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ABSTRACT
This paper establishes the consistency of a countably complete, uniform,
Ni-dense ideal on Ry, As a corollary, it is consistent that there exists a
uniform ultrafilter D on wy such that |w;?/D| = w1. A general “transfer”
result establishes the consistency of countably complete uniform ideal K
on wy such that P{w2)/K 2 P(w1)/{countable sets}.

0. The statement of the main theorem and its corollaries

In 1930, Ulam [U] suggested the possibility of a set X carrying a countably
additive probability measure that measured each subset of X. Early results of
Ulam showed, however, that such a set cannot have a small cardinality such as R,
or Ry. Recent results of Gitik and Shelah [G-S] show that there is no accessible
set X carrying a countably complete ideal I C P(X) (e.g. the sets of measure 0
for some measure) such that P(X)/I is separable. By their results, the strongest
possible ideal property cardinals such as R; or Ry can have is to carry a dense set
of size Ny. In this paper it is shown that it is consistent to have such an ideal on
Ro. (It was previously known from work of Woodin that it was consistent on R;.)
The existence of such an ideal on Ry is shown to settle several open problems in
model theory, combinatorics, and topology that date from the early 1960’s.
The main result of this paper is the following theorem:

THEOREM: Assume there is a huge cardinal. Then the following holds in a forcing
extension of V:
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There is a countably complete, weakly normal, X, -dense ideal K on Ra.

This is a corollary of a general “transfer theorem” which says that assuming
(roughly) the existence of a “layered” ideal on No:

for any uniform ideal J on ¥; there is a uniform ideal K on N, such that:
P(uw)/J = P(wy)/K.

Further, the degree of completeness of the ideal K is equal to the degree of
completeness of the ideal J.

To prove the main theorem quoted above, we first show that it is consistent to
have, simultaneously, a countably complete X;-dense ideal on X; and a sufficiently
strongly layered ideal on Rq, as well as ¢ and [J. The main result then follows
from the transfer theorem.

The proof of both of these results is adaptable easily to other cardinals to yield,
for example, the consistency of an No-complete, No-dense, N;-closed, uniform,
weakly normal ideal on ws.

We do not at this time know how to get the consistency of a countably com-
plete, N;-dense, uniform ideal on w3. The obstacle is showing the consistency
of a dense ideal on ¥, together with very strongly layered ideals on Ny and N3
(simultaneously).

The main theorem contains the solution of several combinatorial problems as
corollaries:

It solves “Ulam’s Problem” for N2, by showing that it is consistent that there
is a collection of ¥; countably complete uniform measures on Ry such that every
subset of Ry is measured by one of the measures.

It implies that there is an ultrafilter D on wy such that the ultrapower w*? /D
has cardinality w;. This solves a problem dating from the mid-1960’s. (See
[C-K].)

In the early 1960’s, Erdés and Hajnal [E-H], investigating the chromatic
properties of graphs, defined the following graph:

&(k, A) = {[If: & = A}, L),

where f L g iff [{a: f(a) = g(a)}| < k. This graph is of interest because of
its universal properties. (See §3, “Applications”, for details.) In particular, they
showed that the C.H. implies that &{w,,w) has uncountable chromatic number
and asked whether this graph could have chromatic number R;. It is an easy
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corollary of the ultraproduct result that in the model contructed in this paper,
®(wq,w) has chromatic number V.

Other applications include a joint observation with Alan Dow about collection-
wise normality.

A variation on the transfer theorem constructs a countably complete ideal K on
ws such that P{wz)/K 22 P(w1)/{countable sets} and every ultrafilter extending
K is highly nonregular. Further there is an ultrafilter D on N, that is a Rudin-
Keisler minimal ultrafilter on Ny and it has unique Rudin-Keisler predecessors
on Ny and Rg. This result is joint with Kanamori and Magidor, and appears in
84.

WooDIN’S THEOREM. The inspiration for the main theorem is the following
theorem of Woodin:

THEOREM (Woodin [W]): Assume O, (cof(w;)). If there is a normal ¥;-dense
ideal on wy and a normal ideal J on wq such that P{ws)/J has a dense countably
closed subset of cardinality Ro, then there is a countably complete R, -dense ideal

on ws.

Woodin’s theorem has the virtue of a relatively simple proof, however, at
the time this paper is being written it is not known whether the hypothesis
of Woodin’s theorem are consistent. Hence, in this paper, there is a much more
complicated transfer theorem, which has the advantage over Woodin’s theorem
that it is known that its hypothesis can be shown to be consistent using standard
large cardinals.

This paper is organized as follows: In this section we give the basic definitions
we will use. In §1, we show that it is consistent to have an N;-dense ideal on N
and a very strongly layered ideal on Ry. This result, while apparently new, uses
no essentially new ideas. In §2, we prove the transfer theorem, the main new
ingredient in the paper. In §3, we draw the applications as corollaries from the
results of §1 and §2. In §4 we improve the results of §2 and draw some corollaries
about ultrafilters under the Rudin-Keisler ordering. In §5 we list some of the
many open problems in the area.

VERY STRONGLY LAYERED IDEALS ON wy. Let 9 be a structure of regular
cardinality x. A filtration of 2l is a continuous increasing - chain of elementary
substructures of 2, each of cardinality smaller than .

Remark: We note that any two filtrations coincide on a closed unbounded set,
which also determines a filtration. Also, the requirement that each element of the
chain be an elementary substructure of % is, in some sense, superfluous, since this
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happens automatically on a closed unbounded subset of x. Further, if we have a
property that holds for a closed unbounded set of elements of the filtration, then
by passing to a subsequence including only the “good” elements we can assume
that the property holds for every element of the filtration.

For example, if A C B are two structures of cardinality x, and (%,: a € k),
(Bq: o € k) are filtrations of A and B respectively, then (B, NA: @ € k) isa
filtration of 2, and hence agrees with (2,: @ € ) on a closed unbounded set.
By passing to subsequences we can assume that (A,: o € k) = (B, NA: o € k).

Let A, B be partial orderings. A projection map from A to B is an order
preserving function 7: .4 — B such that for all a € A and all b < w(a) there is
an a’ < a such that 7(a’) <b.

If A and B are Boolean Algebras and B C A is a regular subalgebra (i.e.
maximal antichains in B are maximal antichains in A), and 7: A\{0} — B\{0}
is a projection map that is the identity on B, then it is easy to check that for
all a € A,n(a) > a. Projection maps rarely are homomorphisms (they don’t
preserve meets), but they do preserve descending meets: If D is linearly ordered
by > and AD exists in A, then A7“D exists in B and 7(AD) = A(n“D).

We will attempt to use standard notation throughout this paper. We will
write Col{x, A} for the Levy partial ordering collapsing A to have cardinality =
with conditions of size < k. We will write Col(x,< A) for the Levy partial
ordering collapsing every ordinal < A to have cardinality . We will use the
notation Add(k) for the partial ordering adding a single Cohen subset to x with
conditions of size < k. We will write S(k, A) for the “Silver Collapse” of A to
be k1. Conditions here are partial functions p: ¥ x A — X such that for all
a, B, pla,B) < B, |dom(p)| < k and there is a § < &, such that dom(p) C § x .
The ordering on the Silver Collapse is inclusion. (See [Ku] for a good explication
of this partial ordering.)

We now make one of our main definitions:

Definition: A normal Rp-complete ideal I on wy is very strongly layered iff

P(w2)/I =| J{Ba: @ < ws}

where:
(1) The sequence (B,: & < ws) is increasing and continuous, and for all o,
|Ba| = wa. (In other words (By: @ < ws) is a filtration.)
(2) There is a dense set D C P(w;)/I that is closed under descending w-
sequences and finite non-zero meets (i.e. if {d1,...,d,} arein D and Ad; # 0
then Ad; € D).
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(3) For a € wzN(cof(wg)Usucc), By is aregular subalgebra of P(wz)/I. Further
there is a family of projection maps {m,: a € ws N (cof(wz) U suce)} such
that mo: D — (DN By,), my | (DN By) is the identity, and for a < 3 we
have 7, o mg = T, (i.e. the projection maps commute).

We will denote D N B, by D,. We note that if we have the continuum
hypothesis, then, by passing to a subsequence if necessary, we may assume that for
a € cof(wsq), D, is closed under finite non-zero meets and descending w-sequences
and that D, is dense in B,,.

Layered ideals were first defined in [F-M-S]. A k-complete ideal I on a reg-
ular cardinal x is layered iff there is a filtration of the quotient P(x)/I =
U{Ba: @ < k™} such that for a stationary set of a € cof(k), B, is a regular sub-
algebra of B. If I is a layered ideal on « then [ is kT saturated: If A C P(x)/I
is a maximal antichain, then for some « € cof(x), AN B, is a maximal antichain
and B, is a regular subalgebra of P(x)/I. Hence, A = AN B, and thus has
cardinality < k.

We can easily define the notion of a very strongly layered ideal on «* by
replacing “wy” by “s1”, and “o-closed” by “< x*-closed”.

For technical reasons that occur later we need the following easy fact:

Fact: Assume the C.H. If P is an w-closed partial ordering that collapses R, and
has cardinality N, then P has a dense set isomorphic to Col(wy,ws).

If we have a very strongly layered ideal we may assume that By is a regular
subalgebra of B that collapses wq, and thus we can assume that Dy D Dj where
Dy is dense in Dy and Djy = Col(wy,wz).

Finally, we remark that the ideal J on w; hypothesized in Woodin’s theorem,
namely a normal ideal J on wy such that P(ws)/J has a dense countably closed
set of size Ny, is easily seen to be very strongly layered.

ACkNOWLEDGEMENT: I would like to acknowledge the many helpful conversa-
tions with Professors Magidor and Shelah, who taught me the technology needed
in the proof of this theorem, as well as Professor Woodin who told me the proof of
“Woodin’s Theorem” mentioned above, while simultaneously feeding and housing
me for a weekend. I would especially like to thank Peter Komjath for repeatedly
forcing me to try to compute the chromatic number of the Erdds—Hajnal graph.
Without his interest and attention, this paper wouldn’t exist.

1. The consistency result

In the late 1970’s Woodin showed that it is consistent to have an N;-dense ideal
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on ¥p, assuming the consistency of of the theory “ZF + ADg + 0 is regular”.
Later Woodin [W] improved this result showing, assuming the consistency of
an almost huge cardinal, that the following is consistent: “for all No- saturated
partial orderings PP that collapse N, there is a countably complete ideal I on w;
such that P{wq)/I has a dense set isomorphic to P”.

At cardinals above ¥ there are serious obstructions. Kunen [Ku| proved that
there can be no uniform countably complete No-saturated ideal on any cardinal s
with R, < k <N, In [F-M], it is shown that this theorem is sharp at the upper
end of the interval, namely that assuming the consistency of a supercompact
cardinal, one can construct a model where there is a countably complete Nq-
saturated ideal on R, 1. The sharpness of the other inequality is still an open
problem. However, as stated in the first section we make progress on this problem
by showing that it is consistent to have an Nj-dense ideal on N,.

To prove our main result we need to extend Woodin’s theorem to get an Ni-
dense ideal on wy consistent with a very-strongly layered ideal on R,.

