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ABSTRACT 

Given 0 <: ~ _< p _< ~ < ~ ,  we construct  Orlicz function spaces LF[o, 1] 

with Boyd indices a and ~ such that  LP is lattice isomorphic to a sublattice 

of LF[o, 1]. For p > 2 this shows the existence of (non-trivial) separable r.i. 

spaces on [0, 1] containing an isomorphic copy of L p. The discrete case of 

Orlicz spaces ~F(I) containing an isomorphic copy of gP(F) for uncountable 

sets F C I is also considered. 

Introduct ion  

The symmetric structure of rearrangement invariant (r.i.) Banach function spaces 

has been studied in the memoirs of Johnson, Maurey, Schechmann and Tzafriri 

[&M-S-T] and Kalton [K2] (see also [L-T3]). In (IN1] Theorem 3.2) Kalton proved 

that if a r.i. Banach function space X on [0, 1], without isomorphic copies of co, 

has a sublattice isomorphic to LI[0, 1], then X[0, 1] is precisely LI[0, 1]. This 

result is even valid replacing sublattice for subspace and was also obtained in 

([J-M-S-T] Corollary 5.4) under a slightly stronger assumption. 

One of the purposes of this paper is to analyze possible extensions of the above 

result of Kalton ([K1]). We study, for 0 < p < c~, the existence of separable 

r.i. function spaces X[0, 1] different from L p = LP[O, 1] having a sub la t t i ce  which 

is lattice isomorphic to L p. Obviously, the interest of this question consists 

in considering separable r.i. function spaces for a probabilistic measure jointly 

with the requirement of L p be lattice embeddable as a sublattice (so the usual 
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isomorphic embedding of L p via p-stable random variables, for p < 2, is not useful 

here). Moreover, in some cases the existence of an embedding of L p into X[0, 1] 

as subspace is equivalent to the existence of an embedding as sublattice (f.i. for 

p > 2 and Orliez spaces [J-M-S-T] p. 195; also for 1 < p < 2 [K2] Theorem 10.9). 

It is known that  the answer to the above question is negative for the class 

of Lorentz function spaces Lp,q[0, 1] and Lw,q[0, 1] for submultiplicative weights 

(see Carothers [C1], [C2]). Here we give a positive answer within the class of 

separable Orlicz function spaces LF[O, 1]. Thus the main result of Section II is 

the following: 

THEOREM A: Le t  0 < a < p <_ 13 < c~. There  exis ts  an a-convex  Orlicz funct ion 

space LF[0, 1] with indices a°~ = a and f l ~  = fl such that  L p is la t t ice- isomorphic  

to a sublat t ice  o f  LF[o, 1]. 

In general an a-convex Orlicz function space LF[o, 1] , different of L ~, can- 

not contain a subspace isomorphic to L ~ for 1 < a ¢ 2. This follows from 

([3-M-S-T] Theorem 7.1). Thus the case p = a is solved in Section III removing 

the a-convexity: 

THEOREM A': Let  0 < a = p <_ fl < oo . There  exis ts  an Orlicz funct ion 

space LF[0, 1] ~ L p wi th  indices acff = a and f l ~  = fl such that  L p is lat t ice-  

isomorphic  to a sublat t ice  o f  LF[0, 1]. 

In particular the spaces obtained in Theorems A and A' for the case p > 2 are 

(as far as we know) the first examples of non-trivial separable r.i. Banach function 

spaces on [0, 1] containing a subspace isomorphic to L p. Also, Theorems A and 

A' for the case p = 1 show that the above Kalton result [K1] cannot be extended 

to the class of r.i. quasi-Banach function spaces. The proofs depend on some 

technical Lemmas and the built Orlicz spaces LF[0, 1] are rather sophisticated 

(comparing with the spaces in the (0, co) case [H-Ru]). 

The second aim of this paper concerns with a similar question but now in 

the setting of Banach spaces X with an uncountable symmetric basis. Thus, we 

analyze when the /?P(F) spaces, for uncountable sets F, can be isomorphically 

embedded into X. 

In IT] Troyanski proved that  if a Banach space X with a symmetric basis 

(ei)iEI contains an isomorphic copy of ~I(F) for F uncountable then X = ~1(I). 

Recently, in [H-T], it has been proved the impossibility of embedding £V(F)-spaces 

for F uncountable into any Lorentz space d(w ,p ,  I )  for any non trivial weight w 
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and 0 < p < oo. Here, we prove a positive result for the class of reflexive Orlicz 

spaces /~F(I), extending a previous result given in ([H-T], Proposition 7) for the 

non-reflexive case. Thus, our main result in Section I is the following: 

THEOREM B: Let  0 < a < p <_ /3 < oz. There exists an a-convex  Orlicz space 

gF(I)  with indices aF = a and /3F = /3 containing a lattice isomorphic copy o f  

/~P(F) for any set F C I. 

