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A B S T R A C T  

This paper establishes the consistency of a countably complete, uniform, 
Rl-dense ideal on R2. As a corollary, it is consistent that there exists a 
uniform ultrafilter D on w2 such that Iw~ 2/D I = Wl. A general "transfer" 
result establishes the consistency of countably complete uniform ideal K 
on w2 such that P(w2)/K TM P(wl)/{countable sets). 

0. T h e  s t a t e m e n t  o f  t h e  m a i n  t h e o r e m  a n d  i ts  c o r o l l a r i e s  

In 1930, Ulam [U] suggested the possibility of a set X carrying a countably  

additive probabil i ty measure tha t  measured each subset of X.  Early results of 

Ulam showed, however, tha t  such a set cannot have a small cardinali ty such as R1 

or R2. Recent  results of Gitik and Shelah [G-S] show tha t  there is no accessible 

set X carrying a countably  complete ideal I C P ( X )  (e.g. the sets of measure 0 

for some measure) such tha t  P ( X ) / I  is separable. By their results, the strongest 

possible ideal proper ty  cardinals such as R1 or R2 can have is to carry a dense set 

of size R1. In this paper  it is shown tha t  it is consistent to have such an ideal on 

R2. (It was previously known from work of Woodin  tha t  it was consistent on N1.) 

The  existence of such an ideal on R2 is shown to settle several open problems in 

model  theory, combinatorics,  and topology tha t  date from the early 1960's. 

The  main  result of this paper  is the following theorem: 

THEOREM: Assume there is a huge cardinal. Then the following holds in a forcing 

extension of V: 
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There is a countably complete, weakly normal, Rl-dense ideal K on R2. 

This is a corollary of a general "transfer theorem" which says that assuming 

(roughly) the existence of a "layered" ideal on R2: 

for any uniform ideal J on ~1 there is a uniform ideal K on N2 such that: 

P( l)/J 

Further, the degree of completeness of the ideal K is equal to the degree of 

completeness of the ideal J.  

To prove the main theorem quoted above, we first show that it is consistent to 

have, simultaneously, a countably complete Rl-dense ideal on R1 and a sufficiently 

strongly layered ideal on R2, as well as (} and [3. The main result then follows 

from the transfer theorem. 

The proof of both of these results is adaptable easily to other cardinals to yield, 

for example, the consistency of an R2-complete, R2-dense, Rl-closed, uniform, 

weakly normal ideal on a3. 

We do not at this time know how to get the consistency of a countably com- 

plete, Rl-dense, uniform ideal on w3. The obstacle is showing the consistency 

of a dense ideal on R1 together with very strongly layered ideals on R2 and R3 

(simultaneously). 

The main theorem contains the solution of several combinatorial problems as 

corollaries: 

It solves "Ulam's Problem" for R2, by showing that it is consistent that  there 

is a collection of R1 countably complete uniform measures on R2 such that every 

subset of R2 is measured by one of the measures. 

It implies that there is an ultrafilter D on w2 such that the ultrapower w "2/D 

has cardinality wl. This solves a problem dating from the mid-1960's. (See 

[C-K].) 

In the early 1960's, ErdSs and Hajnal [E-HI, investigating the chromatic 

properties of graphs, defined the following graph: 

~(~, IX) = ({ f l f :  ~ -+ ~}, _l_), 

where f _1_ g iff I{a: f ( a )  = g(a)} I < n. This graph is of interest because of 

its universal properties. (See w "Applications", for details.) In particular, they 

showed that  the C.H. implies that  ~(w2,w) has uncountable chromatic number 

and asked whether this graph could have chromatic number R1. It is an easy 
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corollary of the ul traproduct  result that  in the model contructed in this paper, 

~5(w2, w) has chromatic number H I. 

Other applications include a joint observation with Alan Dow about  collection- 

wise normality. 

A variation on the transfer theorem constructs a countably complete ideal K on 

092 such that  P(092)/K -~ P(091)/{countable sets} and every ultrafilter extending 

K is highly nonregular. Further there is an ultrafilter D on ~t2 that  is a Rudin-  

Keisler minimal ultrafilter on ~2 and it has unique Rudin-Keisler predecessors 

on ~1 and bt0. This result is joint with Kanamori  and Magidor, and appears in 

w 

WOODIN'S THEOREM. The inspiration for the main theorem is the following 

theorem of Woodin: 

THEOREM (Woodin [W]): Assume 0~2(cof(091)). If  there is a normal RFdense 

ideal on 091 and a normal ideal J on 092 such that P(092)/J has a dense countably 

closed subset of cardinality R2, then there is a countably complete Rl-dense ideal 

Oil 092. 

Woodin's  theorem has the virtue of a relatively simple proof, however, at 

the t ime this paper  is being written it is not known whether the hypothesis 

of Woodin's theorem are consistent. Hence, in this paper, there is a much more 

complicated transfer theorem, which has the advantage over Woodin's theorem 

that  it is known that  its hypothesis can be shown to be consistent using standard 

large cardinals. 

This paper  is organized as tbllows: In this section we give the basic definitions 

we will use. In w we show that  it is consistent to have an Nl-dense ideal on R1 

and a very strongly layered ideal on R2. This result, while apparently new, uses 

no essentially new ideas. In w we prove the transfer theorem, the main new 

ingredient in the paper. In w we draw the applications as corollaries from the 

results of w and w In w we improve the results of w and draw some corollaries 

about  ultrafilters under the Rudin-Keisler ordering. In w we list some of the 

many open problems in the area. 

VERY STRONGLY LAYERED IDEALS ON 09 2. Let 92 be a structure of regular 

cardinality n. A f i l t r a t i o n  of 92 is a continuous increasing ~- chain of elementary 

substructures of 92, each of cardinality smaller than n. 

Remark: We note that  any two filtrations coincide on a closed unbounded set, 

which also determines a filtration. Also, the requirement that  each element of the 

chain be an elementary substructure of 92 is, in some sense, superfluous, since this 
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happens automatically on a closed unbounded subset of a. Further, if we have a 

property that  holds for a closed unbounded set of elements of the filtration, then 

by passing to a subsequence including only the "good" elements we can assume 

that  the property holds for every element of the filtration. 

For example, if 92 C ~ are two structures of cardinality a, and (92~: a E a), 

( ~ :  c~ E a) are filtrations of 92 and ~ respectively, then ( ~  N 92: c~ E a) is a 

filtration of 92, and hence agrees with (92~: a E a) on a closed unbounded set. 

By passing to subsequences we can assume that  (92~: c~ E a) = ( ~  O 92: c~ E a). 

Let A, B be partial orderings. A p r o j e c t i o n  m a p  from A to B is an order 

preserving function 7r: A -~ B such that  for all a E A and all b _< 7r(a) there is 

an a '  _< a such that  7r(a') <_ b. 
If A and B are Boolean Algebras and B C A is a regular subalgebra (i.e. 

maximal  antichains in B are maximal antichains in A), and 7r: A\{0} ~ B\{0} 

is a projection map that  is the identity on B, then it is easy to check that  for 

all a E A, Tr(a) >_ a. Projection maps rarely are homomorphisms (they don' t  

preserve meets), but they do preserve descending meets: If l)  is linearly ordered 

by > and AD exists in ,4, then ATr"D exists in B and ~r(AD) = A(u"/)).  

We will a t t empt  to use standard notation throughout this paper. We will 

write Col(g, ,k) for the Levy partial ordering collapsing A to have cardinality a 

with conditions of size < a. We will write Col(g, < ,k) for the Levy partial  

ordering collapsing every ordinal < ,k to have cardinality a. We will use the 

notation Add(g) for the partial ordering adding a single Cohen subset to a with 

conditions of size < a. We will write S(a, ~) for the "Silver Collapse" of ,k to 

be a +. Conditions here are partial functions p: a x ~ --+ A such that  for all 

~ ,~ ,  p(c~, ~) < fl, I dom(p)] _< n and there is a 5 < a, such that  dom(p) C ~ x ~. 

The ordering on the Silver Collapse is inclusion. (See [Ku] for a good explication 

of this partial ordering.) 

We now make one of our main definitions: 

Definition: A normal R2-complete ideal I on w2 is v e r y  s t r o n g l y  l a y e r e d  iff 

P(co2)/I = U { B ~ :  a < oJ3} 

where: 

(1) The sequence (B~: a < w3) is increasing and continuous, and for all a,  

IB I -- ~2. (In other words {B~: a < wa) is a filtration.) 

(2) There is a dense set D C P(w2)/I that  is closed under descending w- 

sequences and finite non-zero meets (i.e. if { d l , . . . ,  d~} are in D and Adi # 0 
then Adi E D). 
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(3) For a E w3n(cof(w2)Usucc), Bc~ is a regular subalgebra of P(w2)/I. Further 

there is a family of projection maps {Try: a C w3 N (cof(w2) U succ)} such 

that  7r~: D --+ (D n B~), 7r~ [ (D N B~) is the identity, and for a < / 3  we 

have 7r~ 0 7r z = 7r~ (i.e. the projection maps commute). 

We will denote D n B~ by D~. We note that  if we have the continuum 

hypothesis, then, by passing to a subsequence if necessary, we may assume that  for 

a E cof(w2), D~ is closed under finite non-zero meets and descending w-sequences 

and that  D~ is dense in B~. 

Layered ideals were first defined in IF-M-S]. A n-complete ideal I on a reg- 

ular cardinal n is l a y e r e d  iff there is a filtration of the quotient P(n)/I = 
U{B~: a < n+} such that  for a stationary set of a E cof(n), B~ is a regular sub- 

algebra of B. If I is a layered ideal on n then I is n+ saturated: If A C P(n)/I 
is a maximal antichain, then for some a E cof(n), A n B~ is a maximal antichain 

and B~ is a regular subalgebra of P(n)/I. Hence, A = A n B~ and thus has 

cardinality < n. 

We can easily define the notion of a v e r y  s t r o n g l y  l a y e r e d  ideal  on n+ by 

replacing "w2" by "n+", and "a-closed" by "< n+-closed". 

For technical reasons that  occur later we need the following easy fact: 

Fact: Assume the C.H. If ]? is an w-closed partial ordering that  collapses R2 and 

has cardinality R2 then l? has a dense set isomorphic to Col(w1, w2). 

If we have a very strongly layered ideal we may assume that  Bo is a regular 

subalgebra of B that  collapses w2, and thus we can assume that  Do D D~ where 

D~ is dense in Do and D~ ~ Col(w1, w2). 

Finally, we remark that  the ideal J on w2 hypothesized in Woodin's theorem, 

namely a normal ideal J on w2 such that  P(w2)/J has a dense countably closed 

set of size R2, is easily seen to be very strongly layered. 

ACKNOWLEDGEMENT: I would like to acknowledge the many helpful conversa- 

tions with Professors Magidor and Shelah, who taught me the technology needed 

in the proof of this theorem, as well as Professor Woodin who told me the proof of 

"Woodin's Theorem" mentioned above, while simultaneously feeding and housing 

me for a weekend. I would especially like to thank Peter Komjath  for repeatedly 

forcing me to try to compute the chromatic number of the Erd6s-Hajnal  graph. 

Without  his interest and attention, this paper wouldn't  exist. 

1. The consistency result 

In the late 1970's Woodin showed that  it is consistent to have an l~Fdense ideal 



258 M. FOREMAN Isr. J. Math. 

on bh, assuming the consistency of of the theory " Z F  + AD~ + 0 is regular". 

Later Woodin [W] improved this result showing, assuming the consistency of 

an almost huge cardinal, that  the following is consistent: "for all R2- saturated 

partial orderings P that  collapse ~l,  there is a countably complete ideal I on Wl 

such that  P ( w l ) / I  has a dense set isomorphic to IF'. 

At cardinals above 1~1 there are serious obstructions. Kunen [Ku] proved that  

there can be no uniform conntably complete R2-saturated ideal on any cardinal n 

with b~o _ n < ~ol. In [F-M], it is shown that this theorem is sharp at the upper 

end of the interval, namely that  assuming the consistency of a supercompact  

cardinal, one can construct a model where there is a countably complete R2- 

saturated ideal on ~ + 1 .  The sharpness of the other inequality is still an open 

problem. However, as stated in the first section we make progress on this problem 

by showing that  it is consistent to have an Rl-dense ideal on R2. 

To prove our main result we need to extend Woodin's theorem to get an R1- 

dense ideal on wl consistent with a very-strongly layered ideal on R2. 

In this section we prove the following theorem: 

THEOREM 1.1 : Let jo and j l  be almost huge embeddings with critical points no 

and nl, respectively. Suppose that jo(no) = nl and that n2 = j l (n l )  is Mahlo. 