In this section we prove the following theorem:

THEOREM 1.1: Let jp and j; be almost huge embeddings with critical points kg
and k1, respectively. Suppose that jo(xo) = k1 and that ks = j1(k1) is Mahlo.
Then there is a partial ordering P such that there is a definable subclass W of
VP satisfying:

(1) ZFC + G.C.H. 4 Ou, + Ou,(cof (w1)) + 0o,

(2) There is an R;-dense ideal J on N;.

(3) There is a very-strongly-layered ideal I on Rj.

Remarks: The existence of two embeddings satisfying the hypothesis of the
theorem is an easy consequence of the existence of a huge cardinal. It is also the
case that we can get a model with a very strongly layered ideal on N, satisfying the
Woodin conclusion that: “for all No-saturated partial orderings IP of cardinality R
that collapse X, there is a countably complete ideal I on w; such that P(wq)/I
has a dense set isomorphic to P”. This involves some additional preliminary
forcing. (See [W].)

While we believe this theorem to be new, it requires no essential new ideas to
prove. Accordingly, we only sketch the proof. We refer the reader to [W] for more
details on the construction of R;-dense ideals, and to [F-M-S] for more details on
the construction of layered ideals.

Proof: We will use the following standard forcing fact:
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Fact: Let & be an inaccessible cardinal and P be a partial ordering that is s-c.c.,
collapses k to be wy and is such that if 7 is a P-term for a subset of w, then the
least complete subalgebra of P deciding 7 has cardinality less then x. Then for
all V-generic objects G C P, there is a forcing extension V' of V[G] such that in
V' there is a V-generic object H C Col(w, < ) such that P(w)Vi¢l = P(w)VIH],

We construct our model W in several stages. We first collapse kg to be Ny
using the Levy collapse. We then move to the choiceless inner model V(R). In
V(R), we build the “universal” Kunen collapse Q of k1 to be wo. After forcing
with this collapse we get a model Vo which has a normal, R; dense ideal on
N;. We force over ¥, with the Silver collapse making «; into N3 to get a model
V3 with a layered ideal on N, that has a countably closed dense subset. Since
the Silver Collapse doesn’t add new subsets of X, the ideal on ¥; remains N;-
dense. Shooting a closed unbounded, set through the stationary set witnessing
the layering yields a model with a very strongly layered ideal. To finish, we add
Oy,, using the canonical conditions of size No. Since these conditions don’t add
new subsets of Ny, we preserve the property of being very strongly layered.

The main points of the proof are:

(1) to see that Woodin’s arguments for the consistency of an Nj-dense ideal

can be carried out to show that V5 has such an ideal, and
(2) that W has a very-strongly layered ideal on Rj.

CraiM 1.2: Let j be an almost-huge embedding with critical point kg and
J(ko) = k1. Let Cy C Col{w, < kg) be generic over V. Let V1 = V(R) C V[Cy].
Let Q = Add{wq)*Q' be a ky-c.c. partial ordering in V; that is countably closed,
has cardinality k1, and collapses k1 to be Ry, Then for all V(R)-generic G C Q,
V(R)|G] = Z.F.C. + Q., + “there is a normal N;-dense ideal J on R;”.

Proof: Let Ry = P(w) N V[Cy]. Since Add(w;) adds a wellordering of R in a
canonical way, we see that any generic H C QQ can be decomposed into Gy * G,
and V1[Go| = Z.F.C.

Let G C @ be Vi-generic. Let C C Col(w,w;) be V;[G]-generic and Ry =
P(w) N V1[G * C]. Then by the “Fact”, Ry = P(w) N V[C4] for some V-generic
C; C Col(w, < k1). Standard ideas show that j can be extended to a

72 V(Ro) = M(Ry)

by setting j(7V®e)) = +M®)  (We do not need the generic object H to define
the elementary embedding, the “Fact” is used to prove that this definition, given
in V1[G * C}, yields an elementary embedding.)
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We work in V3[G * C]. For kg < a < k1, let my = (G N V,). Then each m,
is in M(Ry). Let (z4: o < K1) be an enumeration of the V;-terms for elements
of P(kg) N V1|G] such that for a closed unbounded set of o and all 8 < & € k1,
zg € Vi{G N Vy]. Note that for 8 < k1, (zo: o < ) is in M(R;). Let A
be a well-ordering of j(Q') in M(R;)?(Add(«1))  Define a descending sequence
(pa: @ < K1) C j(Q) such that:

(1) for each a,y, if zo € VA[GNV,], then poy1 N M;(, decides || ko € J(za) I

(2) If pa € V;(,), then p, is compatible with m,.

(3) If pas1 = q§ *qf € Add(w;) *Q then ¢§ IF ¢ is the A-least element of

so that pat1 < P and pa4q has g§ as its first coordinate and satisfies (1)
and (2).

Using (3), and the fact that (g§: @ < ) € M(R;), one can check that for all
B < k1 the sequence (p,: @ < f) € M(Ry).

The sequence {p,: a < k1) induces an ultrafilter U on P(ko) N V1[G] that
is ko-complete for sequences that lie in V1[G]. Define an ideal J in V4[G] by
putting z € J iff || z € U ||= 0, where the boolean value is taken B(Col(w, w1)).
Equivalently, z € J= iff || there is an o, ps IF ko € j(z) ||= 1.

To see that J is a normal ideal, let (z5: § < ko) € V1[G] be a sequence of
elements of J~. Then for all 3, ||for some a,p, '+ ko € 7(zp) ||= 1. Since, in
V1[G][C], cof (k1) > Ko and (py: @ € K1) is a descending sequence, and the forcing
yielding V4[G][C] is k1-c.c., |[for some a,p, - ko € N{j(zp): B < Ko} |I= 1.
Hence || for some , p, I %9 € j(A{zs}) ||= 1. Thus J* is closed under diagonal
intersections, so J is normal.

This shows that the map z —|| z € U || induces a boolean algebra monomor-
phism from P(kp)/J to B(Col(w,w;)). Hence, J is Np-saturated. Since J is
normal, this map is a regular embedding and thus P(xg)/J is isomorphic to a
regular subalgebra of B(Col(w,w;)). Thus J is an Ny-dense ideal. ]

We now apply Claim 1.2 to a particular partial ordering. Let jg,j1 be the
almost huge embeddings posited in the hypothesis of Theorem 1.1. Working
inside V1, construct the following “universal” partial ordering due to Kunen.

(1) Q will be a «;-stage iteration

(2) Let Qy = Add(w;). Then V& = A.C. + &; is almost huge.

(3) Q is a countable support iteration over V.

(4) If « is inaccessible and Q, NV, is a regular subalgebra of Q,, then we let

Qa1 = Qa * 5QNVa (@, k1).
(5) Otherwise, we let Q41 = Qg * {1}.
Then standard arguments due to Kunen and Laver show that Q is xq-c.c.
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and countably closed. Hence we can apply Claim 1.2 to this partial ordering
with j = jo to see that if G C Q is Vj-generic then V1[G] = Z.F.C.+ there is
an Np-dense ideal on P(Xy) + O,. Further, for any inaccessible a such that
Q. NV, is a regular subalgebra of Q, we have a canonical regular embedding of
(Qq NV,) * S@NVad (g k1) into Quy -

Fix a generic G C Q and let V5 = V4[G]. Let H C S¥2(k1, k3) be generic over
Vs, and let V3 = Va[H].

Since k1 is inaccessible and Q is ki-c.c., Q is a regular subalgebra of
J1(Q)k, . Since j1(Q) is defined the same way as Q is we see that j1(Q)x,+1 =
31(Q)x, * SU(k1, k2) and thus it makes sense to form j1(Q)/G * H.

We now analyse the structure of j;(Q)/G * H. This analysis is very similar
to one in [Hul] where a detailed discussion is given (similar arguments are also
given in [F-L]).

To motivate the analysis, we consider the example of the Silver collapse S(wy, A)
for a Mahlo A. Let B = B(S(wi,\)), and for inaccessible o, B, = B(S(w1,@)).
For other 8, let Bg = |J(Bs: @ < ). Then (By: a < A) is a filtration of
B. Further, for inaccessible @, the map m: S{wi,A) — S{wi,a) given by
mo(q) = ¢NV, is a projection map. Thus we get a collection of witnesses
for layering of B(S{wy,A)) that preserve a countably closed dense set. The sys-
tem of 7,’s remains a collection of witnesses to layering in any forcing extension
that preserves the stationarity of the old inaccessible cardinals. In particular, if
we collapse A to be Ny with countably closed conditions and then force a closed
unbounded set through cof(w) N {V — inaccessibles} using R;-sized conditions,
B(S(wy,A)Y will have cardinality X, and be strongly layered.

For notational simplicity, let Q = j1(Q)/G * H. Then, Q is an iteration of
sorts with countable support and two kinds of coordinates. The first kind of
coordinates are those arising from o < k;. These coordinates yield the trivial
forcing, unless « is inaccessible and falls under case (4) of the definition of Q. In
this case G induces a generic object G, on §%"Va (a, k1). For these a, Qa is
the forcing S@ Ve (@, j;(k1))/Gq. This partial ordering is countably closed. The
coordinate o = K is entirely swallowed by H. In coordinates a > k;, we force
with terms for elements of Silver collapses over models extending V[G] that have
the same w-sequences as does V[G]. A decreasing w-sequence of conditions in
Q induces a decreasing w-sequence of conditions in each such coordinate. Since
each coordinate is w-closed, by taking the coordinatewise meets we get a condition
below our w-sequence in Q.

Let B = B(Q). Then Q is a countably closed dense subset of B. We describe
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a filtration B = (B,: a < k2) and a commuting family of projection maps
from Q to Dy = Q N B,. For each coordinate v in the iteration Q and each o
between x; and ks that is inaccessible in V, let Q(y,a) = {q € Q: it is forced
by the trivial condition that dom(q(y)) C v x a}. Let Dy = {g € Q: for all
v < aq(7) € Q(v,a)}. Clearly, @ = Uy ey, Do

For « inaccessible in V, let B, be the boolean subalgebra generated in B(Q)
by Q. For other a, let B, = |J{Bg: # < a}. This describes the filtration. For a
inaccessible let m4: Q — D, be the map described by setting 74(q)(7) = q(v) |
v x « for ¥ < a and m,(q)(y) = 1 otherwise. It is easy to check that this is a
commuting family of projection maps.

We have now shown:

CraIM 1.3: Working in V3, let B = B(Q). Then there is a dense w-closed subset
D of B and a filtration B = | J(B,: @ < k3) and a commuting family of projection
maps {7, « is inaccessible in V'} with mq: D — DN B,.

CLAIM 1.4: In V3 there is an ideal I on w, such that

P(w2)/1 = B(j1(Q)/G * H).

Proof: In this proof we will refer to claims proved in [F-M-S] on pages 529-531.
Let G C j1(Q) be V1[G * H]-generic for B(j;(Q)/G * H). By Claims 6 and 7
of [F-M-S] and the discussion on pages 530-531 there is an ultrafilter § in V[G]
on P(k1)VIG*H] that is closed under diagonal intersections and intersections of
< —ki-sequences that lie in V(G x H]. Further, for each ¢ € §(Q)/G + H, there
is an z € P(k;)VI%*H] such that || z € § |=q.