Note that  an a-convex Orlicz space gY(I) ,  different from g~ (I), cannot contain 

an isomorphic copy of g~(I). This follows from ([H-T], Proposition 5 and [R], 

Corollary 2.4). Thus the case p = a is solved in Section III without a-convexity: 

THEOREM B':  Let  0 < a = p < /3 < oc. There exists an Orlicz space gF(i)  # 

gP(I), with indices aF = a and /3F = /3, containing a lattice isomorphic copy of  

gP(F) for any  set F C I .  

1. P r o o f  of  T h e o r e m  B 

Before to give the proof of Theorem B let us give some definitions and notations. 

Given a set I and an Orlicz function F,  we denote by 1F(I) the Orlicz space 

consisting of all real-valued functions x(i)  defined on I for which 

iGI  

for some A > 0, endowed vith the F-norm 

{ } [ IxI [=inf  A > 0 :  m F  <_ A . 

This F-norm is equivalent to the Luxemburg norm when F is convex. 

If F satisfies the A°-condition (i.e. there exists C > 0 and to > 0 such that 

F(2t)  <_ C .  F ( t )  for 0 < t < to) then the unit vectors (e~)~el are a symmetric 

basis in gF(I) .  We refer to [T], [D] and [H-T] for general properties of Banach 

spaces and F-spaces with an uncountable symmetric basis (f.i. all symmetric 

basis are equivalent). 

In the countable case, the structure theory of Orlicz sequence spaces g F ( N )  = 

~F has been extensively studied (cf. [L-T1], [L-T2]). For the uncountable case, 

the necessary and sufficient conditions for the isomorphic embedding of Orlicz 

spaces/?a(F) into gg(i)  for uncountable sets F C I have been given recently in 

[R] (see also [H-T]). 
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Let us denote by EF,1 the set of all the Orlicz functions G which are equivalent 

at 0 to a function 

H(x)=  dp(s) ( 0 < x < l )  

where # is a probability measure on (0, 1]. It holds that eF(I) contains a (lattice) 

isomorphic copy of gc(F) for uncountable sets F C I if and only if G E ~F,I"  

The set ~F,1 is contained in CF,1, up to equivalence, however in general is not 

compact. The following properties of the sets ~F,1 will be used: for every q > 0, 

xq ~ f ,1  ~- ~ q F , 1 ,  and, if Fq denotes the q-eonvexification of the function F (i.e. 

Fq(x) = F(xq)) then 

In the proof of Theorem B we need the following three Lemmas: 

LEMMA 1.1: There exists two sequences (an) a n d  (ha) ot'0's and l's numbers 

such that 
O 0  O 0  

l,  and <_ (k + 
n=O n-----0 n=k 

for every k E N = {0, 1, . . .} .  

Proof." This is a consequence of Lemma 8 in [H-T]: There exists two increasing 

sequences of natural numbers (mi) and (k~) such that  (rni+l - rni) ~ oc and the 

function 
o o  

I(X) = E ~ [ m i ' m i + l ) ( X )  
i=0  

satisfies 
o o  

E f (x  + kl) = 1 
i=0  

for every x ~_ 0. Moreover, it follows from (22) in [H-T] that  

y(k  - k) < (k + 2) 5 

i----0 

for every k = 1, 2, . . . .  Then, if we take ak, = 5m~ = 1 for i = 0, 1, 2 , . . .  and 

a j  = 5i' = 0 in the other cases, we have 

E ~'~ = oe, ~ a,~5,~+k = 1 and E anS~-k _< (k + 2) 2. 
n = 0  n = 0  n=k 

for every k E N. 1 
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LEMMA 1.2: Let 

numbers such that 
o~ 

~ Oln ~-- OO 

n~O 

for n 6 N and  c = 2 ~ > 1, verifying 

for every k 6 N 

Proof: 
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e > 0. There exist two sequences (am) and (en) of positive 

and e~ < cen+, 

A _< ~ a~cn+k <_ B 
'n-~O 

and where A and B are positive constants. 

We apply Lemma 1.1. Let M = {mi : i = 0 , 1 , 2 , . . . }  (too = 1), 

i--1 

Mi = (M + i ) \  U ( M  + j)  
j=O 

an  = c~ and e~ _< c e~+l (n e N) as well as 
n = 0  

• Oln£n+ k ~ 1 
nmO 

n=O i = 0  n+kEMi 

k k 
C~n6n+k- i 1 1 

i = 0  n+k fMi  i = 0  n=O i = 0  

Now~ as 

for every k 6 N.  

On the other hand,  

It  is clear tha t  

I 1  if n E M = Mo, 
¢n = c -k = 6~_kc -k i f n E M k .  

and 

ak = ~ an6n-k 5 (k + 2) 2 
n ~ k  

for k = 1, 2 . . . . .  Let us define the sequence (¢n),~__o by eo = 0, and 
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and 

we deduce 

E < - 
i = k + l n + k E M i  i = k + l  n i = k + l  

~ (i + 2) 2 
-< E a~ _< 2~ ~ < c o ,  

/----1 i=1 

1 e ~ (i + 2) 2 
anen+k _< 1 ----2- + 2~ ~ -- B < oc 

n=O /=1 

which concludes the proof. I 

LEMMA 1.3: Let ck = (k + 1) 4 for k E N. There exists two sequences (an) and 

(en) of positive numbers such that 

n = O  

for n, k E N, verifying 

and en <_ Cken+k 

A _< ~ a , e n + k  _< B 
n = 0  

for every k E N, and where A and B are positive constants. 

