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A B S T R A C T  

We study the Jacobians of the genus 3 Picard and Fermat curves with 
respect to the problem of maximizing the minimum non-zero norm. We 
use criteria for symptectic lattices related to the criteria of perfect and 
eutactic for classical lattices. We show that the Picard curve is a local 
maximum, but the Fermat curve is not. 

1. I n t r o d u c t i o n  

The study of extremal symplectic lattices is motivated by the study of extremal 

Riemann surfaces. The goal is to generalize classic theorems about  extremal 

lattices to Riemann surfaces. In the classic theory of lattices the problem is 

to maximize the minimum non-zero norm over the space of all n-dimensional 

lattices. For Riemann surfaces the problem is to maximize for a given genus either 

the minimum non-zero length in the length spectrum or the minimum non-zero 

norm in the Jacobian. These minimal elements are referred to as systoles. The 

systole problems for the length and Jacobi spectra appear  to be closely related 

in genus < 3 (see Quine [Q1][Q2]). 

For an overview and results for large genus, we cite the papers of Gromov 

[G] and Buser and Sarnak [BS]. Extensive studies of the systole problem for the 

length spectrum can be found in papers of Schmutz [S1] [$2] [$3]. Some new 

perspectives on classical results about extreme lattices can be found in Conway 

and Sloane [CS2]. 

In the classical theory, a basic theorem is the theorem of Voronoi IV] that  a 

lattice is extreme if and only if it is perfect and entactic ((P) and (E), see section 

3.2). The paper  of Schmutz [S1] shows how to generalize these ideas to a study of 
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the length spectrum. To apply these ideas to the Jacobian, a first step is to study 

the analogues of the properties (P) and (E) for symplectic lattice. This has been 

done recently by Berg~ and Martinet IBM1], who have adapted the concepts of 

perfect and eutactic so they can be used to study symplectic and isodual lattices 

and in general any family of lattices invariant under a subgroup of the linear 

group. (They have also done a study of classical eutactic lattices IBM2].) 

The purpose of this paper is to use the criteria of Berg~ and Martinet to 

study Jacobians of certain genus 3 Riemann surfaces. The main example is the 

Jacobian of the Picard curve studied in [Q2] and in [CS3]. In this paper we 

show it is a local max on the space of 6-dimensional symplectic lattices for #(L),  

the minimum non-zero norm. In [Q2] we showed how to compute this Jacobian 

and gave a cyclotomic construction for it. This lattice, M(E6), was discovered by 

Conway and Sloane but was not known to be sympleetic or a Jacobian until [Q2]. 

Before that,  the Klein curve seemed the most likely candidate for the extremal 

Jacobian in genus 3. So now the most likely genus 3 curve to maximize the length 

of the systole for both the length spectrum and the Jacobi spectrum seems to be 

the Picard curve (see Schmutz [S1] for the evidence on the length spectrum). 

We will outline the contents of the paper. In section 2 we explain the concept 

of symplectic lattice with a particular emphasis on viewing it as embedded in C g 

with the usual Hermitian inner product. We give three examples of Jacobians of 

genus 3 surfaces, the Klein curve, the Fermat curve and the Picard curve. The 

theory of the Jacobian of the Klein curve, A~ 2), is well known since it is one 

of only six extreme lattices of dimension 6. This classification was completed 

by Barnes [B] (see also Conway and Sloane [CS2]). We study it here as an 

illustration of the techniques which we set up to study these lattices in terms of 

their cyclotomic construction. In a cyclotomic construction the lattice is viewed 

as a ring of cyclotomic integers with a certain trace norm. The construction can 

also be given very explicitly as the set of integer combinations of a set of basis 

vectors in C g. 

In section 3 we review the concepts of perfect and eutactic and the ideas of 

Berg@ and Martinet as they apply to symplectic lattices. The basic theorem is 

analogous to the theorem of Voronoi. A symplectic lattice is strictly extremal for 

symplectic lattices of the same dimension if and only if it is perfect and eutactic 

for symplectic lattices. The form in which we state these conditions, (P(symp)) 

and (E(symp)) in section 3.4, is suited to studying these lattice in their complex 

form with a cyclotomic construction. 