Hence the map i: P(x,) = B(j(Q)/G * H) given by i(z) =|| z € § || gives an
order preserving map of P(x1) onto a dense subset of B(j(Q)/G * H). Letting
I = {z:i(z) = 0}, we find that in V|G *x H]:

it P(ky1)/I — B(Q/G « H)

is an order and incompatibility preserving map to a dense subset. Since § is
closed under diagonal intersections and < x;- intersections from V|G x H], I is
normal and k1-complete. Since j(Q)/G*H is j1(k1)- c.c., I is saturated, P(k1)/1
is a complete Boolean algebra, and hence ¢ is an isomorphism. 1

Claims 1.3 and 1.4 together show that in V3, I is a layered ideal with a count-
ably closed dense subset and witnesses for layering. Working in V3, let S be the
set of ordinals between wy and ws that were inaccessible in V (i.e. the set on
which we have witnesses for layering). Then S C cof(ws). Standard arguments
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[A-S] show that there is a cardinal preserving partial ordering PP that doesn’t add
new subsets of wy but does add a closed unbounded subset of SUcof(< wq). Let
C' be generic for P. Then in V3[C’] the witnesses for layering still are projection
maps and hence [ is a very strongly layered ideal.

Finally, we must add O,,, to get the desired model. To do this we use the stan-
dard partial ordering for adding O, using “initial segments”. Namely conditions
in the partial ordering are partial O sequences (Cy: a < 7) for some v < ws,
ordered by inclusion. Standard arguments show that this partial ordering is wo-
strategically closed. Hence, the partial ordering doesn’t add new subsets of w,
and therefore preserves the very-strongly-layered ideal.

We now verify the diamond conditions. To see §,, we note that the partial
ordering Q' adds a generic filter for Add(w;) over the model V(Ry)A44(1) in
such a way that the quotient forcing Q/ Add{w1) * Add(w1) is countably closed.
Since forcing with Add(w;) adds diamond and countably closed forcing cannot
kill diamond, we know that O, holds in V(Ry)@. Since the rest of the forcing
adds no new subsets to w;, ¢, holds in the final model.

Similarly, over V(Ry)®(= V3), forcing with the Silver collapse making xo the
successor of x; adds a ¢,,(cof(w;)) sequence. Thus V3 satisfies Oy, (cof(w1)).
The rest of the forcing to get the final model adds no new subsets of w, so
Quw, (cof(wr)) holds in the final model. 1

2. The transfer theorem

The main result of this section is the following theorem:

THEOREM 2.1: Suppose there is a very strongly layered ideal I on wy,U,,,, C.H.
and O, {(cof{w;)). Then there is a - complete uniform ideal K D I on w; such
that

P(w2)/K = P(wy)/{countable sets}.

Remark: This theorem is true if we replace w; by a regular x, the ideal of
countable sets by the ideal of sets of cardinality < x and wy by k. The ideal on
kt will be < k-complete.

COROLLARY 2.2: Suppose there is a very strongly layered ideal I on wq,0,,,
C.H. and {,,{cof(w;)). Then for all uniform ideals J on w;, there is a uniform
ideal K on ws such that:

P(w3)/K = P(wy)/J.

Further, the degree of completeness of K equals the degree of completeness of J,
and if J is Ny-saturated then K is weakly normal.
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Remark: Even in the presence of a very strongly layered ideal on ws, the
collection of Boolean Algebras arising from quotients of the form P(w;)/J can
be exceedingly rich! For example as stated in §1 it can include all complete,
N,-saturated Boolean Algebras of cardinality Ny that collapse w;. In particular,
from this corollary we can get the consistency of a countably complete, uniform
N;-dense ideal on Ns.

Proof of 2.2: By Theorem 2.1 there is an ideal Ky O I on wy such that
P(wy)/ Ko = P{w)/{countable sets}. Let J be any ideal on w; containing all
the countable sets. Then we have a surjective homomorphism

¢: P{w)/{countable sets} — P(w1)/J.

This induces a surjective homomorphism ¢": P(w2)/Kg — P(wy)/J . If we let
K be the ideal generated over Ky by ker(¢’) then P(wq)/K = P(wy)/J. If J is
countably complete, then the kernel of ¢’ is countably complete in P(ws)/Kjp.
Hence the ideal K is countably complete.

Suppose now that J is Ny-saturated. We must show that K is weakly normal.
This is equivalent to the following statement:

If f: wg — wo is a regressive function then there is a set A € K™ and a
v € wo such that the range of f on A is bounded by .

Clearly ¢’ induces a homomorphism v: P(w2)/I — P(w1)/J. Given a regres-
sive function f, let a; = {6: f(6) = i}. Then (a;: i € wy) contains a maximal
antichain in P(wz)/I. Let by = V{a;: i € a}. Then (by: @ € wy) is an increasing
Na-sequence in P(ws)/I. Since J is Ny-saturated there is a v € we such that for
all ¥ > v,9(by) = 9(by). Since the b,’s sup to 1, this constant value for 1) must
be 1. But then ¥({d: f(8) <~}) =1, hence {4: f() <y} e K. [ |

Remark: It is possible to eliminate the (J hypothesis in the previous theorems.
The referee requested this be made explicit so at various places in the argument
we will briefly outline the modifications necessary.

Remark: In the case where we have a very strongly layered ideal on k* (x
regular), then we get a similar statement: for all ideals J on x containing the ideal
of sets of size < & there is a uniform ideal K on % with P(x*)/K = P(x)/J. In
this case the degree of completeness of K is exactly that of J. From this, one can
use very strongly layered ideals on consecutive cardinals to “bootstrap” ideals.
For example, if for all n there is a very strongly layered ideal on X,,, then for all
n < m and all uniform ideals J on R,, there is a uniform ideal K on R,, such that

P(R)/J % P(R,) /K
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and the degrees of completeness of K and J are equal. To follow this route to
the consistency of “for all n € w there is an uniform countably complete R;-dense
ideal on ,,, one must produce a model with an N;-dense ideal on ¥; and very
strongly layered ideals on all of the other N,,’s. At the time of this writing it is
not known how to get very strongly layered ideals on three consecutive successor

cardinals.
Proof of Theorem 2.1: Fix a strongly layered ideal I, and witnesses
B,, D, 7y, ... to the strong layering. To build a ¢-complete ideal K we con-

struct a surjective homomorphism
h: P(wg)/I — P(wy)/{countable sets}

so that the kernel of h is countably complete. Letting K be the kernel of h, we
see that
P(ws)/K = P(w1)/{countable sets}.

Given a subset of wy we need to “measure” it by a subset of w;. Any func-
tion f: w; — D measures each set © C wa by the yielding the set 4, =
{#: f(i) C; z}. Unfortunately this measurement may be ambiguous in that
wo\Az # Au,\z (modulo countable sets), i.e. if it is not the case that for almost
all i, either f(3) C; = or f(i) C; we\z. But it is hopeless to unambiguously
measure every subset of wy in this way with one function f. Hence we need a
family of functions. Further the measurements these functions make must agree
with each other. This is the motivation for the first three clauses of the follow-
ing definition. The last clause is a coding device to make the homomorphism
surjective. In what follows we will use < to mean Cj.

We will construct a matrix of functions:

F= {fij: v < wa, 8 € wz N (cof(wy) Usucce)}

such that for each 6,7,

fg: w1 — Ds (= the §th layer of D).

The family of functions F will satisfy the following four properties:

(1) Horizontal Coherence: For each § and v < v, for all but countably many
i, £5(0) 2 £2.(9).

(2) Vertical Coherence: For § < § there is an unbounded set of vy < w; such
that for all but countably many 1, f$ (1) = s ffjl (2)).
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(3) Genericity: For each z C w9, with z € Bs there is a v < wo such that for
all but countably many ¢, either fj( )<z or f‘s( YAz =1 0.
Let D C Dy be dense with Dj = Col{wy,ws). If fg takes
values in Dj then, by using this isomorphism, we can assume
that for all i, f2(i) € Col(wi,w).

(4) Coding: Fix an enumeration P(w1) = {y,: 7 < wz}. For each 7 < wy, there
is a -y, such that for all 1, f0 (i) € D(’), and y, € range fgn (7). Further,
letting (3,(i) be the least 3 such that ( )(B) = vy, then y, = {i: B,(3) is
a limit ordinal}.

Remark: The purpose of the vertical coherence condition is to show that the
homomorphism £ defined in Claim 2.3 below is well defined. It can be weakened
to the following statement:

WEAK VERTICAL COHERENCE. For all § < ¢’ and all 4/ there is a v > 4’ such
that for all but countably many 1, fﬁj(z) < Wg(ffys:(l))
This is useful in the variant of this argument that doesn’t use square.

CraM 2.3: If there is a set of functions F satisfying the conditions (1)-(4) then
there is a surjective homomorphism h: P(wy)/I — P(w)/{countable sets} with
a countably complete kernel.

Remark: In §4 we will refer to the kernel of h as “THE ideal determined by F.”

Proof: Given the set of functions F, and an z C wy, we look at the least ¢
such that = € Bs. By genericity there is a v < we, for all but countably many
i, f5(i) Craor fS(i) Nz =; 0. Let A, = {i: fo(i) cr z).

We claim that for all & > § and all large enough v (depending on §'),
A, = i ffj: (1) C; z} modulo countable sets. Namely, fix a ¢’ and choose a
v' > « where for all but countably many i, fij,(i) = Wg(fg,’ ()). Since z € By
and 74 is a projection map, fjj,’(i) Cy z iff 7r5(f$: (1)) C; z. Since 4" > « for
all but countable many 1, f‘s (1) C; x iff f‘s(') C; = and similarly for wg\x
Hence for all but countable many 7, f5 (1) Cr z or f<5 {i) Cr wo\z, and A,

{i: f3,(5) Cr 2} = {i: f2.(6) C; 2}

Define a function h: P(wg) — P(w;)/{countable sets} by setting h(z) = [A,].
Then h is well defined by the remarks in the previous paragraph. To see that
h is a homomorphism, it suffices to show that h preserves complements and
intersections. Clearly, for all 4, and all z, ¥,

(: £30) crany} = {5 £36) crz} 0 {iz f505) Cr v}
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Hence h{z Ny) = h(z) N h(y). Let £ C wp. Choose a large enough §,7 such
that h(z) = {&: f,‘:(i) C; z} and for all but countably many 1, fs(i) Cr xor
fo(i) N =; 0. Then

h(wa\&) = {i f3(i) Cy wo\z} = {iz £3(i) N =] 0} = wi\h(x).

To see that h is surjective, fix some [y,] € P(w;). By condition (4) on F, there
is & v, such that for all , f9 (i) € Dy, v, € range fJ (i) and y, = {i: the least
g with fgn(i)(ﬂ) = 1, is a limit ordinal}. Since a generic ultrafilter for P(w2)/I
canonically induces a generic ultrafilter on Dy, we have a canonical term Gy for
a generic object for Col{ws,ws).

