) and (2). 

Let I be a right ideal of Rd. Using (3) mad (2) one obtains I C_ ( I  + IR)  N 

Rd C_ ( I  + IA)  f3 Rd C_ I + ( IA  f3 Rd) = I. 

Let K be a right ideal of R. Assume f ( K )  = O. Since f and d commute, 

f(~'~i>0 di(K)) = 0. Therefore, eventually replacing g by ~'~i>0 d i (g) ,  

we may assume d(K)  C_ K and ~ = dig is a derivation of K satisfying 

1 + alb + . . .  + atb k = 0. This implies K 6 = 0, so K = 0 and the thesis 

follows. II 

Now we can extend Theorem 1.7 to algebraic derivations. 
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THEOREM 2.2: Let R be a semiprlme algebra and d be a~a algebraic derivation 

of R. The following conditions are equivalent: 

(1) rankRR is finite, 

(2) rank(Ra)R, is finite, 

(3) rankR'tn,  is finite. 

Proof: In virtue of Theorem 1.7, conditions (2) mad (3) are equivalent. 

(1)=~(2). Suppose rank Rn is finite. If rank (Rd)nd is infinite, then Rd contains 

an infinite direct sum of right d-ideals/1 G/2 ~ . . .  ([4, Theorem 3.1]). Then for 

i>_1 
S(z R n z]R) c f(X R) n Z]R) 

j~i j~i 

Therefore, by Lemma 2.1(5), IgR N ~ j ¢ , / ~ R  = 0 for any i >_ 1. This shows 

that the sum ~i>1 I~R is direct and yields the thesis. 

(3)=~(1). If rankRR is infinite then R contains an infinite direct sum K1 @ 

K2 @.-.  of right d-ideMs ([4, Theorem 3.11). Then E ,> I  Ki d is an infinite direct 

sum of right ideMs of R d. Therefore rank RR is finite provided rank R~d is finite. 

I 

For the Mgebra R, Z(R) will denote the right singular ideM of R. Recall that 

R is said to be right non-singuhx if Z(R) = O. 

LEMMA 2.3" Let K be a right d-ideal of R. 

(1) If  R ~ = Rd, then Kd = K N Rd is essential in Rd provided K is d-essential 

in R, i.e. for every non-zero right d-ideal K I of R K M K I ~ O; 

(2) If R is right non-singular then Kd essential in Rd provided K is essential 

in R. 

Proof." (1) Suppose Rd = R d. Let a E R ~. Then aR is a right d-ideM of R and 

f ( K  (1 aR) C_ Kd NaRd. Now Lemma 2.1(5) provides the thesis in this case. 

(2) Let R be right non-singular. Assume Kd is not essential in Rd. Take 

0 ~ a E Rd such that Kd N aRa = 0 and define Kj = {x E K1 dJ(a)x E K} for 

j > 0. Since K is essential, each Kj is essential and hence .~ = KoNK1VI...MKn+I, 

is an essential right ideal of R. Moreover, since d is algebraic of degree n + k 

and K is d-invariant, standard calculations show that K is also d-invariant. Let 

Kd = /~ (1 Ra. Notice that aKa C_ Ka NaRd = 0 and dJ(a).Ka = 0 for j _> 0 
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follows, because Kd is d-invariant. Let m > 0 be such that 0 ~ b = din(a) E R d. 

Using the above, one gets 

f(bff,) = bf(K) C bffx" d = 0 

Applying Lemma 2.1(5) we obtain bR" = 0. It means that 0 ¢ b E Z(R). This 

contradicts our assumption on Z(R). Consequently Kd is essential in Rd. | 

PROPOSITION 2.4: For the algebra R the following conditions are equivalent: 

(1) R is right Artinian. 

(2) Rd is right Artinian. 

Proof: The implication (1)=~(2) is a direct consequence of Lemma 2.1(4). 

(2)=~(1). We know that Rd is semipfime. Suppose Rd is right Artinian. Then 

Rd is an unital algebra with a unity e. We will show that e is the unity of R. 