In section 4 we illustrate the results of section 3 by applying them to A (2), 
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showing again that it is eutactic. Next we study the Jacobian of the Fermat 

curve. We show that it is eutactic for symplectic lattices, but not perfect for 

symplectic lattices. We show it is not a local max of #(L) for symplectic lattices 

and that  it is eutactic in the classical sense. Next we look at the Jacobian of the 

Picard curve. We show that  it satisfies both (P(symp)) and (E(symp)), and is 

therefore a strict local max of #(L) for symplectic lattices. We show that it is 

not eutactic in the classical sense. In most of these computations we can make 

use of the cyclotomic constructions. The sums involved can usually be reduced 
n--1 ~k to ~k=0  = 0 where ~ is a primitive nth root of unity. 

We remark that  for genus 3 surfaces, since the dimension of the Teichmiiller 

space is the same as that of the Siegel upper half plane = the space of symplectic 

lattices, the study of extremal Jacobians and the study of extremal symplectic 

lattices is the same. In higher genus it will be necessary to develop a theory of 

the Jacobian as a function on the Teichmiiller space. 

2. S y m p l e c t i c  l a t t i ces  

2.1. DEFINITIONS. Let L be a 2g-dimensional lattice in R 2g considered as the 

set of integer combinations of a set of basis vectors together with the standard 

inner product inherited from R 2~. We will think of vectors in R 2g as column 

v e c t o r s o f t h e f o r m ( y )  w h e r e x a n d y a r e g x l d i m e n s i o n a l c o l u m n m a t r i c e s .  

I t i sconven ien t to iden t i f yR2 .Owi thCgby iden t i f y ing(y )  w i t h z = x + i y .  The 

(:) standard inner product on R 2g of and is . If z = x + iy 

and w = u + iv, then 

where 

(:)t (:) 
and ~(z*w) = J 

(0 J =  _~ 

Suppose the complex vectors z j ,  j - 1 , . . . ,  2 9 form a basis for L. The matrices 

A r = (  xlyl . . .  X2g)y2g and hc=(Zl , . . . ,Z2g)  

are the real and complex (resp.) generator matrices of the lattice with respect to 

the given basis. Corresponding to these are the real and complex Gram matrices 
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AttAr and A*Ac. We have 

~}~AcA c = Atrhr  a n d  -,~ac*a c ~-- A t rYa r  . 

We see that  det ~A~Ac = det ~A~Ar This value is independent of the basis and 

is by definition the determinant of the lattice. 

The lattice L is said to be symplectic is there is a basis such that ~A*A = J,  c c 

or equivalently, AtrJAr = J. Such a basis is called a symplectic basis. It follows 

from the definition that if L is symplectic then its determinant is 1. To verify 

that a lattice is symplectic it is not necessary to find a symplectic basis. If the 

determinant is 1 and the imaginary part of the Gram matrix is integral, then by 

the theory of skew symmetric forms it is known that there is a symplectic basis. 

A real matrix M is said to be symplectic if M t JM = J. The set of such matri- 

ces forms a group, Spg(R), which is closed under transpose. The real generator 

matrix of a symplectic lattice with respect to a symplectic basis is symplectic. 

The corresponding Gram matrix is a symmetric symplectic matrix. 

For a symplectic lattice multiplication by i sends L onto its dual L*. 

We now give some examples of symplectic lattices which can be obtained as 

Jacobians of genus three curves. In the following it is helpful to keep in mind the 

following remarks: 

(1) If L' is a sublattice of a lattice L, then the number of elements of L/L' 
is (det L'/ det L) 1/2. 

(2) For a n-dimensional lattice L and a scalar a, det aL - -  la l  2n  det L. 

2 . 2 .  J A C O B I A N  OF THE K L E I N  C U R V E .  The Jacobian of the Klein c u r v e  x3y + 
y3z + z3x = 0 is the lattice 7-U4A(2) (see quine [Q1], Mazur [M] for more 

details). The cyclotomic construction of A~ 2) is as follows. Let ~ = exp(2~i/7). 