Let = =|[the least 8 with Gy(8) = 7, is a limit|| where the Boolean value is
taken in the forcing P(ws)/I. Then z € Bs, for some 4.

Hence h(z) = [{i: f,‘;(z) Cy z}] for all large enough .

By the Coding condition, for all 4, f,?n (4) € Col(wy,w2) and 7y, € range f”(r)n (7).
Hence fgn(i) Cy x iff the least 8 with fgn(i)(/j’) = vy, is a limit. Otherwise,
f,gn(l) Cr o.)2\113.

Hence, by the coding condition, for v > ~,, and all but countably many 1,
fg(z) Cr zor fg(i) Cr wy\z. Hence we see that for all large enough v >
Y, £3(3) Cp z iff fO(i) C1 , and h(z) = [{i: fgn(i) Cr 2}

But ffr)n (i) Cr x iff i € yy, by the coding condition. Hence, h{x) = [y,}, and
we have shown that h is surjective.

Let K be the kernel of h. To see that K is countably complete, let
{Xn:n € w} C K. Then for all §,v and all n, {i: fg(z) C1 Xn} ={countable sets} 0-
Let 6,v be so large that for all n, and all but countably many 1, fﬁj(z) C; Xn
or f2(i) N X, =; 0 and that (U X,) = {i: f3() C; UX,}. Then A(UXn) =
U{e: f,‘;(z) Cr1 Xp} is countable. Hence, JX, € K. 1

To construct the matrix of functions we use the powerful § techniques forged
by Shelah in his papers Models with Second Order Properties I-V {Sh].

In fact we will build the matrix of functions for a cofinal set of § €
w3 N (cof(wy) U succ). This suffices since, if we have the fij defined for a co-
final set T' (with 0 € T') and this collection satisfies the properties (1)-(4), we
can define them on all § € ws N (cof(we) Usucce) to satisfy (1)—(4). To do this: let
d € wz N (cof(wq) Usucc) be arbitrary. Let ¢’ be the least element of T' greater
than or equal to §. Then we can define f,f (i) = 7r5(f3/ (i)) for all i. It is easy to
check that this new matrix of functions still satisfies the properties (1)—(4).

From now on we will use phrases such as “almost all”, “almost every”, “a.e.” to
mean “for all but a countable set”. Similarly, < will mean < on a co-countable

a.e.
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set, etc. We will also adopt the convention that if f: w; = D and § € cof(ws),
then 7s(f) is the function 75 composed with f, so ws(f)(i) = ms(f(i)).

{ AND DIAGONALIZATION. Our remaining task is to construct the matrix of
functions F.

The idea behind constructing the matrix F is to imitate the construction of a
generic object for the reduced product

(P(w2)/I)** /{countable sets}

over the model V¥! /{countable sets}. To do this we must build a filter of com-
patible conditions that meet certain dense sets. The “coherence conditions” are
restatements of the requirement that the conditions in the generic object be com-
patible and that the resulting filter be generated in an organized fashion. The
“genericity” condition is a statement of the particular dense sets we are inter-
ested in meeting with our filter. (With a little more work, we could meet all
the dense sets, but this seems irrelevant.) The coding condition is a trick (due
to Woodin) to guarantee surjectivity of the homomorphism. It is easily satisfied
and introduces no difficulties in the construction.

We build the generic filter by induction on the layering. At a particular level
of the layering we build a generic object for the reduced product of the Boolean
algebra at that layer by building a descending sequence of conditions of length R,.
At horizontal limit stages of the construction we use the countably closed dense
set to see that we can diagonalize directed sets of size N; in the reduced product
to get a condition below all of the elements of the filter we have constructed to
that stage. At successor stages in the construction the {-sequence will present
us with dense sets to meet and we choose a condition in the dense set below the
filter we have built to that stage.

The main difficulty with this plan arises at ordinals a € w3 of cofinality w or wy
that are limits of ordinals of cofinality w,. To describe this difficulty let’s let a be
an ordinal of countable cofinality and {),} be an increasing sequence of ordinals
of cofinality wy with supremum «. Denote by F), the matrix of functions in
By constructed at stage A,. Then on the complete subalgebra of B generated
by |J Ba,,, we are committed to the filter generated by | F,. But this may not
be generic! (The analogous circumstance in a more common situation is that if
we are given a coherent collection of generic filters G,, C Col(wy, A,,) there is no
guarantee that |JG,, is generic for Col(wy,sup{Ai.}}.)

To avoid this difficulty we must make an elaborate ¢ construction so that when
we are building our collection of functions at stage A we are anticipating ALL
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possible future limit stages. We define the notion of a “risky” ordinal v where the
¢ sequence makes a prediction about a potential future stage. At a particular
ordinal § in the filtration we then require that for a closed unbounded set of
v € wy, if v is risky then the function f.‘f obeys the dictates of the prediction
made by ¢ at that stage. (This means that f,‘; is the projection to 4 of the dictate
of the ¢-sequence.)

Then at the troublesome ordinal « described above, we intersect the countable
collection of closed unbounded sets of v € wq corresponding to the A, to get
a closed unbounded set of v where all of the A, simultaneously obeyed the -
sequence’s communiques about «. Hence for each dense set in B, 4, there is at
least one stage v where there is a fixed element f of the dense set such that each
projection my, o f = fA;\” is in F . Since for all ¥/ > 7, f;\," (i) < f:,\"(i) for all
but countably many 4, and =, is a projection map, we see that for all 4/, and
all but countably many i, f(¢} is compatible with f;\," (i). This allows us to set
f;‘*’ ! = f compatibly with |J F,,, meeting the genericity requirement imposed
by D.

The rest of this section of the paper is devoted to fleshing out these ideas.

Let A be a large regular cardinal and I the very strongly layered ideal on
wo with witnesses (m4: @ € ws), (Do @ € ws) ete. Let A = (H(N),€,Z
I, (Ba: a < R3), D, (ma: o € wzN(cof (wq)Usucc)), ... ), where £ is a wellordering
of H()).

Let (Ay: v < Ny) be a Oy, (cof(wr)) sequence. We will view each A, as
“guessing”:

(1) transitive structures M, = (M,e,<M M (BM. o € M) DM,

(mM: a € wi N (cof(wa) Usuce)™),...), where M, =9, and M* C M,
(2) aset z, with M, =z, C wy,
(3) amatrix of functions (g¥,: v € S,7' < 7), where S C wf+1, gyt w1 = DM,
and for each v, (g%,: 7' <) is Cym decreasing mod countable sets (i.e. for
each v, 7' < % <, and all but countably many i, g¥, (i) Crm g (3)).

The { property we want is that for all transitive N = A of cardinality R, with
N¥ C N, and w) = w; and all filtrations (N,: 7' < wa) of N, all subsets z of
wy with £ € N and all matrices of functions (h,’;,: v <wy,v€ERC wéN + 1} into
DV that are decreasing mod countable sets there is a v < wj such that:

If = is the transitive collapsing map of Ny then =: N, — M, and is an
isomorphism sending x to z.. Further

S= "YRNN,) and (hy: v <7v,v € (RNN7)) = (gh: v <y,v €S),
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where we define E: to be that function with domain w; such that for all 4, E:(z) =

h¥ (1).

WSince the C.H. holds there is a closed unbounded set of v € cof(w;) such that
N¥ C N,. Hence the existence of such a ¢ sequence follows from Q. (cof (w1)).

Fix ay € waNcof(w; ). If there is a function g: wy — DM~ such that for allv € S
and all ' < v there is a co-countable set of i € wy such that g(i) C,u, g, (i),
choose such a function and define A(y): w; — DM~ to be a function such that
for all ¢, A(y)(¢) C g(i) and A(y)(i) Cr x4 or A(y)(¢) Nzy =p 0. If such a g
exists then this is possible since z, € M,. If no such g exists then A(y) will
not be defined. (The choice of A here is quite free. We exploit this in other
applications; see §4.)

We will need to see that A(«y) is frequently defined. Towards this end we prove
two diagonalization lemmas:

LEMMA 2.4 (First diagonalization lemma): Let M be a transitive structure with
M = . Suppose that M* C M and (fa: a <w) C (DM)* isan a.e. decreasing
sequence of functions (not necessarily in M). Then there is a g: w1 — DM such
that for all a, g < fq.

a.e.

Proof: TFor each o, let i, € wy be such that for all 8 < « and all ¢ > i, fo (1) <
fa(?). Define g(i) = A{fa(i): ¢ > max{e,ia}}. Then g() is a meet of a countable
decreasing sequence of elements in D™, and hence is in D™. Further for all «,
and i > max{a, is} we have g(i) < f,(3). |

LEMMA 2.5 (Second diagonalization lemma): Suppose we have v € woN cof(wy)
and an A, from the ¢ sequence. (So A, “guesses” M, etc.) Suppose that
§ =supS € S, B C S is unbounded in sup(S Né) and for all v < v/ € SN,
{¥" o (gz: (i) = g4:(3)} is unbounded in v, and for v € B and all v* < v

there is ay' between v* and vy such that g¥, < ol (g,‘i,). Then A(7) is defined.
a.e.

Remark: In the version of the proof of 2.1 without square, we have a less strin-
gent vertical coherence property, and hence this lemma requires strengthening.
In that case the condition that holds here for § is required to hold for all elements

of S, replacing the stronger property of strict vertical coherence for members of

SnNd.

Proof: 'We must show that there is a function g: w; — D, such that for all
v € 8,9 < v and for almost all 4,g() C;nm g5, (7) .

CASE 1: cof(SNd) =w;y. In this case we may assume that the order type of B
is wi.
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If A C B is countable, v € B\ sup(A),y" < v then for all large enough v¥ < v
for all v/ € A, there is a v* between v and ¥ such that g:' = 7r,],V,I "(g4-)- Since
| B| = wn, this fact allows us to choose increasing cofinal sequences (v,: a € wy) C
BN§ and {7, & € w1) C « such that we have:

(a) For all v € SN,y <y thereis an a € wy and v* between v and «, such
that " "(gye ) 97

(b) For all B < «, there is a v* between v5 and 7, such that 7r,,[, "(gye ) 97*

For each o € wy, there is a v* such that g < m,a (g7 ). Hence for a.a. 1,
a.e

ge () A g%( i) # 0. Let ga(3) = g4 (i )/\g,y (i). Then each Je 18 a function from
wy to D. By the first diagonalization lemma, it suflices to prove the following
claim:

Claim:
(1) {go: & € w1) is a < decreasing sequence.
a.e.
(2) If g: w1 — D is such that for all a,g < g, then for all v € S,v' < v we
a.e.
have g < g7,

a.e.