Consider the right ideal K = {z -ex [  z E R} of R. Noticing that e E R a and f is a 

homomorphism of Rd-bimodules one easily gets f (K) = 0. Therefore, by Lemma 

2.1(5), K = 0. It means that e is the left unit of R. Now L = {x - xe I x E R} is 

a left ideal of a semiprime algebra R such that L 2 = 0. Thus L = 0. This shows 

that R is a unital algebra with the unity 1 = e. 

Observe that R is right non-singular. Indeed, if Z(R) ¢ 0 then Z(R), as a non-  

zero two-sided ideal of R, contains a non-zero d-ideal. Therefore Z(R)N Rd is a 

non-zero ideal of a semisimple artinian algebra. This yiekls that Z(R) contains 

a non-trivial idempotent, which is impossible. 

Now we will divide the proof into two cases depending on char F. Let char F = 

0. By [4, Corollary 4.4] every essential right ideal K of R contains a d-invariant 

essential right ideal h'. By Lemma 2.3(2) h'a is essential in Rd, so 1 E Kd C K 

because Rd is semisimple Artinian. This means that R does not contain proper 

essential right ideals. Moreover, by Theorem 2.2, RR is of finite Goldie rank, so 

R is semisimple Artinian. 

Let c h a f f  = p > 0 and m > 0 be such that p m >  n (recall that n is such 

that Rd = {r E R [ d"(x) = 0}. Then the algebraic derivation 6 = d p" satisfies 

Rd = R6 = R ~. By Lemma 2.3(1) R has no proper g-essential right ideals. Thus 

RR is completely reducible with respect to right g-ideals, i.e., for every proper 

right g-ideal K there exists a right g-ideal K '  such that K q~ K '  = R. This 

together the fact that rank Rn is finite yields that RR has a finite length with 
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respect to right 8-ideals. By making use of [4, Theorem 3.1] we get that RR has 

a finite length, so is Artinian. II 

As a direct consequence of the above proposition and Proposition 1.1 we get 

THEOREM 2.5: Let d be an aJgebraic derivation of a semiprime a/gebra R. It" 

R d is right Artinian, then R is semisimple Artinian. 

Now we are in position to prove the following result. 

PROPOSITION 2.6: Suppose R d is semiprime. Then: 

(1) R is right Artinian if  and only if R g is right Artinian, 

(2) R is right Goldie if and only if R d is right Goldie. 

Moreover, in the case when both R mad R a are right Goldie 

(3) Q(R) = RT -~, where Q(R) is the Goldie localization of R and RT -1 is a 

localization of R at the set T of regular elements of R d. 

(4) Q(R) 7 = Q(Ra), where d is the unique extension of d to Q(R). 

Proof: (2). In light of Theorem 2.2 the equivalence (2) holds if we will prove that 

R is right nonsingular provided R a is senliprime Goldie. Suppose R d is semiprime 

Goldie. Let char F = 0. Then the semiprimeness of R d implies R d = Ra. Indeed, 

by Leibniz formula, d"-l(Rd) ~ = 0 and d"-l(Rd) is a two-sided ideal of R a. Let 

a E Z(R) fl R d. Then K =r .annaa  is an essential right d-ideal of R. Thus, by 

Lemma 2.3(1) Ka = K f'l Rd is essential in Ra = R d, i.e. a E Z(R a) = 0. This 

shows that Z(R) t3 R a = 0 and implies Z(R) = 0, as required. 

Let char F = p > 0 and let (f = d p" be such that R~ = R6 = R ~. Since 

R d is semiprime Goldie, Proposition 1.1 mad Lemma 1.6 yield that R ~ has finite 

Goldie rank and Z(R ~) = 0, i.e. R ~ is semiprime Goldie. Therefore, while 

proving Z(R) = 0, we may replace d by 8 and assume that Ra = R d. Now, as in 

the case c h a r F  = 0, Z(R) = 0 follows. 

(3) and (4). Now assume that both R and R d are semiprime Goldie. We claim 

that T is an Ore set of R. Since the right annihilator of a constant element is 

d-invariant and every non-zero right d-ideal has a non-zero intersection with 

R g, all elements of T are regular in R. Now let s E T and a E R. Then K = sR 

is an essential right d-ideal of R and K ,-,,,+k, = IIj=0 i x E KI dJ(a)x E K} is an 

essential right d-ideal contained in K (see the proof of Lemma 2.3). By Lemmas 

2.3 and 1.6, ~ d  is essential in R d, so if," _C K contains a regular element t E T. 

