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ABSTRACT
We study the Jacobians of the genus 3 Picard and Fermat curves with
respect to the problem of maximizing the minimum non-zero norm. We
use criteria for symplectic lattices related to the criteria of perfect and
eutactic for classical lattices. We show that the Picard curve is a local
maximum, but the Fermat curve is not.

1. Introduction

The study of extremal symplectic lattices is motivated by the study of extremal
Riemann surfaces. The goal is to generalize classic theorems about extremal
lattices to Riemann surfaces. In the classic theory of lattices the problem is
to maximize the minimum non-zero norm over the space of all n-dimensional
lattices. For Riemann surfaces the problem is to maximize for a given genus either
the minimum non-zero length in the length spectrum or the minimum non-zero
norm in the Jacobian. These minimal elements are referred to as systoles. The
systole problems for the length and Jacobi spectra appear to be closely related
in genus < 3 (see Quine [Q1][Q2]).

For an overview and results for large genus, we cite the papers of Gromov
[G] and Buser and Sarnak [BS]. Extensive studies of the systole problem for the
length spectrum can be found in papers of Schmutz [S1] [S2] [S3]. Some new
perspectives on classical results about extreme lattices can be found in Conway
and Sloane [CS2].

In the classical theory, a basic theorem is the theorem of Voronoi [V] that a
lattice is extreme if and only if it is perfect and eutactic ((P) and (E), see section
3.2). The paper of Schmutz [S1] shows how to generalize these ideas to a study of
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the length spectrum. To apply these ideas to the Jacobian, a first step is to study
the analogues of the properties (P) and (E) for symplectic lattice. This has been
done recently by Bergé and Martinet [BM1], who have adapted the concepts of
perfect and eutactic so they can be used to study symplectic and isodual lattices
and in general any family of lattices invariant under a subgroup of the linear
group. (They have also done a study of classical eutactic lattices [BM2].)

The purpose of this paper is to use the criteria of Bergé and Martinet to
study Jacobians of certain genus 3 Riemann surfaces. The main example is the
Jacobian of the Picard curve studied in [Q2] and in [CS3]. In this paper we
show it is a local max on the space of 6-dimensional symplectic lattices for (L),
the minimum non-zero norm. In [Q2] we showed how to compute this Jacobian
and gave a cyclotomic construction for it. This lattice, M {Es), was discovered by
Conway and Sloane but was not known to be symplectic or a Jacobian until [Q2].
Before that, the Klein curve seemed the most likely candidate for the extremal
Jacobian in genus 3. So now the most likely genus 3 curve to maximize the length
of the systole for both the length spectrum and the Jacobi spectrum seems to be
the Picard curve (see Schmutz [S1] for the evidence on the length spectrum).

We will outline the contents of the paper. In section 2 we explain the concept
of symplectic lattice with a particular emphasis on viewing it as embedded in CY
with the usual Hermitian inner product. We give three examples of Jacobians of
genus 3 surfaces, the Klein curve, the Fermat curve and the Picard curve. The
theory of the Jacobian of the Klein curve, Aé2), is well known since it is one
of only six extreme lattices of dimension 6. This classification was completed
by Barnes [B] (see also Conway and Sloane [CS2]). We study it here as an
illustration of the techniques which we set up to study these lattices in terms of
their cyclotomic construction. In a cyclotomic construction the lattice is viewed
as a ring of cyclotomic integers with a certain trace norm. The construction can
also be given very explicitly as the set of integer combinations of a set of basis
vectors in C9.

In section 3 we review the concepts of perfect and eutactic and the ideas of
Bergé and Martinet as they apply to symplectic lattices. The basic theorem is
analogous to the theorem of Voronoi. A symplectic lattice is strictly extremal for
symplectic lattices of the same dimension if and only if it is perfect and eutactic
for symplectic lattices. The form in which we state these conditions, (P(symp))
and (E(symp)) in section 3.4, is suited to studying these lattice in their complex
form with a cyclotomic construction.

In section 4 we illustrate the results of section 3 by applying them to Ag),
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showing again that it is eutactic. Next we study the Jacobian of the Fermat
curve. We show that it is eutactic for symplectic lattices, but not perfect for
symplectic lattices. We show it is not a local max of u(L) for symplectic lattices
and that it is eutactic in the classical sense. Next we look at the Jacobian of the
Picard curve. We show that it satisfies both (P(symp)) and (E(symp)), and is
therefore a strict local max of u(L) for syrplectic lattices. We show that it is
not eutactic in the classical sense. In most of these computations we can make
use of the cyclotomic constructions. The sums involved can usually be reduced
to ZZ;& ¢* = 0 where ¢ is a primitive nth root of unity.