Then there is a partial ordering P such that there is a definable subclass W of 

V ~ satisfying: 

(1) Z F C  + G.C.H. + (}~1 + (}~2 (cof(wl)) + [N~. 

(2) There is an l~l-dense ideal J on R1. 

(3) There is a very-strongly-layered ideal I on R2. 

Remarks: The existence of two embeddings satisfying the hypothesis of the 

theorem is an easy consequence of the existence of a huge cardinal. It is also the 

case that  we can get a model with a very strongly layered ideal on R2 satisfying the 

Woodin conclusion that: "for all R2-saturated partial orderings P of cardinality R2 

that  collapse R1, there is a countably complete ideal I on COl such that  P ( W l ) / I  

has a dense set isomorphic to P". This involves some additional preliminary 

forcing. (See [W].) 

While we believe this theorem to be new, it requires no essential new ideas to 

prove. Accordingly, we only sketch the proof. We refer the reader to [W] for more 

details on the construction of l~l-dense ideals, and to [F-M-S] for more details on 

the construction of layered ideals. 

Proof'. We will use the following standard forcing fact: 
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Fact: Let ~ be an inaccessible cardinal and I? be a partial ordering that  is ~-c.c., 

collapses ~ to be col and is such that if v is a P-term for a subset of co, then the 

least complete subalgebra of F deciding r has cardinality less then ~. Then for 

all V-generic objects G C I?, there is a forcing extension V' of V[G] such that  in 

V' there is a V-generic object H C Col(co, < ~;) such that P(co) vie] = P(co) V[H]. 

We construct our model W in several stages. We first collapse ~0 to be bh 

using the Levy collapse. We then move to the choiceless inner model V(R). In 

V(R), we build the "universal" Kunen collapse Q of ~1 to be 0o2. After forcing 

with this collapse we get a model V2 which has a normal, R1 dense ideal on 

R1. We force over V2 with the Silver collapse making ~2 into R3 to get a model 

Va with a layered ideal on R2 that has a countably closed dense subset. Since 

the Silver Collapse doesn't add new subsets of b~l, the ideal on ~1 remains R1- 

dense. Shooting a closed unbounded, set through the stationary set witnessing 

the layering yields a model with a very strongly layered ideal. To finish, we add 

[ ~ ,  using the canonical conditions of size N2- Since these conditions don't  add 

new subsets of N2, we preserve the property of being very strongly layered. 

The main points of the proof are: 

(1) to see that Woodin's arguments for the consistency of an Rl-dense ideal 

can be carried out to show that  172 has such an ideal, and 

(2) that  W has a very-strongly layered ideal on R2. 

CLAIM 1.2: Let j be an almost-huge embedding with critical point t~o and 

j(~o) = ~1. Let Co C Col(co, < no) be generic over V. Let Vl = V(][~) C V[C0]. 

Let Q = Add(col) * Q' be a ~l-c.c. partial ordering in 171 that is countably dosed, 

has eardinality ~1, and collapses ~1 to be R2. Then for all V(]R)-generic G C Q, 

V(]R)[G] ~ Z.F.C. -I- 0~1 + "there is a normal I'll-dense ideal J on R1 ". 

Proof: Let Ro = P(co) A V[Co]. Since Add(col) adds a wellordering of IR in a 

canonical way, we see that  any generic H C Q can be decomposed into Go * G1, 

and Vl [Go] b Z.F.C. 

Let G C Q be Vl-generic. Let C C Col(co, col) be Vl[G]-generic and IR1 = 

P(co) a V1 [G * C]. Then by the "Fact", IR1 = P(co) 0 V[CI] for some V-generic 

C1 C Col(co, < ~1)- Standard ideas show that  j can be extended to a 

): V(No) --+ M(]~I) 

by setting )(T v (~ ) )  = ~-M(~I). (We do not need the generic object H to define 

the elementary embedding, the "Fact" is used to prove that  this definition, given 

in V1 [G * C], yields an elementary embedding.) 
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We work in 1/1 [a  * C]. For ~0 < a < ~1, let m~ = ) " ( a  N V~). Then each rn~ 

is in M(II~I). Let (x~: c~ < ~1) be an enumeration of the Vl-terms for elements 

of P(~0) n VI[G] such that for a closed unbounded set of c~ and all fl < c~ E K1, 

x~ E VI[GNV~]. Note that for fl < ~1, (x~: c~ < fl) is in M(R1). Let �9 

be a well-ordering of )(Q')  in M(NI) j(Add(~~ Define a descending sequence 

(Pc~: Ot ( N , 1 )  C )(Q) such that: 

(1) for each ~,3', if x,~ �9 VI[G n V~], then P~+I n M)(.y) decides II ~0 �9 )(x~) II. 

(2) If p~ �9 1~(.~), then p~ is compatible with m~. 

(3) If P~+l = q~ * q~ �9 Add(w1) * Q' then q~ Ik q~ is the �9 element of Q' 

so that  p~+t < p~ and P~+I has q~ as its first coordinate and satisfies (1) 

and (2). 

Using (3), and the fact that (qg: c~ </3) �9 M(R1), one can check that for all 

/3 < ~1 the sequence (p~: c~ </3) �9 M(N1). 

The sequence (p~: a < ~1) induces an ultrafilter U on P(~0) N VI[G] that  

is ~0-complete for sequences that lie in VI[G]. Define an ideal J in VI[G] by 

putting x �9 J iff [I x �9 U I1= 0, where the boolean value is taken B(Col(w, wl)). 

Equivalently, x �9 J~  iff II there is an a,p~ Ik ~0 �9 )(x) II= 1. 

To see that J is a normal ideal, let (xz: /3 < t%) �9 VI[G] be a sequence of 

elements of J~ .  Then for all/3, Ilfor some a,p~ Ik ~;o �9 )(xZ) tl= 1. Since, in 

Vl [al [c], cof( l) > ~0 and (p~: a �9 ~1 ) is a descending sequence, and the forcing 

yielding VI[G][C] is ~l-C.C., [[for some a,p~ Ik ~0 �9 n{ ) (x~ ) : / 3  < ~0} II = 1. 

Hence II for some c~,p~ I~ ~0 �9 ) (A{x~})  II-- 1. Thus J ~  is closed under diagonal 

intersections, so J is normal. 

This shows that the map x ~[1 x �9 U ]1 induces a boolean algebra monomor- 

phism from P(~o)/J to B(Col(w,wl)). Hence, J is bl2-saturated. Since J is 

normal, this map is a regular embedding and thus P(~o)/J is isomorphic to a 

regular subalgebra of B(Col(w,wl)). Thus J is an Rl-dense ideal. I 

We now apply Claim 1.2 to a particular partial ordering. Let jo,jl be the 

almost huge embeddings posited in the hypothesis of Theorem 1.1. Working 

inside V1, construct the following "universal" partial ordering due to Kunen. 

(1) Q will be a ~l-stage iteration 

(2) Let Q0 = Add(w1). Then V Q~ ~ A.C. + ~1 is almost huge. 

(3) Q is a countable support iteration over V Q~ . 

(4) If a is inaccessible and Q~ o V~ is a regular subalgebra of Q~, then we let 

Qo~4-1 ~-- Q~ * SQ'~VIVc* (Ol, tgl) �9 

(5) Otherwise, we let Q~+I = Q~ * {1}. 

Then standard arguments due to Kunen and Laver show that  Q is e;1-c.c. 
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and countably closed. HenCe we can apply Claim 1.2 to this partial ordering 

with j = Jo to see that if G C Q is Vl-generic then VI[G] ~ Z.F.C.+ there is 

an l~l-dense ideal on P(R1) + 0~1. Purther, for any inaccessible a such that 

Q~ N V~ is a regular subalgebra of Q~ we have a canonical regular embedding of 

(Qa N V~) * S(Q~nY~)(a, nl) into Q~+I. 

Fix a generic G c Q and let V2 = VI[G]. Let H C sv2(nl, n2) be generic over 

172, and let 1/3 = 1/2 [H]. 

Since nl is inaccessible and Q is nl-C.C., Q is a regular subalgebra of 

Jl(Q)~I. Since j l (Q) is defined the same way as Q is we see that j l (Q)~,+I  = 

J l (Q)~  * SQ(nl, n2) and thus it makes sense to form jl(Q)/G * H. 

We now analyse the structure of jl(Q)/G * H. This analysis is very similar 

to one in [Hull where a detailed discussion is given (similar arguments are also 

given in [F-L]). 

To motivate the analysis, we consider the example of the Silver collapse S(w1, A) 

for a Mahlo A. Let B = B(S(wl, A)), and for inaccessible a, B~ = B(S'(Wl,O~)). 

For other /3, let BZ = I.J(B~: a </~). Then (B~: a < A} is a filtration of 

B. Further, for inaccessible a, the map rra: S(Wl,A) + S(wl,C~) given by 

rr~(q) = q N V~ is a projection map. Thus we get a collection of witnesses 

for layering of B(S(wl, A)) that preserve a countably closed dense set. The sys- 

tem of rc~'s remains a collection of witnesses to layering in any forcing extension 

that preserves the stationarity of the old inaccessible cardinals. In particular, if 

we collapse k to be R2 with countably closed conditions and then force a closed 

unbounded set through cof(w) n {V - inaccessibles} using Rl-sized conditions, 

B(S(wl, A)) V will have cardinality R2 and be strongly layered. 

For notational simplicity, let (~ = jl(Q)/G * H. Then, (~ is an iteration of 

sorts with countable support and two kinds of coordinates. The first kind of 

coordinates are those arising from c~ < nl. These coordinates yield the trivial 

forcing, unless c~ is inaccessible and falls under case (4) of the definition of Q. In 

this case G induces a generic object G~ on sQ~nv~(a, nl). For these a, ~)~ is 

the forcing S Q~ny~ (c~, j l  (~;1))/G~. This partial ordering is eonntably closed. The 

coordinate c~ = nl is entirely swallowed by H. In coordinates a > nl, we force 

with terms for elements of Silver collapses over models extending V[G] that have 

the same w-sequences as does V[G]. A decreasing w-sequence of conditions in 

induces a decreasing w-sequence of conditions in each such coordinate. Since 

each coordinate is w-closed, by taking the coordinatewise meets we get a condition 

below our w-sequence in (~. 

Let B = B((~). Then (~ is a countably closed dense subset of B. We describe 
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a filtration B = (B~: a < n2) and a commuting family of projection maps 

from O to D~ = O A B~. For each coordinate 7 in the iteration Q and each c~ 

between nl and n2 that is inaccessible in V, let Q(7, a) = {q E (~: it is forced 

by the trivial condition that dora(q(7)) C 7 • a}. Let D~ = {q C (~: for all 

"y < aq(7) �9 Q(7, a)}. Clearly, Q = [.J~<,~ D~. 

For a inaccessible in V, let Ba be the boolean subalgebra generated in B(Q) 

by Qa. For other a, let Ba = U(B~:/3 < a}. This describes the filtration. For a 

inaccessible let 7r~: (~ -+ D,~ be the map described by setting Try(q)(3`) = q(3`) I 

3' x a for 3' < a and ~r~(q)(3') = 1 otherwise. It is easy to check that this is a 

commuting family of projection maps. 

We have now shown: 

CLAIM 1.3: Working in 1/3, let B = B(Q).  Then there is a dense w-closed subset 

D of B and a filtration B = [,](Ba: a < n2) and a commuting family of projection 

maps {~r~: a is inaccessible in V} with 7r~: D --+ D N Ba. 

CLAIM 1.4: In V3 there is an ideal I on 032 such that 

P(w2) / I  ~- B ( j l ( Q ) / G  * H). 

Proof'. In this proof we will refer to claims proved in IF-M-S] on pages 529-531. 

Let G C j l (Q)  be VI[G * HI-generic for B ( j l ( Q ) / G  * H). By Claims 6 and 7 

of [F-M-S] and the discussion on pages 530-531 there is an ultrafilter F in V[G] 

on P(nl )  V[G*H] that is closed under diagonal intersections and intersections of 

< -~l-sequences that  lie in V[G * H]. Fhrther, for each q E j ( Q ) / G  * H, there 

is an x C P(t~l) VIa*HI such that 11 x E ~ II = q. 