Prooi~ We proceed as in Lemma 1.2, defining now the sequence (en)n~_O by 

e0 = 0, and 
1 i f n E M = M o ,  

= ~-~ i f n E M k .  en Ck I -- ck 

It is clear that >-~n~__o an = c~, en _< Cken+k (n E N) and 

E anen+k >_ 1 
n--O 

for every k E N. Now, the upper inequality follows from 

and 

k 

E E  
i----O n + k E M i  

a~e~+k <_ E <- - -  

i=O n----O Ci i--O ci  

< c o  

E E E Ci Ci 
i = k + l  n + k E M i  i = k T 1  n i----k+l 

o ¢ )  . o o  

- - - i  1 ` 4  < c ~ .  I 
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Proof of Theorem B: We will consider  three  cases: 

(i) F i r s t  the  case a = 1 < p < /3 < cx~: We will find a convex Orl icz funct ion 

F wi th  indices a F  = 1 and /3F = /3 = ( p + ~ )  such t h a t  g F ( i )  conta ins  an 

i somorphic  copy of ~P(I). 

We will make  use of L e m m a  1.2: let f be the  funct ion defined by  

f (x)  = E e'X(2-(~+l),2-~] (x) (0 < x < 1) 
n = 0  

and we consider  the  convex funct ion F ( x )  given by  

/; p ( x )  = (x - t ) t . - 2  f ( t ) a t  

for 0 < x < 1. Using L e m m a  1.2 we have 

._< 
n~-~0 

for 0 < x < 1 . This  implies  by in tegra t ion  and the  B e p p o - L e v i  T h e o r e m  tha t  

~(p- 1) -< E ~'~2"nr -< ~p(p- ~----5 
n ~ 0  

(,) 

f o r 0 < x < l .  

Since 

.(1) 
with  

we deduce  

(**) 

oo 2 - k  

= E ~k f2 (2 -~  - t)tP-2dt = c k 2 - ( v - 1 ) k ( a 2 - ~  -- b 2 - k ) '  
k ~ n  -k- -1  k m n  

1 - 2 - ( p - l )  1 - 2-P 
a - and  b - - - ,  

p - 1  p 

o o  

2P=F(2 - n )  = E ( a  - b2-k)2-(P-1)ke=+k" 
k----0 

Let us show tha t  the  lower index aF = 1. I t  is enough to check t h a t  

2qnF(2 -m-n) 
sup ~ ' - - - m '  = OO 
r n , n  
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for every q > 1. Indeed,  for m = m i  - n > m i - 1  we have using (**) t ha t  

2 p ( m + n ) F ( 2 - m - n )  >_ (a - b)em+n = (a - b) 

and  

(-m o~[o'~.¢pm.kz-m } ~ a 1 -- 2 - ( P - l )  emi+k2-(P-1)(n+k) 
k=0 

a ( 2_(P_l)n ) < + 
- -  1 - -  2 - ( P  - 1 )  ,era 

wi th  em --~ 0 for i --* oc and  n fixed. Then  

2qnF(2 . . . .  ) > a -  b t l  2-(p-x))2(q-1)~ s u p  
m F ( 2  - ' ~ )  - a 

and  
2qnF(2 - m - n )  

SUPr~,n F ( 2 _ m )  = oc. 

Let  us see now tha t  3F  = P + e (and hence F satisfies the  A°-condi t ion) .  I t  

follows from (**) t ha t  

2--(P-X)kem+k 
2 - P n F ( 2  - m )  < - - a  k=0 < - - a  2o~, 

F ( 2  . . . .  ) - a -  b ~ 2 _ ( P _ l ) k e m + n +  k a - -  b 
k=0 

so we deduce  t h a t  ~F _< P + e. In  order  to show the  converse inequali ty,  let  us 

consider  m = mi < m i + x  - n .  Then  

2pmF(2  - m )  _> (a - b)cm = a - b 

and  
2p(m+n)F(2 . . . .  ) < a 2_(p_l)m,+~ ) 

- 1 - 2 - (v -1 )  (em+n + 

_ a (2_~n 2_(p_l)m~+l). 
1 - 2 - ( P  - 1 )  + 

Hence, mak ing  i ~ ec , we find 

2 - P n F ( 2  - m )  a - b 
sup > (1 - 2-(P-X))2 ~' ,  
m F ( 2  - m - ~ )  - a 

which implies  t h a t  ~F _> P + e- Thus  /3F = p + e. 
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Finally, it remains  to show that  eF(I)  contains a subspace isomorphic  to gP[F) 

for F uncountable .  (The countable  case is well-known: [L-T2], T h e o r e m  4 a 

8.) Indeed,  if # denotes  the discrete measure  on (0,1] defined by #(2 - n )  -- 

a ,~2PnF(2-n) ,  we consider the function 

fo I f ( x t )  
G(x)  = --~-~(t) d# (0 < x < 1). 