We remark that for genus 3 surfaces, since the dimension of the Teichmiiller
space is the same as that of the Siegel upper half plane = the space of symplectic
lattices, the study of extremal Jacobians and the study of extremal symplectic
lattices is the same. In higher genus it will be necessary to develop a theory of
the Jacobian as a function on the Teichmiiller space.

2. Symplectic lattices

2.1. DEFINITIONS. Let L be a 2g-dimensional lattice in R?9 considered as the
set of integer combinations of a set of basis vectors together with the standard
inner product inherited from R?9. We will think of vectors in R?9 as column

vectors of the form (y) where z and y are g x 1 dimensional column matrices.

It is convenient to identify R with C9 by identifying (;) with z = z+iy. The

t
standard inner product on R29 of (;) and (Z) is (;) (Z) If z=2+1y
and w = % + v, then

wea=(5) (2) w0 o= (2) ()

where
_[ 0 I
=(4, %)
Suppose the complex vectors z; , § = 1,...,2¢ form a basis for L. The matrices
Iy o
A= 9 d Ac.={(zy,...,

are the real and complex (resp.) generator matrices of the lattice with respect to
the given basis. Corresponding to these are the real and complex Gram matrices
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AtA; and AXA.. We have
RATA. = A'A, and  SATA. = ALJA,.

We see that det RAZA. = det SAZA.. This value is independent of the basis and
is by definition the determinant of the lattice.

The lattice L is said to be symplectic is there is a basis such that SAZA, = J,
or equivalently, AJA, = J. Such a basis is called a symplectic basis. It follows
from the definition that if L is symplectic then its determinant is 1. To verify
that a lattice is symplectic it is not necessary to find a symplectic basis. If the
determinant is 1 and the imaginary part of the Gram matrix is integral, then by
the theory of skew symmetric forms it is known that there is a symplectic basis.

A real matrix M is said to be symplectic if M*JM = J. The set of such matri-
ces forms a group, Sp,(R), which is closed under transpose. The real generator
matrix of a symplectic lattice with respect to a symplectic basis is symplectic.
The corresponding Gram matrix is a symmetric symplectic matrix.

For a symplectic lattice multiplication by ¢ sends L onto its dual L*.

We now give some examples of symplectic lattices which can be obtained as
Jacobians of genus three curves. In the following it is helpful to keep in mind the
following remarks:

(1) If L' is a sublattice of a lattice L, then the number of elements of L/L’
is (det L'/ det L)/2.
(2) For a n-dimensional lattice L and a scalar a, detaL = |a|*™ det L.

2.2. JAcOBIAN OF THE KLEIN CURVE. The Jacobian of the Klein curve z3y +
y32 + 23z = 0 is the lattice 7"1/4A4(") (see Quine [Q1], Mazur [M] for more
details). The cyclotomic construction of Agz) is as follows. Let { = exp(27i/7).
Identify an element p(¢) of Z[¢] with the vector

v(p) = (P(Q)(1 ~ €)%, p(¢*)(1 = ¢*)%,p(¢H (1~ ¢H?)"

in C® with the usual Hermitian inner product, making Z[¢] into a lattice, L. The
elements ¢*,k = 0,...,5 form a basis. Using the Vandermonde determinant, the
determinant of the real part of the Gram matrix with respect to this basis can be
computed to be 7°/28. The imaginary part of the inner product is in (73/2/2)Z.
Thus 21/27-3/4[, is a symplectic lattice and is the Jacobian of the Klein curve.

The lattice L can be identified as 7-1/4A{) as follows. The number p(¢)(1—¢)?,
p € Z{(] can be written uniquely in the form Y°°_ a,¢" with 3°°_ a, = 0, and
using this equation we can verify that

Zu(p)*v(p) = D ai.
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Since the derivative with respect to ¢ of p(¢)(1 — ¢)? is zero at ( = 1, we have
also Zizl na, = 0 (mod 7). The two equations

6 6

Zanzo, Znanzo (mod 7)

n=0 n=1

give a description of A((f) as a sublattice of Z7.