Hence the map i: P (n l )  ~ B ( j ( Q ) / G  * H) given by i(x) =N x E ~ II gives an 

order preserving map of P (n l )  onto a dense subset of B ( j ( Q ) / G  * H). Letting 

I = {x: i(x) = 0}, we find that in V[G * HI: 

i: P( 1)/I B (Q/a  , H) 

is an order and incompatibility preserving map to a dense subset. Since ~: is 

closed under diagonal intersections and < nl- intersections from V[G * HI, I is 

normal and hi-complete. Since j ( Q ) / G * H  is j l (n l ) -  c.c., I is saturated, P ( n l ) / I  

is a complete Boolean algebra, and hence i is an isomorphism. | 

Claims 1.3 and 1.4 together show that in V3, I is a layered ideal with a count- 

ably closed dense subset and witnesses for layering. Working in 1/3, let S be the 

set of ordinals between w2 and w3 that were inaccessible in V (i.e. the set on 

which we have witnesses for layering). Then S c cof(w2). Standard arguments 
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[A-S] show that  there is a cardinal preserving partial ordering P that doesn't add 

new subsets of a~2 but does add a closed unbounded subset of S U cof(_< a~l). Let 

C ~ be generic for P. Then in V3[C] the witnesses for layering still are projection 

maps and hence I is a very strongly layered ideal. 

Finally, we must add D ~  to get the desired model. To do this we use the stan- 

dard partial ordering for adding []~2 using "initial segments". Namely conditions 

in the partial ordering are partial [] sequences (Ca: a < 7) for some ~/ < w3, 

ordered by inclusion. Standard arguments show that this partial ordering is w2- 

strategically closed. Hence, the partial ordering doesn't add new subsets of w2 

and therefore preserves the very-strongly-layered ideal. 

We now verify the diamond conditions. To see 0 ~  we note that  the partial 

ordering Q' adds a generic filter for Add(w1) over the model V(]Ro) Add(~) in 

such a way that the quotient forcing Q/Add(w~) * Add(w~) is countably closed. 

Since forcing with Add(w1) adds diamond and countably closed forcing cannot 

kill diamond, we know that  0 ~  holds in V(Ro) Q. Since the rest of the forcing 

adds no new subsets to ~1, ~ holds in the final model. 

Similarly, over V(Ro)~(= V2), forcing with the Silver collapse making ~2 the 

successor of ~1 adds a 0~(cof(wl) )  sequence. Thus 1/3 satisfies 0~2(cof(wl)). 

The rest of the forcing to get the final model adds no new subsets of a~2 so 

O~o2(cof(wl)) holds in the final model. II 

2. T h e  t r a n s f e r  t h e o r e m  

The main result of this section is the following theorem: 

THEOREM 2.1: Suppose there is a very strongly layered ideal I on w2, [~2, C.H. 

and 0~2(cof(wl)). Then there is a a- complete uniform ideal K D I on w2 such 

that 

P (w2) /K  ~ P(wl) /{countable  sets}. 

Remark: This theorem is true if we replace Wl by a regular ~, the ideal of 

countable sets by the ideal of sets of cardinality < n and w2 by ~+. The ideal on 

~+ will be < ~-complete. 

COROLLARY 2.2: Suppose there is a very strongly layered ideal I o n  W2,[-]w2 , 

C.H. and 0~2(cof(wl)). Then for all uniform ideals J on Wl, there is a uniform 

ideal K on co2 such that: 

P( 2)/K 

Further, the degree of completeness of K equals the degree of completeness of J, 

and if  Y is R2-saturated then K is weakly normal. 
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Remark: Even in the presence of a very strongly layered ideal on w2, the 

collection of Boolean Algebras arising from quotients of the form P(Wl)/J can 

be exceedingly rich! For example as stated in w it can include all complete, 

R2-saturated Boolean Algebras of cardinality R2 that  collapse COl. In particular, 

from this corollary we can get the consistency of a countably complete, uniform 

Rl-dense ideal on R2. 

Proof of 2.2: By Theorem 2.1 there is an ideal K0 D I on a~2 such that  

P(w2)/Ko ~ P(wl)/{countable sets}. Let J be any ideal on o21 containing all 

the countable sets. Then we have a surjective homomorphism 

r P(COl)/{countable sets} -~ P(wl)/J.  

This induces a surjective homomorphism r P(w2)/Ko --+ P(Wl)/J . If we let 

K be the ideal generated over Ko by ker(r then P(w2)/K ~ P(wl) /J .  If J is 

countably complete, then the kernel of r is countably complete in P(co2)/Ko. 
Hence the ideal K is countably complete. 

Suppose now that  J is R2-saturated. We must show that  K is weakly normal. 

This is equivalent to the following statement: 

If f :  w2 -+ w2 is a regressive function then there is a set A C K v and a 

3' E w2 such that  the range of f on A is bounded by 3'. 

Clearly r induces a homomorphism r P(w2)/I --+ P(wl)/J.  Given a regres- 

sive function f ,  let ai = {5: f(5) = i}. Then (hi: i E w2) contains a maximal 

antichain in P(w2)/I. Let b~ = V{ai: i e a}. Then (b~: a e w2) is an increasing 

R2-sequence in P(w2)/I. Since J is R2-saturated there is a 3' E w~ such that  for 

all 3'' > % ~(b~,) = r Since the b~'s sup to 1, this constant value for r must 

be 1. But then r f(5) < 3'}) = 1, hence {& f(5) < 3"} �9 K ~ .  | 

Remark: It is possible to eliminate the [] hypothesis in the previous theorems. 

The referee requested this be made explicit so at various places in the argument 

we will briefly outline the modifications necessary. 

Remark: In the case where we have a very strongly layered ideal on g+ (~ 

regular), then we get a similar statement: for all ideals J on a containing the ideal 

of sets of size < n there is a uniform ideal K on ~+ with P(a+)/K ~ P(a)/J .  In 

this case the degree of completeness of K is exactly that  of J .  From this, one can 

use very strongly layered ideals on consecutive cardinals to "bootstrap" ideals. 

For example, if for all n there is a very strongly layered ideal on Rn, then for all 

n < m and all uniform ideals J on R,~ there is a uniform ideal K on Rm such that  

P(Rn)/J  ~- P(P,m)/K 
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and the degrees of completeness of K and J are equal. To follow this route to 

the consistency of "for all n E w there is an uniform countably complete Rl-dense 

ideal on N~, one must produce a model with an l~l-dense ideal on R1 and very 

strongly layered ideals on all of the other Rn's. At the time of this writing it is 

not known how to get very strongly layered ideals on three consecutive successor 

cardinals. 

Proof  of Theorem 2.1: Fix a strongly layered ideal I ,  and witnesses 

B~, D, Tr~,... to the strong layering. To build a a-complete ideal K we con- 

struct a surjective homomorphism 

h: P(w2)/I  -+ P(Wl)/ {countable sets} 

so that  the kernel of h is countably complete. Letting K be the kernel of h, we 

see that  

P (w2) / K  ~ P(wl) /{eountable  sets}. 

Given a subset of w2 we need to "measure" it by a subset of Wl. Any func- 

tion f :  wl -+ D measures each set x C w2 by the yielding the set As = 

{i: f( i)  Ci x}. Unfortunately this measurement may be ambiguous in that  

w2\Ax 7 ~ A,~\x (modulo countable sets), i.e. if it is not the case that  for almost 

all i, either f( i)  C~ x or f(i)  Ci w2\x. But it is hopeless to unambiguously 

measure every subset of w2 in this way with one function f .  Hence we need a 

family of functions. Further the measurements these functions make must agree 

with each other. This is the motivation for the first three clauses of the follow- 

ing definition. The last clause is a coding device to make the homomorphism 

surjective. In what follows we will use < to mean Ci. 
We will construct a matrix of functions: 

jc = {S$: 3' < w2, 5 E w3 N (cof(w2) U succ)} 

such that  for each 5, 3', 

f~: col ~ D6 (= the 5th layer of D). 

The family of functions b c will satisfy the following four properties: 
t 

(1) Horizontal Coherence: For each 5 and 3' < 3' , for all but countably many 

i , f~( i )>_f~,( i ) .  

6' (2) Vertical Coherence: For 5 < there is an unbounded set of 3' < w2 such 
! 

that  for all but countably many i, fr = 7c6(f~ (i)). 
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(3) Genericity:  For each x C cos, with x E B~ there is a 7 < 032 such tha t  for 

all but  countably  m a n y  i, ei ther f~(i) <_ x or f~(i) A x =I O. 
Let D D C Do be dense with D;  ~ Co1(031,c~2). If fo  takes 

values in D~ then, by using this isomorphism, we can assume 

tha t  for all i, f~ E Co1(031,w2). 

(4) Coding: Fix an enumera t ion  P(031) = {Y, /r /< 032}. For each 71 < 032, there  

is a 77 such tha t  for all i, f o  (i) ~ DD, and 77 E range 0 �9 f~,,(z). Further ,  

letting/3.,l(i ) be the least /3  such tha t  f~ = 7,~, then y~ = {i:/3~(i) is 

a limit ordinal}. 

Remark: The  purpose  of the vertical coherence condit ion is to show tha t  the 

h o m o m o r p h i s m  h defined in Claim 2.3 below is well defined. It  can be weakened 

to the  following s ta tement :  

WEAK VERTICAL COHERENCE. For all (f < (i t and all 7 '  there is a 7 > 7 '  such 

tha t  for all but  countably  many  i, f~(i) <_ 7r~(f~(i)). 
This  is useful in the variant  of this a rgument  tha t  doesn ' t  use square. 

CLAIM 2.3: If  there is a set of functions F satisfying the conditions (1)-(4)  then 
there is a surjective homomorphism h: P(032)/I --+ P(031)/ {countable sets} with 
a countably complete kernel. 

Remark: In w we will refer to the kernel of h as " T H E  ideal de termined by 5c. '' 

Proof: Given the set of functions ,T, and an x c 032, we look at  the least 5 

such tha t  x E B~. By generieity there is a 2~ < o32, for all but  countably  m a n y  

i , f~(i)  Ci X or R ( i )  n x  = ,  0. Let A~ = {i: R ( i )  Ci  x}. 

We claim tha t  for all ~' > 5 and all large enough 7 '  (depending on 5'), 

A~ = {i: f~;(i)  Cx x} modulo  countable  sets. Namely, fix a 5' and choose a 

"Y' > 7 where for all but  countably  many  i, R , ( i )  = 7r~(f~:(i)). Since x C B~ 

and 7rd is a project ion map,  f~:(i) Ci x iff 7rd(f~;(i)) Cr  x. Since 7 '  > 7 for 

all bu t  countable  many  i, f~,(i) C, x iff f~(i) ~ i  X and similarly for w2\x.  

Hence for all bu t  countable  many  i, f~,(i) Ci x or f~,(i) Ci w2\x, and A~ = 

{i: R '  (i) c ,  = {i: (i) c ,  
Define a funct ion h: P(032) --> P ( w l ) / { c o u n t a b l e  sets} by set t ing h(x) = [m~]. 

Then  h is well defined by the remarks  in the previous paragraph .  To see t ha t  

h is a homomorph i sm,  it suffices to show tha t  h preserves complements  and 

intersections. Clearly, for all 5, 7 and all x, y, 

{i: f~(i) c ,  xny} = {i: f~(i) c ,  x} n (i: f~(i) c ,  y}. 
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Hence h(x N y) = h(x) N h(y). Let x C co2. Choose a large enough 6,7 such 

that h(x) = {i: f~(i) c i  x} and for all but countably many i, fa~(i) c i  x or 

fad(i) n x =I  O. Then 

h(aJ2\x) = {i: f~(i) C, cz2\x} = {i: f~(i) Nx =I 0} = wl\h(x). 

To see that  h is surjective, fix some [Yv] E P(a~l). By condition (4) on 5 c, there 
i 0 is a % such that  for all ,f~,(i) �9 D~o, % �9 range f~  and Yv = {i: the least 

with f~  (i)(/~) = % is a limit ordinal}. Since a generic ultrafilter for P(w2)/I 
canonically induces a generic ultrafilter on D~, we have a canonical term Go for 

a generic object for Col(ah, w2). 

Let x =lithe least f~ with Go(/3) = % is a limitll where the Boolean value is 

taken in the forcing P(w2)/I. Then x �9 B~, for some 5. 

Hence h(x) = [{i: f~(i) Ci x}] for all large enough ft. 

By the Coding condition, for all i, f o  (i) �9 Col(w1, ca2) and % �9 range f o  (i). 

Hence f ~  Ci x iff the least /~ with f~ (i)(~) - % is a limit. Otherwise, 

f~ (i) CI w2\x. 
Hence, by the coding condition, for "7 >- %, and all but countably many i, 

T~ c~ x or f~ c~ w2\x. Hence we see that for all large enough 7 >- 

%,f~(i) ~I X iff TO(i) CI X, and h(x) = [{i: f~ (i) Cr x}]. 

But f~  Cx x iff i �9 Yv, by the coding condition. Hence, h(x) = [Yv], and 

we have shown that h is surjective. 

Let K be the kernel of h. To see that K is countably complete, let 

{Xn: n �9 w} C g .  Then for all 5,7 and all n, {i: f~(i) Ci Zn} ={countable sets} 0. 