Identify an element p(~) of Z[~] with the vector 

v(p) = (p(~)(1 - ~)2,p(~2)(1 - ~2)2,p(~4)(1 - ~4 )2 ) t  

in C 3 with the usual Hermitian inner product, making Z[~] into a lattice, L. The 

elements ~k, k = 0 , . . . ,  5 form a basis. Using the Vandermonde determinant, the 

determinant of the real part of the Gram matrix with respect to this basis can be 

computed to be 79/26. The imaginary part of the inner product is in (73/2/2)Z. 

Thus 21/27-3/4L is a symplectic lattice and is the Jacobian of the Klein curve. 

The lattice L can be identified as 7-1/4A (:) as follows. The number p(~)(1-~)  2, 
6 n 6 p C Z[~] can be written uniquely in the form )-'~n=0 an~ with ~-~,~=0 an = 0, and 

using this equation we can verify that 

2v(p)*v(P) = E a2k" 
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Since the derivative with respect to ~ of p(~)(1 - ~)2 is zero at ~ = 1, we have 
6 also ~ = 1  n a n  = 0 (mod 7). The two equations 

6 6 

E a n  = 0, E n a n  = 0 (mod 7) 
n=0 n-=l 

give a description of A~ 2) as a sublattice of Z 7. 

2.3. JACOBIAN OF THE FERMAT CURVE. The following six-dimensional lattice 

can be constructed as the Jacobian of the Fermat curve x 4 + y4 = z 4. See the 

book of Lang [L] and the appendix of Rohrlich to the paper of Gross [R] [G] for 

details on computing Jacobians of Fermat curves. Also Tretkoff IT] has details of 

this computation and explicit matrics for the genus three curve. The construction 

given here uses the Gaussian integers and is based on the relationship between 

codes and lattices. It has the advantage of giving the metric structure for the 

lattice. 

Let 6 be the Gaussian integers Z[i], and let 62 = 6 /26 .  Then 62 is a group of 

order 4 isomorphic to (Z/2Z) | (Z/2Z). Let C be the code over 62 which is the 

subgroup of order 8 of (62) 3 consisting of the elements (0, 0, 0) t, (1, 1, 1) t, (i, i, 1) t, 

(1 + i, 1 + i, 0) t and all vectors obtained from the latter two by permutation of 

coordinates. Let L be the sublattice of (6) 3 defined by 

L ~- U (~ ~- 263). 

7cc 

Since (G) 3 as a subset of C 3 is isomorphic as a lattice to Z 6, we have det(G) 3 = 1. 

By the remarks at the end of section 2.1, det2G 3 =- 212 and d e t L  = 26. 

We check that for 3' and ~ in C, (3',a) e 2Z. So de t (1 /v~)L  = 1 and the 

imaginary part of the Hermitian inner product restricted to (1/x/-2)L is in Z. 

Thus ( 1 /v~ )L  is symplectic. It is the Jacobian of the Fermat curve. 

2.4. JACOBIAN OF THE PICARD CURVE. The Jacobian of the Picard curve, 

y 3 z  = x 4 - z 4 is the lattice M(Ec)  (see [Q2] and Conway-Sloane [CS3]). For a 

cyclotomic construction of this lattice, let ~ = exp(Tri/6), and let 

Identify p ( x )  in A = Z [ x ] / ( ( x  '2 - x + 1)(x 4 - x 2 + 1)) with the vector 

v ( p )  = (c~p(~), 0p(~5), gp(~2))t 
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in C 3. This makes .A into a six-dimensional lattice L generated by v(xk), k = 

0 , . . . ,  5. The vectors v(x k) + v(x k+3) generate a copy of the lattice D4 and the 

vectors v(x k) + v(x k+6) generate a copy of (4/3)U4A2 orthogonal to the copy of 

D4. The quotient L/(D4 | (4/3)1/4A2) is of order 4 and representative elements 

are v(xk), k = 0 , . . . , 4 .  Since det(D4 | (4/3)U4A2) = 16 we see that  d e t L  = 1. 

The imaginary part of v(xJ)*v(x k) is integral for j, k = 0 , . . . ,  3, and so it can be 

seen from the construction that L is symplectic. 

3. E x t r e m a l  l a t t i c e s  

3.1 .  DEFINITIONS. The study of extremal lattices is concerned with the 

minimum non-zero norm of the normalized lattice (normalized so det L = 1), 

# ( L ) = m i n { z * z  zEL ,  z#O} .  

A lattice L is extreme for 2g-dimensional lattices if It(L) is a local maximum. 