2.3. JacoBiaN OF THE FERMAT CURVE. The following six-dimensional lattice
can be constructed as the Jacobian of the Fermat curve z* + y* = z%. See the
book of Lang [L] and the appendix of Rohrlich to the paper of Gross [R] [G] for
details on computing Jacobians of Fermat curves. Also Tretkoff [T] has details of
this computation and explicit matrics for the genus three curve. The construction
given here uses the Gaussian integers and is based on the relationship between
codes and lattices. It has the advantage of giving the metric structure for the
lattice.

Let G be the Gaussian integers Z[i], and let G = G/2G. Then G, is a group of
order 4 isomorphic to (Z/2Z) ® (Z/2Z). Let C be the code over G which is the
subgroup of order 8 of (G2)? consisting of the elements (0,0, 0)¢, (1,1,1)t, (4,4, 1),
(L +14,1+¢,0)" and all vectors obtained from the latter two by permutation of
coordinates. Let L be the sublattice of (G)3 defined by

L=|J(v+2¢%.

veC

Since (G)? as a subset of C3 is isomorphic as a lattice to Z°, we have det(G)® = 1.
By the remarks at the end of section 2.1, det 2G3 = 2!2 and det L = 26.

We check that for v and o in C, {y,0) € 2Z. So det(1/v/2)L = 1 and the
imaginary part of the Hermitian inner product restricted to (1/v/2)L is in Z.
Thus (1/v/2)L is symplectic. It is the Jacobian of the Fermat curve.

2.4. JACOBIAN OF THE PICARD CURVE. The Jacobian of the Picard curve,
y3z = z* — 2% is the lattice M(Eg) (see [Q2] and Conway-Sloane [CS3]). For a
cyclotomic construction of this lattice, let { = exp(mi/6), and let

a=1/(3+v3)/6, a=1/B-v3)/6, B=4/1/V3.

Identify p(z) in A = Z[z]/((z? — £+ 1)(z* — 22 + 1)) with the vector

v(p) = (ap(¢), ap(¢®), Bp(¢?))*
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in C3. This makes A into a six-dimensional lattice L generated by v(z*), k =
0,...,5. The vectors v(z*) + v(2**%) generate a copy of the lattice D, and the
vectors v{z*) + v(z**0) generate a copy of (4/3)'/* A, orthogonal to the copy of
Dy. The quotient L/(Dy @ (4/3)1/4A3) is of order 4 and representative elements
are v(z*), k = 0,...,4. Since det(Dy @ (4/3)/* A3) = 16 we see that det L = 1.
The imaginary part of v(z?)*v(z*) is integral for j,k =0,...,3, and so it can be
seen from the construction that L is symplectic.

3. Extremal lattices

3.1. DEFINITIONS. The study of extremal lattices is concerned with the
minimum non-zero norm of the normalized lattice (normalized so det L = 1),

4(L) = min {z*z

zEL,z#O}.

A lattice L is extreme for 2¢-dimensional lattices if u(L} is a local maximum.
One may define an extreme symplectic lattice as one for which u(L) is a local
maximum when restricted to the set of symplectic lattices. The set of symplectic
lattices of dimension 2g is a real g(g+1)-dimensional subspace of the real g(2g+1)-
dimensional space of lattices of dimension 2g. The Gram matrix P of a symplectic
lattice with respect to a symplectic basis can be written as

=)0 ¥) 6T
=R((I,2)*Y Y, 2))

where Z = X +iY is a g X ¢ symmetric matrix with ¥ > 0. The set of such Z
is the Siegel upper half plane of complex dimension g(g + 1)/2.

3.2. VORONOI CONDITIONS. Let M = M(L) be the set of minimum vectors
(vectors of minimum non-zero norm) of a normalized lattice L,

M:{zeL'z*z:u(L)}.

The lattice L is said to be perfect if it satisfies the condition

o {(1) ()

It is said to be eutactic if there is a sequence c,, z € M such that ¢, > 0 and

® IRGIG

z€M } spans the space of 2¢ x 2¢g symmetric matrices.
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{We use the notation ¢, > 0 to mean ¢, > 0 for all z € M.) The numbers ¢, are
called eutactic coefficients. Voronoi’s theorem states that a lattice is extreme if
and only if it is perfect and eutactic.

Since the above conditions are quadratic in the minimum vectors, we adopt
the convention that a minimum vector z is identified with its negative —z when
counting the minimum vectors and computing these sums.

To state the conditions (P) and (E) in complex form we introduce the following
real vector spaces:

Sc = the symmetric complex g x g matrices,
Sr = the symmetric real 2g x 2g matrices,

H = the Hermitian symmetric (A* = A) complex g X g matrices.