Let 5,7 be so large that  for all n, and all but countably many i, f57(i ) Ci Xn 
or f ~ ( i ) n X n  =I 0 and that h(UXn ) = {i: f~(i) CI UXn}.  Then h (UX~ ) = 

U{i: f~(i) CI Xn} is countable. Hence, UXn �9 I~. I 

To construct the matrix of functions we use the powerful 0 techniques forged 

by Shelah in his papers Models with Second Order Properties I-V [Sh]. 

In fact we will build the matrix of functions for a cofinal set of 5 �9 

w3 n (cof(w2) U succ). This suffices since, if we have the f~ defined for a co- 

final set T (with 0 �9 T) and this collection satisfies the properties (1)-(4), we 

can define them on all 5 �9 ~3 n (cof(w2) Usucc) to satisfy (1)-(4). To do this: let 

5 �9 cza n (eof(a~2) O suee) be arbitrary. Let 5' be the least element of T greater 

t h a n  or equal  to  5. T h e n  we can define fg ( i )  = for all i. It is easy  to  

check that this new matrix of functions still satisfies the properties (1) (4). 

From now on we will use phrases such as "almost all", "almost every", "a.e." to 

mean "for all but a countable set". Similarly, < will mean < on a co-countable 
a.e. 
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set, etc. We will also adopt the convention that  if f :  cvl -+ D and ~ ~ col(w2), 

then 7r6(f) is the function zr6 composed with f ,  so zr~(f)(i) = 7r6(f(i)). 

0 AND DIAGONALIZATION. Our  remaining task is to construct the matrix of 

functions $-. 

The idea behind constructing the matrix b c is to imitate the construction of a 

generic object for the reduced product 

{ P(w2 ) / I) ~~ / { countable sets} 

over the model V"~l/{countable sets}. To do this we must build a filter of com- 

patible conditions that  meet certain dense sets. The "coherence conditions" are 

restatements of the requirement that  the conditions in the generic object be com- 

patible and that  the resulting filter be generated in an organized fashion. The 

"genericity" condition is a s tatement  of the particular dense sets we are inter- 

ested in meeting with our filter. (With a little more work, we could meet all 
the dense sets, but this seems irrelevant.) The coding condition is a trick (due 

to Woodin) to guarantee surjectivity of the homomorphism. It  is easily satisfied 

and introduces no difficulties in the construction. 

We build the generic filter by induction on the layering. At a particular level 

of the layering we build a generic object for the reduced product of the Boolean 

algebra at that  layer by building a descending sequence of conditions of length R2. 

At horizontal limit stages of the construction we use the countably closed dense 

set to see that  we can diagonalize directed sets of size R1 in the reduced product 

to get a condition below all of the elements of the filter we have constructed to 

that  stage. At successor stages in the construction the 0-sequence will present 

us with dense sets to meet and we choose a condition in the dense set below the 

filter we have built to that  stage. 

The main difficulty with this plan arises at ordinals a C w3 of eofinality w or Wl 

that  are limits of ordinals of cofinality w~. To describe this difficulty let 's let a be 

an ordinal of countable cofinality and {An} be an increasing sequence of ordinals 

of cofinality w2 with supremum a. Denote by f ~  the matrix of functions in 

B ~  constructed at stage A~. Then on the complete subalgebra of B generated 

by [.J Bx~, we are committed to the filter generated by [.J Y a .  But this may not 

be generic! (The analogous circumstance in a more common situation is that  if 

we are given a coherent collection of generic filters Gn C Col(w1, A~) there is no 

guarantee tha t  1.J G= is generic for Col(w1, sup{A,~})'.) 

To avoid this difficulty we must make an elaborate 0 construction so that  when 

we are building our collection of functions at stage )~ we are anticipating ALL 



Vol. 108, 1998 AN R1-DENSE IDEAL ON ~2 269 

possible future limit stages. We define the notion of a "risky" ordinal h' where the 

0 sequence makes a prediction about a potential future stage. At a particular 

ordinal ~ in the filtration we then require that  for a closed unbounded set of 

"7 E w2, if 3  ̀ is risky then the function f~ obeys the dictates of the prediction 

made by 0 at that  stage. (This means that  f~ is the projection to 5 of the dictate 

of the (}-sequence.) 

Then at the troublesome ordinal c~ described above, we intersect the countable 

collection of closed unbounded sets of 3  ̀ E w2 corresponding to the An to get 

a closed unbounded set of 3  ̀where all of the An simultaneously obeyed the (}- 

sequence's communiques about c~. Hence for each dense set in B~+I there is at 

least one stage 3  ̀where there is a fixed element f of the dense set such that  each 

projection 7r~, o f = ]~-  is in 5c~. Since for all 3`' > 3`, f~? (i) < ] ~  (i) for all 

but countably many i, and 7rx~ is a projection map, we see that  for all 3`~, and 

all but countably many i, f(i) is compatible with f~? (i). This allows us to set 

f~+* = f compatibly with U bC~,~, meeting the genericity requirement imposed 

by D. 

The rest of this section of the paper is devoted to fleshing out these ideas. 

Let A be a large regular cardinal and I the very strongly layered ideal on 

co2 with witnesses (~r~: ~ e w3},(D~: c~ e co3) etc. Let 9.1 = (H( ,~ ) , e ,~  , 

I ,  (B~: (~ < b~3}, D, (Try: c~ C w3 N (cof(w2) Usucc)) , . . .  ), where ~ is a wellordering 

of 

Let (A~: 3  ̀ < R2) be a (}~o2(cof(col)) sequence. We will view each A~ as 

"guessing" : 

(1) transitive structures M. r = (M,e,<M,IM,(BM: a e wM},D M, 
(TrM: ~ e a~ M ~q (cof(aJ2) U SUcc)M), . . .  ), where M~ - 9.1, and M ~ C M ,  

(2) a set x-~, with M r p z~ C w2, 

(3) a matrix of functions (g.~,." ' L, E S, 3`' < 3`}, where S C wM+I ,  g'r"" aJl --+ D M, 
and for each v, (g~,: 3`' < 7} is C1v decreasing rood countable sets (i.e. for 

" i each , ,  3`' < 3`. < 3', and all but countably many i,g~.(i) C[M g~,()). 
The 0 property we want is that  for all transitive N ~ ~ of cardinality R2, with 

N ~ C N,  and w2 N = w2 and all filtrations {N-~, : 3`' < co2} of N,  all subsets x of 
I /  w2 with x E N and all matrices of functions (h~,,: 3`' < c~, ~ e R C w N + 1} into 

D N that  are decreasing rood countable sets there is a y < w~_ such that:  

If - is the transitive collapsing map of N-~ then - :  N~ ~ M.~ and is an 

isomorphism sending x to x~. Further 

s =  - " ( R  n and 3`' < 3`,. e (R n N3`)> = 3`' <3`,.eS),  
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Where we define h.y to be tha t  function with domain  col such tha t  for all i, hr(z ) = 

h~(i). 

Since the C.H. holds there is a closed unbounded set of 7 E col(col) such t ha t  

N~  C N r .  Hence the existence of such a 0 sequence follows from (}~2(cof(wl)). 

Fix a 3' E ~2 Acof(wl).  If there is a function g: wl ~ D M~ such tha t  for all ~ E S 

and all 7 '  < 7 there  is a co-countable set of i E col such tha t  g(i) CIM. r g~,(i), 

choose such a function and define A(7):  cJ1 ~ D M~ to be a function such t ha t  

for a l l i ,  A(7) ( i  ) C 9(i) and A(7)( i  ) C p  x r or A(7) ( i  ) N x  r =I' O. If such a g  

exists then  this is possible since x-~ E M r. If no such g exists then  A(7  ) will 

not be defined. (The choice of A here is quite free. We exploit  this in other  

applicat ions;  see w 

We will need to see tha t  A(7  ) is frequently defined. Towards this end we prove 

two diagonal izat ion lemmas:  

LEMMA 2.4 (First  diagonalizat ion lemma):  Let M be a transitive structure with 

M - 91. Suppose that  M ~ C M and (f~: a < c~1) C (DM) wl is an a.e. decreasing 

sequence of functions (not necessarily in M) .  Then there is a g: c01 ~ D M such 

that  for all a, 9 <- f s .  
CL.e.  

Proof: For each a ,  let is  E a) 1 be such tha t  for all 3 < a and all i > is ,  f~(i)  <_ 

f~(i) .  Define g(i) = A{f s ( i ) :  i > max{a, is}}.  Then  g(i) is a meet  of a countable  

decreasing sequence of elements in D M, and hence is in D M. Further  for all a ,  

and i > m a x { a ,  i s}  we have g(i) <_ f~(i) .  | 

LEMMA 2.5 (Second diagonal izat ion lemma):  Suppose we have 7 E co2 A cof(col) 

and  an A~ from the ~ sequence. (So A.y "guesses" M r etc.) Suppose that  

5 = s u p s  E S, B C S is unbounded in sup(S  f3 ~) and for all L, < ~/ E S N 5, 
{~/: M.y u '  �9 u " 

~r~ (gr,(z)) ~.=~. 9r,(z)} is unbounded in 7, and for u E B and all 7" < ~/ 

there  is a ~/' between 7" and 7 such that g-r' <- re, [g~,). Then A(7  ) is defined. 
( I . e .  

Remark:  In the version of the proof  of 2.1 wi thout  square, we have a less strin- 

gent vert ical  coherence property,  and hence this l emma  requires s t rengthening.  

In t ha t  case the condit ion tha t  holds here for ~ is required to hold for all e lements  

of S, replacing the  s t ronger  p roper ty  of strict  vertical coherence for member s  of 

S n s  

Proof." We must  show tha t  there  is a function g: col ~ D, such t ha t  for all 

u E S,'y' < 7 and for a lmost  all i ,9( i)  aIM g~,(i) �9 

CASE 1: cof (S  n 5) = col. In this case we may  assume tha t  the order type  of B 

i s  co I . 
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If A C B is countable,  v ~ B \ s u p ( A ) , 3 ` '  < 3' then  for all large enough 3'~ < 7 

for all v ~ ~ A, there  is a 3`* between 3`' and 3'~ such tha t  gT. ~.~. ~r, tgT*)" Since 

IB] = col, this fact allows us to choose increasing cofinal sequences (us: ~ ~ co~) C 

B M ~ and <7~: ~ ~ co~} C 7 such t ha t  we have: 

(a) For all v ~ S ~ ~, 3̀ ~ < 3  ̀there  is an c~ ~ col and 3'* between 7 ~ and 7~ such 

tha t  ~r~ [g~.) = g~. 
a . e .  

(b) For all/~ < c~, there  is a 3`* between 3`Z and 7~ such tha t  ~r,~ [g~. ) a.~. g~*" 
M ~  

For each c~ ~ COl, there  is a 3'* such tha t  g~.~ < ~r,~ igor).  Hence for a.a. i, 

g ~  (i) A g.~ (i) # 0. Let  g~(i) -- g.~ (,) A g.~ (i). Then  each g~ is a function from 

co~ to D. By the first diagonal izat ion lemma,  it suffices to prove the following 

claim: 

Claim: 

(1) (g~: c~ C col/ is a < decreasing sequence. 
a . e .  

(2) I f g : c o l  -+ D is such tha t  for a l l a ,  g < g~ then  for a l l v E  S, 7 ~ < T w e  
a . e .  

have g < g7'" 
a . e .  

Proof: (1) Let  $ < c~ < col. Then  g ~ _< gT~.~ So we must  show tha t  g.~: _< gT~. 
a . e .  a . e .  

M7 
Choosing 7" as in clause (b), 7r,~ (g.~?) <_ gT~, and g ~  _ _ 

a . e .  a . e .  a . e .  

(2) If  v = ~ this is immedia te .  Otherwise,  let 3 / < 3' and v E S. There  is an 
v 

OL e col and  a 3'* between 7 '  and 7~ such tha t  7r M" (g~. ~) = g , . .  Then:  

v a  .~ M ~  a u g~ . . . .  < gw < g *~ < ~r~ (g~.) < gv'" 
a . e .  a . e .  a . e .  a . e .  

CASE 2: cof(S  M ~) is countable. In this case we can assume tha t  B is an 

increasing sequence (v,~: n E co). For each 7 '  < 3`, we define a sequence of 

ordinals  (3`n: n E co) C 7 by induction. Let  70 > 7 '  be the smallest  ordinal  such 
vo ~ M.y / t ha t  gTo ~r~o [g7')" Suppose we have defined 7 0 , . . . ,  7n. Let 3`n+l be the least 

a . e .  