Proof: (1) Let § < @ < wy. Then 97 < g,m So we must show that 97“ < G-

Choosing v* as in clause (b), m,B (g5 ) gvs, and ghe < gpe < m,ﬂ (97 ).
a.e

(2) If v = § this is immediate. Otherw1se let ' <« and v € S. There is an
o € wy and a v* between v and v, such that ol (95¢) = g5-. Then:

9o < gio <g”“ <7r (97)<97
a.e. a.e

CASE 2: cof(S N §) is countable. In this case we can assume that B is an

increasing sequence (v,: n € w). For each 7' < <, we define a sequence of

ordinals {y,: n € w) C v by induction. Let 5 > v’ be the smallest ordinal such

that g70 < 7r,1,\04"’ (gfy,). Suppose we have defined vy, ..., ¥n. Let yn41 be the least
a.e.

ordinal above 7, such that 7r,," "(gynts) = gin +1’ and for some y* between -, and
Un+1

Yrt1,Gpr T < 7r,1,vnf+1(gv )- Let hy, = gim A g,y Then {h,} is an a.e. decreasing
a.e.

sequence of functions from w; to D. Hence for almost all 4, (hn(i): n € w) is a
decreasing sequence of elements of D. Define h, (i) = A hn(?). Since D is closed
under descending w-sequences, h,: wy — D and hy < hy, for all n.

a.e.
Clearly (h,: ¥ < %) is an a.e.-descending sequence and for all v € S,7' < v,
there is a v* between ' and <y with h,- < gy By the first diagonalization

lemma, there is a function g: wy — D such that for all ¥/ < 7,9 < h |
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THE FILTRATIONS. Let T C ({0 < ws: sk®(8) Nws = 6} U {0}) be a closed
unbounded set in w3 with 0 € T and successor points of T having cofinality
wa. By the remarks after Claim 2.3, it suffices to define the functions fﬁj for
§ € T having cofinality wy. For successor § € T we define = be the immediate
predecessor of & in T. For each § € T\{0}, let B = sk®(§). For § = 0, let dy
be the least § € cof (wz) Nws such that sk¥(§) Nws = . Let BO = sk™(dy). We
build distinguished filtrations of each %B°.

Remark: In the version of the proof of 2.1 without square, arbitrary filtrations
are taken. This causes some additional work in the construction of the matrix at
ordinals § € T that are successors of limits of T' of cofinality ws.

Let {Cy: @ € w3) be a 0, sequence. For a € T, we replace C, by C, N T to
get a new “[J”-sequence (Cy: o € T,a = sup(a N T)) such that:

(1) Cq C T, 0.t. Co < waq, and if T N has uncountable cofinality,
C, is closed and unbounded in a.
(2) If B is a limit point of Cq, then Cg = Co N .

By choosing cofinal w-sequences of elements of T through those a € T', that
are limits of T' where C, NT is bounded we can get a genuine ] sequence on
T. Also, we can replace successor elements of each new €, by their successors in
T, to get a another new [J sequence where we may assume that every successor
point of each C,, is a member of T' of cofinality wy. From now on we assume that
our [J-sequence has these properties.

By induction on § € (T N cof (w2)) U {0}, we define filtrations (‘Bg: Y € wa).

For § = 0 or a successor point of 7 with §~ having cofinality wy, define
(%57: ¥ € wg) to be an arbitrary filtration of consisting of elementary substruc-
tures of 8% and having w; C B},

If § is a successor point of T, but 6~ has cofinality less then wy, we let v =
o0.t. Cs-. For 4" < v we let %fsyl = (. Let B = U{BY v € Cs-,y <7} We let
the rest of the iteration be an arbitrary filtration of elementary substructures of
89,

If § is a limit point of T and & € cof(wy), we let 7 be the v'* element of Cj
and set B = | J{B%,: v € Cp,7’ < 7}. This is a filtration of B8,

The cogent property of this labored definition is that if ¢’ is a limit point of
T of cofinality wo, and § € T is such that 6~ is the 4" element of Cy, then
B = B9,

LEMMA 2.6: Let § € TNcof(ws) be a successor point of T'. If §~ € cof (w2) U{0},
let U = {0~ }, otherwise let U be the successor points of Cs-.
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Then there is a closed unbounded set C C wy such that for all y € C and all
8
vel, %i N B = B~. Further, fory e C, B = skB~ (%f/ N (v Udp)).

LEMMA 2.7: Let § € cof(wy) NT be a limit point of T, and (v;: j € ws) be an
increasing enumeration of Cs. Then there is a closed unbounded set of v € ws
such that for all successor j < v:

(1) (vj: 5’ <J) € B,
(2) B NBY =BT,
(3) BY = k(B! Nv;) and
(4) ‘B‘S.Y = B2 where v is the least element of T above v,.
Proof: At limit ordinals we have that %i =U{B:nel,,i<q} =13
For each successor 7, {%fsy NBY5: v € wa} is a filtration of BY7, hence there is a
closed unbounded set E; C ws such that for all v € EJ-,‘sty NB“ = B, and
(vjr: 3’ < j) € BY. The conclusion of the lemma holds for all y € AE;. W

Let ‘3“57 be the transitive collapse of ‘B‘fy. For w € %‘fy, let @ be the image of w
under the canonical transitive collapse map. We note that there is a difference
between § and 6, and we hope that context will help reduce notational confusion.

THE DEFINITION OF OBEDIENT. Definition: Let § € T have cofinality we. A
sequence of functions (fy: v € wz,v € TN (6 +1) N (cof(wz) U0)) from w; to D;s
is obedient provided that for a closed unbounded set of v € wy N cof(wy) if:

(1) fy:w1— Ds ﬂ‘B‘fY foreach v e TN(0+1)and v <7,

(2) Ay guesses M, and the sequence (g4,: 7' <, € S) and A(7) is defined,

(3) if we denote w?g’ by & then & < w, skM7(8)Nwy'™ = § and M, = cof(§) >
w1 (since & ¢ %57 this abuse of notation causes no inconsistency except
perhaps at 0),

(4) B, = sk (3),

(5) for each v < v,v € (T'N %gy) U {4}, we have m = g% (4) for all but
countably many i,

then for alli,v € (Tm%i)u{é}, we havem = wél”(A('y)(i)). (Ifv=0= wéw”
then we take 7" to be the identity.)

Note that properties (1)-(5) in the definition of obedience only involve the
functions f, for v € (TN %57) U {6} and v < . Thus given a sequence
(fyiy <vve(Tn %67) U {d}) we define an ordinal v to be risky if it satisfies
conditions (1)—(5).

To make this definition somewhat less obscure it is perhaps worth observing
that if §' € Tﬂ%fsy, ‘B‘fyl = %57 NBY" and ‘BESY' = k3 (%fsy MNd") (i.e. the conclusion
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of Lemma 2.6 for v = §’ and §) and M., guesses %_57 then clauses (3) and (4) of
the definition of risky are satisfied. (A very similar fact is verified in some detail
in the proof of Lemma 2.8.) This is the mechanism that allows the diamond
sequence to guess requirements from B when constructing the sequence at §'.

Remark: It is critical to the method we will use to observe that Déw " C skM(3)

and hence DM @5 in a natural way. Thus, if v is risky, then for all
3 v Y

i, m5(A(y)(?)) is in the transitive collapse B,. This will allow us to define a
function f taking values in %ﬁsy such that for all 4, f(i) = 5 (A(7)(7)).

Definition: Suppose U C T N (cof(wz) U {0}). A sequence of functions
(f¥: v € wa,v € U) is obedient provided that for all § € U the sequence
(f¥:y € we,v € TN{S+1)N(cof(wz) UD)) is obedient. Suppose |U} < w,. Then
there is a closed unbounded set C' C w9 such that for all v € C, 6§ € U if «y is risky
for § then for all i, v € (T'N 5857) U {&}, we have W = mp(A(y)(i)). (Intersect
|U| many club sets.) We will say that C is a witness for the obedience of the { ffrs )
ford e U.

OBEDIENCE LEMMAS. LEMMA 2.8 (Risky ordinals lemma): Let &' < & be ele-
ments of T' having cofinality wy. Let (fy:y € w2,v € TN (6 + 1)) be a sequence
of functions from wy to Dg such that if v < §' then f¥ maps into Ds . Suppose
‘B‘fr’ = ‘Biﬂ%‘s/, ¢ e ‘Bi and SB‘EY/ = sk (‘Bgﬂé’). Then if v is risky for 6 then
is risky for §'. Similarly for ' = 0 with the hypothesis that 2367' — k3 (‘Bg Ndy).

Proof: The first clause in the definition of “risky” is clear, since if b € Ds N %fsy,
then b € Ds N %‘57,. The second clause doesn’t mention either § or §’.

We verify that clauses (3) and (4) hold for ¢’ provided that they hold for 4.

Let & be the image of w3 in the sense of B‘f{ under the transitive collapse of
‘BESY’. Since ‘Bgl = %67 N B%, we see that & is also the image of ¢’ under the
collapse map of %g (hence there is no notational ambiguity). Clearly & < 8, and
thus &’ < wéw T

Since ‘Bf/' = sk (B2 N§'), when we take transitive collapses we find that ‘Bi/
is isomorphic to the skolem hull of & in %i. Since gi ~ skM"(g),y < 6 we see

that ‘Bis; is isomorphic to the skolem hull of § in M., as required in clause (4).

-5
Since ‘styl = skM+(§7), and &' = wf” we see that sk™7 (&) ﬂwéw’ = ¢". Finally,
since §' € ‘Bi which is an elementary substructure of %A, we have that %‘; =
cof(8’) = wy. Since %67 = skMv(3), we see that M, |= cof(§') = wy. We have
thus verified clause (3).
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To see clause (5), we first remark that for § € §' N %‘fr we have Dg N ‘B‘fY =
Dgn %gl. Further, elements of Dg N %fsy are carried the same place by the
transitive collapses of both ‘B‘fr and ‘sty'.

For v € (TN ‘B‘:) U {6’} and v" < v we know that f%,(i) is in Dg for some
B<éd.8¢€ ‘B‘i. Hence f¥ (4) is taken to the same set by both transitive collapses.
Thus if (5) holds for 4, (5) holds for ¢’

The proof with § = 0 is similar with dy playing the role of & in clauses 3
and 4. ]

LEMMA 2.9 (Existence of Risky Ordinals): Let 6 € T and z € Bs. Suppose that
(f¥:v e TN (0+1),7 € we) is a sequence of functions that satisfy horizontal
coherence, satisfy vertical coherence for v € T N § and there is a cofinal set
B ¢ T ncof(we) N6 such that for all v € B and each v* € wy there is a y' € woy
such that for all but countably marny 1, f7, (i) < wy(fé. (i)). Then there is a
stationary set of v € wy that are risky for the matrix (f: v € TN (0+1),7 € wa)
and where t, = 7.

Proof: 'To show that there are stationarily many risky v we will show that there
is a closed unbounded set of v such that whenever the ¢ sequence guesses %i and
the matrix of functions up to that point, then + is risky. This suffices because
the O property guarantees that there are stationarily many v where this occurs
and where z, = Z. If the { sequence guesses —‘367 and the matrix of functions up
to 7, the only reason that that y might not be risky is that A(y) might not be
defined.

Consider the expansion of the structure 8%, ¢ = (B9 ( oy € wav <
0),(gv: v < w2)) where g, = f.‘j. Let v be arbitrary such that (SB?Y,
(fyrvedn ‘B‘fy,'y’ < ), {gy: ¥ < 7)) is an elementary substructure of €.
Then forallv < v/ € TN ‘sty the collection of v witnessing vertical coherence
is cofinal in 7 and for all v* < + there is a ' between v* and 7 such that for
almost all 4, f¥, (i) < 7, (f3.(2)).