There is a vector space isomorphism ¢: Sc & H — Sgr given by

sorigotrin=(2 L)+ (7, ).

oo =2(2)(2)

Using the complex form of the lattice and the above isomorphism ¢, the

We note that

conditions above can be conveniently written as
(P) {22" ® 22*|z € M} spans S¢ @ H.
There is a sequence ¢, such that

(E) c; >0 Z c,zz"=0 and Z c.zz" =L
zeM zeM

3.3. THEOREMS FOR MAX-MIN PROBLEMS. Condition (P) and (E) above are
related to theorems about max-min problems from the theory of linear program-
ming. The connection was pointed out by Barnes [B] and used also by Bergé and
Martinet in [BM1}. In what follows minv will denote the minimum of the coordi-
nates of a real vector v. We use the notation v > 0 to mean that all coordinates
of v are > 0 and similarly for v > 0. We observe that for a linear function A on
R™ the condition Az > 0 = Az = 0 is equivalent to the statement that min Az
has a local max at = 0. Likewise the condition Az > 0 = = = 0 is equivalent
to the statement that min Az has a strict local max at z = 0.

The extremal properties of a smooth function and of its differential are related
by the
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Max-MIN THEOREM: Let f: R? — R* be differentiable with f(0) = 0 and the
differential at 0 given by the s X p matrix A. If min Az has a strict local max at
z = 0 then min f{z) has a strict local max at z = 0. If f(z) — Az >0 for all z
then the converse also holds.

Proof of Max-min Theorem: Suppose min Az has a strict local max at z = 0.
If x # 0 then min Az < 0. Let € > 0 be defined by —e = maxmin Az where
the max is taken over |z| = 1. For x # 0, we have f(z) = |z|(A(z/|z]) + h(z))
where h(z) = O(|z]). Now choose § such that |z| < § implies h(z) < €. Then
min f(z) < 0 for |z| < § and z # 0 and consequently min f has a strict local max
at 0.

Conversely if f(z) — Az > 0 for all z then if min f has a strict local max at 0,
the same is true for min A.

The property that min Az has a local max at = 0 has an equivalent formu-
lation based on the version of the fundamental theorem of linear programming
called the

STIEMKE THEOREM: Let A is a real matrix, ¢ a suitable column matrix and ¢ a
suitable row matrix. The following are equivalent:

(a) Az > 0= Az =0.

(b) There is a ¢ > 0 such that cA = 0.

3.4. PERFECT AND EUTACTIC FOR SYMPLECTIC LATTICES. The above ideas
have been used by Bergé and Martinet [BM] to generalize the Voronoi theorem
to symplectic and isodual lattices. We will explain the idea briefly and give these
conditions in complex form.

Consider the g{g + 1)-dimensional subspace T of the Lie algebra sp,(R)
consisting of all matrices of the form

4= (Z —qp)

where p and ¢ are symmetric matrices. This is the tangent space at the identity
to the symmetric symplectic matrices. It can be identified with the vector space
of symmetric complex matrices p + i¢, and may also be characterized as the set
of real symmetric matrices A satisfying AJ = —JA. Now the neighborhood of
a given symplectic lattice with generator matrix A; can be given by exp{A4/2)A,
for A in a neighborhood of the origin in 7.

To apply the Max-min Theorem, we let M be the set of minimum vectors of the
lattice L with generator matrix A;. Consider the function f from 7 (=R9(+)
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to R*, where s is the number of minimum vectors, where the value at A is given
by components

f(A) = (;)tepr (;) —u(L), z=z+iye M.

From the expansion of expA near A = 0 we see that expA—I— A > 0 for A near
0, so that the Max-min Theorem applies. For A small the minimum vectors of the

lattice with generator matrix exp(A/2)A, are among the vectors exp(A/2) (2) )

z = x + iy € M. Note that the differential of f is the map sending A to the

x

t
vector with components (;) A y ) , 2 € M. Applying the Max-min Theorem

and the Stiemke Theorem shows that the lattice L is an absolute local maximum
for symplectic lattices if and only if the following conditions apply:

t
(P(symp)) (;) A(;) =0 foralAeT = A=0,

and there is a sequence c, such that

t
E . >0 and . "”) A($>=0 forall AT,
(E(symp)) c an Zc ( Y or a

zeM y
We will consider a complex form of the above conditions. Suppose A € T is
written as above in terms of symmetric matrices p and ¢q. Then
t
z x , .
(2) (%) =0 -i02) = R0 io)
where tr denotes the trace of the matrix. If @ and § are in the vector space of
symmetric complex matrices, Sc, then Rtr(eS*) forms a non-degenerate inner
product on S¢. Using these facts, we can see that the above conditions can be
stated in complex form as