/~/3' ( , ' n+ l  ~ I]n and for some 3`* between 7n and ordinal  above 7n such tha t  7r.,, ~vv~+~ j = gv,~+~, 
M ~  / 5 ~  5 v~+l < 7rVn+lLgT, ). Let hn : v~ 3`~+1,g-~* _ g ~  A g~,. Then  {hn} is an a.e. decreasing 

a . e .  

sequence of funct ions f rom col to D. Hence for a lmost  all i, <hn(i): n C co} is a 

decreasing sequence of e lements  of D. Define h~,(i) = A h~(i). Since D is closed 

under  descending co-sequences, h~,: col ~ D and h~, << ha for all n. 
a . ~ ,  

Clearly (h~, : 3̀ ~ < 3'1 is an a.e.-descending sequence and for all v E S, 7 '  < 3`, 

there  is a 3'* between 3 / and 3` wi th  h~. < g~,. By the first diagonal izat ion 
a . ~ ,  

l emma,  there  is a funct ion g: co~ --+ D such tha t  for all 3`' < 7, g <- h~,. I I  
a . ~ .  
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THE FILTRATIONS. Let T C ({5 < w3: sk~(5) N w3 = 5} U {0}) be a closed 

unbounded set in wa with 0 E T and successor points of T having cofinality 

w2. By the remarks after Claim 2.3, it suffices to define the functions f~ for 

5 E T having cofinality w~. For successor 5 E T we define 5-  be the immediate 

predecessor of 5 in T. For each 5 E T\{0},  let ~ = sk~(5). For 5 = 0, let do 

be the least 6 E cof(w2) n w3 such that  ska(5) a w3 = 5. Let ~3 ~ = sk~(d0). We 

build distinguished filtrations of each ~ .  

Remark:  In the version of the proof of 2.1 without square, arbitrary filtrations 

are taken. This causes some additional work in the construction of the matr ix  at 

ordinals 5 E T that  are successors of limits of T of cofinality w2. 

Let (Ca: c~ E w3) be a []~2 sequence. For a E T, we replace Ca by Ca N T to 

get a new "Vl"-sequence {Ca: c~ E T, a = sup(c~ n T)} such that: 

(1) Ca c T, o.t. Ca < w2, and if T n a has uncountable cofinality, 

Ca is closed and unbounded in a.  

(2) If ~ is a limit point of Ca, then C~ = Ca N/3. 

By choosing cofinal w-sequences of elements of T through those a E T, that  

are limits of T where Ca n T is bounded we can get a genuine [] sequence on 

T. Also, we can replace successor elements of each new Ca by their successors in 

T, to get a another new [] sequence where we may assume that  every successor 

point of each Ca is a member of T of cofinality w2. Prom now on we assume that  

our D-sequence has these properties. 

By induction on 6 E (T n cof(w2)) U {0}, we define filtrations ( ~ :  3' E w2}. 

For 6 = 0 or a successor point of T with 6-  having cofinality w2, define 

(q3~: 3' E w2} to be an arbitrary filtration of consisting of elementary substruc- 

tures of ~3 ~ and having wl C ~3~0 . 

If 5 is a successor point of T, but 6-  has cofinality less then cos, we let 3" = 

o.t. C~-. For 3`' < 3' we let ff~, = ~ .  Let ~3~ = U { ~ , :  u E c~- ,3` '  < 3'}. Wele t  

the rest of the iteration be an arbitrary filtration of elementary substructures of 

If 5 is a limit point of T and 6 E cof(w2), we let ~ be the 3`th element of C~ 
l ]  and set ~3~ = U { ~ . / :  u E Cv,3`' < 3`}. This is a filtration of ~ .  

The cogent property of this labored definition is that  if 5 ~ is a limit point of 

T of cofinality w2, and 6 E T is such that  6-  is the 3`th element of Ce,, then 

LEMMA 2.6: Let 6 E TNcof(w2) be a successor point o fT .  / f h -  E col(w2) U {0}, 

let U = {6-  }, otherwise let U be the successor points of C~- . 
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Then there is a closed unbounded set C C w2 such that for all 7 C C and all 
v 

~, �9 U, ~ n ~" = ~.~. ~rther, for 7 c C, ~.y = s k ~  ( ~  n (v u do)). 

LEMMA 2.7: Let 5 �9 cof(w2) A T  be a limit point o f T ,  and @/: j E w2) be an 

increasing enumeration of C~. Then there is a closed unbounded set of V �9 w2 

such that for all successor j < 7: 

(1) (~,j,: j '  < j) �9 ~ ,  
~j 

(2 )  n = 

(3) ~ '  = sk ~ (fS~ N ~j) and 
/2 (4) ~ = fS~ w h e r e ,  is the least element of T above ~ .  

v Proof: At limit ordinals we have that ~ = [ . J{~ :  # �9 C ~ , i  < 7} = 78~. 

For each successor j, { ~  n ~ ' J :  7 �9 w2} is a filtration of ~ J ,  hence there is a 

closed unbounded set Ej C wz such that for all 7 �9 Ej, ~ A ~ ' J  = ~ J  and 

(yj, : j '  < j) E fS~ j . The conclusion of the lemma holds for all 7 E AEj .  | 

Let ~ be the transitive collapse of ~r  For w �9 ~ ,  let ~ be the image of w 

under the canonical transitive collapse map. We note that there is a difference 

between 5 and 5-,  and we hope that context will help reduce notational confusion. 

THE DEFINITION OF OBEDIENT. Definition: Let 5 �9 T have cofinality wz. A 

sequence of functions (f~: 7 �9 w2, .  �9 T N (5 + 1) N (cof(w2) U 0)) from Wl to P~ 

is obe d i e n t  provided that for a closed unbounded set of 7 �9 w2 n cof(wl) if: 

(1) f.~,: Wl ~ D ~ N ~  for each u �9 TN((~ + 1) and 7' < 7, 

(2) A.y guesses M~ and the sequence (g~,: 7' < 7, u E S) and A(7) is defined, 

(3) if we denote w3 ~ by 5 then ~ _~ wM,skM~(~)Nw M~ = ~ and M~ ~ cof(5) > 

Wl (since (~ It ~ this abuse of notation causes no inconsistency except 

perhaps at 0), 
(4) ~ 5  ~ skMz(~), 

" i (5) for each 7' < 7,~ �9 (T N fB~) U {5}, we have f~,( ) = ~ " g~, (z) for all but 
countably many i, 

t h e n  for all i , ,  �9 (TA~) t J{5} ,  we have f~(i) = ~r M~ (A(7)(i)). (IfP = 5 = w M~ 
M~ 

then we take ~r~ to be the identity.) 

Note that  properties (1)-(5) in the definition of obedience only involve the 

functions ]~, for ~ E (T N ~ )  U {5} and 7' < 7. Thus given a sequence 

(]~,: 7' < 7, ~ �9 (T Cl ~ )  t_J {(~}) we define an ordinal 7 to be r i sky  if it satisfies 

conditions (1)-(5). 

To make this definition somewhat less obscure it is perhaps worth observing 
5' 5 5' 5' that if s ~ T N ~ ,  ~ = ~ N ~  and ~ = s k ~ ( ~ N 5  ') (i.e. the conclusion 
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of Lemma 2.6 for v = 6' and 6) and M7 guesses ~ then clauses (3) and (4) of 

the definition of risky are satisfied. (A very similar fact is verified in some detail 

in the proof of Lemma 2.8.) This is the mechanism that allows the diamond 

sequence to guess requirements from ~3 6 when constructing the sequence at 5'. 

Remark: It is critical to the method we will use to observe that D M" C sk M" (5) 

and hence D ~ C %~ in a natural way. Thus, if "7 is risky, then for all 
--5 

i, Trx(A(7)(i)) is in the transitive collapse ~3~. This will allow us to define a 

function f taking values in ~ such that for all i, f ( i )  = 7rg(A(7)(i)). 

De~nition: Suppose U c T N (col(w2) U {0}). A sequence of functions 

(f-~: 7 ~ w~,~ ~ U) is o b e d i e n t  provided that for all 6 ~ U the sequence 

{f-~: 3' ~ w~, u ff T N (6 + 1)N (cof(a;x)U 0)} is obedient. Suppose IUI < w~. Then 

there is a closed unbounded set C C w~ such that for all 3' ~ C, 5 ff U if 7 is risky 

for 6 then for all i ,u  ~ (TN ~3~) U {6}, we have f~(i) = 7rv(A(3')(i)). (Intersect 

IUI many club sets.) We will say that C is a witness for the obedience of the {f~} 

for 6ff U. 

OBEDIENCE LEMMAS. LEMMA 2.8 (Risky ordinals lemma): Let 6' < 6 be ele- 

ments o f T  having cofinality 0;2. Let (f.~: V C w2, t, E T N (6 + 1)) be a sequence 

of functions from Wl to D6 such that if ~ < 5' then f~ maps into D6,. Suppose 
f8 ~ ~ '  = flO.rn~B6 6', 6' E ~ 6  and ~ '  = sk ~ (~B~NT'). Then if T is risky for S then 7 

is risky for 6'. Similarly for 6' = 0 with the hypothesis that ~3~' = sk ~ ( ~  Ado.). 

Proof: The first clause in the definition of "risky" is clear, since if b E D6, n ~ ,  
6' then b C D6, n ~ .  The second clause doesn't mention either 6 or 6'. 

We verify that clauses (3) and (4) hold for 5' provided that they hold for 6. 
- -  6 '  

Let 6' be the image of w3 in the sense of ~v  under the transitive collapse of 
5' 6 ~ ' .  Since ~ = ~ n ~5' ,  we see that ~7 is also the image of 6' under the 

collapse map of ~ (hence there is no notational ambiguity). Clearly 5' < 5, and 

thus Y < w M~ 

Since ~ '  = sk , ( ~  N 5'), when we take transitive collapses we find that ~ ,  
- -  - - 6  - - 6  

is isomorphic to the skolem hull of 6' in ~ .  Since ~B v ~ sk M~ {5), 6' < 5 we see 

that ~ '  is isomorphic to the skolem hull of ~7 in M~, as required in clause (4). 
- - 6  / 

Since ~ '  ~ sk M~ (~7), and s = w3 ~" we see that sk M" (Y) N co M" = 6 -7. Finally, 

since ~' C ~3~ which is an elementary substructure of 9.[, we have that ~ 

eof(6') = w2. Since ~3~ ~ sk M~(5), we see that M~ ~ cof(Y) = ~2  We have 

thus verified clause (3). 
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To see clause (5), we first remark that for/3 E 5' N ~3~ we have D~ N ~3~ = 
5' 5 D~ N %~. Further, elements of D~ N ~3~ are carried the same place by the 

transitive collapses of both fB~ and ~ ' .  
5' 7, For v E (T n ~ ) U {if'} and < 7 we know that f~,(i) is in D~ for some 

/3 < 5',/3 E ff3~'. Hence f.~, (i) is taken to the same set by both transitive collapses. 

Thus if (5) holds for 5, (5) holds for 5'. 

The proof with 8 / = 0 is similar with do playing the role of 51 in clauses 3 

and 4. I 

LEMMA 2.9 (Existence of Risky Ordinals): Let 5 E T and x EBh .  Suppose that 

(f~: v E T N (5 + 1), 7 E w~} is a sequence of functions that satisfy horizontal 

coherence, satisfy vertical coherence for v E T N 5 and there is a cofinal set 

B C TN cof(w2) N 5 such that for all v E B and each 7* E w2 there is a 71 E w2 

such that for all hut countably many  i , f ; , ( i )  < 7r,(f~.(i)). Then there is a 

stationary set of 7 E w2 that are risky for the matrix  (f~: v E T N (5 + 1), 7 E w2) 

and where x.y = ~. 

Proof: To show that  there are stationarily many risky 7 we will show that  there 
--5 

is a closed unbounded set of 7 such that whenever the 0 sequence guesses ~-r and 

the matrix of functions up to that point, then 7 is risky. This suffices because 

the 0 property guarantees that there are stationarily many 7 where this occurs 
--5 

and where xv = ~. If the 0 sequence guesses ~v  and the matrix of functions up 

to 7, the only reason that that 7 might not be risky is that A(7 ) might not be 

defined. 

Consider the expansion of the structure ~5, s = (fBh,(f~: 7 E w2,v < 

5),<g~: 7 < w2>) where gv ---- J~. Let 7 be arbitrary such that  (f3~, 
~ , .  5 1 71 (f~,. v E 5 n ~v,7 < 7>, (gv': < 7)> is an elementary substructure of s 

Then for all v < v~ E T n ~ the collection of 7' witnessing vertical coherence 

is eofina] in 7 and for all 7* < 7 there is a 7' between 7" and 7 such that for 

almost all i, f.~, (i) _< 7r,(]~. (i)). 
--5 

--~ (i.e. M~ = ~ )  and the matrix of the ~ ,  for v E T N ~ U { 5 }  If A~ guesses ~B~ 

then A~ satisfies the hypothesis of the Second diagonalization lemma (Lemma 

2.5). Hence A(7 ) is defined and 7 is risky. I 

LEMMA 2.10: Suppose that (f.~: 7 E w2, v E T N (5 + 1) M (cof(w2) U {0})) is 

an obedient matr ix  of functions from 031 to D~ satisfying vertical and horizontal 

coherence. Then for all v E TD (5+ 1) the matrix  satisfies the genericity condition 

for x E By. 