Then,  by (*), the function G is equivalent to x p at  0, so x p C ERA and, using 

Theorem B of [R] (or [H-T], Propos i t ion  5), we conclude tha t  eF ( I )  contains an 

isomorphic copy of t?P(F). 

(ii) The  case c~ -- 1 < p = /3 < c~. We proceed as in the above case but  now 

using the sequence (Ca) of L e m m a  1.3 in order to define the functions f and F:  

In the same way as above it is proved tha t  a F  = 1 and x p C ~F, I"  

Now it holds tha t  /3F = p. Indeed, using tha t  en _< Cken+k, we have 

~ 2-(P-1)kem+k 
2 - P ~ F ( 2 - m )  < a k=0 < a ( n + 1 ) 4  ' 

F (2  . . . .  ) - a - b  ~ 2_(p_l)kem+~+ k a - b  
k=0 

which implies tha t  /3F < P ,  hence/3F = P • 

(iii) The  general case 0 < a < p <_ /3 < oc. I t  follows f rom the above cases (i) 

and (ii) t ha t  there exists a convex Orlicz function F with  indices a F  = 1 < p / a  < 

/3F = /3/a such tha t  ~F(I)  contains an isomorphic copy of ~q(F) for q = p /a .  

Now, if we consider the a-convex function F,~(x) = F(x~) ,  we get easily, using 

the proper t ies  of the sets EF.,1 and ([R], Theo rem A, or [H-T], Propos i t ion  5), 

t ha t  gF~ ( I )  verifies aF,~ = a < /3F,~ = /3 and gF~ (I )  contains an isomorphic copy 

of eP(F). | 

Remark:  Given an Orlicz space gF( i ) ,  we consider the i n d e x  7F defined by 

7F = lira l ° g F ( 2 - n )  
n--.~ log 2 - n  

I t  holds tha t  a F  < 7F < flF • I t  follows f rom ([R], [H-T]) t ha t  if eq(F) is 

isomorphical ly  embedded  into eF(I) for r c I uncountables ,  then  a F  < q _< 7F • 

Note  t ha t  the Orlicz spaces g.F(I) const ructed in Theo rem B verify 7F = P • 

This  follows easily f rom inequali ty ( ,  • , ) .  
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Remark: In the non-locally bounded case the above Theorem is also true: given 

= 0 < p < ~ < ~ there exists £F(I) with aF  = 0 and ~3F = ~ such that £g(I) 
contains a subspace isomorphic to £P(F). 

The proof is similar to Theorem B considering now the function 

~0 x F(x) = tp-lf(t)dt,  0 < x < l ,  

where 
oo 

f(t) : E cnX(2-"-1,2-~] (t)' 
n=0 

and using now ([H-T], Proposition 5 (ii)). 

2. P r o o f  o f  T h e o r e m  A 

Our notation in this section is standard and we refer to [L-T3]. 

Given an Orlicz function F,  let us denote by }-~F~,l the set of all Orlicz functions 

G which are equivalent at c~ to a function 

H(x) = fo~ FF~)) d#(s), f o r x >  1, 

where # is a probability measure on (0, c~) satisfying 

fo ° d#(s) 
F(s) <- 1. 

The following criteria given in ([J-M-S-T], Theorem 7.7) for lattice-embeddings 

of function spaces into a convex Orlicz space X = LF[0, 1] (as sublattices of type 

Xg) holds also in the quasi-Banach case (see [H-Ru]). 

PROPOSITION 2.1: Let LF[o, 1] be an Orlicz space with 0 < a~  <_ fl~ < c~. If 
G e ~-~.F~,I then LG[O, 1] is lattice-isomorphic to a sublattice of LF[O, 1]. 

The set ~f~,l is contained in C~F,1, up to equivalence, but  in general is not 
oo 

compact. For any q > 0 it holds that ~=F,1 = xq ~F~,l and ~-~Fq,1 = (~,,F,1)q 
where Fq is the q-convexification of the function F at ~ .  

In the proof of Theorem A we need the following: 
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LEMMA 2.2: Let e > O. There exists two sequences (an) and (en) of  positive 

numbers such that 

~ OL n = (X~ and ~ n + l  ~ C{~n 

n : 0  

for n = 0, 1, 2 , . . .  and c = 2 ~ > 1, verifying 

A _ < ~ a n e n + k _ < B  
n = 0  

for every k = 0, 1, 2 , . . .  and A and B positive constants. Furthermore, for every 

p > 0 ,  

n 

O~n E 2pk ~k ~ ~ "  
(+) 2p--; 

n=O k=0 

Proof: 

cc and 

Let us apply Lemma 1.1: Let M = {mi: i = 0, 1 , . . .}  with ( m i + l - m i )  

i - 1  

Mi = ( M -  i ) \  U ( M -  j )  
j=O 

for i = 1, 2 , . . . .  Let us define the sequence (on) by 

1 if n c M = Mo, 
c n =  c - k = 6 ~ + k c  -k i f n c M k .  