If A, guesses —‘gi (i.e. M, = %—i) and the matrix of the f_fy’, forv e Tﬂ‘B‘fyU {8}
then A, satisfies the hypothesis of the Second diagonalization lemma, (Lemma
2.5). Hence A(7) is defined and + is risky. |

LEMMA 2.10: Suppose that (fY: v € wp,v € TN (0 + 1) N (cof(wq) U {0})) is
an obedient matrix of functions from wy to Djy satisfying vertical and horizontal
coherence. Then for allv € TN(d+1) the matrix satisfies the genericity condition
forz € B,.

Proof: Let z € B, for v € TN(§+1). Then by the proof of the previous lemma
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there is a stationary set of risky v € cof(w:) such that A, guesses BY, the matrix

(f5: € v,y € TN(6+1)NBY) and where T = z,. For such a v, we have
that A(v)(i) Cp &y or A(y)(i) Nz =p 0 for all 4. Since f2(5) = 7 (A()(3))
and T = z, we see that for all i, either f¥(i) C; z or f¥(i) Nz =; 0. Hence the

genericity condition holds. |

THE ACTUAL CONSTRUCTION. From what we know now, it suffices to build a
coherent, obedient matrix of functions satisfying the coding condition, defined
for & € T that have cofinality ws. This almost completely determines our con-
struction, namely at almost every risky ordinal -y we must take fﬁf (7) so that W
is the projection 71';?4 "(A()(?)) for all but countably many i. We now verify that
this works.

We define the functions (fJ: v € ws) by induction on 6 € T'N (cof (w2) U {0})
and for each such § by induction on v € ws.

INpDUCTION HYPOTHESIS. We will maintain the induction hypothesis for § € T,
the matrix (f¥: v € wz,v € T N ) is obedient, satisfies vertical and horizontal
coherence, and the coding condition holds.

By Lemma, 2.10, this suffices to prove that F has the desired properties.

We will treat successor v and v € cof(w) uniformly for all §. Suppose the
induction hypothesis and that we have horizontal coherence for v/ < v. We
define fg =1 and f,‘f 1= fff. For all v of countable cofinality we choose a
sequence {vy,: n € w} cofinal in v and for each ¢ define fﬁf(i) = A fS (). Since
the fgn are decreasing mod countable and take values in the w-closed set Ds, f,‘:

takes values in Ds for almost all £, and is clearly below each f,‘f, on a co-countable
set.

CASE 1: 6 =0. In this case, in addition to obedience, we must ensure that the
coding condition holds. To do this we will use the stationary set of places where
the O-sequence guesses “nonsense” to do our coding. Notice that whenever we
have a 7 € cof(w;) which is not risky, we are free to define ffy’ arbitrarily subject
to the requirement of horizontal coherence.

For each n € wy we will say that y, is coded by v,, if the coding condition
(condition (4) on F) is satisfied.

Suppose we have defined ( f,(y),: v < 7). We now define f,(y) for v € cof(w).

CASE la: v is risky. Define f2(i) so that fO(z) = o (A(7)(2)).

CAsE 1b: Otherwise. Recall that D) was the dense subset of Dy isomorphic to
Col(w1,wz). Let n be least such that y, has not been coded.
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Enumerate vy as (y;: j € wi). We diagonalize against this enumeration to
find the “maximal” w;-sequence of elements of Dj determined by the sequence
( fg,: v < 7). We choose an increasing sequence {(;: i € wy) C wy such that for
all j < iand all i* > oy, f9,(i*) is comparible with f%_ (4*), and 7; < ; implies

0, < f£5,6%).

Deﬁne h(i) = U{fo (1): j < i, < i and f0 (¢) € Dy}. Since Dy is closed
under descending w-sequences, for all 4, k() € Dj. It may or may not happen
that for all ¥/ < + there is a co- countable set of ¢ with f,(y’,(i) > h(1). If this
fails, or if for a cofinal set of i € wy,~y € range h{i), let fg be arbitrary satisfying
horizontal coherence and taking all of its values in D

If it happens that h is below each fg, on a co-countable set and that v ¢
range h(1) on a co-countable set then by modifying h on a countable set, we can
arrange that h still lies below each fo and that for no i is vy € range h{i). Then
define f3(i) € D below h(i) so that v € range f2(i) and for all 4,i € y, iff the
least (3 such that f9(i)(8) = v is a limit.

CramM: This sequence is obedient and satisfies conditions (1)—(4).

Proof: We first verify horizontal coherence.
If v is a risky ordinal, then fJ(i) = 7réw "(A(7)(4)). Since the function g used

to define A(7) is below each g9, and fJ,(i) = g5, for almost all 4, we have that

P (A(y)(5) < f0 (i) for all 7' < « and almost all i. Hence f2(i) < f2(i) for
all but countably many 1.

At non-risky y we explicitly chose f, below all of the previous f,.. Hence
horizontal coherence holds. »

Vertical coherence is irrelevant in this case.

We need to see that the coding condition holds. Suppose that y = y,, € P(w,)
is least such that the coding condition fails. Since (A,: v € wy) is a { sequence
there is a stationary set of cofinality wy ordinals which fall under case 1b (e.g.
where A, = 0).

At any ordinal v that falls under case 1b, f2 takes all of its values in Df. If
v is a case 1b ordinal that is a limit of case 1b ordinals, then for all v/ < -,
h < f3. O,. Further there is a closed unbounded set of ordinals v such that if

a.e.

is a case 1b ordinal, then v ¢ [ J{rangeh(%): i € wy}. If v is such an ordinal and
for all v/ < 4,h < f0 . and each y,y with < 1 has been coded by an ordinal
below +, then vy codes Y.

Finally the sequence is obedient, since at every risky ordinal we defined fg (@)

so that fO(7) = mg " (A(y)(E). W
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CASE 2: ¢ is a successor point of T. Let 6~ be the immediate predecessor of &
in T. If §~ € cof(wy), let U = {§~}. Otherwise, let U be the successor points of
Cs-.

Our sequence { f;f 1y < wq) will have the property that at every stage v € wo,
and all v € U and each v* € « there is a ¥/, between ¥* and -y such that for all
but countably many i, f¥(i) < 7r,,(f175. (7)). We will call this the “compatibility
condition” for U. (Note the similarity to the hypothesis of Lemmas 2.5 and 2.9
with B = U.) It is easy to check that the compatibility condition is preserved at
limit stages of countable cofinality.

By Lemma 2.6 there is a closed unbounded set C of v € w; where ‘B‘fy nBY =

By = sk%ff(‘B‘s7 Nv) for all v € U. Since |U| < w, we can assume that C' is a
witness to the obedience of (f2) for v € U. By passing to a tail segment of C
we may assume that for all v € C, and all v € U, we have that U Nv € B2, We
define a sequence ( fﬁ: 7 € we) by induction on 7. This sequence will have the
property that if y € C,»v € U and v is risky for 4, then for all 4, (i) = ﬂy(f,f(i)).

We now define ffrS for v € cof(wy). To start with for all v < 0.t.Cs5- we let
f;s =1.

CASE 2a: cof(67) < wy and v < 0.t.Cs-.

If y <0.t.Cs- let f&=1.

For v = 0.t.C5- we know %i = U{QS’]{(: V€ Cs—,j < v} If v is risky
for all successor v/ € Cs-, and cof(d) > wy in M,, then (using the remarks
following the definition of obedient} we can define f,‘:: w1 — Dj so that for all
i, £508) = 73 T (AM(E)):

Then for successor elements v € Cs-, we have that

f7() = M (AM)E) = 1 (7} (A ) = 7 (F50) = 7, (£3())

for all 4. Hence, f¥(i) = m,( ﬂf(z)) for all 7 and thus the compatibility condition
holds at v + 1.
Since ffj, = 1 for v/ < «, we trivially have that fif < fs, and horizontal
a.e.

coherence holds.
If v = 0.t.C5- and the conditions above aren’t met, we let f;s =1.

CASE 2b: v € C and v is risky. Then %i =~ skMv(§), and for all ¥ < v,

W{\/I"(A(’Y)) age f_,‘f,. By Lemma 2.8, v is risky for each v € U. Hence for all

b
v € U,i € wy we have that f¥(i) = n% (A(v)(7)). Define f,‘;: wy; = D, so as to

ensure that for all 4, f3(:) = 7r§4”(A('y)(i)). Then, doing a computation similar
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to the one in case 2a, for all i,v € U, we have ﬂy(fg(i)) = f¥(i). Further, for all
v < v and a.e. 1, f,f(z) < f,‘i, (¢). Again, the compatibility condition is easy to
verify.

CASE 2c¢: Not case 2a or 2b, but the risky ordinals in C are cofinal in v. We
define fS so that for all v € U, f¥ < 7,(f3). This implies the compatibility
condition for § and v + 1. o

Let (y4: & € wy) be a sequence of risky ordinals in C cofinal in y. Then for all
ot €w,vel, Wy(fga(i)) = f¥ (i)

Enumerate U = (1o @ < wy) (possibly with repetitions). Define an increasing
sequence {(i,: & € wq) by taking i, to be so large that:

(1) for all j > i, and § < o, we have f9 ()>f5(')

(2) for all 8,3 < « and all j > i, the inequality f“w () > f"ﬁ'( ) holds.

Define:
fg‘ﬂ /\{féa ): 5 > ia}.

Note that ( f‘S (4): J > ia) is a countable decreasing sequence of elements of
Ds. Clearly for all a f5 < fﬁf , 80 horizontal coherence holds.

To see the compatlblhty condition for <, note that for v € U, if v = vg and
i> g
o (f3(3)) =m0 /\{fﬁa )24 > ia})
= /\{m, F3 ()3 > ia}
= AU (5): > da} > £205)-

This establishes the compatibility condition in case 2c. Note that we chose
f,f < fij,, so the horizontal coherence hypothesis is also established.
a.e.

Case 2d: Otherwise. If (fjj,: v < %) is eventually constant, take fg be this
constant value. Otherwise, let fﬁys be arbitrary below each fjj, a.e.

In this case, let y* be an upper bound on the risky ordinals in C'N~y. Then all
of the ordinals of cofinality wy between * and  fall into case 2d. Hence an easy
induction shows that the sequence fﬁj, is constant between vy and 7. Hence fﬁj
is this constant value. Since the sequence is constant the compatibility condition
is easy to verify.

CramM: (fY: v € wy,v € TN (4 + 1)) is obedient and satisfies vertical and
horizontal coherence, and the compatibility condition is satisfied.
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Proof: The compatibility condition and horizontal coherence were verified
during the construction in case 2. Obedience is clear, since at each risky
ordinal in C' we defined fiyS in the prescribed manner.