Proof: Let x E B, ,  for v E T N (5 + 1). Then by the proof of the previous lemma 
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there is a stationary set of risky 3  ̀�9 cof(col) such that A~ guesses ~.~, the matrix 
V (f-~,: 7' �9 3`,~ �9 T N ( 5 + I )  N~3~) and w h e r e , =  xz. For such a T ,  we have 

My 
that A(7)(i) c , ,  x~ or A(7)(i) fl x~ =, ,  0 for all i. Since f~(i) = 7r~ (A(7)(i)) 

and 5 = x~ we see that for all i, either f~(i) Ci x or f~(i) n x = /  0. Hence the 

genericity condition holds. | 

T H E  ACTUAL CONSTRUCTION. F r o m  what we know now, it suffices to build a 

coherent, obedient matrix of functions satisfying the coding condition, defined 

for 5 �9 T that  have cofinality w2. This almost completely determines our con- 

struction, namely at almost every risky ordinal 3' we must take f~ (i) so that fr (i) 

is the projection 7r M" (A(7)(i)) for all but countably many i. We now verify that 

this works. 

We define the functions (f~: 3  ̀�9 w2} by induction on 5 �9 T n (cof(w2) U {0}) 

and for each such 5 by induction on 3  ̀�9 w2. 

INDUCTION HYPOTHESIS. We will maintain the induction hypothesis for 5 �9 T, 

the matrix (f.~: 7 �9 w2, u �9 T n 5/ is obedient, satisfies vertical and horizontal 

coherence, and the coding condition holds. 

By Lemma 2.10, this suffices to prove that $- has the desired properties. 

We will treat successor 3  ̀ and 3  ̀ �9 cof(w) uniformly for all 5. Suppose the 

induction hypothesis and that we have horizontal coherence for 71 < 7- We 

define f0 ~ = 1 and f~+l = f~. For all 7 of countable eofinality we choose a 

sequence {3`~: n �9 w} cofinal in 7 and for each i define f~(i) = A f~( i ) .  Since 

the f ~  are decreasing mod countable and take values in the w-closed set D~, f~ 

takes values in D~ for almost all i, and is clearly below each f~, on a co-countable 

set. 

CASE 1 : 5  = 0. In this case, in addition to obedience, we must ensure that  the 

coding condition holds. To do this we will use the stationary set of places where 

the (}-sequence guesses "nonsense" to do our coding. Notice that whenever we 

have a 3  ̀�9 cof(wl) which is not risky, we are free to define fo arbitrarily subject 

to the requirement of horizontal coherence. 

For each r I �9 w2 we will say that y~ is coded by 3`~, if the coding condition 

(condition (4) on 9 r )  is satisfied. 

Suppose we have defined (fo,: 7' < 3`/- We now define fo for 3  ̀�9 cof(wl). 

CASE la: 3  ̀is risky. Define f~ so that f~ = 7rM~(A(7)(i)). 

CASE lb: Otherwise. Recall that D~ was the dense subset of Do isomorphic to 

Col(Wl,W2). Let r /be  least such that y~ has not been coded. 
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Enumera te  3' as (Tj: J E col}. We diagonalize against this enumerat ion  to 

find the "maximal"  wl-sequence of elements of D~ determined by the sequence 

(fo,: 7'  < 7). We choose an increasing sequence (c~: i C aJ1) C col such tha t  for 

all j < i and all i* > c~i, f o  (i*) is comparible with f o  (i*), and 3`, _< 3`5 implies 

f~ < f~ (i*). 
Define h(i) : [ j { fo  (i): j < i, aj < i and f~ E D~o}. Since D~ is closed 

under  descending co-sequences, for all i, h(i) E D~o . It may or may not happen  

tha t  for all 3`' < 3' there  is a co- countable set of i with f~ >_ h(i). If this 

fails, or if for a cofinal set of i c col, 3  ̀c range h(i), let fo  be arbi t rary  satisfying 

horizontal  coherence and taking all of its values in D~ 

If it happens  tha t  h is below each fo, on a co-countable set and tha t  3' gt 

range h(i) on a co-countable set then by modifying h on a countable set, we can 

arrange tha t  h still lies below each f 0  and tha t  for no i is 3  ̀E range h(i). Then  

define f~ E D' o below h(i) so tha t  3  ̀ c range f~ and for all i , i  C y~ iff the 

least ,2 such tha t  f~ = 3' is a limit. 

CLAIM: This sequence is obedient and satisfies conditions (1)-(4). 

Proof: We first verify horizontal  coherence. 

If 3' is a risky ordinal, then f~ = 7r0M~(A(3')(i)). Since the function 9 used 

to define A(7  ) is below each gO, and g , ( i )  = gO, for almost all i, we have tha t  

7rM~(A(3')(i)) < f~ for all 3`' < 3  ̀ and almost all i. Hence f~ < f~ for 

all but  countably  many i. 

At non-risky 3  ̀ we explicitly chose f~ below all of the previous fn'- Hence 

horizontal  coherence holds. 

Vertical coherence is irrelevant in this case. 

We need to see tha t  the coding condition holds. Suppose tha t  y = Yv C P(col) 
is least such tha t  the coding condition fails. Since (An: 3  ̀c co2/ is a 0 sequence 

there  is a s ta t ionary set of cofinality col ordinals which fall under  case lb  (e.g. 

where A~ = 0). 

At any ordinal 3' tha t  falls under  case lb,  fo  takes all of its values in D~. If 

3' is a case lb  ordinal tha t  is a limit of case lb  ordinals, then for all 3 / < % 

h <_ jo,.  Fur ther  there  is a closed unbounded set of ordinals 3  ̀ such tha t  if 3  ̀
a ~ ,  

is a case lb  ordinal, then 3` ~ [_J{rangeh(i): i E col}. If 3  ̀is such an ordinal and 

for all 3`t < 3`, h < fo,. and each yv, with r / <  rj has been coded by an ordinal 
d . C .  

below % then 3  ̀codes y. 

Finally the sequence is obedient,  since at every risky ordinal we defined f~ 
so tha t  f~ = ~r0M'(A(3')(i)). I 
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CASE 2 : 5  is a successor point o fT .  Let 5 -  be the immedia te  predecessor of 5 

in T. If (f- E col(w2), let U = {5-}.  Otherwise,  let U be the successor points  of 

C5-.  

Our  sequence (f~: 7 < co2) will have the p roper ty  tha t  at  every s tage 7 E w2, 

and all z /E U and each 7" E '7 there is a 7 ' ,  between 7* and ~/such tha t  for all 

bu t  countab ly  m a n y  i, f~,(i) << 7c,(f~.(i)). We will call this the "compat ib i l i ty  

condit ion" for U. (Note the similari ty to the hypothesis  of Lemmas  2.5 and 2.9 

with B = U.) I t  is easy to check tha t  the compat ibi l i ty  condition is preserved at  

l imit s tages of countable  cofinality. 

By L e m m a  2.6 there is a closed unbounded set C of '7 E w2 where ~3~ A ~ = 

~ = s k ~ ( ~  n ~ )  for a l l u E  U. Since IUI < w 2  we can assume tha t  C i s a  

witness to the obedience of (f~} for ~ E U. By passing to a tail segment  of C 
v we may  assume tha t  for all '7 E C, and all ~ E U, we have tha t  U A ~, E ~.~. We 

define a sequence (f~: "7 E c02} by induction on '7. This  sequence will have the 

p rope r ty  tha t  if 7 E C , ~  E g and '7 is risky for 5, then for all i, f ~ ( i )  = ~r.(f~(i)). 
We now define f~ for 7 E cof(co~). To s tar t  with for all 3' < o.t.C~- we let 

CASE 2a: co f (5 - )  < co2 and '7 _< o . t .Cs- .  

If '7 < o . t . C s -  let f~ --- 1. 

For '7 = o . t .Cs-  we know ~3~ = U { ~ y ' :  u' E C~- , j  < "7}. If '7 is r isky 

for all successor u' E C5- ,  and col(5) > (-O 1 in M.y, then (using the remarks  

following the definition of obedient)  we can define f~: wl ~ D~ so tha t  for all 

i, f~(i)  = 7r~ ~ (A(~/)(i)). 

Then  for successor e lements  ~, E C5- ,  we have tha t  

M.~ M-~ M,~ f~(i)  = % (A(7)( i ) )  = 7r, (7r$ (A('7)(i))) = 7rM~(fr = 7r~,(fr 

for all i. Hence, f~(i)  -- 7r~,(f~(i)) for a l l / a n d  thus the compat ib i l i ty  condit ion 

holds a t  '7 + 1. 

Since f~, = 1 for '7' < 3', we trivially have tha t  f~ < f~, and horizontal  

coherence holds. 

If '7 = o. t .Ch- and the conditions above aren ' t  met ,  we let f~ = 1. 

-~- ~ skM~(5), and for all '7' < '7, CASE 2b: 7 E C and "7 is risky. Then  ~3.~ 

IrM~(A(7)) < f~,. By L e m m a  2.8, 3' is risky for each ~ E g .  Hence for all 
a . e .  

M~ 
- E U,i  E wl we have tha t  f~(i)  = 7r~ (A('7)(i)).  Define f~: Wl --+ D~ so as to 

ensure t h a t  for all i, f~(i) = 7rM~(A(7)(i)). Then,  doing a compu ta t ion  similar  
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to the one in case 2a, for all i, p E U, we have 7r~(f~(i)) = f~(i) .  Further ,  for all 

3̀ ~ < 3' and a.e. i, f~(i) <_ f~,(i). Again, the compatibi l i ty condit ion is easy to 

verify. 

CASE 2C: Not case 2a or 2b, but tile risky ordinals in C are cofinal in 3". We 

de fne  )~ so tha t  for all ~ E U, f.~ _< 7r~(f~). This implies the compatibi l i ty  
a . e .  

condit ion for 5 and 7 + 1. 

Let  (Ts: a C wl) be a sequence of risky ordinals in C cofinal in 3'. Then  for all 

~, i  E ~ l , v  C U, 7r , ( f~( i ) )  = f~" (i). 

Enumera te  U = (vs: a < Wl) (possibly with repetit ions).  Define an increasing 

sequence {is: ~ C Wl) by taking is  to be so large that:  

(1) for all j > is  and/3  < c~, we have f ~ ( j )  > - f ~ O ) ,  ~ " 

(2) for all/3,/3~ < ct and all j > is  tile inequality fT~ (3) --> f7 (J) holds. 

Define: 

f~( j )  = A { f ~ , ( j ) :  j > is}. 

Note tha t  { f ~ ( j ) :  j > is} is a countable decreasing sequence of elements of 

Clearly for a l l . ,  2: < 2 o, so horizontal coherence holds. 
a . c .  

To see the compatibi l i ty  condit ion for 7, note tha t  for ~ C U, if ~ = uZ and 

j > i~: 

5 . 7r 5 �9 ~r , ( f~0) .  = ~ ( A { f ~ ( 2 ) :  J > i~}) 

5 . 
= A { T r , ( f ~ , 0 ) ) :  j > is}  

= A { f ~ ( j ) :  j > i~} > f~( j ) .  

This establishes the compatibi l i ty  condition in case 2c. Note that  we chose 

f~ < f~,, so the horizontal  coherence hypothesis is also established. 
a . e .  

CASE 2d: Otherwise. If {f~,: 7'  < 7) is eventually constant ,  take f~ be this 

constant  value. Otherwise, let f~ be arbi t rary  below each f~, a.e. 

In this ease, let 7* be an upper  bound on the risky ordinals in C n 7. Then  all 

of the ordinals of cofinality Wl between 7* and 3' fall into case 2d. Hence an easy 

induct ion shows tha t  the sequence f~, is constant between 7" and 7. Hence f~ 

is this constant  value. Since the sequence is constant  the compatibi l i ty  condit ion 

is easy to verify. 

CLAIM: {f~: 7 C W2,~ E T N (5 + 1)} is obedient and satisfies vertical and 

horizontal coherence, and the compatibility condition is satisfied. 
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Proof." The compatibility condition and horizontal coherence were verified 

during the construction in case 2. Obedience is clear, since at each risky 

ordinal in C we defned f~ in the prescribed manner. 