It  is clear that  if we take (an) as in Lemma 1.1 we have 

oo 

E a n = c ~ '  en+l_<cen f o r n = 0 , 1 , . . ,  and 
n = 0  

cx~ 

E anen+k > 1 = A for every k = 0 , 1 , 2 , . . . .  

On the other hand, 

oo 

n=O i : 0  n+kC Mi 

< Oln~n+k+ie_  i = C-- i _ C 
- c - 1  

i=O n=O i=O 

- -  - B < c ~  

for every k = 0, 1 , . . . .  
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We pass now to show (+) .  Let {ki: i = 0,1 . . . .  } = {n: a~  = 1}. For fixed 

ki • N ,  let us consider 

m~ = m a x { m j :  m j  _< ki} and si = min{mj :  m j  > ki}. 

Then  

O~ n 2Pk ~ k 1 r~ k~ 2p---- ~ _ ~ 2Pk + 2Pkek 
n=O k=O i = 0  k=O r i + l  

<- 1 ---2-P 2P(k,-r,------~ + 1 - 2------~ c~, -k,  
i=O "= 

1 ~ 0 1  1 (n + 2) 2 + 1 
-< 1 - 2 - P  2 v ~  ~ ~ < c ° '  

since f rom ~--~n~--o an6n-k  <_ ( k + 2 )  2 ( L e m m a  1.1), it follows tha t  there are at  most  

(n + 2) 2 values of i such tha t  kl - r~ = ki - m j  = n, and, f rom ~-'~--o a,~6n+k = 1, 

there  is at  most  one value of i such tha t  si - kl = m j  - kl -- n. This  concludes 

the proof. | 

LEMMA 2.3: Let  ck = (k + 1) 2 for k • N.  There  exists two sequences (an)  and 

(en) o f  posi t ive numbers  such that  

oo 

E ~ n  ~ CO a n d  en+k ~ Ck~n 

n=O 

for n, k • N ,  verifying 
oo 

n=O 

for every k • N,  and  A and B posit ive constants. Fur thermore ,  for every p > 0, 

n 

n=O k=O 

I t  is similar to L e m m a  2.2 considering now the sequence (en)~=0 defined Proo~ 

by 
1 i f n  E M = M0, 

£n = II 
ck - l  = ~n+k/ek i f n E M k .  

Proo f  of  Theorem A: I t  is sufficient to consider the case a = 1 < p < /3 and 

F convex, since the general  case can be deduced f rom this by considering the 

a -convex  funct ion F~(x)  = F ( x  ~) and Propos i t ion  2.1. 
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(i) Let  a = 1 < p < ~ = p + e. We define the  funct ion f on [1, co), by  

oo 

f (x)  = ~ ~nX(2n- - l , 2n] (X) ,  

n : l  

where  (en) are  as in L e m m a  2.2, and  the  convex funct ion F(x) is defined by  

F(x) = 1 + (x - t)tp-2f(t)dt, 

for x _> 1. I t  follows from L e m m a  2.2 tha t  the  funct ion f satisfies 

oo 

A < E anf(2nx) <- B 
n~O 

for x _> 1. Now, in tegra t ing  and  using the  B e p p o - L e v i  T he o re m we get 

A xp-1 - 1 - -  < - r ' ( m )  < i 

p - 1  - 2(~- ' - p - 1  
n=O 

for x _ > l .  

I t  holds  t ha t  
a n  

2(p_1) n F ' ( 2  ~) < e~. 
n ~ 0  

Indeed,  this  follows from L e m m a  2.2 and the  equa l i ty  

2 ( P _ l )  n F I ( 2 n )  : 2 ( p _ l )  n tp-2f(t) dt 
n=O n=O d2k-1 

= ~ c~n ek 2(p_l/k(1_2_(p_l}). 
2 ( P - 1 ) n  p -  1 

n=0  k = l  

Thus,  for x > 1 we have 

A xp-1 +ao < E a n  F,(2nx ) < B xv-1 
2 ( p -  1)n " -- 1 p - 1  - p -  

n ~ 0  

+ bo 

and 
x p  oo 

A ~  + aox + al ~_ E ~ n  [F(2nx) - F(2n)]  
n~O 

X p 
~_ Bp,p)l---------w( _ + box + bl 
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where ao, al ,  bo and bl are constants. 

It holds also that 

~ a .  F(2,~) < oc. 
2P" 

. = 0  

Indeed, 

E c~,~ a ,  tp_2f(t)d t 2-~ (2" - t)ff-2f(t)dt < 2(p_l)" 
n=O . = 0  

=~_: o~. F'(2")<~. 
2(P-1)n  

Hence we deduce that  there exists constants Ao, Bo > 0 such that  F satisfies 
C~ 

(-) Aoxp < Z ~" F(2nx) < BoxP 
- -  2 p n  - -  

n=O 

for x > 1. 