Since the matrix (f2: v € wa,v € T'N(6+1)) satisfies the hypothesis of Lemma
2.9, there is a stationary set of risky ordinals. Let v € T'N 4 be arbitrary. Let
~ € C be a risky ordinal for § in the closed unbounded set where the hypothesis
of 2.8 holds for v. Then v is risky for v. Hence, again, for all 7,

77G) = w2 (AM)(@) = m (7 (AM)E) = 7 (FBG)) = 7, (F5(0))

and thus f¥(¢) = m,( ijs (1)), and we have verified vertical coherence. 1

CaSE 3: 8 € cof(ws) and T N J is cofinal in §. In this case we will arrange
that for all ¥ € cof(wi), there are v,y such that f{ = £ (In fact we are
simply finding a descending ws-sequence from our matrix up to ¢ that generates
the “generic filter” so far.) Towards this goal it is helpful to make the following
remark:

Remark: Suppose that & € cof(we) with T N § cofinal in § and
(fr: v € (TNéNcof(wz)),y < wa) is an obedient matrix of functions satis-
fying vertical and horizontal coherence. Then for any collection of functions
{g;: j € wy} from this matrix, there are v € TN,y < wy for all j, fy a_<_e gj-

To see this we can choose a v so large that for all 7 there are v’ < v and 7 < wy
such that g; = f,‘{”. Now choose a «y so large that for all 7, if g; = f;’: then there

is a y*,9" < y* <y such that 7,/ (£, (7)) = f:* Then for all g, if g; = fl;,’ then
a.e.

2 < ma(fy) < mol(fy,) = f:r/:f < g;- Hence this fY satisfies the conclusion
a.e a.e. a.e. a.e.

of the remark. W

In cases 3a-b we define 5 for v € cof(wr).

Let C5 = (v;: j € wa). For each successor v € Cs, let E, be the closed un-
bounded set witnessing obedience. Let E be the closed unbounded set guaranteed
to exist by the second filtration lemma (Lemma 2.7). Let C = ENAE,. Recall
that for each v, B = {B: 5,7 <7}

CASE 3a: 7 € C and «v is risky for §. Define fiys so that for all 4, f3(i) =
M, .
ms " (A()(5).
Let v be the least element of T' above v.,. We claim that fff = fy. Since
C,- = C, ,v falls under case 2a, and thus we have that B2 = ‘357. Further for

all § < 7y we have that v; € ‘Bg, by the conclusions of Lemma 2.7. By Lemmas 2.7
v ]

. . B B
and 2.8 we see that -y is risky for each successor v; € C,-. Finally w3 " = w, 7,
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so if v is risky for 9, we know that cof(¥) > w; in M,. Thus Case 2a defines f
so that for all 4, f5(i) = my " (A(1)(6)) = 73 (A(%){8)) = f3(3). Since B = BY,

this implies that for all 4, f (i) = fs(z)

CasE 3b: v is not risky. If v is a limit of ordinals of cofinality w; then by
induction we can assume that for all ¥/ < = of cofinality w; there are v/ < 8
and 7’ such that f‘s, = f”,/. By the remark we can choose v,7 so that for all
v <, " = f‘5 Let f5 [y, for such v, 7.

If v is not a limit of ordinals of uncountable coﬁnahty, then for some o <
v,7 = o +wy. It is easy to check that for all 3 < w, +ﬂ = f5. Let £ = fe.

In either subcase of Case 3b, we have preserved horlzontal coherence.

Cram: (fY: v € wq,v € TN (S + 1)) is obedient and satisfies vertical and
horizontal coherence, and the compatibility condition is satisfied.

Proof: Horizontal coherence is clear since we chose the fg’s decreasing a.e.
Obedience is clear, since at each risky ordinal in C we defined fg in the prescribed
manner.

We verify the hypothesis of Lemma 2.9 for the matrix (f2: v € wa,v € T'N
(6 + 1)). The only hypothesis that is not evident is that there is a cofinal set
B ¢ Tncof(wy) M such that for all v € B and each v* € w, there is a 7' € wo
such that for all but countably many i, f2.(i) < m,( fﬁj. {(i1)). Letting B be the
successor points of Cy this follows easily from the fact that for all y* < wq there
are a < 6, < wy with fﬁf* = f. Let v be a successor point of Cj, then we can
choose a 7' > max{n,y+} so that v/ is a witness for vertical coherence between «
and v. Then f¥, < m,(f%) a< mAfe) < S m,(f5.). Hence there is a stationary

set of risky ordmals Arguing exactly as in case 2, this implies vertical coherence.
1

This completes the construction and the proof of Theorem 2.1.

We now discuss the modifications necessary to execute the proof without using
. The main difference comes in case 3 of the construction. In this case even
with square we are simply rearranging the generic object up to that stage. The
complication in the proof given above is caused by requiring that the timing of
the enumeration of a decreasing sequence coincide exactly (on a club set) with the
requirements of the diamond sequence. This is arranged by choosing our filtration
carefully so that the dictates of the diamond sequence correspond exactly to what
we did in case 2a, and hence obeying them causes no incompatibility problems.

To eliminate square we choose the f,‘: in case 3 to be an arbitrary enumeration
of a decreasing dense subset of the matrix up to that stage. (This allows us to
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take arbitrary filtrations.) However we have to weaken the obedience property
to only hold at successor points of 7. This causes additional difficulties at 7T-
successors of ordinals in case 3. The saving remark is that if 4 is an ordinal in
case 3 and x € D then ms(z) € Dg for some 3 < 6. Hence, at the T-successor
of §, 81 an obedience condition can be satisfied, as its projection to & is really a
projection to a 3 < §, and this  can be shown to be a member of the appropriate
stage in the filtration of B

3. Applications

A fundamental problem in the theory of ultraproducts is to calculate the cardi-
nality of an ultraproduct, given the cardinalities of the structures involved, the
cardinality of the index set and properties of the ultrafilter.

In the 1960’s a basic distinction was made between regular ultrafilters, whose
ultrapowers have predictable cardinalities, and the non-reqular ultrafilters, about
which little can be said. As an example let’s consider the particular case where we
are taking an ultrapower of w. It is easy to show that for a countably incomplete
ultrafilter D on an infinite cardinal x:

9 < |w*/D| < 2%,

For regular ultrafilters, the maximal cardinality is always attained.

It remained an open problem for many years whether non-regular ultrafilters
could even exist on accessible cardinals. Following early work of Ketonen, work
of Donder, Jensen and Koppelberg [D-J-K] showed that every ultrafilter in L is
regular.

Work of Magidor [M], using huge cardinals, showed that it was consistent for
w*? /D to have cardinality N,. This showed that it was consistent for there to be
a non-regular ultrafilter on ws.

Laver, using Woodin’s model for an N;-dense ideal on w; constructed an
ultrafilter D on w; such that (w*!/D| = w,. Later work in [F-M-S] showed that it
was consistent to have non-regular ultrafilters on arbitrary successors of regular
cardinals. These ultrafilters, however, did not have the minimal cardinality of
ultrapower.

In this section we show that it is consistent to have an ultrafilter D on w, such
that

|w*? /D] = Ny.

From this we are able to calculate the chromatic number of the Erd6s—Hajnal
graph.
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By Theorem 1.1 and Corollary 2.2, we get the following theorem:

THEOREM 3.1: Suppose that there is a huge cardinal. Then there is a partial
ordering P such that in V¥ there is an R,-dense, countably complete, weakly
normal, uniform ideal on Ry. (Further in the model V¥, O, , Oy, (cof (w1)), 0.,
and the G.C.H. hold.)

COROLLARY 3.2: If there is a huge cardinal then it is consistent that there is an
ultrafilter D on wy such that

w2 /D] = Ry.

Proof: Let I be an Ri-dense ideal on Ny. Let D C P(wy)/I be the dense
set of cardinality N;. Then there is an ultrafilter D on N5 extending /™ such
that if A C D has \V A = 1 then for some countable subset B C A,\V B €
D. In particular there are sets {ao: @ € wi} such that D is generated by
I H{aa: @ € wi}. (See [La, BS, Hu2] for proofs of this fact under the as-
sumptions of ¢, CH and ZFC, respectively. The ZFC result was also established
independently by Woodin.) Let D be any such ultrafilter.

Let f: wg — w be an arbitrary function. For each n, let A,, be the collection of
elements of D below f~!(n). Then there is a countable set B C |J{An: n € w}
with \/ B € D. Choose disjoint representatives of the elements of B, {b,,: m € w}.
Define ¢: |JB — w, by setting g(a) = n iff a € b, and b,, C A,. Then g = f
mod D. Since there are only ¥; many such ¢’s (mod D) we have that w“2/D has
cardinality Ny. |

We note that if D is an ultrafilter on ws with w*? having cardinality R,
then w}?/D has cardinality N, the minimum possible. To see this we note
that the structure A = (H(ws),€,A) |= “w; is the successor of w”. Hence
B =A?/D k= “w, is the successor of w”. Hence, |(w1, €)*2/D| < |(w, €)¥2/D|*.

THE ERDOS-HAIJNAL GRAPH. Recall the definition of the Erdés-Hajnal graph:
QS(KW )‘) = ({f'f K— )‘}7—J—>’

where f L g iff [{a: f(a) = g(a)}] < k. We now remind the reader of the
universal properties of the Erdés-Hajnal graph. See [E-H] or [Ko] for a detailed
analysis.

Definition: A graph G has type [k, A] iff its domain has cardinality x and the
graph has chromatic number A\. We will write [k, A] - [/, X] iff every graph of
type [x, A] has a subgraph of type [x’, ]
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Hajnal, in unpublished work, has shown that [Ro,¥;] = [R;,Ng]. Erd8s and
Hajnal showed, under the assumption of the C.H., that there is a graph on Ry with
uncountable chromatic number, all of whose ®; subgraphs are of type [Ny, Rq].
Erdés and Hajnal proposed studying the property [Rg, No] — [Ry, X1], by looking
at & (w2, w). They proved:

THEOREM (Erdds-Hajnal): If G is a graph on w; with no subgraph of type
[R1,N4], then G can be embedded in &(wq,w).

Proof: Let G be such a graph and for each o € wy, let ¢y @ — w be a coloring
of the graph induced by G on a. For each 8 € wy, define a function fg: wy — w,
by setting
< ()6)7 « > 61
fate) ={ o

0, otherwise.

Then, if 4 and 8’ are connected by an edge in G, for all @ > max{3,8'},cs(0) #

co{f’). Hence fa(a) # fa(a). This shows that the mapping § — fg preserves
adjacency. |

An immediate corollary of this is result is that assuming the C.H., &(wq,w)
has uncountable chromatic number.

COROLLARY: If &(wq,w) has chromatic number R; then [Rq, No] — [Rq,Rq].

Komjath has shown the consistency of (w9, w) having chromatic number Rj.
Komjath remarked that in Magidor’s model ([M]) &(w2, w) has chromatic number
N2. See Komjath’s paper ([Ko]) for details.

The conclusion [N, N3] — [N1,8;] was shown to be consistent from a huge
cardinal in [F-L].

THEOREM 3.3: If there is a huge cardinal then it is consistent that ®(wq,w) has
chromatic number X;.