One may define an extreme symplectic lattice as one for which #(L) is a local 

maximum when restricted to the set of symplectic lattices. The set of symplectic 

lattices of dimension 2g is a real g(g+ 1)-dimensional subspace of the real g(2g+l)-  

dimensional space of lattices of dimension 2g. The Gram matrix P of a symplectic 

lattice with respect to a symplectic basis can be written as 

(1 01)( 01 
= ~((I, z )*Y-l( I ,  z)) 

where Z = X + iY is a g • g symmetric matrix with Y > 0. The set of such Z 

is the Siegel upper half plane of complex dimension g(g + 1)/2. 

3.2. VORONOI CONDITIONS. Let M = M(L) be the set of minimum vectors 

(vectors of minimum non-zero norm) of a normalized lattice L, 

M = {z ~ L I z*z = , ( L ) } .  

The lattice L is said to be perfect if it satisfies the condition 

(P) { ( y ) ( y ) t  i z ~ M  } s p a n s t h e s p a c e o f 2 g •  

It is said to be eutactic if there is a sequence cz, z E M such that  Cz > 0 and 

(E) ~ ~ : I. 
z..=-x+iyEM 
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(We use the notation cz > 0 to mean Cz > 0 for all z E M.) The numbers cz are 

called eutaetic coefficients. Voronoi's theorem states that a lattice is extreme if 

and only if it is perfect and eutactic. 

Since the above conditions are quadratic in the minimum vectors, we adopt 

the convention that a minimum vector z is identified with its negative - z  when 

counting the minimum vectors and computing these sums. 

To state the conditions (P) and (E) in complex form we introduce the following 

real vector spaces: 

$ c  = the symmetric complex g x 9 matrices, 

SR = the symmetric real 2g x 2g matrices, 

74 = the Hermitian symmetric (A* = A) complex g x g matrices. 

There is a vector space isomorphism r Sc  | 74 --+ SR given by 

(: ;) (: r  + s r 

We note that 

Using the complex form of the lattice and the above isomorphism r the 

conditions above can be conveniently written as 

(P) {zz t | zz*lz E M} spans Sc | 74. 

There is a sequence cz such that 

(E) Cz > 0 E c~zzt= 0 and 
zEM 

3.3 .  THEOREMS FOR MAX-MIN PROBLEMS. 

~-~ CzZZ* z 1[. 
zEM 

Condition (P) and (E) above are 

related to theorems about max-min problems from the theory of linear program- 

ming. The connection was pointed out by Barnes [B] and used also by Berg6 and 

Martinet in [BM1]. In what follows min v will denote the minimum of the coordi- 

nates of a real vector v. We use the notation v > 0 to mean that all coordinates 

of v are > 0 and similarly for v > 0. We observe that for a linear function A on 

R n the condition Ax >_ 0 ~ Ax = 0 is equivalent to the statement that min Ax 

has a local max at x = 0. Likewise the condition Ax > 0 ~ x = 0 is equivalent 

to the statement that min Ax has a strict local max at x = 0. 

The extremal properties of a smooth function and of its differential are related 

by the 
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MAX-MIN THEOREM: Let  f :  R v -+ R 8 be differentiable wi th  f(O) = 0 and the 

differential at  0 given by the  s x p m a t r i x  A. I f  min A x  has a strict local m a x  at 

x = 0 then rain f ( x )  has a s tr ic t  local m a x  at x = O. I f  f ( x )  - A x  > 0 for all x 

then the  converse also holds. 

P r o o f  o f  M a x - m i n  Theorem: Suppose rain A x  has a strict local max at x = 0. 

I f x  ~ 0 t h e n m i n A x  < O. Let e > 0 be defined by - e - -  m a x m i n A x  where 

the max is taken over Ix] = 1. For x ~ 0, we have f ( x )  = ]x[(A(x/Ix[)  + h(x ) )  

where h(x)  = O([x[). Now choose 5 such that  [x[ < 5 implies h(x)  < E. Then 

rain f ( x )  < 0 for [x[ < 5 and x ~ 0 and consequently rain f has a strict local max 

at 0. 