Let us deduce now that LF[o, 1] contains a sublattice lattice-isomorphic to L p. 

Indeed, if # is the discrete measure on [1, co) defined by 

ak2-VkF(2 k) ~(2 k) = 
a,2-P"F(2 n) 

we get from ( - )  that the function 

f f  F(~t) G(x) = F(t) d#(t), for x >_ 1, 

is an Orlicz function equivalent to x v at c~. Now, as F satisfies the A~-condit ion 

(we prove it below), we can apply Proposition 2.1 to conclude that L p is lattice 

embedded into LF[o, 1]. 

We pass to compute the associated indices to F.  Since 

(¥) F(2 n) = 1 + (2 n - t)tP-2f(t)dt --- 1 + E ek2(P-1)k(a2n -- b2k) 
k=l  d2k- t  k----1 

where a = (1 - 2-(p-1))/(p-  1) and b = (1 - 2-P)/p, we have 

m + n  
ek2(P-1)k(a2 m+'~ _ b2 k) ( 

F(2 m+") k=t a 
2-F(2m-------~ < < 1 + 

2" ~ ek2(P-1)k(a2 m -  b2 k) - a - b  
k = l  

m.+n 
~ ek2(P-1)k \ 

(~7) _< a 1 +  k=m+l / 
a - b  2(P-1)'~em l "  / 

m + n  
~k2(v-1)k \ 

k=~ + L - -  ) 

ek2( p-1)k / 
k=l  
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Now, let us prove tha t  ( ~  = 1. Indeed, taking m = mi and n < m i + l  - -  m i ,  

we have using ( ~ )  tha t  

F (2  T M )  < a ( 
2nF(2  m) - a - - b  1 

+ 

m+n 
~Ek2(P-1)k)  a (  2 (p-1)n ) 

k=mA-1 < 1 "~ (-mA-n • 
2 ( p - l )  m -- ~ 1 - 2 - ( p - U  

This  implies t ha t  

since Emi+n ---+ O. Hence 

inf F(2m+n)  < 2n----a-a 
m F(2  m) - a -  b 

inf F(2m+'~) - 0 
m,~ 2qnF(2 m) 

for every q > 1, which means  tha t  a ~  = 1. 

Finally, let us prove tha t  ~ = p + e = /3, and hence F satisfies the A ~ -  

condition. First  let us see tha t  ~ < p + ~. Indeed, f rom (~-~) we get for c = 2 ~ 

tha t  ( 2(p-1) co  F ( 2  m+~) < a 1 + 
2'~F(2 m) - a b 1 - c  -1 ] 

and 
F (2  re+n) a ( 1 2 Cn ) 

2P"F(2 m) < ~ 2(P-1) n + 1--2--~  ' 

And this implies t h a t / 3 ~  < p + ~. 

Let  us prove now the converse ~ > p +  ~. By using (~) wi th  m = mi+ l  - n  > 

m~ we have 

F ( 2  n+m) - 1 > 2(P-1)(m+n)(a - b)2 m+" 

and 

Hence 

F (2  m) - 1 < ~ ek2(P-X)ka2m 

k----1 

< a2 m 2(p-Uk + ek2(P-1) k 

\ k=l  k=mi-t- 1 

__ a2m(1 - + 

F(2  m+~) - 1 > a - b(l~ _ 2_(p_1) ) 2(P-U('~+'~)2n 
F (2  m ) -  1 - a 2--n~2(P-1) m +2(P-1)m~" 



182 F.L. HERNANDEZ AND B. RODRIGUEZ-SALINAS Isr. J. Math. 

Now, mak ing  i --* oo we have 

F(2re+n) ( ~ a  b) 
supra F ( Z m ~  >- (1 - 2-(P-D)2(P+e)n. 

And  this implies tha t  f l~  > p + e, hence f l~  = p + ~. 

(ii) The  case a = 1 < p = fl < co. We proceed as in the above case using now 

the sequence (en) of L e m m a  2.3 in order to define the functions f and F .  In the 

same way as above it is proved tha t  a ~ '  = 1 and x p 6 E °° I t  holds also tha t  F , I "  

f l~  = p. Indeed,  using t ha t  e~+k <__ cken, we have 

m+n 
Ck2 (p-1)m 

k=mq-I F(2  m+n) < a ( 1 +  ) 
2nF(2  TM) - a b 2(p-1)me m 

?n-J-n 

a 2(p_l)(k_m) ) < ( l + c n  E - a - b  
k = m + l  

a 2 (P-1 )nc  n 
< ( 1 +  ), 
- a - b ]----2-:-P 

which implies tha t  f l~  _< p, hence flF = P. | 

Remark: In  the special case of p = 1, Theorem A proves tha t  there exist r.i. 

quas i -Banach function spaces X[0, 1] containing a sublat t ice  isomorphic to L 1. 