Proof: We have seen that the hypotheses of the theorem imply that there is a
model of set theory with a uniform ultrafilter D on w; such that |w*“?/D| = w;.
Since elements of &(ws,w) are functions from wy — w, we get a natural map from
(w2, w) to |w¥2/D|. Since the ultrafilter is uniform, if f 1 ¢ then (f]p # [g]p-
Hence the induced map to the ultraproduct is a coloring of &(ws,w;) into wy
colors. ]

We end this section with a remark that is joint with A. Dow:
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PropPoSITION 3.4: Suppose there is a uniform, countably complete, R;-dense
ideal on Rq. Let (X, 7) be a topological space with the property that every point
in X has a countable neighborhood base. Suppose further that whenever A C X
is a discrete set of size N1, then A = |J A,, where A, is separated. Then for all
discrete sets B C X of size Xy there are separated sets {By: & € wy} such that
B =|JB.,.

Proof: Recall a set A is separated if there is a collection of disjoint open sets
{O4: a € A} such that for all @ € A,0, N A = {a}. If we fix in advance a
neighborhood basis for each point in A, then we may assume that each O, is in
the neighborhood basis for a.

We may assume that B = wy. For each § € wy choose a neighborhood basis
{B?: n € w}. For each v € wy, choose A7 a partition of  into separated sets and
fix a seperating collection of basis elements. Define f7: v — w X w, by setting
f7(8) = (m,n) iff § € AY, and B? is the open neighborhood of § in the seperation
of A,. For § € wy, let A‘(sm‘n) = {y: fY{6) = (m,n)}.

Let K be the Ry dense ideal and {z,: 7 € wy} be a dense collection in P(ws)/K.
Let § € Bymn iff A3, , Dk z,. Then B = J{Bymn: 1 € wi,m,n € w}.

m,n
Further, for all 61,0y € By m n, there is a y € z,, above d; and ;. Since f7(d1) =
f1(62), B N B% = (). Hence, B, m.n is a separated set. |

4. Some Rudin—Keisler minimal ultrafilters

The results in this section are joint with A. Kanamori and M. Magidor.

THEOREM 4.1: Suppose O, (cof(wy)),0,, and that there is a very strongly lay-
ered ideal I on Xy. Then for all functions f: we —» wy which are not bounded in
w1 on a set in I~ there is a uniform, countably complete, weakly normal ideal
K on wy such that:

(1) P(wy)/K = P{w)/{countable sets},

(2) for all g: wg — wy there is a h: wy — wy with g =k ho f.

Kanamori [Ka] calls the function f in the theorem a finest partition relative to
K. We note the following corollary:

COROLLARY 4.2: Under the hypothesis of Theorem 4.1 there is a uniform, count-
ably complete ideal K on R4 such that, if D is any ultrafilter extending K>, then

|wi?/D| = R.

To see the corollary from the theorem, we take K to be the ideal asserted to
exist by the theorem. Then modulo K, there are only 2“* many functions from
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wy to wi. We also note that the results in §1 imply that the hypothesis of this
corollary are consistent.

Proof of Theorem 4.1: Let I be a very strongly layered ideal on wy;. We will
show that for every function f that is unbounded modulo I there is an ideal K
satisfying the theorem. So fix such a function f. Then f induces a partition of
P(w3) /I, (xo: o € wy). We will construct a matrix of functions F that satisfy
the vertical and horizontal coherence and coding hypothesis and the following
additional hypothesis which is a strengthening of the original genericity condition:

The selection hypothesis: Let (ys: 3 € n) be a partition of
P(ws)/I, where n < wy. Then there is some pair (v, §) and a function
h: wy — wq such that for all j € wl,fg(j) Cr 5 A Yn(j)-

To see that this strengthens the original genericity condition we take an arbi-
trary set £ C wo and apply the selection hypothesis to the partition {z,ws\z}.

Having the new matrix of functions F, we define the ideal K the same way as
we did in §2 from F and 1.

CLAIM: Suppose that F satisfies the hypotheses of coding, coherence, and
selection. Let K be the ideal defined in §2 from F. For all g: wy — wy, let
yg = g~ *(B) and let h be as in the selection hypothesis. Then we have that

g=k holf.
Proof of Claim: We consider X = {y: g(v) = h(f(v))}. Then X € K~ iff for
all large enough 7, 4, {: fi,s(i) C X'} € I'". The latter condition is true iff there is

some 7, 6 such that for all ¢, ffys(z) C X. Let 4,7 be as in the selection hypothesis.
Then for every i, fﬁf(i) C X. Hence X € K. ]

Thus to prove the theorem, we must show that we can build an F satisfying
the original conditions and also satisfies the selection hypothesis.

Fix a partition of P(wq)/I,{(z;: i € wy). Without loss of generality we may
assume that each z; € By. Hence we can start our construction by setting
f30) = 2.

We now must refine our notion of obedient.

We will follow the notation developed in the proof of Theorem 2.1. We first
expand 2 to include a relation denoting (z;: ¢ € wy).

We will view our {-sequence (A,: ¥ € wy) as guessing:

(1) transitive structures M, = (M,&,<M IM (B,: a € wj!),D™,

(Tg: @ € WM N (cof(ws) Usuce)M), (z;: i € wi)M...) , where M, = %,
and MY C M;
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(2) a sequence Yy = (y;: j € w1) € M,, with M, = Y, is a partition of
P(w2)/1;

(3) a matrix of functions {(g,: v € S,4' < ), where S C wi, 9o wr ~ DM,
and for each v, (g¥,: v <) is C decreasing mod countable sets (i.e. for
each v, ¥/ < y* <, and all but countably many 1, g7, (i) Crm g (i));

(4) for all i € wy,gd(s) C =M.

We must also redefine our functions A(y). Fix a v € wy Ncof(wy). If there
is a function ¢: w; — DM~ such that for all v € S and all 4/ < + there is a
co-countable set of i € wy such that g(i) C g%,(i), choose such a function and
define A(7): w; — DM~ to be a function such that for all 3, A(7){(i) C g¢(i)
and A(Y)(¢) Cpr z; Ay, for some j. If such a g exists then this is possible since
Y~ € M, and for almost all 4,g(i) C z;. Since Y, is a maximal antichain there
is a j with y; A z; A g(i) # 0. If no such g exists then A(y) will not be defined.

We now define obedience in exactly the same way with respect to the modified
A(7)’s and ¢ sequence.

The rest of the proof goes as before: i.e. there are many risky ordinals, obedient
sequences can be manufactured and obedient sequences satisfy the hypothesis on

F. Brheorem 4.1

In {Kaj, Kanamori proved the following theorem, answering a question of
A. Taylor [K-T].

THEOREM (Kanamori): Assume that there is an R;-dense ideal on wy and O, .
Suppose that D is any non-principal ultrafilter on w, and f: w; — w is a map
such that f~1(n) € I'" for all n € w. Then there is an Ny-generated ultrafilter U
over wy extending I'* such that f.(U) = D.

The main result of this section is the following:

COROLLARY 4.3: Assume there is an ideal on w9 that satisfies the conclusion of
Theorem 4.1 for the function f. Assume that for all o € wy, f7{(a) € K. Let
E be any non-principal ultrafilter on wy. Then there is an ultrafilter F' over wo
extending I* such that f.(F)=E.

Let <gpg be the Rudin-Keisler ordering and =gx be the corresponding
equivalence relation.

COROLLARY 4.4: Assume:
(1) Ouu ’ sz (COf(wl))’ Dwz’
(2) there is a normal N,-dense ideal I on wy, and
(3) there is a very strongly layered ideal on ws.
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Then there are non-principal uniform ultrafilters D.E and F on w, wy and ws,
respectively, such that for all non-principal ultrafilters U on some infinite set, if
U <pgk F then either U =g D or U =g E or U =pg F.

Proof of 4.3 and 4.4: Fix a function f as in the proof of Theorem 4.1, and let K
be the ideal constructed there. Let E be an arbitrary uniform ultrafilter on w;
extending the dual of some countably complete ideal I. Since the ideal I extends
the countable sets and we know that P(w;)/K = P(wy)/{countable sets}, we
can extend K to an ideal L, where P(wy)/L = P{w;)/I. (Explicitly, we have
that if F is the matrix of functions defined in the proof of 4.1, X € L iff for all
large enough §,7, {#: f_‘f(é) cXlel)

We construct an ultrafilter F on wq extending L™~ such that E = f,(F).

Let Fy be the filter on wy induced by the basis {X: for some Y € E, X =
Uf Y]}, We claim that Fy U L™~ has the finite intersection property. Let
Z € L~ and X € Fy. Then for all large enough 4, ~, {4: fg(z) C Z} € I~ and
for some Y € E, X = |J{z;: i € Y} (where z; = f~1(4)). Since fJ = f, for all
6,'7,fi§(i) c X iff:eY. Since E 2 I'7, for all 4, there is an 7 with fﬁys(z) cX
and fij(i) CZ. Hence XNZD fg(i) and we have shown that Fp U L™ has the
finite intersection property. Extend Fy U L™ to a uniform ultrafilter F'. Since
F O F,, we see easily that E = f,(F). This proves Corollary 4.3.

In [Ka] from the assumptions of Corollary 4.4, Kanamori shows the existence
of ultrafilters D and E on w and w; respectively, that have the property that for
all non-principal ultrafilters U, if U <gx F then either U =gx D or U =px F.
Further, the ultrafilter F constructed by Kanamori extends the dual of the normal
N;-dense ideal.

Apply the previous argument to F with [ being the X;-dense ideal to get an
ultrafilter F on ws. Since F extends L, Corollary 2.2 implies that F is weakly
normal. Suppose now that U <gg F with ¢ being the witness function. Then
we may assume that ¥: wy — wy. By weak normalitiy if ¥ isnot 1 — 1 on a
set in F' (i.e. not a Rudin—Keisler isomorphism), then ¢ is bounded on a set in
F. If 1 is bounded on a set in F, the there is a function h: w; — w; such that
% = ho f modulo U. This function witnesses that U <gx E. By the properties
of the ultrafilters that Kanamori constructed, U =py D or U =gk E. |

5. Some open problems

In this section we list some open problems. The most obvious open problem is to
get the consistency of countably complete X;-dense ideals on cardinals between
N, and N,. This looks like only a “technical problem”, but perhaps not. The
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main obstacle is getting the correct k*-saturated ideals on the appropriate &.
Since these ideals don'’t feel exotic at all, it is possible to hope that there is not
a major new idea required to do this.

A problem the author feels is related is the well known problem of getting
the consistency of the statement “R,, is Jonsson”. While it would be desirable
to get this consistent in a model where the Chang property is manifest by the
appropriate precipitous embedding, there is growing evidence that the Jonsson
property should be proved using strong combinatorial properties of the X, ’s.

An interesting class of problems remain open around the Erdds-Hajnal graph.
For several of these there seems no obvious line of attack using saturated ideals.
For example, it is not known how to calculate the chromatic number of the Erdés—
Hajnal graphs for &(x,w) for X, < k < X,,,. Can it be X17 The reason ideals
of the type produced in this paper seem irrelevant is that the Kunen theorem
prohibits highly saturated ideals on cardinals in the interval in question.

Finally, a basic problem seems to be to find some “representation theory” for
ideals in general, perhaps along the lines of the matrix defined in this paper. The
author will leave the details of this project to the interested reader.
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