Conversely if f ( x )  - A x  >_ 0 for all x then if m i n f  has a strict local max at 0, 

the same is true for min A. 

The property that  min A x  has a local max at x = 0 has an equivalent formu- 

lation based on the version of the fundamental theorem of linear programming 

called the 

STIEMKE THEOREM: Let  A is a real matr ix ,  x a sui table column m a t r i x  and c a 

sui table  row matr ix .  The  following are equivalent: 

(a) A x > _ O ~  A x = O .  

(b) There  is a c > 0 such that  cA = O. 

3.4. PERFECT AND EUTACTIC FOR SYMPLECTIC LATTICES. The above ideas 

have been used by Berg~ and Martinet [BM] to generalize the Voronoi theorem 

to symplectic and isodual lattices. We will explain the idea briefly and give these 

conditions in complex form. 

Consider the g(g + 1)-dimensional subspace T of the Lie algebra spg(R ) 

consisting of all matrices of the form 

where p and q are symmetric matrices. This is the tangent space at the identity 

to the symmetric  symplectic matrices. It can be identified with the vector space 

of symmetric  complex matrices p + iq, and may also be characterized as the set 

of real symmetric  matrices A satisfying A J  = - J A .  Now the neighborhood of 

a given symplectic lattice with generator matr ix  Ar can be given by exp(A/2)Ar 

for A in a neighborhood of the origin in 7-. 

To apply the Max-rain Theorem, we let M be the set of minimum vectors of the 

lattice L with generator matrix Ar. Consider the function f from 7- ( = R  a(a+l)) 
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to R ~, where s is the number of minimum vectors, where the value at A is given 

by components 

(:/ f z ( A )  = expA - # (L) ,  z = x + iy  E M.  

From the expansion of expA near A = 0 we see that expA - I - A > 0 for A near 

0, so that  the Max-min Theorem applies. For A small the minimum vectors of the 

lattice with generator matrix exp(A/2)Ar are among the vectors exp(A/2) ( x ) 

% 

Y / ' \ 
z = x + iy E M .  Note that  the differential of f is the map sending A to the 

v e c t o r w i t h c o m p o n e n t s ( X ) t A ( X ) , z E M .  Y Y Applying the Max-min Theorem 

and the Stiemke Theorem shows that  the lattice L is an absolute local maximum 

for symplectic lattices if and only if the following conditions apply: 
( y ) t  ( y )  

(P(symp)) A = 0 for all A E T ~ A = 0, 

and there is a sequence cz such that (;)t (:) 
(E(symp)) c z > 0  and E c z  A = 0  for a l l A E T .  

zEM 

We will consider a complex form of the above conditions. Suppose A E T is 

written as above in terms of symmetric matrices p and q. Then 

() A x = ~ ( z t ( p - i q ) z )  = ~ ( z z t ( p - i q ) )  
Y 

where tr denotes the trace of the matrix. If a and j3 are in the vector space of 

symmetric complex matrices, Sc ,  then ~tr(a/3*) forms a non-degenerate inner 

product on So.  Using these Nets, we can see that  the above conditions can be 

stated in complex form as 

(P(symp)) { z z t l z  E M }  spans ~qc 

and there is a sequence Cz such that 

(E(symp)) cz > 0 and E CzZZt = 0. 
zEM 

These should be compared with conditions (P) and (E) above. We note that  if L 

is symplectic (P) implies (P(symp)) and (E) implies (E(symp)). If a symplectic 

lattice satisfies conditions (P(symp)) and E(symp) resp. we will say that it is 

resp. perfect and eutactie for symplectic lattices. These are analogues of the 

classical definitions of Voronoi and it follows from the Max-min theorem and the 

Stiemke theorem that  
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THEOREM: A symplectic lattice is a strict local max of it(L) for symplectic 
lattices of the same dimension iff it is perfect and eutactic for symplectic 

lattices. 

We are also interested in conditions under which we can show tha t  it(L) is 

not  a local max. If L does not satisfy (P(symp))  then there are symmetr ic  real 

matr ices Po and q0 such tha t  for all z = x + iy E M 

(:)t( )(:) 
(zzt(po _ iqo))t = Po qo = 0. 

qo -Po 

Now let Ao be the above 2 9 • 2g real matrix above. Suppose that A o satisfies the 

condition that Ao ( y ) TL O, or equivalently (po-iqo)z T~ O, for all z = x+iy  E M. 