(Compare  with the convex case [Kx], Theorem 3.2.) 

3. P r o o f  o f  T h e o r e m s  A' a n d  B '  

Proof  of Theorem B': 

(i) T h e c a s e l  < a = p = f l K o c .  

consider 
oo 

, (k + 1) 4 e n = , where ck = 
k = 0  Ck 

' _< ' and there exists posit ive constants  A'  and B '  such t ha t  Then  e n CkEn..bk 

We can only consider w.l.o.g. 1 < a = p _</3 < oo. 

Let (an)  and (e . )  be  as in L e m m a  1.3. We 

oo 

A' <_ anen+ k < 
n~O 

f o r k 6 N .  Let  
oo 

f(x) = ~ e~X(2-(,~+,),2-~](x) 
n=0 
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f o r 0 < x <  1, and 

F ( x )  = (x - t ) tP-2  f ( t ) d t .  

It holds tha t  for 0 < x < 1, 

(~) ~' xp ~ ( ~ )  p ( p -  1-----~ <- E °~n2pnF < B' X--'--'~P 
~ = o  - p ( p - 1 ) '  

which implies, by using (JR], Theorem B or [H-T], Proposi t ion 5), tha t  I F ( I )  

contains an isomorphic copy of eP(F) for F uncountable.  

Let us show tha t  a F  = p = ~F. Like in Theorem B we have 

(~) 
o o  

2p~(2  -~) -- ~ ( a  - b2-~)2-(~-~)%+~ 
k=O 

and 

2pnF(2 . . . .  ) < a 

F(2-m)  - . - b  

2-(P-1)ke~m+~+k 
k=0 

o o  

2-(P-1)k~'~+ k 
k=O 

a a 
_< a - b c~ a - b (n  ÷ 1)4' 

since 
oo 1 ~ ~-m+n-bk 1 

k=0 enTk ¢n k=0 Ck Cn 

Hence (~F _> P, SO a F  = p. Also, from (~)  it follows tha t  

e I 
m+n" 

o o  

2- (P-  1)ke~m+ k 
2 - P ~ F ( 2  - m )  a k=o a 

F(2_m_n)  < ~ < + 1/4 , 
- a - b  ~ 2 _ ( p _ l l k ~ + ~ +  k - a - b  (n 

k---O 

which implies/3F _< p, hence ~ F  =- p. 

Finally, let us note tha t  the constructed function F is not equivalent to x p at 

0. Indeed, it follows from (5) and ~ a,~ = c~ tha t  lim 2PnF(2 -n )  = 0. 
n - - - + O O  

(ii) The  case 1 < c~ = p < ~ < co. We proceed as in the above case but  

considering now (a~) and (Ca) as defined in Lemma 1.2. 

Let  
o o  

e~' = Z e~+kCk ' where ck = (k + 1) 2. 
k=0 
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, _< -k~ , for e = ( / 3 -  p), and there exist positive constants A' and B '  Then e n z Cn+ k 

such that  oo 

A'  < E ane:+ k <- B '  
n=O 

f o r k E N .  Let 

and 

oo 

f(x) = 

n----0 

jfo ~ 
F ( x )  = (x - t ) t p - 2 f ( t ) d t  

for 0 < x < 1. Reasoning as in (i) we get that  ~F(I)  contains an isomorphic copy 

of gP(F) for uncountable F, and also that  a F  = p. 

Finally, let us show that  ~F = (P + e). Since 

2vnF(2 -n )  = E ( a  - b2-k)2-(P-1)ke~+k 
k=O 

we have 

2-(p-1)elm+k 
2-PnF(2  - m )  a ~=o a 

. . . .  ) < - -  ~ < - - - - b  2en' 
F(2 - a -  b ~_~ 2_(p_Uke~+n+k -- a -  

k=0 

which implies that  F is (p + e)-concave and ~ f  --~ (P "~ ~). Now for m = mi < 

m i + l  -- It w e  have 

2pmF(2 - m )  > (a - b)e' m > a - b 

and 

Hence 

oo 
2v("~+'~)F(2 - ~ - n )  <_ a E ( ' tm+n+k2-(P--1)k  

k=O 

t E C k 2 - ( P - 1 ) k  t t 
~_ a £ m +  n = a ~m+n" 

k=O 

2-m~F(2 -m)  a -  b 1 a,,2~n 
sup F(2_m_n)  _> sup a' e' >-- m m=m~ m + n  

where a" is a positive constant, since 

! 
< 2 - e n  ~ "4- } 

~rn+n -- Ck Ck Ck 
k----0 k=m~+l - -m--n k=0 
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And this implies that  /3F >_ (p + ~) , so ~F = (P + ~). | 

ProofofTheoremA': Let 0 < c~ < p  ~ ~ < r < o~, we cons ide rao  = r - ~ ,  

Po = r - p  and/3o = r - a .  It  follows from Theorem B' that  there exists an Orlicz 

function Fo with indices c~g o = c~0, ~/Fo = 3o such that  the function 

Go(x)= ~ol ~ d p o ( t ) ,  

for 0 _< x _< 1, is equivalent to x p° at 0, where go is a probabili ty measure on 

(0, 1]. Since r > ~0, we can assume w.l.o.g, that  Fo(st) > srFo(t) for 0 _< s, 

t < l .  