It means that sR f3 aT # 0, as claimed. 
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Now we can consider the localization R T  -1 and the extension d of d to R T  -1 

via "d(at -1)  = d(a)t -1. Clearly d satisfies the same identity (3) as d and ( R T  -1 )~ 

= RdT  -1 is a semisimple right Artinian algebra. Applying Theorem 2.5 to R T  -1 

we obtain that R T  -1 is semisimple Artinian. Thus Q(R) = R T  -1 which gives 

the proof of (3) and (4). 

The statement (1) is a direct consequence of Theorem 2.5 and (4). | 

We conclude this paper with the following extension of J. Bergen's result [2, 

Theorem 3.4] to the action of arbitrary solvable finite dimensional Lie algebra 

acting by algebraic derivations. 

THEOREM 2.7: Let R be an algebra with no non-zero nilpotent elements and let 

L be a finite dimensional solvable Lie algebra acting on R by algebraic derivations. 

Then: 

(1) R is right Ar~inian i f  and only i f  R L is right Artinian, 

(2) R is right Goldie i f  a32d only i f  R L is right Goldie. 

Furthermore, in the case where both R and R L are right Goldie 

(3) Q(R) = a T - ' ,  where T is the set of regular elements of R L, 
(4) Q(R) L = Q(RL). 

Proof'. The algebra R is without non-zero nilpotents, so any its non-zero subal- 

gebra is semiprime. We will proceed by induction on dim L. If dim L = 1, then 

the theorem is a special case of Proposition 2.6. Assume dim L > 1. Then L 

contains an ideal M of co-dimension one. Let z • L \ M. Then L = M ~ F z  

as linear spaces and R L = (RM) d, where d = @(z). Applying the inductive hy- 

pothesis to the extension R L = (RM) d C_ R M C_ R we easily get statements (1) 

and (2) of the theorem. From the same reasons, it is clear that: 

(i) every element from T is regular in R, 

(ii) T is an Ore set in R M such that Q(R M) = R M T  -1, 

(iii) T is an Ore set in R and Q(R) = R T  -~ , where T is the set of all regular 

elements of R M. 

Let s • T and 0 ¢ a • R. Then, by (i) and (iii) s R A  a T  # O. Take 0 # at  • 

sROaT.  By (ii) and (iii) R M T  -1 = R M T  -~. Hence there are r • R M, t • T such 

that ~-1 = r t_l .  It means that tr  = t • T. Therefore 0 # at = atr • sR(7 aT, 

i.e., T is an Ore set in R. 

Now extending the action of L to the action on R T  -1 by d(at -~ ) = d(a)t -1, 

for all d • O(L), we see that L acts on R T  -1 by algebraic derivations and 
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(RT-1 )L  = R L T - I  = Q(RL). Making use of (1), we get immediately that R T  -1 

is semisimple Artinian, so Q(R) = R T  -1. This ends the proof of (3) aa~d (4). 
| 

Let us remark that the assumption imposed on R is essential in the above 

theorem. 

Example 2: (Bergen, [2]). Let R = M2(S), where S = F{x ,  y} is a non- 

commutative free algebra in two variables over a field F of arbitrary character- 

istic. Let di, i = 1,2,3 be inner derivations of R adjoint to (~ 0°), (0 ~), (0 0y), 

respectively. Then L = Fall (9 Fd2 @ Fd3 is a three dimensional solvable Lie 

algebra of algebraic derivations of R. One can check that R = {(~ 0) [ a E F}. 

Thus R L is semisimple Artinian however R is neither Artinian nor Goldie. | 

Notice, at the end, that if a finite dimensional solvable Lie algebra L acts on 

a semiprime algebra R by separable derivations (i.e., R d = Rd for any d E ¢(L)) 

then the analogue of Theorem 2.7 holds, because R d is senfiprime for every d E 

¢(L) in this case (cf. [3]). 
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