(P(symp)) {22*)z € M} spans S¢

and there is a sequence ¢, such that

(E(symp)) ¢, >0 and Z c,22" = 0.
2€EM

These should be compared with conditions (P) and (E) above. We note that if L
is symplectic (P) implies (P(symp)) and (E) implies (E(symp)). If a symplectic
lattice satisfies conditions (P(symp)) and E(symp) resp. we will say that it is
resp. perfect and eutactic for symplectic lattices. These are analogues of the
classical definitions of Voronoi and it follows from the Max-min theorem and the
Stiemke theorem that
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THEOREM: A symplectic lattice is a strict local max of u(L) for symplectic
lattices of the same dimension iff it is perfect and eutactic for symplectic
lattices.

We are also interested in conditions under which we can show that p(L) is
not a local max. If L does not satisfy (P(symp)) then there are symmetric real
matrices pg and gg such that forall z =z +iye M

wmewr=(3) (3 2)() 0

Now let Ay be the above 2g x 2g real matrix above. Suppose that Ay satisfies the
condition that Ay ("Z) # 0, or equivalently (pg—igg)z # 0, for all z = z+iy € M.

t
In this case the first term in the expansion of <z) exptAg < ;) —p(L)att=0

t
is t2 <;§) Ag(;), and this term is strictly positive for all 2z € M, t # 0. So

(L) will not be a local max.

3.5. SYMPLECTIC AUTOMORPHISMS. For a lattice with automorphisms, it is
known (see Conway and Sloane [CS2]) that if the automorphism group acts as a
transitive group of permutations on the set of minimum vectors, then we can find
eutactic coefficients that are equal. We will prove a similar fact for symplectic
lattices if we consider the group of symplectic automorphisms.

Recall that an element of the automorphism group corresponds to matrices T
in O(2¢g) and T in GLy,(Z) such that TA, = A, T. If the lattice is symplectic then
the automorphism is said to be symplectic if T' (equivalently T) is symplectic.
Now T induces a permutation # = «{T) on the set of minimum vectors M. Also

since T' is symplectic the map A — T*AT is a vector space isomorphism of 7.

So .
Zaz (:v) A<x>:O forallAeT
) Y

ze€M

if and only if

t
Z a, <;) TtAT(f/) =0 forallAeT.

zeEM

It follows that

Z c,mz(mz)t = Z Cr-1,22" = 0.

zEM zeM
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Summing over all symplectic automorphisms shows that if the group of permu-
tations corresponding to symplectic automorphisms is transitive, we can take
as eutactic coeflicients ZCW(T)Z, where the sum is over all symplectic auto-
morphisms. By dividing through, we can replace them all by 1.

In the examples given below, it can be seen (see Quine [Q1] [Q2]) that the
group of symplectic automorphisms is transitive. This makes it simpler to find
eutactic coeflicients since we can assume they are all equal to 1. The transitivity
follows from the fact that the automorphisms of the surface are transitive on
the corresponding cycles in the homology. The automorphisms of the Riemann
surface induce symplectic automorphisms on the Jacobian.

4. Applications to Jacobians

4.1. THE KLEIN CURVE. It is known [B] that Aéz) satisfies (P) and (E) and
hence also (P(symp)) and (E(symp)). We will show how to use the cyclotomic
construction of Aém and the complex form of (E) that this lattice is eutactic in
the classical sense.

From the description of Aéz) as a sublattice of Z7, we can see that the vectors
of minimum norm are (1,-1,-1,1,0,0,0), (1,-1,0,-1,1,0,0), and (1,0,-1,-1,0,1,0) and
vectors obtained from these by permutation of coordinates. These correspond to

p(Q)=¢*1+¢), pQ)=¢"1+¢+¢*) and p(Q) =cFA+OA+¢+¢P),

k=0,...,6. Denote the vectors v(p) for p in each set of 7, by My, My, and M;
respectively. The set of minimum vectors is M = M; U My U M3. The entries of
v(CH (14 €))u(CF(1 + )t are of the form ) (1+ 1) (1 +¢9) (1 — ¢1)2(1 — (72
with i, = 1,2,4. Thus for v € M the entries of vv® are of the form (*(+7)¢(i, 5)
where c(i, j) is independent of k. Summing over k we see that 3 .\, vv* =0
since i+ j # 0 (mod 7). The same argument shows that the sum is zero over My
and M3, 50 ) . vvt =0, and Aéz) is eutactic for symplectic lattices. A similar

argument shows ), vv* = 211, so Aéz) is eutactic in the classical sense.