Since the matrix (f.~: 7 E w2, r, E TN (5+ 1)) satisfies the hypothesis of Lemma 

2.9, there is a stationary set of risky ordinals. Let u E T N a be arbitrary. Let 

~' E C be a risky ordinal for d in the closed unbounded set where the hypothesis 

of 2.8 holds for u. Then 9' is risky for u. Hence, again, for all i, 

f~( i )  = 7~ M~ (A(7)(i)) -- ~ ( ~ ' ~  (A(7)(i))) -- M ~  (]~(i)) = ~,( f~( i ) )  

= zr,(f~(~)), and we have verified vertical coherence. I and thus f~( i)  ~ " 

CASE 3 : 5  E cof(w2) and T N 5 is coIinal in 5. In this case we will arrange 

that  for all 7 E cof(wl), there are u, 7'  such that  f~ = f~,. (In fact we are 

simply finding a descending w2-sequence from our matrix up to 5 that  generates 

the "generic filter" so far.) Towards this goal it is helpful to make the following 

remark: 

Remark: Suppose that  5 E cof(w2) with T N 5 cofinal in 5 and 

(f~: u E (T N 5 n cof(w2)),7 < w2) is an obedient matrix of functions satis- 

fying vertical and horizontal coherence. Then for any collection of functions 

{gj : j E wl } from this matrix, there are u E T N 5, 7 < a~. for all j ,  f~  <_ gj. 
a , { ~ .  

To see this we can choose a u so large that  for all j there are u ~ < u and 7 < w2 

such that  gj = J:~'. Now choose a 7 so large that  for all j ,  if gj = f~"; then there 

is a 7 " , 7 '  < 7* < 7 such that  w,,( f~,( i ) )  a.=~. f f , .  Then for all j ,  i fg j  = ]~; then 

]~ <_ 7r,,(f~) <_ 7r~,(f~',) = f~', <_ gj. Hence this f~ satisfies the conclusion 
a . e .  a . e .  a . e .  a . e .  

of the remark. I 

In cases 3a-b  we define J~ for 7 E cof(wl). 

Let C~ -- (uj: j E w2). For each successor u E Ch, let E ,  be the closed un- 

bounded set witnessing obedience. Let E be the closed unbounded set guaranteed 

to exist by the second filtration lemma (Lemma 2.7). Let C = E n AE. .  Recall 

that  for each ~, ~8~ = U { ~ , :  j ,  ~' < y}.  

CASE 3a: 7 E C and 7 is risky for 5. Define ]~ so that  for all i , f~( i )  = 

Let u be the least element of T above u~. We claim that  f~ = f~. Since 
12 C , -  = C ~ ,  u falls under case 2a, and thus we have that  ~ 7  = ~8~. Fhrther for 

all j < 7 we have that  tJj E ~ ,  by the conclusions of Lemma 2.7. By Lemmas 2.7 

and 2.8 we see that  7 is risky for each successor uj E C . - .  Finally w ~ = w 3 ~, 
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so if 2/is r isky for d, we know tha t  cof(~) > wl in My. Thus  Case 2a defines f~ 

so tha t  for all i,f.~(i) = 7r~ ( ( 7 ) ( ~ ) )  = 7rM~(A(7)(i)) = f~(i). Since ~3 7 = ~ 7 ,  

this implies tha t  for all i, f~( i )  = f~(i). 

CASE 3b: 7 is not  risky. If 2/ is a limit of ordinals of cofinality wt then  by 

induct ion we can assume tha t  for all 2/~ < 2/ of cofinality wl there are u' < 5 

and r/' such tha t  f~, = f~",'. By the remark  we can choose ~, r/ so tha t  for all 

2 / ' < 7 ,  f~  ~< f ~ , .Le t f~=fnJ fo r suchzJ ,  r/�9 
a . e .  

If 2/ is not  a limit of ordinals of uncountable  cofinality, then for some a < 

2/, 2 /=  a + col. I t  is easy to check tha t  for all ~ < wl, f~+r a.~. fo .  Let f~ = , .  

In either subcase  of Case 3b, we have preserved horizontal  coherence. 

CLAIM: (f~: 2/ E We, ,  E T N (c~ + 1)} is obedient and satis:6es vertical and 

horizontaI coherence, and the compatibility condition is satisfied. 

Proof: Horizontal  coherence is clear since we chose the f~ ' s  decreasing a.e. 

Obedience is clear, since at  each risky ordinal in C we defined f~ in the prescr ibed 

manner. 

We verify the hypothesis of Lemma 2.9 for the matrix (f.~: 2/ E w2, ~ E T n 

(d + I)). The only hypothesis that is not evident is that there is a cofinal set 

/3 C T A cof(w2) M 6 such that for all ~ E/3 and each 2/* E w2 there is a 2/~ E w2 

�9 ~ " ~r~(f~.(~)). Lett ing 13 be the such tha t  for all bu t  countably  many  % f~,(z) < ~ ' 

successor points  of C~ this follows easily from the fact tha t  for all 2/* < w2 there 

are a < 3, r / <  w2 with f~,  = f~ .  Let u be a successor point  of C~, then we can 

choose a 7 '  > max{r/, 2/*} so tha t  2/~ is a witness for vertical coherence between a 

_ _ 7r,(f.~,). Hence there is a s t a t ionary  and ~,. Then  f~, <_ ~,(fg~,) < ~-(f ,7)  < 
c t . e .  a . e .  a . e .  

set of risky ordinals.  Arguing exact ly  as in case 2, this implies vertical coherence. 

I 

This  completes  the  construct ion and the proof  of Theorem 2.1. 

We now discuss the modificat ions necessary to execute the proof  wi thout  using 

[3. The  ma in  difference comes in case 3 of the construction.  In this case even 

with square we are s imply rearranging the generic object  up to tha t  stage. The  

compl ica t ion  in the  proof  given above is caused by requiring tha t  the t iming of 

the enumera t ion  of a decreasing sequence coincide exact ly (on a club set) with the 

requi rements  of the  d iamond  sequence. This  is a r ranged by choosing our fi l trat ion 

carefully so t ha t  the dictates  of the d iamond sequence correspond exact ly  to wha t  

we did in case 2a, and hence obeying t hem causes no incompat ibi l i ty  problems.  

To e l iminate  square we choose the ]~ in case 3 to be an a rb i t ra ry  enumera t ion  

of a decreasing dense subset  of the ma t r ix  up to tha t  stage. (This allows us to 
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take arbitrary filtrations.) However we have to weaken the obedience property 

to only hold at successor points of T. This causes additional difficulties at T- 

successors of ordinals in case 3. The saving remark is that  if 5 is an ordinal in 

case 3 and z C D then rc~(z) C D~ for some/3 < 5. Hence, at the T-successor 

of (~, (~+ an obedience condition can be satisfied, as its projection to 5 is really a 

projection to a/3 < 5, and this/3 can be shown to be a member of the appropriate  

stage in the filtration of ~ + .  

3. A p p l i c a t i o n s  

A flmdamental problem in the theory of ultraproducts is to calculate the cardi- 

nality of an ultraproduct,  given the cardinalities of the structures involved, the 

cardinality of the index set and properties of tile ultrafilter. 

In the 1960's a basic distinction was made between regular ultrafilters, whose 

ultrapowers have predictable cardinalities, and the non-regular ultrafilters, about  

which little can be said. As an example let's consider the particular case where we 

are taking an ultrapower of w. It  is easy to show that  for a countably incomplete 

ultrafilter D on an infinite cardinal n: 

2 < I  /DI _< 2 

For regular ultrafilters, tile maximal cardinality is always attained. 

It  remained an open problem for many years whether non-regular ultrafilters 

could even exist on accessible cardinals. Following early work of Ketonen, work 

of Donder, Jensen and Koppelberg [D-J-K] showed that  every ultrafilter in L is 

regular. 

Work of Magidor [M], using huge cardinals, showed that  it was consistent for 

w~2/D to have cardinality R2. This showed that  it was consistent for there to be 

a non-regular ultrafilter on w2- 

Laver, using Woodin's model for an ~t-dense ideal on wl constructed an 

ultrafilter D on wl such that  Iw ~~ I = wl. Later work in [F-M-S] showed that  it 

was consistent to have non-regular ultrafilters on arbitrary successors of regular 

cardinals. These ultrafilters, however, did not have the minimal cardinality of 

ultrapower. 

In this section we show that  it is consistent to have an ultrafilter D on ~2 such 

that  

From this we are able to calculate the chromatic number of the ErdSs-Hajnal  

graph. 
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By Theorem 1.1 and Corollary 2.2, we get the following theorem: 

THEOREM 3.1: Suppose that there is a huge cardinal. Then there is a partiM 

ordering P such that in V ~ there is an RFdense, countably complete, weakly 

normal, uniform ideal on R2. (Further in the model V ~', 0 ~ ,  0 ~  (cof(wl)), [3~ 

and the G.C.H. hold.) 

COROLLARY 3.2: I f  there is a huge cardinal then it is consistent that there is an 

ultrafilter D on w2 such that 

loY~ IDI : R1. 

Proof: Let I be all Rl-dense ideal o n  R2. Let 7) C P(w2) / I  be the dense 

set of cardinality R1. Then there is an ultrafilter D on R2 extending I v such 

that if A C 19 has V A  = 1 then for some countable subset B C A, V B  E 

D. In particular there are sets {as: a E Wl} such that D is generated by 

I v U{a~: c~ E wl}. (See [La, BS, Hu2] for proofs of this fact under the as- 

sumptions of 0, CH and ZFC, respectively. The ZFC result was also established 

independently by Woodin.) Let D be any such ultrafilter. 

Let f :  w2 --+ w be an arbitrary function. For each n, let An be the collection of 

elements of 19 below f - l ( n ) .  Then there is a countable set B C LJ{A~: n E w} 

with V B E D. Choose disjoint representatives of the elements of B, {bin: m E w}. 

Define g: U B  --~ w, by setting g(c~) = n iff a E b,~ and bm C An. Then g -= f 

mod D. Since there are only R1 many such g's (rood D) we have that w~=/D has 

cardinality R1. l 

We note that  if D is an ultrafilter on w2 with w ~2 having cardinality R1, 

then w~(2/D has cardinality Iq2, the minimum possible. To see this we note 

that the structure 9.1 = {H(w3) , E, A} ~ "Wl is the successor of w". Hence 

93 = P.I~2/D ~ "Wl is the successor ofw". Hence, I{Wl, E>~=/D] < [(w, E}~=/DI + 

THE ERD6S-HAJNAL GRAPH. Recall the definition of the Erd6s-Hajnal graph: 

q3(•,, A) = ( ( f l f :  ~ -+ A}, _L}, 

where f _L g iff I{c~: f ( a )  -- g(a)}[ < ~. We now remind the reader of the 

universal properties of the Erdbs-Hajnal graph. See [E-H] or [Ko] for a detailed 

analysis. 

Definition: A graph G has t y p e  [~, A] iff its domain has cardinality ~ and the 

graph has chromatic number A. We will write [~;, A] ~ [n', M] iff every graph of 

type [~, ),] has a subgraph of type [~', A'] 
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Hajnal, in unpublished work, has shown that IN2, Nil ~ IN1, No]. Erd6s and 
Hajnal showed, under the assumption of the C.H., that there is a graph on N2 with 

uncountable chromatic number, all of whose N1 subgraphs are of type [N1, No]. 

Erd6s and Hajnal proposed studying the property [N2, N2] --- [N1, N1], by looking 

at {3(co2,co). They proved: 

THEOREM (Erd6s Hajnal): If G is a graph on co2 with no subgraph of type 

[N1, N1] , then G can be embedded in r 

Proof: Let G be such a graph and for each a E w2, let ca: a --+ co be a coloring 

of the graph induced by G on a. For each fl C w2, define a function ffl: w2 ~ co, 

by setting 

f~(cO / O, otherwise. 

Then, if ~ and/Y are connected by an edge in G, for all a > max{fl,/Y}, c~(~) 

Hence r This shows that the mapping 9 preserves 

adjacency. | 

An immediate corollary of this is result is that assuming the C.H., ~(w2, co) 

has uncountable chromatic number. 

COROLLARY: I/c~((.d2,CO ) has chromatic number N1 then IN2, R2] --~ [HI, N1]. 

Komjath has shown the consistency of O3(co2,co) having chromatic number N3. 
Komjath remarked that in Magidor's model ([M]) ~5(co2, w) has chromatic number 

N2. See Komjath's paper ([Ko]) for details. 

The conclusion [N2, N2] --" [N1, N1] was shown to be consistent from a huge 

cardinal in [F-L]. 

THEOREM 3.3: / f  there is a huge cardinal then it is consistent that 05(w2, w) has 

chromatic number R1. 

Proof: We have seen that the hypotheses of the theorem imply that there is a 

model of set theory with a uniform ultrafilter D on w2 such that [w~~ = Wl. 