We consider now the non-decreasing function F defined by 

F(x) = xrFo(1),  for x>_ 1. 

It  holds t h a t a ~  = r - 1 3 0 = a  a n d ~ = r - ( ~ o = ~ .  

Furthermore, the function G(x) = x~Go(x -1) for x >_ 1 verifies 

G(x) = ~(t) aP(t) (x > 1), 

where # is the probabili ty measure on [1, +c~) defined by tt(t) = #0(}), and G 

is equivalent to the function x ~-v° = x v at c~. Hence x p E ~f~,l and, by Propo- 

sition 2.1, we conclude that  L p is lattice-isomorphic to a sublattice of LF[0, 1]. 
| 

Note that  the above proof can be also used in proving partially Theorem A. 

Given an Orlicz space L v [0, 1] we consider the i n d e x  ~ defined by 

7 ~  = lira l°gF(2'~) 
~ - ~  log 2 ~ 

I t  holds that  a ~  _< - ~  < ~ . Let us denote by Q ~  the set o f q  > 0 such 

that  L q is isomorphically embedded into LF[0, 1]. It  follows from ([J-M-S-T], 

Theorem 7.1) that  if a ~  > 1, then 

Qy c bT ,  u {2}. 

And in the case of ~/~ < 2 we have, by using ([J-M-S-T], Proposit ion 8.9), that  

2] c 

Thus, as a direct consequence of Theorems A and A' and inequality ( * - ~ )  we 

have the following: 
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COROLLARY 3.1: Let 1 < a < p </3 < 2. There exists an Orlicz function space 

LF[0, 1] with indices a T = a, ~ = p and ~ = ~ such that Q ~  = ['r~,2]. 

Notice that  in the above result the isomorphic embedding of L p into LF[0, 1] 

for p = 7 ~  cannot be obtained using ([J-M-S-T], Proposition 8.9). Indeed, the 

function t -1/p q~ LF[0, 1] since 

OO 

J xp* - 2-P 2 nv 
1 n= l  

and this series is divergent because l imoF(2'~)/2nv > O. 

The constructed Orlicz spaces LF[0, 1] having a sublattice isomorphic to LV 

for p > 0 verify x p E ~F~I, so the inclusion map LP[0, 1] ~ LF[o, 1] holds. 

This suggests asking whether there exists any sublattice of LF[O, 1] where the 

norms II IIF and II Irp are equivalent: in other words, whether the inclusion map 

LV[0, 1] ~-~ LF[0, 1] is or is not disjointly strictly-singular. Recall that  an operator 

T from a Banach lattice E to a Banach space is dis j o in t ly  s t r i c t ly - s ingu la r  

([H-R], p. 48) if there is not a disjoint sequence of non-null vectors (x~) in E 

such that  the restriction of T to the span [xn] is an isomorphism. 

PROPOSITION 3.2: Let LF[0,1] be a Orlicz space different from L v with 

0 < a°~ <_ jJ~ < o¢. l f x  p e ~F~I then the inclusion map LP[O, 1] ¢--+ nF[o, 1] is 

disjointly strictly-singular. 

Proof: From x p C ~F~I and the A~-condition we get that there exist positive 

constants A and B and a positive sequence (a,~) such that 

-t-  0~3 

AxP < E a'~F(2nx) < BxP 
- - 0 0  

for x > 1, and ~ - o o  a~ < oo. 

We claim that  ~ - - 0  an2P~ = c¢. Indeed, assume that  ~°°=0 an2 pn < oo. 

Then, for M > 0 verifying F(x)  <_ M x  p at c¢, there exists m E M such that  

En°° m+l an2 pn < A / 2 M ,  and hence 

m o o  m 

--o~ m + l  --oo 
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for x > 1. Hence 
r a  

for x > 1, which implies tha t  F ~ x p at  cx~, a contradict ion.  

Now, for any constant  C > 0 there exists an integer m such tha t  

m 

c Z <- CBxP < 
n=0 0 

for any x _> 1. And, using Propos i t ion  3.2 (b) in ([H-R]) which holds also for 

p < 1, we conclude tha t  the inclusion LP[0, 1] ~-* LF(O, 1] is disjointly strictly- 

singular. | 

In  par t icular  if a ~  > 2 and LF[o, l] contains an isomorphic  copy of L p for 

p # 2, then  the inclusion m a p  LP[O, 1] ~ LF[o, 1] is disjointly str ict ly-singular.  

This  follows from the above Propos i t ion  and Theo rem 7.7 in [J-M-S-T]. 

Remark:  For a fixed Orlicz space LF[0, 1], let P ~  be the set {p > 0: x p C ~F~,l}. 

I t  would be interest ing to know the s t ruc ture  of the sets P ~ .  
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