() In this case the first term in the expansion of exptA0 x - it(L) at t = 0 
Y 

() x , and this term is strictly positive for all z E M,  t r 0. So is t 2 Ao 2 Y 

it(L) will not  be a local max. 

3 .5 .  SYMPLECTIC AUTOMORPHISMS. For a lattice with automorphisms,  it is 

known (see Conway and Sloane [CS2]) tha t  if the au tomorphism group acts as a 

t ransi t ive group of permutat ions  on the set of min imum vectors, then we can find 

eutact ic  coefficients tha t  are equal. We will prove a similar fact for symplect ic  

lattices if we consider the group of symplectic automorphisms.  

Recall tha t  an element of the au tomorphism group corresponds to matrices T 

in O(2g) and T in GL2g(Z) such tha t  TAr = ArT. If the lattice is symplectie then 

the au tomorph i sm is said to be symplectic if T (equivalently 2~) is symplectic.  

Now T induces a permuta t ion  zr = zr(T) on the set of min imum vectors M.  Also 

since T is symplect ic  the map A --+ T t A T  is a vector space isomorphism of T.  

So 

E az A = 0 for all A E 7- 
zEM 

if and only if 

(:) E az T t A T  = 0 for all A E T.  
zEM 

It  follows tha t  

E CzTrZ(Trz)t ~ E C~r-lzZZt ~ O. 
zEM zEM 
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Summing over all symplectic automorphisms shows that if the group of permu- 

tations corresponding to symplectic automorphisms is transitive, we can take 

as eutactic coefficients ~ c~(T)~, where the sum is over all symplectic auto- 

morphisms. By dividing through, we can replace them all by 1. 

In the examples given below, it can be seen (see Quine [Q1] [Q2]) that the 

group of symplectic automorphisms is transitive. This makes it simpler to find 

eutactic coefficients since we can assume they are all equal to 1. The transitivity 

follows from the fact that the automorphisms of the surface are transitive on 

the corresponding cycles in the homology. The automorphisms of the Riemann 

surface induce symplectic automorphisms on the Jacobian. 

4. Appl icat ions  to Jacobians  

4.1. T H E  KLEIN CURVE. It is known [B] that A~ 2) satisfies (P) and (E) and 

hence also (P(symp)) and (E(symp)). We will show how to use the cyclotomic 

construction of A~ 2) and the complex form of (E) that this lattice is eutactic in 

the classical sense. 

From the description of A~ 2) as a sublattice of Z 7, we can see that the vectors 

of minimum norm are (1,-1,-1,1,0,0,0), (1<1,0<1,1,0,0), and (1,0,-1,-1,0,1,0) and 

vectors obtained from these by permutation of coordinates. These correspond to 

p ( r 1 6 2 1 6 2  p ( r 1 6 2 1 6 2 1 6 2  and p ( r 1 6 2 1 6 2 1 6 2  

k = 0 , . . . ,  6. Denote the vectors v(p) for p in each set of 7, by M1, M2, and M3 

respectively. The set of minimum vectors is M = M1 t2 M2 t2 M3. The entries of 

v((k(1 + ())v(~k(1 + ())t  are of the form (k(i+j)(1 + (i)(1 + (J)(1 - ~i)2(1 - (j)2 

with i, j = 1, 2, 4. Thus for v C M1 the entries of vv t are of the form (k(i+J)c(i, j) 
where c(~,j) is independent of k. Summing over k we see that ~veM1 vvt = 0 
since i + j r 0 (rood 7). The same argument shows that the sum is zero over M2 

and M3, so ~veM vvt = 0, and A~ 2) is eutactic for symplectic lattices. A similar 

argument shows ~ e M  vv* = 21I, so A (2) is eutactic in the classical sense. 

4.2. THE FERMAT CURVE. We will show from the cyclotomic construction that 

the Jacobian of the Fermat curve is eutactic in the classical sense and therefore 

also for symplectic lattices, but that it is not perfect for symplectic lattices and, 

in fact, is not a local max for #(L). 