Since elements of ~(w2, w) are functions from w2 --+ w, we get a natural map from 

~(w2,co) to Ico~/DI. Since the ultrafilter is uniform, if f _1_ 9 then [I]D 7 s [g]D. 

Hence the induced map to the ultraproduet is a coloring of Oh(w2,col) into col 

colors. II 

We end this section with a remark that is joint with A. Dow: 
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PROPOSITION 3.4: Suppose there is a uniform, countably complete, Nl-dense 

ideal on ~2. Let (X, T) be a topological space with the property that every point 

in X has a countable neighborhood base. Suppose further that  whenever A C X 

is a discrete set of size ~1, then A -- (JAn,  where An is separated. Then for all 

discrete sets B c X of size R2 there are separated sets {Be: c~ �9 wl} such that 

B=OB~. 

Proof: Recall a set A is separated if there is a collection of disjoint open sets 

{Oa: a �9 A} such that  for all a �9 A, O a f ] A  = {a}. If we fix in advance a 

neighborhood basis for each point in A, then we may assume that  each Oa is in 

the neighborhood basis for a. 

We may assume that  B = w2. For each 6 �9 w2 choose a neighborhood basis 

{B~: n �9 w}. For each O' E w2, choose A~ a partition of 0' into separated sets and 

fix a seperating collection of basis elements. Define f~: O' --+ w • w, by setting 

f'r(5) = (m, n) iff 6 �9 A~ and B~ is the open neighborhood of 6 in the seperation 

of A~.  For 6 �9 w2, let A ~ = {0': fir(6) = (m,n)}.  (m,~) 
Let K be the ~ql dense ideal and {xv: ~ �9 Wl} be a dense collection in P ( w 2 ) / g .  

Let 6 �9 B v . . . .  iff A<,~ DK x v. Then B = (J{B v . . . .  : ~/ e w l , m , n  �9 w}. 

Further, for all 61,62 �9 Bv,,~ .... there is a 7 �9 xv above 61 and 62. Since f'r(61) = 

IV(62), B~ ~ N B~ ~ = 0. Hence Bv,m,n is a separated set. | 

4. S o m e  R u d i n - K e i s l e r  m i n i m a l  ultrafi lters 

The results in this section are joint with A. Kanamori  and M. Magidor. 

THEOREM 4.1: Suppose 0~2 (cof (Wl)), []~2 and that  there is a very strongly lay- 

ered ideal I on lq2. Then for all functions f: w2 --+ Wl which are not bounded in 

wl on a set in I v there is a uniform, countably complete, weakly normal ideal 

K on w2 such that: 

(1) P(w 2) /K  ~ P (w j / { coun tab l e  sets}, 

(2) for all g: w2 --+ Wl there is a h: 091 --9 021 with g --K h o f . 

Kanamori  [Ka] calls the function f in the theorem a finest partition relative to 

K.  We note the following corollary: 

COROLLARY 4.2: Under the hypothesis of Theorem 4.1 there is a uniform, count- 

ably complete ideal K on •2 such that, if  D is any ultrafilter extending K ~ ,  then 

I ~  / DI = ~2. 

To see the corollary from the theorem, we take K to be the ideal asserted to 

exist by the theorem. Then modulo K,  there are only 2 ~1 many functions from 
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w2 to wl. We also note  tha t  the results in w imply tha t  the hypothesis  of this 

corollary are consistent.  

Proof of Theorem 4.1: Let I be a very strongly layered ideal on w2. We will 

show tha t  for every function f tha t  is unbounded modulo  I there is an ideal K 

satisfying the theorem.  So fix such a function f .  Then  f induces a par t i t ion  of 

P(w2) / I ,  (x~: c~ E wl). We will construct  a mat r ix  of functions ~" tha t  sat isfy 

the vert ical  and horizontal  coherence and coding hypothesis  and the following 

addi t ional  hypothesis  which is a s t rengthening of the original genericity condition: 

T h e  s e l e c t i o n  h y p o t h e s i s :  Let {y~: /3 E ~} be a par t i t ion  of 

P(w2) / I ,  where ~ < wl. Then  there is some pair  (7, 5) and a function 

h: wl --+ wl such tha t  for all j C wa,f~(j)  CI xj A Yh(j)" 

To see t ha t  this s t rengthens  the original genericity condition we take an arbi- 

t r a ry  set x C w2 and apply  the selection hypothesis  to the par t i t ion  {x, w2\x}.  

Having the new mat r ix  of functions T ,  we define the ideal K the same way as 

we did in w from T and I .  

CLAIM: Suppose that jz  satisfies the hypotheses of coding, coherence, and 

selection. Let K be the ideal defined in w from ~ .  For all g: ~2 -+ wl, let 

yfl = g - l ( ~ )  and let h be as in the selection hypothesis. Then we have that 

g =K h o f .  

Proof of Claim: We consider X = {7: g(7) = h ( f (7 ) )} .  Then  X E K -  iff for 

all large enough 7, 5, {i: f~(i) C X }  C I v .  The  lat ter  condit ion is t rue  iff there  is 

some 7, (~ such t ha t  for all i, f~(i) C X .  Let 5, 7 be as in the selection hypothesis .  

Then  for every i, f~(i) C X .  Hence X C K.  I 

Thus  to prove the theorem,  we must  show tha t  we can build an 5 r satisfying 

the original condit ions and also satisfies the selection hypothesis.  

Fix a par t i t ion  of P(w2)/ I ,  (xi: i E Wl). Withou t  loss of general i ty we m a y  

assume tha t  each xi C B0. Hence we can s tar t  our construct ion by set t ing 

f~ -- xi. 
We now mus t  refine our no~ion of obedient.  

We will follow the  nota t ion  developed in the proof  of Theorem 2.1. We first 

expand  92 to include a relat ion denot ing (xi: i E wl). 

We will view our O-sequence (AT: 7 C w2) as guessing: 

(1) t rans i t ive  s t ruc tures  M 7 = (M,C,<_M,IM,(B~: c~ E w3M),D M, 

(~r~: ~ E w M N (cof(w2) U SUcc)M),(Xi: i E w l ) M . . . )  , where M7 - 92, 

and  M ~ C M;  
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(2) a sequence Y7 = (Yj: J E Wl} E M r, with M r ~ Y~ is a partition of 

(3) a matrix of functions (g~,: u E S, 3 / < 7), where S C w M, g~,: Wl -+ D M, 

and for each u, (g~,: 7' < ~'} is c i ,  decreasing rood countable sets (i.e. for 

u i u each u, y '  < ~,* < % and all but countably many i,g~,( ) CIM g~,(i)); 

(4) for an i  l,g0~ c 
We must also redefine our functions A(7 ). Fix a 7 E w2 N cof(wl). If there 

is a function g: wl -+ D M~ such that  for all u C S and all ~' < 0' there is a 

co-countable set of i C wl such that g(i) C g~,(i), choose such a function and 

define A(7): wl -+ D M~ to be a function such that for all i, A(~)(i) C g(i) 

and A(~)(i) Ci, x~ A yj for some j.  If such a g exists then this is possible since 

Y7 E M 7 and for almost all i, g(i) C x~. Since Y~ is a maximal antichain there 

is a j with yj A xi A g(i) ~ O. If no such g exists then A(7) will not be defined. 

We now define obedience in exactly the same way with respect to the modified 

A(7)'s and (} sequence. 

The rest of the proof goes as before: i.e. there are many risky ordinals, obedient 

sequences can be manufactured and obedient sequences satisfy the hypothesis on 

�9 ~ .  | T h e o r e m  4.1 

In [Kat, Kanamori proved the following theorem, answering a question of 

A. Taylor [K-T]. 

THEOREM (Kanamori): Assume  that there is an RFdense  ideal on Wl and (>~. 

Suppose  that  D is any non-principal ultrafilter on w, and f:  co I --~ w is a map  

such that f - l ( n )  E I + for all n C w. Then there is an Rl-generated ultrafilter U 

over wl ex tending I* such that  f , ( U )  -- D. 

The main result of this section is the following: 

COROLLARY 4.3: Assume  there is an ideal on w2 that satisfies the conclusion of  

Theorem 4.1 for the function f .  Assume that for all a E w l , f - l ( a )  E K +. Le t  

E be any non-principal ultrafilter on wl. Then  there is an ultrafilter F over w2 

ex tending  I* such that f ,  (F)  = E.  

Let ~_RK be the Rudin-Keisler ordering and ----RK be the corresponding 

equivalence relation. 

C O R O L L A R Y  4 . 4 :  Assume:  

(1) (}~,, (}r [:]~o2, 

(2) there is a normal Rl-dense ideal I on oal, and 

(3) there is a very strongly layered ideal on w2. 
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Then there are non-principal uniform ultra~Iters D,E and F on o~, wl and w2, 

respectively, such that for all non-principal ultrafilters U on some infinite set, if  

V ~RK [2 then either U =RK D or U : R K  E or U ----RK F. 

Proof of 4.3 and 4.4: Fix a function f as in the proof of Theorem 4.1, and let K 

be the ideal constructed there. Let E be an arbitrary uniform ultrafilter on wl 

extending the dual of some countably complete ideal I .  Since the ideal I extends 

the countable sets and we know that  P(w2) /K ~ P(wl)/{countable sets}, we 

can extend K to an ideal L, where P(w2)/L ~ P(wl ) / I .  (Explicitly, we have 

that  if .T is the matrix of functions defined in the proof of 4.1, X c L iff for all 

large enough 5,% {i: f~(i) C X }  E I.) 

We construct an ultrafilter F on w2 extending L -  such that  E = f , (F ) .  

Let F0 be the filter onw2 induced by the basis {X: for s o m e Y  E E , X  = 

U f - l [Y]} .  We claim that  F0 U L -  has the finite intersection property. Let 

Z E L ~  and X C F0. Then for all large enough S, % {i: fg(i) C Z} E I ~  and 

for some Y E E , X  = U{xi: i E Y} (where xi = f - l ( i ) ) .  Since fo = f ,  for all 

5,%f~( i )  C X i f f i  E Y. Since E D I v ,  for all 5,~ there is an i with f~(i) C X 

and f~(i) C Z. Hence X M Z D f~(i) and we have shown that  F0 U L ~  has the 

finite intersection property. Extend F0 U L -  to a uniform ultrafilter F.  Since 

F D F0, we see easily that  E = f , (F) .  This proves Corollary 4.3. 

In [Ka] from the assumptions of Corollary 4.4, Kanamori  shows the existence 

of ultrafilters D and E on w and Wl respectively, that  have the property that  for 

all non-principal ultrafilters U, if U --<RK E then either U =RK D or U : R K  E. 

Further, the ultrafilter E constructed by Kanamori extends the dual of the normal 

Rl-dense ideal. 

Apply the previous argument to E with [ being the RFdense ideal to get an 

ultrafilter F on w2. Since F extends L ~ ,  Corollary 2.2 implies that  F is weakly 

normal. Suppose now that  U --<RK F with r being the witness function. Then 

we may assume that  ~p: w2 ~ w2. By weak normalitiy if r is not 1 - 1 on a 

set in F (i.e. not a Rudin-Keisler isomorphism), then r is bounded on a set in 

F.  If r is bounded on a set in F,  the there is a function h: Wl -+ Call such that  

= h o f modulo U. This function witnesses that  U <--RK E. By the properties 

of the ultrafilters that  Kanamori  constructed, U =RK D or U =RK E. I 

5. Some open problems 

In this section we list some open problems. The most obvious open problem is to 

get the consistency of countably complete RFdense ideals on cardinals between 

~2 and R~. This looks like only a "technical problem", but perhaps not. The 
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main obstacle is getting the correct n+-saturated ideals on the appropriate  ~. 

Since these ideals don' t  feel exotic at all, it is possible to hope that  there is not 

a major  new idea required to do this. 

A problem the author feels is related is the well known problem of getting 

the consistency of the statement "R~ is Jonsson". While it would be desirable 

to get this consistent in a model where the Chang property is manifest by the 

appropriate precipitous embedding, there is growing evidence that  the Jonsson 

property should be proved using strong combinatorial properties of the ~n's. 

An interesting class of problems remain open around the ErdSs-Hajnal  graph. 

For several of these there seems no obvious line of at tack using saturated ideals. 

For example, it is not known how to calculate the chromatic number of the ErdSs- 

Hajnal graphs for ~5(~,w) for R~ < ~ < R~ 1. Can it be RI? The reason ideals 

of the type produced in this paper seem irrelevant is that  the Kunen theorem 

prohibits highly saturated ideals on cardinals in the interval in question. 

Finally, a basic problem seems to be to find some "representation theory" for 

ideals in general, perhaps along the lines of the matrix defined in this paper. The 

author will leave the details of this project to the interested reader. 
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