4.2. THE FERMAT CURVE. We will show from the cyclotomic construction that
the Jacobian of the Fermat curve is eutactic in the classical sense and therefore
also for symplectic lattices, but that it is not perfect for symplectic lattices and,
in fact, is not a local max for p(L).

From the description in section 2.3 we see that the minimum vectors are in
four groups: M = {(e1,¢€2,€3)'}, My = {(e11,€a1,€3)'}, M3 = {(e11, €0, €3%)t},
My = {(€1, €21, €31)t} where €, j = 1,2,3 are +1. Each group accounts for four
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minimum vectors (recall that z and —z are considered the same) for a total of
16. Now

0 ifj#k

zeje’“:{s iti=k

where the sum is over all 8 possibilities for (€1, €2, €3). So

Z 2zt = 41.

z€M,
A similar argument shows

-1 0 0 -1 0 0
Yozt=4l0 -1 0}, Y at=4{0 1 0
z€ My z€EMs3 0 0 -1

1 0 0

and Z 228=410 -1 0

2€EM, 0 0 -1

so that finally

Z 2zt =0,

z€M

and the lattice is eutactic for symplectic lattices (E(symp)). In fact, a similar

Z 22* =161

zeEM

argument shows that

so that the lattice is eutactic in the classical sense (E).
To show that the lattice does not satisfy (P(symp)), consider the three
symmetric complex matrices

(e B e TN

00 000 000
0 0}, 0 i 0], 00 0
0 0 000 00 i

Considering again the non-degenerate inner product a3* on symmetric complex
matrices we see that the three matrices are perpendicular to 22zt for every z € M
since the diagonals of zz% contain real entries. Thus the matrices {22% | z € M}
do not span the symmetric complex matrices.

If o is any one of the above three matrices, az # 0 for all z € M since no
coordinate of z vanishes. Thus by considerations at the end of section 3.4, u(L)
is not a local max.
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4.3. THE PicaRD CURVE. We will show that the Jacobian of the Picard curve
is perfect and eutactic for symplectic lattices and is therefore a strict local max
for p(L). Again, the cyclotomic construction aids in the computations required
to show (P(symp)) and (E(symp)) in the complex form.

We will show the Jacobian lattice is eutactic for symplectic lattices by showing

that
Z 22t =0.

zeM

Following 2.3, let vy, = v(:vk). Recall that the minimum vectors are v, and

Uk+1 — Uk, kK =0,...,11. Thus we must show
11 i1
t t =0
VeV = ’f)kvk+1 = U
k=0 k=0

We compute that the entries of v,v, are
2,2k 6k 3k =210k ~1o+Thk 24k
o’ ¢t CFafCt o am BT B
and the entries of vxv}, ; are

2,2k ABk+5 3k+2 2,10k “1p0Th+2 2 rdk+2
QPCHFL (OHS qp(tE RIS o mpTREE gRedkt,

Each of these sums to 0 over k = 0,...,11. Hence the lattice satisfies (E(symp)).
A similar argument shows that

Thus the lattice does not satisfy (E) and is not eutactic is the classical sense.
The identity matrix in the upper left corner above reflects the fact that Dy is
eutactic.

To show this lattice satisfies (P(symp)), we must show that the vectors

Pk — (C2k C6k Csk CIOk C?k C4k)
together with the vectors

2k+1 46k+5 +3k+2 1 k+2
Qk:(c + a( + 7< t ’C 0k+5a<7 + 7<4k+2)7
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k=0,...,11 span CS. Let P be the matrix with rows P, and @ the matrix with
rows Qg, k =0,...,5. By direct computation it can be shown that

P P
det(Q Q>760’

thus the vectors do span C® and the Jacobian of the Picard curve is perfect for
symplectic lattices.

From the classification of perfect six-dimensional lattices by Barnes [B], we
know the lattice does not satisfy (P). The only perfect (P) symplectic lattice is
the Jacobian of the Klein curve.

Note: Paul Schmutz Schaller has recently informed me that the above examples
have been studied also by Christophe Bavard [Bav], using similar methods. He
has additional results, including that extremal symplectic lattices have Gram
matrices with algebraic entries.
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