From the description in section 2.3 we see that the minimum vectors are in 

four groups: M1 = {(s163 M2 : {(s163 ea)t}, M3 = {(eli,s 

M4 = {(el, s eai) t} where s j = 1, 2,3 are ~:1. Each group accounts for four 
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minimum vectors (recall that  z and - z  are considered the same) for a total of 

16. Now 
0 i f j T ~ k  

E s163 = 8 if j = k 

where the sum is over all 8 possibilities for (el, e2, e3). So 

E ZZ t z 41. 

zEM1 

A similar argument shows 

( :0 i )_  (100) 
ZZ t ~- 4 --1 ~ ZZ t = 4 0 1 0 

zEM2 0 zEM3 0 0 --1 

o o) 
and ~ z z  t = 4 - 1  0 

zC==M4 0 --1 

so that  finally 

E ZZ t -~- O, 

zEM 

and the lattice is eutactic for symplectic lattices (E(symp)). In fact, a similar 

argument shows that  

E z2 t = 161 
zEM 

so that  the lattice is eutactic in the classical sense (E). 

To show that  the lattice does not satisfy (P(symp)),  consider the three 

symmetric complex matrices 

(i0!) (!00) (00!) 
0 , i 0 , 0 0 . 
0 0 0 0 0 

Considering again the non-degenerate inner product ~afl* on symmetric complex 

matrices we see that  the three matrices are perpendicular to z z  t for every z E M 

since the diagonals of z z  t contain real entries. Thus the matrices { z z  t ] z E M }  

do not span the symmetric complex matrices. 

If a is any one of the above three matrices, a z  ~ 0 for all z E M since no 

coordinate of z vanishes. Thus by considerations at the end of section 3.4, #(L) 

is not a local max. 
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4.3. THE PICARD CURVE. We will show that  the Jacobian of the Picard curve 

is perfect and eutactic for symplectic lattices and is therefore a strict local max 

for it(L). Again, the cyclotomic construction aids in the computat ions required 

to show (P(symp)) and (E(symp)) in the complex form. 

We will show the Jacobian lattice is eutactic for symplectic lattices by showing 

that  

E ZZ t = O. 
zEM 

Following 2.3, let vk = v(xk). Recall that  the minimum vectors are vk and 

vk+l - vk, k = 0 , . . . , 1 1 .  Thus we must show 

11 11 
Z vkvtk = EVkV~"kl ~--- O. 
k=0 k=0 

We compute that  the entries of vkvtk are 

Ct2~2k ~6k (~/~3k OL--2~10k Ol- 1~7k f12~4k 

and the entries of ykVtk+l are 

Ol2~2k+1 ~6k+5 OL/~3k+2 O~-2~10k+5 O~- 1/~7h+2 /~2~4k+2. 

Each of these sums to 0 over k = 0 , . . . ,  11. Hence the lattice satisfies (E(symp)).  

A similar argument shows that  

(i ~ ~ E z2 t = 12 1 . 
~eU 0 -~X/3 

Thus the lattice does not satisfy (E) and is not eutactic is the classical sense. 

The identity matrix in the upper left corner above reflects the fact that  D4 is 

eutactic. 

To show this lattice satisfies (P(symp)),  we must show that  the vectors 

Pk = (r Ck,  3k, r r r 

together with the vectors 

Qk : (~2k+l,~6kW5,~3k+2 ~10k+5,~Tk+2,~4k+2), 
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k = 0 , . . . ,  11 span C 6. Let P be the matrix with rows Pk and Q the matrix with 

rows Qk, k = 0 , . . . ,  5. By direct computation it can be shown that 

thus the vectors do span C ~ and the Jacobian of the Picard curve is perfect for 

symplectic lattices. 

From the classification of perfect six-dimensional lattices by Barnes [B], we 

know the lattice does not satisfy (P). The only perfect (P) symplectic lattice is 

the Jacobian of the Klein curve. 

Note: Paul Schmutz Schaller has recently informed me that  the above examples 

have been studied also by Christophe Bayard [Bav], using similar methods. He 

has additional results, including that extremal symplectic lattices have Gram 

matrices with algebraic entries. 
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